xref: /linux/drivers/gpu/drm/nouveau/dispnv50/disp.c (revision cdd30ebb1b9f36159d66f088b61aee264e649d7a)
1 /*
2  * Copyright 2011 Red Hat Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: Ben Skeggs
23  */
24 #include "disp.h"
25 #include "atom.h"
26 #include "core.h"
27 #include "head.h"
28 #include "wndw.h"
29 #include "handles.h"
30 
31 #include <linux/backlight.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/hdmi.h>
34 #include <linux/component.h>
35 #include <linux/iopoll.h>
36 
37 #include <drm/display/drm_dp_helper.h>
38 #include <drm/display/drm_scdc_helper.h>
39 #include <drm/drm_atomic.h>
40 #include <drm/drm_atomic_helper.h>
41 #include <drm/drm_edid.h>
42 #include <drm/drm_eld.h>
43 #include <drm/drm_fb_helper.h>
44 #include <drm/drm_fixed.h>
45 #include <drm/drm_probe_helper.h>
46 #include <drm/drm_vblank.h>
47 
48 #include <nvif/push507c.h>
49 
50 #include <nvif/class.h>
51 #include <nvif/cl0002.h>
52 #include <nvif/event.h>
53 #include <nvif/if0012.h>
54 #include <nvif/if0014.h>
55 #include <nvif/timer.h>
56 
57 #include <nvhw/class/cl507c.h>
58 #include <nvhw/class/cl507d.h>
59 #include <nvhw/class/cl837d.h>
60 #include <nvhw/class/cl887d.h>
61 #include <nvhw/class/cl907d.h>
62 #include <nvhw/class/cl917d.h>
63 
64 #include "nouveau_drv.h"
65 #include "nouveau_dma.h"
66 #include "nouveau_gem.h"
67 #include "nouveau_connector.h"
68 #include "nouveau_encoder.h"
69 #include "nouveau_fence.h"
70 #include "nv50_display.h"
71 
72 /******************************************************************************
73  * EVO channel
74  *****************************************************************************/
75 
76 static int
77 nv50_chan_create(struct nvif_device *device, struct nvif_object *disp,
78 		 const s32 *oclass, u8 head, void *data, u32 size,
79 		 struct nv50_chan *chan)
80 {
81 	struct nvif_sclass *sclass;
82 	int ret, i, n;
83 
84 	chan->device = device;
85 
86 	ret = n = nvif_object_sclass_get(disp, &sclass);
87 	if (ret < 0)
88 		return ret;
89 
90 	while (oclass[0]) {
91 		for (i = 0; i < n; i++) {
92 			if (sclass[i].oclass == oclass[0]) {
93 				ret = nvif_object_ctor(disp, "kmsChan", 0,
94 						       oclass[0], data, size,
95 						       &chan->user);
96 				if (ret == 0) {
97 					ret = nvif_object_map(&chan->user, NULL, 0);
98 					if (ret)
99 						nvif_object_dtor(&chan->user);
100 				}
101 				nvif_object_sclass_put(&sclass);
102 				return ret;
103 			}
104 		}
105 		oclass++;
106 	}
107 
108 	nvif_object_sclass_put(&sclass);
109 	return -ENOSYS;
110 }
111 
112 static void
113 nv50_chan_destroy(struct nv50_chan *chan)
114 {
115 	nvif_object_dtor(&chan->user);
116 }
117 
118 /******************************************************************************
119  * DMA EVO channel
120  *****************************************************************************/
121 
122 void
123 nv50_dmac_destroy(struct nv50_dmac *dmac)
124 {
125 	nvif_object_dtor(&dmac->vram);
126 	nvif_object_dtor(&dmac->sync);
127 
128 	nv50_chan_destroy(&dmac->base);
129 
130 	nvif_mem_dtor(&dmac->push.mem);
131 }
132 
133 static void
134 nv50_dmac_kick(struct nvif_push *push)
135 {
136 	struct nv50_dmac *dmac = container_of(push, typeof(*dmac), push);
137 
138 	dmac->cur = push->cur - (u32 __iomem *)dmac->push.mem.object.map.ptr;
139 	if (dmac->put != dmac->cur) {
140 		/* Push buffer fetches are not coherent with BAR1, we need to ensure
141 		 * writes have been flushed right through to VRAM before writing PUT.
142 		 */
143 		if (dmac->push.mem.type & NVIF_MEM_VRAM) {
144 			struct nvif_device *device = dmac->base.device;
145 			nvif_wr32(&device->object, 0x070000, 0x00000001);
146 			nvif_msec(device, 2000,
147 				if (!(nvif_rd32(&device->object, 0x070000) & 0x00000002))
148 					break;
149 			);
150 		}
151 
152 		NVIF_WV32(&dmac->base.user, NV507C, PUT, PTR, dmac->cur);
153 		dmac->put = dmac->cur;
154 	}
155 
156 	push->bgn = push->cur;
157 }
158 
159 static int
160 nv50_dmac_free(struct nv50_dmac *dmac)
161 {
162 	u32 get = NVIF_RV32(&dmac->base.user, NV507C, GET, PTR);
163 	if (get > dmac->cur) /* NVIDIA stay 5 away from GET, do the same. */
164 		return get - dmac->cur - 5;
165 	return dmac->max - dmac->cur;
166 }
167 
168 static int
169 nv50_dmac_wind(struct nv50_dmac *dmac)
170 {
171 	/* Wait for GET to depart from the beginning of the push buffer to
172 	 * prevent writing PUT == GET, which would be ignored by HW.
173 	 */
174 	u32 get = NVIF_RV32(&dmac->base.user, NV507C, GET, PTR);
175 	if (get == 0) {
176 		/* Corner-case, HW idle, but non-committed work pending. */
177 		if (dmac->put == 0)
178 			nv50_dmac_kick(&dmac->push);
179 
180 		if (nvif_msec(dmac->base.device, 2000,
181 			if (NVIF_TV32(&dmac->base.user, NV507C, GET, PTR, >, 0))
182 				break;
183 		) < 0)
184 			return -ETIMEDOUT;
185 	}
186 
187 	PUSH_RSVD(&dmac->push, PUSH_JUMP(&dmac->push, 0));
188 	dmac->cur = 0;
189 	return 0;
190 }
191 
192 static int
193 nv50_dmac_wait(struct nvif_push *push, u32 size)
194 {
195 	struct nv50_dmac *dmac = container_of(push, typeof(*dmac), push);
196 	int free;
197 
198 	if (WARN_ON(size > dmac->max))
199 		return -EINVAL;
200 
201 	dmac->cur = push->cur - (u32 __iomem *)dmac->push.mem.object.map.ptr;
202 	if (dmac->cur + size >= dmac->max) {
203 		int ret = nv50_dmac_wind(dmac);
204 		if (ret)
205 			return ret;
206 
207 		push->cur = dmac->push.mem.object.map.ptr;
208 		push->cur = push->cur + dmac->cur;
209 		nv50_dmac_kick(push);
210 	}
211 
212 	if (nvif_msec(dmac->base.device, 2000,
213 		if ((free = nv50_dmac_free(dmac)) >= size)
214 			break;
215 	) < 0) {
216 		WARN_ON(1);
217 		return -ETIMEDOUT;
218 	}
219 
220 	push->bgn = dmac->push.mem.object.map.ptr;
221 	push->bgn = push->bgn + dmac->cur;
222 	push->cur = push->bgn;
223 	push->end = push->cur + free;
224 	return 0;
225 }
226 
227 MODULE_PARM_DESC(kms_vram_pushbuf, "Place EVO/NVD push buffers in VRAM (default: auto)");
228 static int nv50_dmac_vram_pushbuf = -1;
229 module_param_named(kms_vram_pushbuf, nv50_dmac_vram_pushbuf, int, 0400);
230 
231 int
232 nv50_dmac_create(struct nouveau_drm *drm,
233 		 const s32 *oclass, u8 head, void *data, u32 size, s64 syncbuf,
234 		 struct nv50_dmac *dmac)
235 {
236 	struct nvif_device *device = &drm->device;
237 	struct nvif_object *disp = &drm->display->disp.object;
238 	struct nvif_disp_chan_v0 *args = data;
239 	u8 type = NVIF_MEM_COHERENT;
240 	int ret;
241 
242 	/* Pascal added support for 47-bit physical addresses, but some
243 	 * parts of EVO still only accept 40-bit PAs.
244 	 *
245 	 * To avoid issues on systems with large amounts of RAM, and on
246 	 * systems where an IOMMU maps pages at a high address, we need
247 	 * to allocate push buffers in VRAM instead.
248 	 *
249 	 * This appears to match NVIDIA's behaviour on Pascal.
250 	 */
251 	if ((nv50_dmac_vram_pushbuf > 0) ||
252 	    (nv50_dmac_vram_pushbuf < 0 && device->info.family == NV_DEVICE_INFO_V0_PASCAL))
253 		type |= NVIF_MEM_VRAM;
254 
255 	ret = nvif_mem_ctor_map(&drm->mmu, "kmsChanPush", type, 0x1000, &dmac->push.mem);
256 	if (ret)
257 		return ret;
258 
259 	dmac->push.wait = nv50_dmac_wait;
260 	dmac->push.kick = nv50_dmac_kick;
261 	dmac->push.bgn = dmac->push.mem.object.map.ptr;
262 	dmac->push.cur = dmac->push.bgn;
263 	dmac->push.end = dmac->push.bgn;
264 	dmac->max = 0x1000/4 - 1;
265 
266 	/* EVO channels are affected by a HW bug where the last 12 DWORDs
267 	 * of the push buffer aren't able to be used safely.
268 	 */
269 	if (disp->oclass < GV100_DISP)
270 		dmac->max -= 12;
271 
272 	args->pushbuf = nvif_handle(&dmac->push.mem.object);
273 
274 	ret = nv50_chan_create(device, disp, oclass, head, data, size,
275 			       &dmac->base);
276 	if (ret)
277 		return ret;
278 
279 	if (syncbuf < 0)
280 		return 0;
281 
282 	ret = nvif_object_ctor(&dmac->base.user, "kmsSyncCtxDma", NV50_DISP_HANDLE_SYNCBUF,
283 			       NV_DMA_IN_MEMORY,
284 			       &(struct nv_dma_v0) {
285 					.target = NV_DMA_V0_TARGET_VRAM,
286 					.access = NV_DMA_V0_ACCESS_RDWR,
287 					.start = syncbuf + 0x0000,
288 					.limit = syncbuf + 0x0fff,
289 			       }, sizeof(struct nv_dma_v0),
290 			       &dmac->sync);
291 	if (ret)
292 		return ret;
293 
294 	ret = nvif_object_ctor(&dmac->base.user, "kmsVramCtxDma", NV50_DISP_HANDLE_VRAM,
295 			       NV_DMA_IN_MEMORY,
296 			       &(struct nv_dma_v0) {
297 					.target = NV_DMA_V0_TARGET_VRAM,
298 					.access = NV_DMA_V0_ACCESS_RDWR,
299 					.start = 0,
300 					.limit = device->info.ram_user - 1,
301 			       }, sizeof(struct nv_dma_v0),
302 			       &dmac->vram);
303 	if (ret)
304 		return ret;
305 
306 	return ret;
307 }
308 
309 /******************************************************************************
310  * Output path helpers
311  *****************************************************************************/
312 static void
313 nv50_outp_dump_caps(struct nouveau_drm *drm,
314 		    struct nouveau_encoder *outp)
315 {
316 	NV_DEBUG(drm, "%s caps: dp_interlace=%d\n",
317 		 outp->base.base.name, outp->caps.dp_interlace);
318 }
319 
320 static int
321 nv50_outp_atomic_check_view(struct drm_encoder *encoder,
322 			    struct drm_crtc_state *crtc_state,
323 			    struct drm_connector_state *conn_state,
324 			    struct drm_display_mode *native_mode)
325 {
326 	struct drm_display_mode *adjusted_mode = &crtc_state->adjusted_mode;
327 	struct drm_display_mode *mode = &crtc_state->mode;
328 	struct drm_connector *connector = conn_state->connector;
329 	struct nouveau_conn_atom *asyc = nouveau_conn_atom(conn_state);
330 	struct nouveau_drm *drm = nouveau_drm(encoder->dev);
331 
332 	NV_ATOMIC(drm, "%s atomic_check\n", encoder->name);
333 	asyc->scaler.full = false;
334 	if (!native_mode)
335 		return 0;
336 
337 	if (asyc->scaler.mode == DRM_MODE_SCALE_NONE) {
338 		switch (connector->connector_type) {
339 		case DRM_MODE_CONNECTOR_LVDS:
340 		case DRM_MODE_CONNECTOR_eDP:
341 			/* Don't force scaler for EDID modes with
342 			 * same size as the native one (e.g. different
343 			 * refresh rate)
344 			 */
345 			if (mode->hdisplay == native_mode->hdisplay &&
346 			    mode->vdisplay == native_mode->vdisplay &&
347 			    mode->type & DRM_MODE_TYPE_DRIVER)
348 				break;
349 			mode = native_mode;
350 			asyc->scaler.full = true;
351 			break;
352 		default:
353 			break;
354 		}
355 	} else {
356 		mode = native_mode;
357 	}
358 
359 	if (!drm_mode_equal(adjusted_mode, mode)) {
360 		drm_mode_copy(adjusted_mode, mode);
361 		crtc_state->mode_changed = true;
362 	}
363 
364 	return 0;
365 }
366 
367 static void
368 nv50_outp_atomic_fix_depth(struct drm_encoder *encoder, struct drm_crtc_state *crtc_state)
369 {
370 	struct nv50_head_atom *asyh = nv50_head_atom(crtc_state);
371 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
372 	struct drm_display_mode *mode = &asyh->state.adjusted_mode;
373 	unsigned int max_rate, mode_rate;
374 
375 	switch (nv_encoder->dcb->type) {
376 	case DCB_OUTPUT_DP:
377 		max_rate = nv_encoder->dp.link_nr * nv_encoder->dp.link_bw;
378 
379 		/* we don't support more than 10 anyway */
380 		asyh->or.bpc = min_t(u8, asyh->or.bpc, 10);
381 
382 		/* reduce the bpc until it works out */
383 		while (asyh->or.bpc > 6) {
384 			mode_rate = DIV_ROUND_UP(mode->clock * asyh->or.bpc * 3, 8);
385 			if (mode_rate <= max_rate)
386 				break;
387 
388 			asyh->or.bpc -= 2;
389 		}
390 		break;
391 	default:
392 		break;
393 	}
394 }
395 
396 static int
397 nv50_outp_atomic_check(struct drm_encoder *encoder,
398 		       struct drm_crtc_state *crtc_state,
399 		       struct drm_connector_state *conn_state)
400 {
401 	struct drm_connector *connector = conn_state->connector;
402 	struct nouveau_connector *nv_connector = nouveau_connector(connector);
403 	struct nv50_head_atom *asyh = nv50_head_atom(crtc_state);
404 	int ret;
405 
406 	ret = nv50_outp_atomic_check_view(encoder, crtc_state, conn_state,
407 					  nv_connector->native_mode);
408 	if (ret)
409 		return ret;
410 
411 	if (crtc_state->mode_changed || crtc_state->connectors_changed)
412 		asyh->or.bpc = connector->display_info.bpc;
413 
414 	/* We might have to reduce the bpc */
415 	nv50_outp_atomic_fix_depth(encoder, crtc_state);
416 
417 	return 0;
418 }
419 
420 struct nouveau_connector *
421 nv50_outp_get_new_connector(struct drm_atomic_state *state, struct nouveau_encoder *outp)
422 {
423 	struct drm_connector *connector;
424 	struct drm_connector_state *connector_state;
425 	struct drm_encoder *encoder = to_drm_encoder(outp);
426 	int i;
427 
428 	for_each_new_connector_in_state(state, connector, connector_state, i) {
429 		if (connector_state->best_encoder == encoder)
430 			return nouveau_connector(connector);
431 	}
432 
433 	return NULL;
434 }
435 
436 struct nouveau_connector *
437 nv50_outp_get_old_connector(struct drm_atomic_state *state, struct nouveau_encoder *outp)
438 {
439 	struct drm_connector *connector;
440 	struct drm_connector_state *connector_state;
441 	struct drm_encoder *encoder = to_drm_encoder(outp);
442 	int i;
443 
444 	for_each_old_connector_in_state(state, connector, connector_state, i) {
445 		if (connector_state->best_encoder == encoder)
446 			return nouveau_connector(connector);
447 	}
448 
449 	return NULL;
450 }
451 
452 static struct nouveau_crtc *
453 nv50_outp_get_new_crtc(const struct drm_atomic_state *state, const struct nouveau_encoder *outp)
454 {
455 	struct drm_crtc *crtc;
456 	struct drm_crtc_state *crtc_state;
457 	const u32 mask = drm_encoder_mask(&outp->base.base);
458 	int i;
459 
460 	for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
461 		if (crtc_state->encoder_mask & mask)
462 			return nouveau_crtc(crtc);
463 	}
464 
465 	return NULL;
466 }
467 
468 /******************************************************************************
469  * DAC
470  *****************************************************************************/
471 static void
472 nv50_dac_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state)
473 {
474 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
475 	struct nv50_core *core = nv50_disp(encoder->dev)->core;
476 	const u32 ctrl = NVDEF(NV507D, DAC_SET_CONTROL, OWNER, NONE);
477 
478 	core->func->dac->ctrl(core, nv_encoder->outp.or.id, ctrl, NULL);
479 	nv_encoder->crtc = NULL;
480 }
481 
482 static void
483 nv50_dac_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state)
484 {
485 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
486 	struct nouveau_crtc *nv_crtc = nv50_outp_get_new_crtc(state, nv_encoder);
487 	struct nv50_head_atom *asyh =
488 		nv50_head_atom(drm_atomic_get_new_crtc_state(state, &nv_crtc->base));
489 	struct nv50_core *core = nv50_disp(encoder->dev)->core;
490 	u32 ctrl = 0;
491 
492 	switch (nv_crtc->index) {
493 	case 0: ctrl |= NVDEF(NV507D, DAC_SET_CONTROL, OWNER, HEAD0); break;
494 	case 1: ctrl |= NVDEF(NV507D, DAC_SET_CONTROL, OWNER, HEAD1); break;
495 	case 2: ctrl |= NVDEF(NV907D, DAC_SET_CONTROL, OWNER_MASK, HEAD2); break;
496 	case 3: ctrl |= NVDEF(NV907D, DAC_SET_CONTROL, OWNER_MASK, HEAD3); break;
497 	default:
498 		WARN_ON(1);
499 		break;
500 	}
501 
502 	ctrl |= NVDEF(NV507D, DAC_SET_CONTROL, PROTOCOL, RGB_CRT);
503 
504 	if (!nvif_outp_acquired(&nv_encoder->outp))
505 		nvif_outp_acquire_dac(&nv_encoder->outp);
506 
507 	core->func->dac->ctrl(core, nv_encoder->outp.or.id, ctrl, asyh);
508 	asyh->or.depth = 0;
509 
510 	nv_encoder->crtc = &nv_crtc->base;
511 }
512 
513 static enum drm_connector_status
514 nv50_dac_detect(struct drm_encoder *encoder, struct drm_connector *connector)
515 {
516 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
517 	u32 loadval;
518 	int ret;
519 
520 	loadval = nouveau_drm(encoder->dev)->vbios.dactestval;
521 	if (loadval == 0)
522 		loadval = 340;
523 
524 	ret = nvif_outp_load_detect(&nv_encoder->outp, loadval);
525 	if (ret <= 0)
526 		return connector_status_disconnected;
527 
528 	return connector_status_connected;
529 }
530 
531 static const struct drm_encoder_helper_funcs
532 nv50_dac_help = {
533 	.atomic_check = nv50_outp_atomic_check,
534 	.atomic_enable = nv50_dac_atomic_enable,
535 	.atomic_disable = nv50_dac_atomic_disable,
536 	.detect = nv50_dac_detect
537 };
538 
539 static void
540 nv50_dac_destroy(struct drm_encoder *encoder)
541 {
542 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
543 
544 	nvif_outp_dtor(&nv_encoder->outp);
545 
546 	drm_encoder_cleanup(encoder);
547 	kfree(encoder);
548 }
549 
550 static const struct drm_encoder_funcs
551 nv50_dac_func = {
552 	.destroy = nv50_dac_destroy,
553 };
554 
555 static int
556 nv50_dac_create(struct nouveau_encoder *nv_encoder)
557 {
558 	struct drm_connector *connector = &nv_encoder->conn->base;
559 	struct nouveau_drm *drm = nouveau_drm(connector->dev);
560 	struct nvkm_i2c *i2c = nvxx_i2c(drm);
561 	struct nvkm_i2c_bus *bus;
562 	struct drm_encoder *encoder;
563 	struct dcb_output *dcbe = nv_encoder->dcb;
564 	int type = DRM_MODE_ENCODER_DAC;
565 
566 	bus = nvkm_i2c_bus_find(i2c, dcbe->i2c_index);
567 	if (bus)
568 		nv_encoder->i2c = &bus->i2c;
569 
570 	encoder = to_drm_encoder(nv_encoder);
571 	drm_encoder_init(connector->dev, encoder, &nv50_dac_func, type,
572 			 "dac-%04x-%04x", dcbe->hasht, dcbe->hashm);
573 	drm_encoder_helper_add(encoder, &nv50_dac_help);
574 
575 	drm_connector_attach_encoder(connector, encoder);
576 	return 0;
577 }
578 
579 /*
580  * audio component binding for ELD notification
581  */
582 static void
583 nv50_audio_component_eld_notify(struct drm_audio_component *acomp, int port,
584 				int dev_id)
585 {
586 	if (acomp && acomp->audio_ops && acomp->audio_ops->pin_eld_notify)
587 		acomp->audio_ops->pin_eld_notify(acomp->audio_ops->audio_ptr,
588 						 port, dev_id);
589 }
590 
591 static int
592 nv50_audio_component_get_eld(struct device *kdev, int port, int dev_id,
593 			     bool *enabled, unsigned char *buf, int max_bytes)
594 {
595 	struct nouveau_drm *drm = dev_get_drvdata(kdev);
596 	struct drm_encoder *encoder;
597 	struct nouveau_encoder *nv_encoder;
598 	struct nouveau_crtc *nv_crtc;
599 	int ret = 0;
600 
601 	*enabled = false;
602 
603 	mutex_lock(&drm->audio.lock);
604 
605 	drm_for_each_encoder(encoder, drm->dev) {
606 		struct nouveau_connector *nv_connector = NULL;
607 
608 		if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST)
609 			continue; /* TODO */
610 
611 		nv_encoder = nouveau_encoder(encoder);
612 		nv_connector = nv_encoder->conn;
613 		nv_crtc = nouveau_crtc(nv_encoder->crtc);
614 
615 		if (!nv_crtc || nv_encoder->outp.or.id != port || nv_crtc->index != dev_id)
616 			continue;
617 
618 		*enabled = nv_encoder->audio.enabled;
619 		if (*enabled) {
620 			ret = drm_eld_size(nv_connector->base.eld);
621 			memcpy(buf, nv_connector->base.eld,
622 			       min(max_bytes, ret));
623 		}
624 		break;
625 	}
626 
627 	mutex_unlock(&drm->audio.lock);
628 
629 	return ret;
630 }
631 
632 static const struct drm_audio_component_ops nv50_audio_component_ops = {
633 	.get_eld = nv50_audio_component_get_eld,
634 };
635 
636 static int
637 nv50_audio_component_bind(struct device *kdev, struct device *hda_kdev,
638 			  void *data)
639 {
640 	struct nouveau_drm *drm = dev_get_drvdata(kdev);
641 	struct drm_audio_component *acomp = data;
642 
643 	if (WARN_ON(!device_link_add(hda_kdev, kdev, DL_FLAG_STATELESS)))
644 		return -ENOMEM;
645 
646 	drm_modeset_lock_all(drm->dev);
647 	acomp->ops = &nv50_audio_component_ops;
648 	acomp->dev = kdev;
649 	drm->audio.component = acomp;
650 	drm_modeset_unlock_all(drm->dev);
651 	return 0;
652 }
653 
654 static void
655 nv50_audio_component_unbind(struct device *kdev, struct device *hda_kdev,
656 			    void *data)
657 {
658 	struct nouveau_drm *drm = dev_get_drvdata(kdev);
659 	struct drm_audio_component *acomp = data;
660 
661 	drm_modeset_lock_all(drm->dev);
662 	drm->audio.component = NULL;
663 	acomp->ops = NULL;
664 	acomp->dev = NULL;
665 	drm_modeset_unlock_all(drm->dev);
666 }
667 
668 static const struct component_ops nv50_audio_component_bind_ops = {
669 	.bind   = nv50_audio_component_bind,
670 	.unbind = nv50_audio_component_unbind,
671 };
672 
673 static void
674 nv50_audio_component_init(struct nouveau_drm *drm)
675 {
676 	if (component_add(drm->dev->dev, &nv50_audio_component_bind_ops))
677 		return;
678 
679 	drm->audio.component_registered = true;
680 	mutex_init(&drm->audio.lock);
681 }
682 
683 static void
684 nv50_audio_component_fini(struct nouveau_drm *drm)
685 {
686 	if (!drm->audio.component_registered)
687 		return;
688 
689 	component_del(drm->dev->dev, &nv50_audio_component_bind_ops);
690 	drm->audio.component_registered = false;
691 	mutex_destroy(&drm->audio.lock);
692 }
693 
694 /******************************************************************************
695  * Audio
696  *****************************************************************************/
697 static bool
698 nv50_audio_supported(struct drm_encoder *encoder)
699 {
700 	struct nv50_disp *disp = nv50_disp(encoder->dev);
701 
702 	if (disp->disp->object.oclass <= GT200_DISP ||
703 	    disp->disp->object.oclass == GT206_DISP)
704 		return false;
705 
706 	if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) {
707 		struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
708 
709 		switch (nv_encoder->dcb->type) {
710 		case DCB_OUTPUT_TMDS:
711 		case DCB_OUTPUT_DP:
712 			break;
713 		default:
714 			return false;
715 		}
716 	}
717 
718 	return true;
719 }
720 
721 static void
722 nv50_audio_disable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc)
723 {
724 	struct nouveau_drm *drm = nouveau_drm(encoder->dev);
725 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
726 	struct nvif_outp *outp = &nv_encoder->outp;
727 
728 	if (!nv50_audio_supported(encoder))
729 		return;
730 
731 	mutex_lock(&drm->audio.lock);
732 	if (nv_encoder->audio.enabled) {
733 		nv_encoder->audio.enabled = false;
734 		nvif_outp_hda_eld(&nv_encoder->outp, nv_crtc->index, NULL, 0);
735 	}
736 	mutex_unlock(&drm->audio.lock);
737 
738 	nv50_audio_component_eld_notify(drm->audio.component, outp->or.id, nv_crtc->index);
739 }
740 
741 static void
742 nv50_audio_enable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc,
743 		  struct nouveau_connector *nv_connector, struct drm_atomic_state *state,
744 		  struct drm_display_mode *mode)
745 {
746 	struct nouveau_drm *drm = nouveau_drm(encoder->dev);
747 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
748 	struct nvif_outp *outp = &nv_encoder->outp;
749 
750 	if (!nv50_audio_supported(encoder) || !nv_connector->base.display_info.has_audio)
751 		return;
752 
753 	mutex_lock(&drm->audio.lock);
754 
755 	nvif_outp_hda_eld(&nv_encoder->outp, nv_crtc->index, nv_connector->base.eld,
756 			  drm_eld_size(nv_connector->base.eld));
757 	nv_encoder->audio.enabled = true;
758 
759 	mutex_unlock(&drm->audio.lock);
760 
761 	nv50_audio_component_eld_notify(drm->audio.component, outp->or.id, nv_crtc->index);
762 }
763 
764 /******************************************************************************
765  * HDMI
766  *****************************************************************************/
767 static void
768 nv50_hdmi_enable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc,
769 		 struct nouveau_connector *nv_connector, struct drm_atomic_state *state,
770 		 struct drm_display_mode *mode, bool hda)
771 {
772 	struct nouveau_drm *drm = nouveau_drm(encoder->dev);
773 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
774 	struct drm_hdmi_info *hdmi = &nv_connector->base.display_info.hdmi;
775 	union hdmi_infoframe infoframe = { 0 };
776 	const u8 rekey = 56; /* binary driver, and tegra, constant */
777 	u32 max_ac_packet;
778 	struct {
779 		struct nvif_outp_infoframe_v0 infoframe;
780 		u8 data[17];
781 	} args = { 0 };
782 	int ret, size;
783 
784 	max_ac_packet  = mode->htotal - mode->hdisplay;
785 	max_ac_packet -= rekey;
786 	max_ac_packet -= 18; /* constant from tegra */
787 	max_ac_packet /= 32;
788 
789 	if (nv_encoder->i2c && hdmi->scdc.scrambling.supported) {
790 		const bool high_tmds_clock_ratio = mode->clock > 340000;
791 		u8 scdc;
792 
793 		ret = drm_scdc_readb(nv_encoder->i2c, SCDC_TMDS_CONFIG, &scdc);
794 		if (ret < 0) {
795 			NV_ERROR(drm, "Failure to read SCDC_TMDS_CONFIG: %d\n", ret);
796 			return;
797 		}
798 
799 		scdc &= ~(SCDC_TMDS_BIT_CLOCK_RATIO_BY_40 | SCDC_SCRAMBLING_ENABLE);
800 		if (high_tmds_clock_ratio || hdmi->scdc.scrambling.low_rates)
801 			scdc |= SCDC_SCRAMBLING_ENABLE;
802 		if (high_tmds_clock_ratio)
803 			scdc |= SCDC_TMDS_BIT_CLOCK_RATIO_BY_40;
804 
805 		ret = drm_scdc_writeb(nv_encoder->i2c, SCDC_TMDS_CONFIG, scdc);
806 		if (ret < 0)
807 			NV_ERROR(drm, "Failure to write SCDC_TMDS_CONFIG = 0x%02x: %d\n",
808 				 scdc, ret);
809 	}
810 
811 	ret = nvif_outp_hdmi(&nv_encoder->outp, nv_crtc->index, true, max_ac_packet, rekey,
812 			     mode->clock, hdmi->scdc.supported, hdmi->scdc.scrambling.supported,
813 			     hdmi->scdc.scrambling.low_rates);
814 	if (ret)
815 		return;
816 
817 	/* AVI InfoFrame. */
818 	args.infoframe.version = 0;
819 	args.infoframe.head = nv_crtc->index;
820 
821 	if (!drm_hdmi_avi_infoframe_from_display_mode(&infoframe.avi, &nv_connector->base, mode)) {
822 		drm_hdmi_avi_infoframe_quant_range(&infoframe.avi, &nv_connector->base, mode,
823 						   HDMI_QUANTIZATION_RANGE_FULL);
824 
825 		size = hdmi_infoframe_pack(&infoframe, args.data, ARRAY_SIZE(args.data));
826 	} else {
827 		size = 0;
828 	}
829 
830 	nvif_outp_infoframe(&nv_encoder->outp, NVIF_OUTP_INFOFRAME_V0_AVI, &args.infoframe, size);
831 
832 	/* Vendor InfoFrame. */
833 	memset(&args.data, 0, sizeof(args.data));
834 	if (!drm_hdmi_vendor_infoframe_from_display_mode(&infoframe.vendor.hdmi,
835 							 &nv_connector->base, mode))
836 		size = hdmi_infoframe_pack(&infoframe, args.data, ARRAY_SIZE(args.data));
837 	else
838 		size = 0;
839 
840 	nvif_outp_infoframe(&nv_encoder->outp, NVIF_OUTP_INFOFRAME_V0_VSI, &args.infoframe, size);
841 
842 	nv_encoder->hdmi.enabled = true;
843 }
844 
845 /******************************************************************************
846  * MST
847  *****************************************************************************/
848 #define nv50_mstm(p) container_of((p), struct nv50_mstm, mgr)
849 #define nv50_mstc(p) container_of((p), struct nv50_mstc, connector)
850 #define nv50_msto(p) container_of((p), struct nv50_msto, encoder)
851 
852 struct nv50_mstc {
853 	struct nv50_mstm *mstm;
854 	struct drm_dp_mst_port *port;
855 	struct drm_connector connector;
856 
857 	struct drm_display_mode *native;
858 	struct edid *edid;
859 };
860 
861 struct nv50_msto {
862 	struct drm_encoder encoder;
863 
864 	/* head is statically assigned on msto creation */
865 	struct nv50_head *head;
866 	struct nv50_mstc *mstc;
867 	bool disabled;
868 	bool enabled;
869 
870 	u32 display_id;
871 };
872 
873 struct nouveau_encoder *nv50_real_outp(struct drm_encoder *encoder)
874 {
875 	struct nv50_msto *msto;
876 
877 	if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST)
878 		return nouveau_encoder(encoder);
879 
880 	msto = nv50_msto(encoder);
881 	if (!msto->mstc)
882 		return NULL;
883 	return msto->mstc->mstm->outp;
884 }
885 
886 static void
887 nv50_msto_cleanup(struct drm_atomic_state *state,
888 		  struct drm_dp_mst_topology_state *new_mst_state,
889 		  struct drm_dp_mst_topology_mgr *mgr,
890 		  struct nv50_msto *msto)
891 {
892 	struct nouveau_drm *drm = nouveau_drm(msto->encoder.dev);
893 	struct drm_dp_mst_atomic_payload *new_payload =
894 		drm_atomic_get_mst_payload_state(new_mst_state, msto->mstc->port);
895 	struct drm_dp_mst_topology_state *old_mst_state =
896 		drm_atomic_get_old_mst_topology_state(state, mgr);
897 	const struct drm_dp_mst_atomic_payload *old_payload =
898 		drm_atomic_get_mst_payload_state(old_mst_state, msto->mstc->port);
899 	struct nv50_mstc *mstc = msto->mstc;
900 	struct nv50_mstm *mstm = mstc->mstm;
901 
902 	NV_ATOMIC(drm, "%s: msto cleanup\n", msto->encoder.name);
903 
904 	if (msto->disabled) {
905 		if (msto->head->func->display_id) {
906 			nvif_outp_dp_mst_id_put(&mstm->outp->outp, msto->display_id);
907 			msto->display_id = 0;
908 		}
909 
910 		msto->mstc = NULL;
911 		msto->disabled = false;
912 		drm_dp_remove_payload_part2(mgr, new_mst_state, old_payload, new_payload);
913 	} else if (msto->enabled) {
914 		drm_dp_add_payload_part2(mgr, new_payload);
915 		msto->enabled = false;
916 	}
917 }
918 
919 static void
920 nv50_msto_prepare(struct drm_atomic_state *state,
921 		  struct drm_dp_mst_topology_state *mst_state,
922 		  struct drm_dp_mst_topology_mgr *mgr,
923 		  struct nv50_msto *msto)
924 {
925 	struct nouveau_drm *drm = nouveau_drm(msto->encoder.dev);
926 	struct nv50_mstc *mstc = msto->mstc;
927 	struct nv50_mstm *mstm = mstc->mstm;
928 	struct drm_dp_mst_atomic_payload *payload;
929 	int ret = 0;
930 
931 	NV_ATOMIC(drm, "%s: msto prepare\n", msto->encoder.name);
932 
933 	payload = drm_atomic_get_mst_payload_state(mst_state, mstc->port);
934 
935 	if (msto->disabled) {
936 		drm_dp_remove_payload_part1(mgr, mst_state, payload);
937 		nvif_outp_dp_mst_vcpi(&mstm->outp->outp, msto->head->base.index, 0, 0, 0, 0);
938 		ret = 1;
939 	} else {
940 		if (msto->enabled)
941 			ret = drm_dp_add_payload_part1(mgr, mst_state, payload);
942 	}
943 
944 	if (ret == 0) {
945 		nvif_outp_dp_mst_vcpi(&mstm->outp->outp, msto->head->base.index,
946 				      payload->vc_start_slot, payload->time_slots,
947 				      payload->pbn,
948 				      payload->time_slots * dfixed_trunc(mst_state->pbn_div));
949 	} else {
950 		nvif_outp_dp_mst_vcpi(&mstm->outp->outp, msto->head->base.index, 0, 0, 0, 0);
951 	}
952 }
953 
954 static int
955 nv50_msto_atomic_check(struct drm_encoder *encoder,
956 		       struct drm_crtc_state *crtc_state,
957 		       struct drm_connector_state *conn_state)
958 {
959 	struct drm_atomic_state *state = crtc_state->state;
960 	struct drm_connector *connector = conn_state->connector;
961 	struct drm_dp_mst_topology_state *mst_state;
962 	struct nv50_mstc *mstc = nv50_mstc(connector);
963 	struct nv50_mstm *mstm = mstc->mstm;
964 	struct nv50_head_atom *asyh = nv50_head_atom(crtc_state);
965 	int slots;
966 	int ret;
967 
968 	ret = nv50_outp_atomic_check_view(encoder, crtc_state, conn_state,
969 					  mstc->native);
970 	if (ret)
971 		return ret;
972 
973 	if (!drm_atomic_crtc_needs_modeset(crtc_state))
974 		return 0;
975 
976 	/*
977 	 * When restoring duplicated states, we need to make sure that the bw
978 	 * remains the same and avoid recalculating it, as the connector's bpc
979 	 * may have changed after the state was duplicated
980 	 */
981 	if (!state->duplicated) {
982 		const int clock = crtc_state->adjusted_mode.clock;
983 
984 		asyh->or.bpc = connector->display_info.bpc;
985 		asyh->dp.pbn = drm_dp_calc_pbn_mode(clock, asyh->or.bpc * 3 << 4);
986 	}
987 
988 	mst_state = drm_atomic_get_mst_topology_state(state, &mstm->mgr);
989 	if (IS_ERR(mst_state))
990 		return PTR_ERR(mst_state);
991 
992 	if (!mst_state->pbn_div.full) {
993 		struct nouveau_encoder *outp = mstc->mstm->outp;
994 
995 		mst_state->pbn_div = drm_dp_get_vc_payload_bw(&mstm->mgr,
996 							      outp->dp.link_bw, outp->dp.link_nr);
997 	}
998 
999 	slots = drm_dp_atomic_find_time_slots(state, &mstm->mgr, mstc->port, asyh->dp.pbn);
1000 	if (slots < 0)
1001 		return slots;
1002 
1003 	asyh->dp.tu = slots;
1004 
1005 	return 0;
1006 }
1007 
1008 static u8
1009 nv50_dp_bpc_to_depth(unsigned int bpc)
1010 {
1011 	switch (bpc) {
1012 	case  6: return NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_BPP_18_444;
1013 	case  8: return NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_BPP_24_444;
1014 	case 10:
1015 	default: return NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_BPP_30_444;
1016 	}
1017 }
1018 
1019 static void
1020 nv50_msto_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state)
1021 {
1022 	struct nv50_msto *msto = nv50_msto(encoder);
1023 	struct nv50_head *head = msto->head;
1024 	struct nv50_head_atom *asyh =
1025 		nv50_head_atom(drm_atomic_get_new_crtc_state(state, &head->base.base));
1026 	struct nv50_mstc *mstc = NULL;
1027 	struct nv50_mstm *mstm = NULL;
1028 	struct drm_connector *connector;
1029 	struct drm_connector_list_iter conn_iter;
1030 	u8 proto;
1031 
1032 	drm_connector_list_iter_begin(encoder->dev, &conn_iter);
1033 	drm_for_each_connector_iter(connector, &conn_iter) {
1034 		if (connector->state->best_encoder == &msto->encoder) {
1035 			mstc = nv50_mstc(connector);
1036 			mstm = mstc->mstm;
1037 			break;
1038 		}
1039 	}
1040 	drm_connector_list_iter_end(&conn_iter);
1041 
1042 	if (WARN_ON(!mstc))
1043 		return;
1044 
1045 	if (!mstm->links++) {
1046 		nvif_outp_acquire_sor(&mstm->outp->outp, false /*TODO: MST audio... */);
1047 		nouveau_dp_train(mstm->outp, true, 0, 0);
1048 	}
1049 
1050 	if (head->func->display_id) {
1051 		if (!WARN_ON(nvif_outp_dp_mst_id_get(&mstm->outp->outp, &msto->display_id)))
1052 			head->func->display_id(head, msto->display_id);
1053 	}
1054 
1055 	if (mstm->outp->outp.or.link & 1)
1056 		proto = NV917D_SOR_SET_CONTROL_PROTOCOL_DP_A;
1057 	else
1058 		proto = NV917D_SOR_SET_CONTROL_PROTOCOL_DP_B;
1059 
1060 	mstm->outp->update(mstm->outp, head->base.index, asyh, proto,
1061 			   nv50_dp_bpc_to_depth(asyh->or.bpc));
1062 
1063 	msto->mstc = mstc;
1064 	msto->enabled = true;
1065 	mstm->modified = true;
1066 }
1067 
1068 static void
1069 nv50_msto_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state)
1070 {
1071 	struct nv50_msto *msto = nv50_msto(encoder);
1072 	struct nv50_mstc *mstc = msto->mstc;
1073 	struct nv50_mstm *mstm = mstc->mstm;
1074 
1075 	if (msto->head->func->display_id)
1076 		msto->head->func->display_id(msto->head, 0);
1077 
1078 	mstm->outp->update(mstm->outp, msto->head->base.index, NULL, 0, 0);
1079 	mstm->modified = true;
1080 	if (!--mstm->links)
1081 		mstm->disabled = true;
1082 	msto->disabled = true;
1083 }
1084 
1085 static const struct drm_encoder_helper_funcs
1086 nv50_msto_help = {
1087 	.atomic_disable = nv50_msto_atomic_disable,
1088 	.atomic_enable = nv50_msto_atomic_enable,
1089 	.atomic_check = nv50_msto_atomic_check,
1090 };
1091 
1092 static void
1093 nv50_msto_destroy(struct drm_encoder *encoder)
1094 {
1095 	struct nv50_msto *msto = nv50_msto(encoder);
1096 	drm_encoder_cleanup(&msto->encoder);
1097 	kfree(msto);
1098 }
1099 
1100 static const struct drm_encoder_funcs
1101 nv50_msto = {
1102 	.destroy = nv50_msto_destroy,
1103 };
1104 
1105 static struct nv50_msto *
1106 nv50_msto_new(struct drm_device *dev, struct nv50_head *head, int id)
1107 {
1108 	struct nv50_msto *msto;
1109 	int ret;
1110 
1111 	msto = kzalloc(sizeof(*msto), GFP_KERNEL);
1112 	if (!msto)
1113 		return ERR_PTR(-ENOMEM);
1114 
1115 	ret = drm_encoder_init(dev, &msto->encoder, &nv50_msto,
1116 			       DRM_MODE_ENCODER_DPMST, "mst-%d", id);
1117 	if (ret) {
1118 		kfree(msto);
1119 		return ERR_PTR(ret);
1120 	}
1121 
1122 	drm_encoder_helper_add(&msto->encoder, &nv50_msto_help);
1123 	msto->encoder.possible_crtcs = drm_crtc_mask(&head->base.base);
1124 	msto->head = head;
1125 	return msto;
1126 }
1127 
1128 static struct drm_encoder *
1129 nv50_mstc_atomic_best_encoder(struct drm_connector *connector,
1130 			      struct drm_atomic_state *state)
1131 {
1132 	struct drm_connector_state *connector_state = drm_atomic_get_new_connector_state(state,
1133 											 connector);
1134 	struct nv50_mstc *mstc = nv50_mstc(connector);
1135 	struct drm_crtc *crtc = connector_state->crtc;
1136 
1137 	if (!(mstc->mstm->outp->dcb->heads & drm_crtc_mask(crtc)))
1138 		return NULL;
1139 
1140 	return &nv50_head(crtc)->msto->encoder;
1141 }
1142 
1143 static enum drm_mode_status
1144 nv50_mstc_mode_valid(struct drm_connector *connector,
1145 		     struct drm_display_mode *mode)
1146 {
1147 	struct nv50_mstc *mstc = nv50_mstc(connector);
1148 	struct nouveau_encoder *outp = mstc->mstm->outp;
1149 
1150 	/* TODO: calculate the PBN from the dotclock and validate against the
1151 	 * MSTB's max possible PBN
1152 	 */
1153 
1154 	return nv50_dp_mode_valid(outp, mode, NULL);
1155 }
1156 
1157 static int
1158 nv50_mstc_get_modes(struct drm_connector *connector)
1159 {
1160 	struct nv50_mstc *mstc = nv50_mstc(connector);
1161 	int ret = 0;
1162 
1163 	mstc->edid = drm_dp_mst_get_edid(&mstc->connector, mstc->port->mgr, mstc->port);
1164 	drm_connector_update_edid_property(&mstc->connector, mstc->edid);
1165 	if (mstc->edid)
1166 		ret = drm_add_edid_modes(&mstc->connector, mstc->edid);
1167 
1168 	/*
1169 	 * XXX: Since we don't use HDR in userspace quite yet, limit the bpc
1170 	 * to 8 to save bandwidth on the topology. In the future, we'll want
1171 	 * to properly fix this by dynamically selecting the highest possible
1172 	 * bpc that would fit in the topology
1173 	 */
1174 	if (connector->display_info.bpc)
1175 		connector->display_info.bpc =
1176 			clamp(connector->display_info.bpc, 6U, 8U);
1177 	else
1178 		connector->display_info.bpc = 8;
1179 
1180 	if (mstc->native)
1181 		drm_mode_destroy(mstc->connector.dev, mstc->native);
1182 	mstc->native = nouveau_conn_native_mode(&mstc->connector);
1183 	return ret;
1184 }
1185 
1186 static int
1187 nv50_mstc_atomic_check(struct drm_connector *connector,
1188 		       struct drm_atomic_state *state)
1189 {
1190 	struct nv50_mstc *mstc = nv50_mstc(connector);
1191 	struct drm_dp_mst_topology_mgr *mgr = &mstc->mstm->mgr;
1192 
1193 	return drm_dp_atomic_release_time_slots(state, mgr, mstc->port);
1194 }
1195 
1196 static int
1197 nv50_mstc_detect(struct drm_connector *connector,
1198 		 struct drm_modeset_acquire_ctx *ctx, bool force)
1199 {
1200 	struct nv50_mstc *mstc = nv50_mstc(connector);
1201 	int ret;
1202 
1203 	if (drm_connector_is_unregistered(connector))
1204 		return connector_status_disconnected;
1205 
1206 	ret = pm_runtime_get_sync(connector->dev->dev);
1207 	if (ret < 0 && ret != -EACCES) {
1208 		pm_runtime_put_autosuspend(connector->dev->dev);
1209 		return connector_status_disconnected;
1210 	}
1211 
1212 	ret = drm_dp_mst_detect_port(connector, ctx, mstc->port->mgr,
1213 				     mstc->port);
1214 	if (ret != connector_status_connected)
1215 		goto out;
1216 
1217 out:
1218 	pm_runtime_mark_last_busy(connector->dev->dev);
1219 	pm_runtime_put_autosuspend(connector->dev->dev);
1220 	return ret;
1221 }
1222 
1223 static const struct drm_connector_helper_funcs
1224 nv50_mstc_help = {
1225 	.get_modes = nv50_mstc_get_modes,
1226 	.mode_valid = nv50_mstc_mode_valid,
1227 	.atomic_best_encoder = nv50_mstc_atomic_best_encoder,
1228 	.atomic_check = nv50_mstc_atomic_check,
1229 	.detect_ctx = nv50_mstc_detect,
1230 };
1231 
1232 static void
1233 nv50_mstc_destroy(struct drm_connector *connector)
1234 {
1235 	struct nv50_mstc *mstc = nv50_mstc(connector);
1236 
1237 	drm_connector_cleanup(&mstc->connector);
1238 	drm_dp_mst_put_port_malloc(mstc->port);
1239 
1240 	kfree(mstc);
1241 }
1242 
1243 static const struct drm_connector_funcs
1244 nv50_mstc = {
1245 	.reset = nouveau_conn_reset,
1246 	.fill_modes = drm_helper_probe_single_connector_modes,
1247 	.destroy = nv50_mstc_destroy,
1248 	.atomic_duplicate_state = nouveau_conn_atomic_duplicate_state,
1249 	.atomic_destroy_state = nouveau_conn_atomic_destroy_state,
1250 	.atomic_set_property = nouveau_conn_atomic_set_property,
1251 	.atomic_get_property = nouveau_conn_atomic_get_property,
1252 };
1253 
1254 static int
1255 nv50_mstc_new(struct nv50_mstm *mstm, struct drm_dp_mst_port *port,
1256 	      const char *path, struct nv50_mstc **pmstc)
1257 {
1258 	struct drm_device *dev = mstm->outp->base.base.dev;
1259 	struct drm_crtc *crtc;
1260 	struct nv50_mstc *mstc;
1261 	int ret;
1262 
1263 	if (!(mstc = *pmstc = kzalloc(sizeof(*mstc), GFP_KERNEL)))
1264 		return -ENOMEM;
1265 	mstc->mstm = mstm;
1266 	mstc->port = port;
1267 
1268 	ret = drm_connector_init(dev, &mstc->connector, &nv50_mstc,
1269 				 DRM_MODE_CONNECTOR_DisplayPort);
1270 	if (ret) {
1271 		kfree(*pmstc);
1272 		*pmstc = NULL;
1273 		return ret;
1274 	}
1275 
1276 	drm_connector_helper_add(&mstc->connector, &nv50_mstc_help);
1277 
1278 	mstc->connector.funcs->reset(&mstc->connector);
1279 	nouveau_conn_attach_properties(&mstc->connector);
1280 
1281 	drm_for_each_crtc(crtc, dev) {
1282 		if (!(mstm->outp->dcb->heads & drm_crtc_mask(crtc)))
1283 			continue;
1284 
1285 		drm_connector_attach_encoder(&mstc->connector,
1286 					     &nv50_head(crtc)->msto->encoder);
1287 	}
1288 
1289 	drm_object_attach_property(&mstc->connector.base, dev->mode_config.path_property, 0);
1290 	drm_object_attach_property(&mstc->connector.base, dev->mode_config.tile_property, 0);
1291 	drm_connector_set_path_property(&mstc->connector, path);
1292 	drm_dp_mst_get_port_malloc(port);
1293 	return 0;
1294 }
1295 
1296 static void
1297 nv50_mstm_cleanup(struct drm_atomic_state *state,
1298 		  struct drm_dp_mst_topology_state *mst_state,
1299 		  struct nv50_mstm *mstm)
1300 {
1301 	struct nouveau_drm *drm = nouveau_drm(mstm->outp->base.base.dev);
1302 	struct drm_encoder *encoder;
1303 
1304 	NV_ATOMIC(drm, "%s: mstm cleanup\n", mstm->outp->base.base.name);
1305 	drm_dp_check_act_status(&mstm->mgr);
1306 
1307 	drm_for_each_encoder(encoder, mstm->outp->base.base.dev) {
1308 		if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) {
1309 			struct nv50_msto *msto = nv50_msto(encoder);
1310 			struct nv50_mstc *mstc = msto->mstc;
1311 			if (mstc && mstc->mstm == mstm)
1312 				nv50_msto_cleanup(state, mst_state, &mstm->mgr, msto);
1313 		}
1314 	}
1315 
1316 	if (mstm->disabled) {
1317 		nouveau_dp_power_down(mstm->outp);
1318 		nvif_outp_release(&mstm->outp->outp);
1319 		mstm->disabled = false;
1320 	}
1321 
1322 	mstm->modified = false;
1323 }
1324 
1325 static void
1326 nv50_mstm_prepare(struct drm_atomic_state *state,
1327 		  struct drm_dp_mst_topology_state *mst_state,
1328 		  struct nv50_mstm *mstm)
1329 {
1330 	struct nouveau_drm *drm = nouveau_drm(mstm->outp->base.base.dev);
1331 	struct drm_encoder *encoder;
1332 
1333 	NV_ATOMIC(drm, "%s: mstm prepare\n", mstm->outp->base.base.name);
1334 
1335 	/* Disable payloads first */
1336 	drm_for_each_encoder(encoder, mstm->outp->base.base.dev) {
1337 		if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) {
1338 			struct nv50_msto *msto = nv50_msto(encoder);
1339 			struct nv50_mstc *mstc = msto->mstc;
1340 			if (mstc && mstc->mstm == mstm && msto->disabled)
1341 				nv50_msto_prepare(state, mst_state, &mstm->mgr, msto);
1342 		}
1343 	}
1344 
1345 	/* Add payloads for new heads, while also updating the start slots of any unmodified (but
1346 	 * active) heads that may have had their VC slots shifted left after the previous step
1347 	 */
1348 	drm_for_each_encoder(encoder, mstm->outp->base.base.dev) {
1349 		if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) {
1350 			struct nv50_msto *msto = nv50_msto(encoder);
1351 			struct nv50_mstc *mstc = msto->mstc;
1352 			if (mstc && mstc->mstm == mstm && !msto->disabled)
1353 				nv50_msto_prepare(state, mst_state, &mstm->mgr, msto);
1354 		}
1355 	}
1356 }
1357 
1358 static struct drm_connector *
1359 nv50_mstm_add_connector(struct drm_dp_mst_topology_mgr *mgr,
1360 			struct drm_dp_mst_port *port, const char *path)
1361 {
1362 	struct nv50_mstm *mstm = nv50_mstm(mgr);
1363 	struct nv50_mstc *mstc;
1364 	int ret;
1365 
1366 	ret = nv50_mstc_new(mstm, port, path, &mstc);
1367 	if (ret)
1368 		return NULL;
1369 
1370 	return &mstc->connector;
1371 }
1372 
1373 static const struct drm_dp_mst_topology_cbs
1374 nv50_mstm = {
1375 	.add_connector = nv50_mstm_add_connector,
1376 };
1377 
1378 bool
1379 nv50_mstm_service(struct nouveau_drm *drm,
1380 		  struct nouveau_connector *nv_connector,
1381 		  struct nv50_mstm *mstm)
1382 {
1383 	struct drm_dp_aux *aux = &nv_connector->aux;
1384 	bool handled = true, ret = true;
1385 	int rc;
1386 	u8 esi[8] = {};
1387 
1388 	while (handled) {
1389 		u8 ack[8] = {};
1390 
1391 		rc = drm_dp_dpcd_read(aux, DP_SINK_COUNT_ESI, esi, 8);
1392 		if (rc != 8) {
1393 			ret = false;
1394 			break;
1395 		}
1396 
1397 		drm_dp_mst_hpd_irq_handle_event(&mstm->mgr, esi, ack, &handled);
1398 		if (!handled)
1399 			break;
1400 
1401 		rc = drm_dp_dpcd_writeb(aux, DP_SINK_COUNT_ESI + 1, ack[1]);
1402 
1403 		if (rc != 1) {
1404 			ret = false;
1405 			break;
1406 		}
1407 
1408 		drm_dp_mst_hpd_irq_send_new_request(&mstm->mgr);
1409 	}
1410 
1411 	if (!ret)
1412 		NV_DEBUG(drm, "Failed to handle ESI on %s: %d\n",
1413 			 nv_connector->base.name, rc);
1414 
1415 	return ret;
1416 }
1417 
1418 void
1419 nv50_mstm_remove(struct nv50_mstm *mstm)
1420 {
1421 	mstm->is_mst = false;
1422 	drm_dp_mst_topology_mgr_set_mst(&mstm->mgr, false);
1423 }
1424 
1425 int
1426 nv50_mstm_detect(struct nouveau_encoder *outp)
1427 {
1428 	struct nv50_mstm *mstm = outp->dp.mstm;
1429 	struct drm_dp_aux *aux;
1430 	int ret;
1431 
1432 	if (!mstm || !mstm->can_mst)
1433 		return 0;
1434 
1435 	aux = mstm->mgr.aux;
1436 
1437 	/* Clear any leftover MST state we didn't set ourselves by first
1438 	 * disabling MST if it was already enabled
1439 	 */
1440 	ret = drm_dp_dpcd_writeb(aux, DP_MSTM_CTRL, 0);
1441 	if (ret < 0)
1442 		return ret;
1443 
1444 	/* And start enabling */
1445 	ret = drm_dp_mst_topology_mgr_set_mst(&mstm->mgr, true);
1446 	if (ret)
1447 		return ret;
1448 
1449 	mstm->is_mst = true;
1450 	return 1;
1451 }
1452 
1453 static void
1454 nv50_mstm_fini(struct nouveau_encoder *outp)
1455 {
1456 	struct nv50_mstm *mstm = outp->dp.mstm;
1457 
1458 	if (!mstm)
1459 		return;
1460 
1461 	/* Don't change the MST state of this connector until we've finished
1462 	 * resuming, since we can't safely grab hpd_irq_lock in our resume
1463 	 * path to protect mstm->is_mst without potentially deadlocking
1464 	 */
1465 	mutex_lock(&outp->dp.hpd_irq_lock);
1466 	mstm->suspended = true;
1467 	mutex_unlock(&outp->dp.hpd_irq_lock);
1468 
1469 	if (mstm->is_mst)
1470 		drm_dp_mst_topology_mgr_suspend(&mstm->mgr);
1471 }
1472 
1473 static void
1474 nv50_mstm_init(struct nouveau_encoder *outp, bool runtime)
1475 {
1476 	struct nv50_mstm *mstm = outp->dp.mstm;
1477 	int ret = 0;
1478 
1479 	if (!mstm)
1480 		return;
1481 
1482 	if (mstm->is_mst) {
1483 		ret = drm_dp_mst_topology_mgr_resume(&mstm->mgr, !runtime);
1484 		if (ret == -1)
1485 			nv50_mstm_remove(mstm);
1486 	}
1487 
1488 	mutex_lock(&outp->dp.hpd_irq_lock);
1489 	mstm->suspended = false;
1490 	mutex_unlock(&outp->dp.hpd_irq_lock);
1491 
1492 	if (ret == -1)
1493 		drm_kms_helper_hotplug_event(mstm->mgr.dev);
1494 }
1495 
1496 static void
1497 nv50_mstm_del(struct nv50_mstm **pmstm)
1498 {
1499 	struct nv50_mstm *mstm = *pmstm;
1500 	if (mstm) {
1501 		drm_dp_mst_topology_mgr_destroy(&mstm->mgr);
1502 		kfree(*pmstm);
1503 		*pmstm = NULL;
1504 	}
1505 }
1506 
1507 static int
1508 nv50_mstm_new(struct nouveau_encoder *outp, struct drm_dp_aux *aux, int aux_max,
1509 	      int conn_base_id, struct nv50_mstm **pmstm)
1510 {
1511 	const int max_payloads = hweight8(outp->dcb->heads);
1512 	struct drm_device *dev = outp->base.base.dev;
1513 	struct nv50_mstm *mstm;
1514 	int ret;
1515 
1516 	if (!(mstm = *pmstm = kzalloc(sizeof(*mstm), GFP_KERNEL)))
1517 		return -ENOMEM;
1518 	mstm->outp = outp;
1519 	mstm->mgr.cbs = &nv50_mstm;
1520 
1521 	ret = drm_dp_mst_topology_mgr_init(&mstm->mgr, dev, aux, aux_max,
1522 					   max_payloads, conn_base_id);
1523 	if (ret)
1524 		return ret;
1525 
1526 	return 0;
1527 }
1528 
1529 /******************************************************************************
1530  * SOR
1531  *****************************************************************************/
1532 static void
1533 nv50_sor_update(struct nouveau_encoder *nv_encoder, u8 head,
1534 		struct nv50_head_atom *asyh, u8 proto, u8 depth)
1535 {
1536 	struct nv50_disp *disp = nv50_disp(nv_encoder->base.base.dev);
1537 	struct nv50_core *core = disp->core;
1538 
1539 	if (!asyh) {
1540 		nv_encoder->ctrl &= ~BIT(head);
1541 		if (NVDEF_TEST(nv_encoder->ctrl, NV507D, SOR_SET_CONTROL, OWNER, ==, NONE))
1542 			nv_encoder->ctrl = 0;
1543 	} else {
1544 		nv_encoder->ctrl |= NVVAL(NV507D, SOR_SET_CONTROL, PROTOCOL, proto);
1545 		nv_encoder->ctrl |= BIT(head);
1546 		asyh->or.depth = depth;
1547 	}
1548 
1549 	core->func->sor->ctrl(core, nv_encoder->outp.or.id, nv_encoder->ctrl, asyh);
1550 }
1551 
1552 /* TODO: Should we extend this to PWM-only backlights?
1553  * As well, should we add a DRM helper for waiting for the backlight to acknowledge
1554  * the panel backlight has been shut off? Intel doesn't seem to do this, and uses a
1555  * fixed time delay from the vbios…
1556  */
1557 static void
1558 nv50_sor_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state)
1559 {
1560 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1561 	struct nv50_head *head = nv50_head(nv_encoder->crtc);
1562 #ifdef CONFIG_DRM_NOUVEAU_BACKLIGHT
1563 	struct nouveau_connector *nv_connector = nv50_outp_get_old_connector(state, nv_encoder);
1564 	struct nouveau_drm *drm = nouveau_drm(nv_encoder->base.base.dev);
1565 	struct nouveau_backlight *backlight = nv_connector->backlight;
1566 	struct drm_dp_aux *aux = &nv_connector->aux;
1567 	int ret;
1568 
1569 	if (backlight && backlight->uses_dpcd) {
1570 		ret = drm_edp_backlight_disable(aux, &backlight->edp_info);
1571 		if (ret < 0)
1572 			NV_ERROR(drm, "Failed to disable backlight on [CONNECTOR:%d:%s]: %d\n",
1573 				 nv_connector->base.base.id, nv_connector->base.name, ret);
1574 	}
1575 #endif
1576 
1577 	if (nv_encoder->dcb->type == DCB_OUTPUT_TMDS && nv_encoder->hdmi.enabled) {
1578 		nvif_outp_hdmi(&nv_encoder->outp, head->base.index,
1579 			       false, 0, 0, 0, false, false, false);
1580 		nv_encoder->hdmi.enabled = false;
1581 	}
1582 
1583 	if (nv_encoder->dcb->type == DCB_OUTPUT_DP)
1584 		nouveau_dp_power_down(nv_encoder);
1585 
1586 	if (head->func->display_id)
1587 		head->func->display_id(head, 0);
1588 
1589 	nv_encoder->update(nv_encoder, head->base.index, NULL, 0, 0);
1590 	nv50_audio_disable(encoder, &head->base);
1591 	nv_encoder->crtc = NULL;
1592 }
1593 
1594 // common/inc/displayport/displayport.h
1595 #define DP_CONFIG_WATERMARK_ADJUST                   2
1596 #define DP_CONFIG_WATERMARK_LIMIT                   20
1597 #define DP_CONFIG_INCREASED_WATERMARK_ADJUST         8
1598 #define DP_CONFIG_INCREASED_WATERMARK_LIMIT         22
1599 
1600 static bool
1601 nv50_sor_dp_watermark_sst(struct nouveau_encoder *outp,
1602 			  struct nv50_head *head, struct nv50_head_atom *asyh)
1603 {
1604 	bool enhancedFraming = outp->dp.dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP;
1605 	u64 minRate = outp->dp.link_bw * 1000;
1606 	unsigned tuSize = 64;
1607 	unsigned waterMark;
1608 	unsigned hBlankSym;
1609 	unsigned vBlankSym;
1610 	unsigned watermarkAdjust = DP_CONFIG_WATERMARK_ADJUST;
1611 	unsigned watermarkMinimum = DP_CONFIG_WATERMARK_LIMIT;
1612 	// depth is multiplied by 16 in case of DSC enable
1613 	s32 hblank_symbols;
1614 	// number of link clocks per line.
1615 	int vblank_symbols	  = 0;
1616 	bool bEnableDsc = false;
1617 	unsigned surfaceWidth = asyh->mode.h.blanks - asyh->mode.h.blanke;
1618 	unsigned rasterWidth = asyh->mode.h.active;
1619 	unsigned depth = asyh->or.bpc * 3;
1620 	unsigned DSC_FACTOR = bEnableDsc ? 16 : 1;
1621 	u64 pixelClockHz = asyh->mode.clock * 1000;
1622 	u64 PrecisionFactor = 100000, ratioF, watermarkF;
1623 	u32 numLanesPerLink = outp->dp.link_nr;
1624 	u32 numSymbolsPerLine;
1625 	u32 BlankingBits;
1626 	u32 surfaceWidthPerLink;
1627 	u32 PixelSteeringBits;
1628 	u64 NumBlankingLinkClocks;
1629 	u32 MinHBlank;
1630 
1631 	if (outp->outp.info.dp.increased_wm) {
1632 		watermarkAdjust = DP_CONFIG_INCREASED_WATERMARK_ADJUST;
1633 		watermarkMinimum = DP_CONFIG_INCREASED_WATERMARK_LIMIT;
1634 	}
1635 
1636 	if ((pixelClockHz * depth) >= (8 * minRate * outp->dp.link_nr * DSC_FACTOR))
1637 	{
1638 		return false;
1639 	}
1640 
1641 	//
1642 	// For DSC, if (pclk * bpp) < (1/64 * orclk * 8 * lanes) then some TU may end up with
1643 	// 0 active symbols. This may cause HW hang. Bug 200379426
1644 	//
1645 	if ((bEnableDsc) &&
1646 	    ((pixelClockHz * depth) < div_u64(8 * minRate * outp->dp.link_nr * DSC_FACTOR, 64)))
1647 	{
1648 		return false;
1649 	}
1650 
1651 	//
1652 	//  Perform the SST calculation.
1653 	//	For auto mode the watermark calculation does not need to track accumulated error the
1654 	//	formulas for manual mode will not work.  So below calculation was extracted from the DTB.
1655 	//
1656 	ratioF = div_u64((u64)pixelClockHz * depth * PrecisionFactor, DSC_FACTOR);
1657 
1658 	ratioF = div_u64(ratioF, 8 * (u64) minRate * outp->dp.link_nr);
1659 
1660 	if (PrecisionFactor < ratioF) // Assert if we will end up with a negative number in below
1661 		return false;
1662 
1663 	watermarkF = div_u64(ratioF * tuSize * (PrecisionFactor - ratioF), PrecisionFactor);
1664 	waterMark = (unsigned)(watermarkAdjust + (div_u64(2 * div_u64(depth * PrecisionFactor, 8 * numLanesPerLink * DSC_FACTOR) + watermarkF, PrecisionFactor)));
1665 
1666 	//
1667 	//  Bounds check the watermark
1668 	//
1669 	numSymbolsPerLine = div_u64(surfaceWidth * depth, 8 * outp->dp.link_nr * DSC_FACTOR);
1670 
1671 	if (WARN_ON(waterMark > 39 || waterMark > numSymbolsPerLine))
1672 		return false;
1673 
1674 	//
1675 	//  Clamp the low side
1676 	//
1677 	if (waterMark < watermarkMinimum)
1678 		waterMark = watermarkMinimum;
1679 
1680 	//Bits to send BS/BE/Extra symbols due to pixel padding
1681 	//Also accounts for enhanced framing.
1682 	BlankingBits = 3*8*numLanesPerLink + (enhancedFraming ? 3*8*numLanesPerLink : 0);
1683 
1684 	//VBID/MVID/MAUD sent 4 times all the time
1685 	BlankingBits += 3*8*4;
1686 
1687 	surfaceWidthPerLink = surfaceWidth;
1688 
1689 	//Extra bits sent due to pixel steering
1690 	u32 remain;
1691 	div_u64_rem(surfaceWidthPerLink, numLanesPerLink, &remain);
1692 	PixelSteeringBits = remain ? div_u64((numLanesPerLink - remain) * depth, DSC_FACTOR) : 0;
1693 
1694 	BlankingBits += PixelSteeringBits;
1695 	NumBlankingLinkClocks = div_u64((u64)BlankingBits * PrecisionFactor, (8 * numLanesPerLink));
1696 	MinHBlank = (u32)(div_u64(div_u64(NumBlankingLinkClocks * pixelClockHz, minRate), PrecisionFactor));
1697 	MinHBlank += 12;
1698 
1699 	if (WARN_ON(MinHBlank > rasterWidth - surfaceWidth))
1700 		return false;
1701 
1702 	// Bug 702290 - Active Width should be greater than 60
1703 	if (WARN_ON(surfaceWidth <= 60))
1704 		return false;
1705 
1706 
1707 	hblank_symbols = (s32)(div_u64((u64)(rasterWidth - surfaceWidth - MinHBlank) * minRate, pixelClockHz));
1708 
1709 	//reduce HBlank Symbols to account for secondary data packet
1710 	hblank_symbols -= 1; //Stuffer latency to send BS
1711 	hblank_symbols -= 3; //SPKT latency to send data to stuffer
1712 
1713 	hblank_symbols -= numLanesPerLink == 1 ? 9  : numLanesPerLink == 2 ? 6 : 3;
1714 
1715 	hBlankSym = (hblank_symbols < 0) ? 0 : hblank_symbols;
1716 
1717 	// Refer to dev_disp.ref for more information.
1718 	// # symbols/vblank = ((SetRasterBlankEnd.X + SetRasterSize.Width - SetRasterBlankStart.X - 40) * link_clk / pclk) - Y - 1;
1719 	// where Y = (# lanes == 4) 12 : (# lanes == 2) ? 21 : 39
1720 	if (surfaceWidth < 40)
1721 	{
1722 		vblank_symbols = 0;
1723 	}
1724 	else
1725 	{
1726 		vblank_symbols = (s32)((div_u64((u64)(surfaceWidth - 40) * minRate, pixelClockHz))) - 1;
1727 
1728 		vblank_symbols -= numLanesPerLink == 1 ? 39  : numLanesPerLink == 2 ? 21 : 12;
1729 	}
1730 
1731 	vBlankSym = (vblank_symbols < 0) ? 0 : vblank_symbols;
1732 
1733 	return nvif_outp_dp_sst(&outp->outp, head->base.index, waterMark, hBlankSym, vBlankSym);
1734 }
1735 
1736 static void
1737 nv50_sor_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state)
1738 {
1739 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1740 	struct nouveau_crtc *nv_crtc = nv50_outp_get_new_crtc(state, nv_encoder);
1741 	struct nv50_head_atom *asyh =
1742 		nv50_head_atom(drm_atomic_get_new_crtc_state(state, &nv_crtc->base));
1743 	struct drm_display_mode *mode = &asyh->state.adjusted_mode;
1744 	struct nv50_disp *disp = nv50_disp(encoder->dev);
1745 	struct nv50_head *head = nv50_head(&nv_crtc->base);
1746 	struct nvif_outp *outp = &nv_encoder->outp;
1747 	struct drm_device *dev = encoder->dev;
1748 	struct nouveau_drm *drm = nouveau_drm(dev);
1749 	struct nouveau_connector *nv_connector;
1750 #ifdef CONFIG_DRM_NOUVEAU_BACKLIGHT
1751 	struct nouveau_backlight *backlight;
1752 #endif
1753 	struct nvbios *bios = &drm->vbios;
1754 	bool lvds_dual = false, lvds_8bpc = false, hda = false;
1755 	u8 proto = NV507D_SOR_SET_CONTROL_PROTOCOL_CUSTOM;
1756 	u8 depth = NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_DEFAULT;
1757 
1758 	nv_connector = nv50_outp_get_new_connector(state, nv_encoder);
1759 	nv_encoder->crtc = &nv_crtc->base;
1760 
1761 	if ((disp->disp->object.oclass == GT214_DISP ||
1762 	     disp->disp->object.oclass >= GF110_DISP) &&
1763 	    nv_encoder->dcb->type != DCB_OUTPUT_LVDS &&
1764 	    nv_connector->base.display_info.has_audio)
1765 		hda = true;
1766 
1767 	if (!nvif_outp_acquired(outp))
1768 		nvif_outp_acquire_sor(outp, hda);
1769 
1770 	switch (nv_encoder->dcb->type) {
1771 	case DCB_OUTPUT_TMDS:
1772 		if (disp->disp->object.oclass != NV50_DISP &&
1773 		    nv_connector->base.display_info.is_hdmi)
1774 			nv50_hdmi_enable(encoder, nv_crtc, nv_connector, state, mode, hda);
1775 
1776 		if (nv_encoder->outp.or.link & 1) {
1777 			proto = NV507D_SOR_SET_CONTROL_PROTOCOL_SINGLE_TMDS_A;
1778 			/* Only enable dual-link if:
1779 			 *  - Need to (i.e. rate > 165MHz)
1780 			 *  - DCB says we can
1781 			 *  - Not an HDMI monitor, since there's no dual-link
1782 			 *    on HDMI.
1783 			 */
1784 			if (mode->clock >= 165000 &&
1785 			    nv_encoder->dcb->duallink_possible &&
1786 			    !nv_connector->base.display_info.is_hdmi)
1787 				proto = NV507D_SOR_SET_CONTROL_PROTOCOL_DUAL_TMDS;
1788 		} else {
1789 			proto = NV507D_SOR_SET_CONTROL_PROTOCOL_SINGLE_TMDS_B;
1790 		}
1791 		break;
1792 	case DCB_OUTPUT_LVDS:
1793 		proto = NV507D_SOR_SET_CONTROL_PROTOCOL_LVDS_CUSTOM;
1794 
1795 		if (bios->fp_no_ddc) {
1796 			lvds_dual = bios->fp.dual_link;
1797 			lvds_8bpc = bios->fp.if_is_24bit;
1798 		} else {
1799 			if (nv_connector->type == DCB_CONNECTOR_LVDS_SPWG) {
1800 				if (((u8 *)nv_connector->edid)[121] == 2)
1801 					lvds_dual = true;
1802 			} else
1803 			if (mode->clock >= bios->fp.duallink_transition_clk) {
1804 				lvds_dual = true;
1805 			}
1806 
1807 			if (lvds_dual) {
1808 				if (bios->fp.strapless_is_24bit & 2)
1809 					lvds_8bpc = true;
1810 			} else {
1811 				if (bios->fp.strapless_is_24bit & 1)
1812 					lvds_8bpc = true;
1813 			}
1814 
1815 			if (asyh->or.bpc == 8)
1816 				lvds_8bpc = true;
1817 		}
1818 
1819 		nvif_outp_lvds(&nv_encoder->outp, lvds_dual, lvds_8bpc);
1820 		break;
1821 	case DCB_OUTPUT_DP:
1822 		nouveau_dp_train(nv_encoder, false, mode->clock, asyh->or.bpc);
1823 		nv50_sor_dp_watermark_sst(nv_encoder, head, asyh);
1824 		depth = nv50_dp_bpc_to_depth(asyh->or.bpc);
1825 
1826 		if (nv_encoder->outp.or.link & 1)
1827 			proto = NV887D_SOR_SET_CONTROL_PROTOCOL_DP_A;
1828 		else
1829 			proto = NV887D_SOR_SET_CONTROL_PROTOCOL_DP_B;
1830 
1831 #ifdef CONFIG_DRM_NOUVEAU_BACKLIGHT
1832 		backlight = nv_connector->backlight;
1833 		if (backlight && backlight->uses_dpcd)
1834 			drm_edp_backlight_enable(&nv_connector->aux, &backlight->edp_info,
1835 						 (u16)backlight->dev->props.brightness);
1836 #endif
1837 
1838 		break;
1839 	default:
1840 		BUG();
1841 		break;
1842 	}
1843 
1844 	if (head->func->display_id)
1845 		head->func->display_id(head, BIT(nv_encoder->outp.id));
1846 
1847 	nv_encoder->update(nv_encoder, nv_crtc->index, asyh, proto, depth);
1848 }
1849 
1850 static const struct drm_encoder_helper_funcs
1851 nv50_sor_help = {
1852 	.atomic_check = nv50_outp_atomic_check,
1853 	.atomic_enable = nv50_sor_atomic_enable,
1854 	.atomic_disable = nv50_sor_atomic_disable,
1855 };
1856 
1857 static void
1858 nv50_sor_destroy(struct drm_encoder *encoder)
1859 {
1860 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1861 
1862 	nv50_mstm_del(&nv_encoder->dp.mstm);
1863 	drm_encoder_cleanup(encoder);
1864 
1865 	if (nv_encoder->dcb->type == DCB_OUTPUT_DP)
1866 		mutex_destroy(&nv_encoder->dp.hpd_irq_lock);
1867 
1868 	nvif_outp_dtor(&nv_encoder->outp);
1869 	kfree(encoder);
1870 }
1871 
1872 static const struct drm_encoder_funcs
1873 nv50_sor_func = {
1874 	.destroy = nv50_sor_destroy,
1875 };
1876 
1877 static int
1878 nv50_sor_create(struct nouveau_encoder *nv_encoder)
1879 {
1880 	struct drm_connector *connector = &nv_encoder->conn->base;
1881 	struct nouveau_connector *nv_connector = nouveau_connector(connector);
1882 	struct nouveau_drm *drm = nouveau_drm(connector->dev);
1883 	struct nvkm_i2c *i2c = nvxx_i2c(drm);
1884 	struct drm_encoder *encoder;
1885 	struct dcb_output *dcbe = nv_encoder->dcb;
1886 	struct nv50_disp *disp = nv50_disp(connector->dev);
1887 	int type, ret;
1888 
1889 	switch (dcbe->type) {
1890 	case DCB_OUTPUT_LVDS: type = DRM_MODE_ENCODER_LVDS; break;
1891 	case DCB_OUTPUT_TMDS:
1892 	case DCB_OUTPUT_DP:
1893 	default:
1894 		type = DRM_MODE_ENCODER_TMDS;
1895 		break;
1896 	}
1897 
1898 	nv_encoder->update = nv50_sor_update;
1899 
1900 	encoder = to_drm_encoder(nv_encoder);
1901 	drm_encoder_init(connector->dev, encoder, &nv50_sor_func, type,
1902 			 "sor-%04x-%04x", dcbe->hasht, dcbe->hashm);
1903 	drm_encoder_helper_add(encoder, &nv50_sor_help);
1904 
1905 	drm_connector_attach_encoder(connector, encoder);
1906 
1907 	disp->core->func->sor->get_caps(disp, nv_encoder, ffs(dcbe->or) - 1);
1908 	nv50_outp_dump_caps(drm, nv_encoder);
1909 
1910 	if (dcbe->type == DCB_OUTPUT_DP) {
1911 		mutex_init(&nv_encoder->dp.hpd_irq_lock);
1912 
1913 		if (disp->disp->object.oclass < GF110_DISP) {
1914 			/* HW has no support for address-only
1915 			 * transactions, so we're required to
1916 			 * use custom I2C-over-AUX code.
1917 			 */
1918 			struct nvkm_i2c_aux *aux;
1919 
1920 			aux = nvkm_i2c_aux_find(i2c, dcbe->i2c_index);
1921 			if (!aux)
1922 				return -EINVAL;
1923 
1924 			nv_encoder->i2c = &aux->i2c;
1925 		} else {
1926 			nv_encoder->i2c = &nv_connector->aux.ddc;
1927 		}
1928 
1929 		if (nv_connector->type != DCB_CONNECTOR_eDP && nv_encoder->outp.info.dp.mst) {
1930 			ret = nv50_mstm_new(nv_encoder, &nv_connector->aux,
1931 					    16, nv_connector->base.base.id,
1932 					    &nv_encoder->dp.mstm);
1933 			if (ret)
1934 				return ret;
1935 		}
1936 	} else
1937 	if (nv_encoder->outp.info.ddc != NVIF_OUTP_DDC_INVALID) {
1938 		struct nvkm_i2c_bus *bus =
1939 			nvkm_i2c_bus_find(i2c, dcbe->i2c_index);
1940 		if (bus)
1941 			nv_encoder->i2c = &bus->i2c;
1942 	}
1943 
1944 	return 0;
1945 }
1946 
1947 /******************************************************************************
1948  * PIOR
1949  *****************************************************************************/
1950 static int
1951 nv50_pior_atomic_check(struct drm_encoder *encoder,
1952 		       struct drm_crtc_state *crtc_state,
1953 		       struct drm_connector_state *conn_state)
1954 {
1955 	int ret = nv50_outp_atomic_check(encoder, crtc_state, conn_state);
1956 	if (ret)
1957 		return ret;
1958 	crtc_state->adjusted_mode.clock *= 2;
1959 	return 0;
1960 }
1961 
1962 static void
1963 nv50_pior_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state)
1964 {
1965 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1966 	struct nv50_core *core = nv50_disp(encoder->dev)->core;
1967 	const u32 ctrl = NVDEF(NV507D, PIOR_SET_CONTROL, OWNER, NONE);
1968 
1969 	core->func->pior->ctrl(core, nv_encoder->outp.or.id, ctrl, NULL);
1970 	nv_encoder->crtc = NULL;
1971 }
1972 
1973 static void
1974 nv50_pior_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state)
1975 {
1976 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1977 	struct nouveau_crtc *nv_crtc = nv50_outp_get_new_crtc(state, nv_encoder);
1978 	struct nv50_head_atom *asyh =
1979 		nv50_head_atom(drm_atomic_get_new_crtc_state(state, &nv_crtc->base));
1980 	struct nv50_core *core = nv50_disp(encoder->dev)->core;
1981 	u32 ctrl = 0;
1982 
1983 	switch (nv_crtc->index) {
1984 	case 0: ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, OWNER, HEAD0); break;
1985 	case 1: ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, OWNER, HEAD1); break;
1986 	default:
1987 		WARN_ON(1);
1988 		break;
1989 	}
1990 
1991 	switch (asyh->or.bpc) {
1992 	case 10: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_BPP_30_444; break;
1993 	case  8: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_BPP_24_444; break;
1994 	case  6: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_BPP_18_444; break;
1995 	default: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_DEFAULT; break;
1996 	}
1997 
1998 	if (!nvif_outp_acquired(&nv_encoder->outp))
1999 		nvif_outp_acquire_pior(&nv_encoder->outp);
2000 
2001 	switch (nv_encoder->dcb->type) {
2002 	case DCB_OUTPUT_TMDS:
2003 		ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, PROTOCOL, EXT_TMDS_ENC);
2004 		break;
2005 	case DCB_OUTPUT_DP:
2006 		ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, PROTOCOL, EXT_TMDS_ENC);
2007 		nouveau_dp_train(nv_encoder, false, asyh->state.adjusted_mode.clock, 6);
2008 		break;
2009 	default:
2010 		BUG();
2011 		break;
2012 	}
2013 
2014 	core->func->pior->ctrl(core, nv_encoder->outp.or.id, ctrl, asyh);
2015 	nv_encoder->crtc = &nv_crtc->base;
2016 }
2017 
2018 static const struct drm_encoder_helper_funcs
2019 nv50_pior_help = {
2020 	.atomic_check = nv50_pior_atomic_check,
2021 	.atomic_enable = nv50_pior_atomic_enable,
2022 	.atomic_disable = nv50_pior_atomic_disable,
2023 };
2024 
2025 static void
2026 nv50_pior_destroy(struct drm_encoder *encoder)
2027 {
2028 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
2029 
2030 	nvif_outp_dtor(&nv_encoder->outp);
2031 
2032 	drm_encoder_cleanup(encoder);
2033 
2034 	mutex_destroy(&nv_encoder->dp.hpd_irq_lock);
2035 	kfree(encoder);
2036 }
2037 
2038 static const struct drm_encoder_funcs
2039 nv50_pior_func = {
2040 	.destroy = nv50_pior_destroy,
2041 };
2042 
2043 static int
2044 nv50_pior_create(struct nouveau_encoder *nv_encoder)
2045 {
2046 	struct drm_connector *connector = &nv_encoder->conn->base;
2047 	struct drm_device *dev = connector->dev;
2048 	struct nouveau_drm *drm = nouveau_drm(dev);
2049 	struct nv50_disp *disp = nv50_disp(dev);
2050 	struct nvkm_i2c *i2c = nvxx_i2c(drm);
2051 	struct nvkm_i2c_bus *bus = NULL;
2052 	struct nvkm_i2c_aux *aux = NULL;
2053 	struct i2c_adapter *ddc;
2054 	struct drm_encoder *encoder;
2055 	struct dcb_output *dcbe = nv_encoder->dcb;
2056 	int type;
2057 
2058 	switch (dcbe->type) {
2059 	case DCB_OUTPUT_TMDS:
2060 		bus  = nvkm_i2c_bus_find(i2c, nv_encoder->outp.info.ddc);
2061 		ddc  = bus ? &bus->i2c : NULL;
2062 		type = DRM_MODE_ENCODER_TMDS;
2063 		break;
2064 	case DCB_OUTPUT_DP:
2065 		aux  = nvkm_i2c_aux_find(i2c, nv_encoder->outp.info.dp.aux);
2066 		ddc  = aux ? &aux->i2c : NULL;
2067 		type = DRM_MODE_ENCODER_TMDS;
2068 		break;
2069 	default:
2070 		return -ENODEV;
2071 	}
2072 
2073 	nv_encoder->i2c = ddc;
2074 
2075 	mutex_init(&nv_encoder->dp.hpd_irq_lock);
2076 
2077 	encoder = to_drm_encoder(nv_encoder);
2078 	drm_encoder_init(connector->dev, encoder, &nv50_pior_func, type,
2079 			 "pior-%04x-%04x", dcbe->hasht, dcbe->hashm);
2080 	drm_encoder_helper_add(encoder, &nv50_pior_help);
2081 
2082 	drm_connector_attach_encoder(connector, encoder);
2083 
2084 	disp->core->func->pior->get_caps(disp, nv_encoder, ffs(dcbe->or) - 1);
2085 	nv50_outp_dump_caps(drm, nv_encoder);
2086 
2087 	return 0;
2088 }
2089 
2090 /******************************************************************************
2091  * Atomic
2092  *****************************************************************************/
2093 
2094 static void
2095 nv50_disp_atomic_commit_core(struct drm_atomic_state *state, u32 *interlock)
2096 {
2097 	struct drm_dp_mst_topology_mgr *mgr;
2098 	struct drm_dp_mst_topology_state *mst_state;
2099 	struct nouveau_drm *drm = nouveau_drm(state->dev);
2100 	struct nv50_disp *disp = nv50_disp(drm->dev);
2101 	struct nv50_atom *atom = nv50_atom(state);
2102 	struct nv50_core *core = disp->core;
2103 	struct nv50_outp_atom *outp;
2104 	struct nv50_mstm *mstm;
2105 	int i;
2106 
2107 	NV_ATOMIC(drm, "commit core %08x\n", interlock[NV50_DISP_INTERLOCK_BASE]);
2108 
2109 	for_each_new_mst_mgr_in_state(state, mgr, mst_state, i) {
2110 		mstm = nv50_mstm(mgr);
2111 		if (mstm->modified)
2112 			nv50_mstm_prepare(state, mst_state, mstm);
2113 	}
2114 
2115 	core->func->ntfy_init(disp->sync, NV50_DISP_CORE_NTFY);
2116 	core->func->update(core, interlock, true);
2117 	if (core->func->ntfy_wait_done(disp->sync, NV50_DISP_CORE_NTFY,
2118 				       disp->core->chan.base.device))
2119 		NV_ERROR(drm, "core notifier timeout\n");
2120 
2121 	for_each_new_mst_mgr_in_state(state, mgr, mst_state, i) {
2122 		mstm = nv50_mstm(mgr);
2123 		if (mstm->modified)
2124 			nv50_mstm_cleanup(state, mst_state, mstm);
2125 	}
2126 
2127 	list_for_each_entry(outp, &atom->outp, head) {
2128 		if (outp->encoder->encoder_type != DRM_MODE_ENCODER_DPMST) {
2129 			struct nouveau_encoder *nv_encoder = nouveau_encoder(outp->encoder);
2130 
2131 			if (outp->enabled) {
2132 				nv50_audio_enable(outp->encoder, nouveau_crtc(nv_encoder->crtc),
2133 						  nv_encoder->conn, NULL, NULL);
2134 				outp->enabled = outp->disabled = false;
2135 			} else {
2136 				if (outp->disabled) {
2137 					nvif_outp_release(&nv_encoder->outp);
2138 					outp->disabled = false;
2139 				}
2140 			}
2141 		}
2142 	}
2143 }
2144 
2145 static void
2146 nv50_disp_atomic_commit_wndw(struct drm_atomic_state *state, u32 *interlock)
2147 {
2148 	struct drm_plane_state *new_plane_state;
2149 	struct drm_plane *plane;
2150 	int i;
2151 
2152 	for_each_new_plane_in_state(state, plane, new_plane_state, i) {
2153 		struct nv50_wndw *wndw = nv50_wndw(plane);
2154 		if (interlock[wndw->interlock.type] & wndw->interlock.data) {
2155 			if (wndw->func->update)
2156 				wndw->func->update(wndw, interlock);
2157 		}
2158 	}
2159 }
2160 
2161 static void
2162 nv50_disp_atomic_commit_tail(struct drm_atomic_state *state)
2163 {
2164 	struct drm_device *dev = state->dev;
2165 	struct drm_crtc_state *new_crtc_state, *old_crtc_state;
2166 	struct drm_crtc *crtc;
2167 	struct drm_plane_state *new_plane_state;
2168 	struct drm_plane *plane;
2169 	struct nouveau_drm *drm = nouveau_drm(dev);
2170 	struct nv50_disp *disp = nv50_disp(dev);
2171 	struct nv50_atom *atom = nv50_atom(state);
2172 	struct nv50_core *core = disp->core;
2173 	struct nv50_outp_atom *outp, *outt;
2174 	u32 interlock[NV50_DISP_INTERLOCK__SIZE] = {};
2175 	int i;
2176 	bool flushed = false;
2177 
2178 	NV_ATOMIC(drm, "commit %d %d\n", atom->lock_core, atom->flush_disable);
2179 	nv50_crc_atomic_stop_reporting(state);
2180 	drm_atomic_helper_wait_for_fences(dev, state, false);
2181 	drm_atomic_helper_wait_for_dependencies(state);
2182 	drm_dp_mst_atomic_wait_for_dependencies(state);
2183 	drm_atomic_helper_update_legacy_modeset_state(dev, state);
2184 	drm_atomic_helper_calc_timestamping_constants(state);
2185 
2186 	if (atom->lock_core)
2187 		mutex_lock(&disp->mutex);
2188 
2189 	/* Disable head(s). */
2190 	for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
2191 		struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state);
2192 		struct nv50_head *head = nv50_head(crtc);
2193 
2194 		NV_ATOMIC(drm, "%s: clr %04x (set %04x)\n", crtc->name,
2195 			  asyh->clr.mask, asyh->set.mask);
2196 
2197 		if (old_crtc_state->active && !new_crtc_state->active) {
2198 			pm_runtime_put_noidle(dev->dev);
2199 			drm_crtc_vblank_off(crtc);
2200 		}
2201 
2202 		if (asyh->clr.mask) {
2203 			nv50_head_flush_clr(head, asyh, atom->flush_disable);
2204 			interlock[NV50_DISP_INTERLOCK_CORE] |= 1;
2205 		}
2206 	}
2207 
2208 	/* Disable plane(s). */
2209 	for_each_new_plane_in_state(state, plane, new_plane_state, i) {
2210 		struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state);
2211 		struct nv50_wndw *wndw = nv50_wndw(plane);
2212 
2213 		NV_ATOMIC(drm, "%s: clr %02x (set %02x)\n", plane->name,
2214 			  asyw->clr.mask, asyw->set.mask);
2215 		if (!asyw->clr.mask)
2216 			continue;
2217 
2218 		nv50_wndw_flush_clr(wndw, interlock, atom->flush_disable, asyw);
2219 	}
2220 
2221 	/* Disable output path(s). */
2222 	list_for_each_entry(outp, &atom->outp, head) {
2223 		const struct drm_encoder_helper_funcs *help;
2224 		struct drm_encoder *encoder;
2225 
2226 		encoder = outp->encoder;
2227 		help = encoder->helper_private;
2228 
2229 		NV_ATOMIC(drm, "%s: clr %02x (set %02x)\n", encoder->name,
2230 			  outp->clr.mask, outp->set.mask);
2231 
2232 		if (outp->clr.mask) {
2233 			help->atomic_disable(encoder, state);
2234 			outp->disabled = true;
2235 			interlock[NV50_DISP_INTERLOCK_CORE] |= 1;
2236 		}
2237 	}
2238 
2239 	/* Flush disable. */
2240 	if (interlock[NV50_DISP_INTERLOCK_CORE]) {
2241 		if (atom->flush_disable) {
2242 			nv50_disp_atomic_commit_wndw(state, interlock);
2243 			nv50_disp_atomic_commit_core(state, interlock);
2244 			memset(interlock, 0x00, sizeof(interlock));
2245 
2246 			flushed = true;
2247 		}
2248 	}
2249 
2250 	if (flushed)
2251 		nv50_crc_atomic_release_notifier_contexts(state);
2252 	nv50_crc_atomic_init_notifier_contexts(state);
2253 
2254 	/* Update output path(s). */
2255 	list_for_each_entry(outp, &atom->outp, head) {
2256 		const struct drm_encoder_helper_funcs *help;
2257 		struct drm_encoder *encoder;
2258 
2259 		encoder = outp->encoder;
2260 		help = encoder->helper_private;
2261 
2262 		NV_ATOMIC(drm, "%s: set %02x (clr %02x)\n", encoder->name,
2263 			  outp->set.mask, outp->clr.mask);
2264 
2265 		if (outp->set.mask) {
2266 			help->atomic_enable(encoder, state);
2267 			outp->enabled = true;
2268 			interlock[NV50_DISP_INTERLOCK_CORE] = 1;
2269 		}
2270 	}
2271 
2272 	/* Update head(s). */
2273 	for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
2274 		struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state);
2275 		struct nv50_head *head = nv50_head(crtc);
2276 
2277 		NV_ATOMIC(drm, "%s: set %04x (clr %04x)\n", crtc->name,
2278 			  asyh->set.mask, asyh->clr.mask);
2279 
2280 		if (asyh->set.mask) {
2281 			nv50_head_flush_set(head, asyh);
2282 			interlock[NV50_DISP_INTERLOCK_CORE] = 1;
2283 		}
2284 
2285 		if (new_crtc_state->active) {
2286 			if (!old_crtc_state->active) {
2287 				drm_crtc_vblank_on(crtc);
2288 				pm_runtime_get_noresume(dev->dev);
2289 			}
2290 			if (new_crtc_state->event)
2291 				drm_crtc_vblank_get(crtc);
2292 		}
2293 	}
2294 
2295 	/* Update window->head assignment.
2296 	 *
2297 	 * This has to happen in an update that's not interlocked with
2298 	 * any window channels to avoid hitting HW error checks.
2299 	 *
2300 	 *TODO: Proper handling of window ownership (Turing apparently
2301 	 *      supports non-fixed mappings).
2302 	 */
2303 	if (core->assign_windows) {
2304 		core->func->wndw.owner(core);
2305 		nv50_disp_atomic_commit_core(state, interlock);
2306 		core->assign_windows = false;
2307 		interlock[NV50_DISP_INTERLOCK_CORE] = 0;
2308 	}
2309 
2310 	/* Finish updating head(s)...
2311 	 *
2312 	 * NVD is rather picky about both where window assignments can change,
2313 	 * *and* about certain core and window channel states matching.
2314 	 *
2315 	 * The EFI GOP driver on newer GPUs configures window channels with a
2316 	 * different output format to what we do, and the core channel update
2317 	 * in the assign_windows case above would result in a state mismatch.
2318 	 *
2319 	 * Delay some of the head update until after that point to workaround
2320 	 * the issue.  This only affects the initial modeset.
2321 	 *
2322 	 * TODO: handle this better when adding flexible window mapping
2323 	 */
2324 	for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
2325 		struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state);
2326 		struct nv50_head *head = nv50_head(crtc);
2327 
2328 		NV_ATOMIC(drm, "%s: set %04x (clr %04x)\n", crtc->name,
2329 			  asyh->set.mask, asyh->clr.mask);
2330 
2331 		if (asyh->set.mask) {
2332 			nv50_head_flush_set_wndw(head, asyh);
2333 			interlock[NV50_DISP_INTERLOCK_CORE] = 1;
2334 		}
2335 	}
2336 
2337 	/* Update plane(s). */
2338 	for_each_new_plane_in_state(state, plane, new_plane_state, i) {
2339 		struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state);
2340 		struct nv50_wndw *wndw = nv50_wndw(plane);
2341 
2342 		NV_ATOMIC(drm, "%s: set %02x (clr %02x)\n", plane->name,
2343 			  asyw->set.mask, asyw->clr.mask);
2344 		if ( !asyw->set.mask &&
2345 		    (!asyw->clr.mask || atom->flush_disable))
2346 			continue;
2347 
2348 		nv50_wndw_flush_set(wndw, interlock, asyw);
2349 	}
2350 
2351 	/* Flush update. */
2352 	nv50_disp_atomic_commit_wndw(state, interlock);
2353 
2354 	if (interlock[NV50_DISP_INTERLOCK_CORE]) {
2355 		if (interlock[NV50_DISP_INTERLOCK_BASE] ||
2356 		    interlock[NV50_DISP_INTERLOCK_OVLY] ||
2357 		    interlock[NV50_DISP_INTERLOCK_WNDW] ||
2358 		    !atom->state.legacy_cursor_update)
2359 			nv50_disp_atomic_commit_core(state, interlock);
2360 		else
2361 			disp->core->func->update(disp->core, interlock, false);
2362 	}
2363 
2364 	if (atom->lock_core)
2365 		mutex_unlock(&disp->mutex);
2366 
2367 	list_for_each_entry_safe(outp, outt, &atom->outp, head) {
2368 		list_del(&outp->head);
2369 		kfree(outp);
2370 	}
2371 
2372 	/* Wait for HW to signal completion. */
2373 	for_each_new_plane_in_state(state, plane, new_plane_state, i) {
2374 		struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state);
2375 		struct nv50_wndw *wndw = nv50_wndw(plane);
2376 		int ret = nv50_wndw_wait_armed(wndw, asyw);
2377 		if (ret)
2378 			NV_ERROR(drm, "%s: timeout\n", plane->name);
2379 	}
2380 
2381 	for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
2382 		if (new_crtc_state->event) {
2383 			unsigned long flags;
2384 			/* Get correct count/ts if racing with vblank irq */
2385 			if (new_crtc_state->active)
2386 				drm_crtc_accurate_vblank_count(crtc);
2387 			spin_lock_irqsave(&crtc->dev->event_lock, flags);
2388 			drm_crtc_send_vblank_event(crtc, new_crtc_state->event);
2389 			spin_unlock_irqrestore(&crtc->dev->event_lock, flags);
2390 
2391 			new_crtc_state->event = NULL;
2392 			if (new_crtc_state->active)
2393 				drm_crtc_vblank_put(crtc);
2394 		}
2395 	}
2396 
2397 	nv50_crc_atomic_start_reporting(state);
2398 	if (!flushed)
2399 		nv50_crc_atomic_release_notifier_contexts(state);
2400 
2401 	drm_atomic_helper_commit_hw_done(state);
2402 	drm_atomic_helper_cleanup_planes(dev, state);
2403 	drm_atomic_helper_commit_cleanup_done(state);
2404 	drm_atomic_state_put(state);
2405 
2406 	/* Drop the RPM ref we got from nv50_disp_atomic_commit() */
2407 	pm_runtime_mark_last_busy(dev->dev);
2408 	pm_runtime_put_autosuspend(dev->dev);
2409 }
2410 
2411 static void
2412 nv50_disp_atomic_commit_work(struct work_struct *work)
2413 {
2414 	struct drm_atomic_state *state =
2415 		container_of(work, typeof(*state), commit_work);
2416 	nv50_disp_atomic_commit_tail(state);
2417 }
2418 
2419 static int
2420 nv50_disp_atomic_commit(struct drm_device *dev,
2421 			struct drm_atomic_state *state, bool nonblock)
2422 {
2423 	struct drm_plane_state *new_plane_state;
2424 	struct drm_plane *plane;
2425 	int ret, i;
2426 
2427 	ret = pm_runtime_get_sync(dev->dev);
2428 	if (ret < 0 && ret != -EACCES) {
2429 		pm_runtime_put_autosuspend(dev->dev);
2430 		return ret;
2431 	}
2432 
2433 	ret = drm_atomic_helper_setup_commit(state, nonblock);
2434 	if (ret)
2435 		goto done;
2436 
2437 	INIT_WORK(&state->commit_work, nv50_disp_atomic_commit_work);
2438 
2439 	ret = drm_atomic_helper_prepare_planes(dev, state);
2440 	if (ret)
2441 		goto done;
2442 
2443 	if (!nonblock) {
2444 		ret = drm_atomic_helper_wait_for_fences(dev, state, true);
2445 		if (ret)
2446 			goto err_cleanup;
2447 	}
2448 
2449 	ret = drm_atomic_helper_swap_state(state, true);
2450 	if (ret)
2451 		goto err_cleanup;
2452 
2453 	for_each_new_plane_in_state(state, plane, new_plane_state, i) {
2454 		struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state);
2455 		struct nv50_wndw *wndw = nv50_wndw(plane);
2456 
2457 		if (asyw->set.image)
2458 			nv50_wndw_ntfy_enable(wndw, asyw);
2459 	}
2460 
2461 	drm_atomic_state_get(state);
2462 
2463 	/*
2464 	 * Grab another RPM ref for the commit tail, which will release the
2465 	 * ref when it's finished
2466 	 */
2467 	pm_runtime_get_noresume(dev->dev);
2468 
2469 	if (nonblock)
2470 		queue_work(system_unbound_wq, &state->commit_work);
2471 	else
2472 		nv50_disp_atomic_commit_tail(state);
2473 
2474 err_cleanup:
2475 	if (ret)
2476 		drm_atomic_helper_unprepare_planes(dev, state);
2477 done:
2478 	pm_runtime_put_autosuspend(dev->dev);
2479 	return ret;
2480 }
2481 
2482 static struct nv50_outp_atom *
2483 nv50_disp_outp_atomic_add(struct nv50_atom *atom, struct drm_encoder *encoder)
2484 {
2485 	struct nv50_outp_atom *outp;
2486 
2487 	list_for_each_entry(outp, &atom->outp, head) {
2488 		if (outp->encoder == encoder)
2489 			return outp;
2490 	}
2491 
2492 	outp = kzalloc(sizeof(*outp), GFP_KERNEL);
2493 	if (!outp)
2494 		return ERR_PTR(-ENOMEM);
2495 
2496 	list_add(&outp->head, &atom->outp);
2497 	outp->encoder = encoder;
2498 	return outp;
2499 }
2500 
2501 static int
2502 nv50_disp_outp_atomic_check_clr(struct nv50_atom *atom,
2503 				struct drm_connector_state *old_connector_state)
2504 {
2505 	struct drm_encoder *encoder = old_connector_state->best_encoder;
2506 	struct drm_crtc_state *old_crtc_state, *new_crtc_state;
2507 	struct drm_crtc *crtc;
2508 	struct nv50_outp_atom *outp;
2509 
2510 	if (!(crtc = old_connector_state->crtc))
2511 		return 0;
2512 
2513 	old_crtc_state = drm_atomic_get_old_crtc_state(&atom->state, crtc);
2514 	new_crtc_state = drm_atomic_get_new_crtc_state(&atom->state, crtc);
2515 	if (old_crtc_state->active && drm_atomic_crtc_needs_modeset(new_crtc_state)) {
2516 		outp = nv50_disp_outp_atomic_add(atom, encoder);
2517 		if (IS_ERR(outp))
2518 			return PTR_ERR(outp);
2519 
2520 		if (outp->encoder->encoder_type == DRM_MODE_ENCODER_DPMST ||
2521 		    nouveau_encoder(outp->encoder)->dcb->type == DCB_OUTPUT_DP)
2522 			atom->flush_disable = true;
2523 		outp->clr.ctrl = true;
2524 		atom->lock_core = true;
2525 	}
2526 
2527 	return 0;
2528 }
2529 
2530 static int
2531 nv50_disp_outp_atomic_check_set(struct nv50_atom *atom,
2532 				struct drm_connector_state *connector_state)
2533 {
2534 	struct drm_encoder *encoder = connector_state->best_encoder;
2535 	struct drm_crtc_state *new_crtc_state;
2536 	struct drm_crtc *crtc;
2537 	struct nv50_outp_atom *outp;
2538 
2539 	if (!(crtc = connector_state->crtc))
2540 		return 0;
2541 
2542 	new_crtc_state = drm_atomic_get_new_crtc_state(&atom->state, crtc);
2543 	if (new_crtc_state->active && drm_atomic_crtc_needs_modeset(new_crtc_state)) {
2544 		outp = nv50_disp_outp_atomic_add(atom, encoder);
2545 		if (IS_ERR(outp))
2546 			return PTR_ERR(outp);
2547 
2548 		outp->set.ctrl = true;
2549 		atom->lock_core = true;
2550 	}
2551 
2552 	return 0;
2553 }
2554 
2555 static int
2556 nv50_disp_atomic_check(struct drm_device *dev, struct drm_atomic_state *state)
2557 {
2558 	struct nv50_atom *atom = nv50_atom(state);
2559 	struct nv50_core *core = nv50_disp(dev)->core;
2560 	struct drm_connector_state *old_connector_state, *new_connector_state;
2561 	struct drm_connector *connector;
2562 	struct drm_crtc_state *new_crtc_state;
2563 	struct drm_crtc *crtc;
2564 	struct nv50_head *head;
2565 	struct nv50_head_atom *asyh;
2566 	int ret, i;
2567 
2568 	if (core->assign_windows && core->func->head->static_wndw_map) {
2569 		drm_for_each_crtc(crtc, dev) {
2570 			new_crtc_state = drm_atomic_get_crtc_state(state,
2571 								   crtc);
2572 			if (IS_ERR(new_crtc_state))
2573 				return PTR_ERR(new_crtc_state);
2574 
2575 			head = nv50_head(crtc);
2576 			asyh = nv50_head_atom(new_crtc_state);
2577 			core->func->head->static_wndw_map(head, asyh);
2578 		}
2579 	}
2580 
2581 	/* We need to handle colour management on a per-plane basis. */
2582 	for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
2583 		if (new_crtc_state->color_mgmt_changed) {
2584 			ret = drm_atomic_add_affected_planes(state, crtc);
2585 			if (ret)
2586 				return ret;
2587 		}
2588 	}
2589 
2590 	ret = drm_atomic_helper_check(dev, state);
2591 	if (ret)
2592 		return ret;
2593 
2594 	for_each_oldnew_connector_in_state(state, connector, old_connector_state, new_connector_state, i) {
2595 		ret = nv50_disp_outp_atomic_check_clr(atom, old_connector_state);
2596 		if (ret)
2597 			return ret;
2598 
2599 		ret = nv50_disp_outp_atomic_check_set(atom, new_connector_state);
2600 		if (ret)
2601 			return ret;
2602 	}
2603 
2604 	ret = drm_dp_mst_atomic_check(state);
2605 	if (ret)
2606 		return ret;
2607 
2608 	nv50_crc_atomic_check_outp(atom);
2609 
2610 	return 0;
2611 }
2612 
2613 static void
2614 nv50_disp_atomic_state_clear(struct drm_atomic_state *state)
2615 {
2616 	struct nv50_atom *atom = nv50_atom(state);
2617 	struct nv50_outp_atom *outp, *outt;
2618 
2619 	list_for_each_entry_safe(outp, outt, &atom->outp, head) {
2620 		list_del(&outp->head);
2621 		kfree(outp);
2622 	}
2623 
2624 	drm_atomic_state_default_clear(state);
2625 }
2626 
2627 static void
2628 nv50_disp_atomic_state_free(struct drm_atomic_state *state)
2629 {
2630 	struct nv50_atom *atom = nv50_atom(state);
2631 	drm_atomic_state_default_release(&atom->state);
2632 	kfree(atom);
2633 }
2634 
2635 static struct drm_atomic_state *
2636 nv50_disp_atomic_state_alloc(struct drm_device *dev)
2637 {
2638 	struct nv50_atom *atom;
2639 	if (!(atom = kzalloc(sizeof(*atom), GFP_KERNEL)) ||
2640 	    drm_atomic_state_init(dev, &atom->state) < 0) {
2641 		kfree(atom);
2642 		return NULL;
2643 	}
2644 	INIT_LIST_HEAD(&atom->outp);
2645 	return &atom->state;
2646 }
2647 
2648 static const struct drm_mode_config_funcs
2649 nv50_disp_func = {
2650 	.fb_create = nouveau_user_framebuffer_create,
2651 	.atomic_check = nv50_disp_atomic_check,
2652 	.atomic_commit = nv50_disp_atomic_commit,
2653 	.atomic_state_alloc = nv50_disp_atomic_state_alloc,
2654 	.atomic_state_clear = nv50_disp_atomic_state_clear,
2655 	.atomic_state_free = nv50_disp_atomic_state_free,
2656 };
2657 
2658 static const struct drm_mode_config_helper_funcs
2659 nv50_disp_helper_func = {
2660 	.atomic_commit_setup = drm_dp_mst_atomic_setup_commit,
2661 };
2662 
2663 /******************************************************************************
2664  * Init
2665  *****************************************************************************/
2666 
2667 static void
2668 nv50_display_fini(struct drm_device *dev, bool runtime, bool suspend)
2669 {
2670 	struct nouveau_drm *drm = nouveau_drm(dev);
2671 	struct drm_encoder *encoder;
2672 
2673 	list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
2674 		if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST)
2675 			nv50_mstm_fini(nouveau_encoder(encoder));
2676 	}
2677 
2678 	if (!runtime && !drm->headless)
2679 		cancel_work_sync(&drm->hpd_work);
2680 }
2681 
2682 static inline void
2683 nv50_display_read_hw_or_state(struct drm_device *dev, struct nv50_disp *disp,
2684 			      struct nouveau_encoder *outp)
2685 {
2686 	struct drm_crtc *crtc;
2687 	struct drm_connector_list_iter conn_iter;
2688 	struct drm_connector *conn;
2689 	struct nv50_head_atom *armh;
2690 	const u32 encoder_mask = drm_encoder_mask(&outp->base.base);
2691 	bool found_conn = false, found_head = false;
2692 	u8 proto;
2693 	int head_idx;
2694 	int ret;
2695 
2696 	switch (outp->dcb->type) {
2697 	case DCB_OUTPUT_TMDS:
2698 		ret = nvif_outp_inherit_tmds(&outp->outp, &proto);
2699 		break;
2700 	case DCB_OUTPUT_DP:
2701 		ret = nvif_outp_inherit_dp(&outp->outp, &proto);
2702 		break;
2703 	case DCB_OUTPUT_LVDS:
2704 		ret = nvif_outp_inherit_lvds(&outp->outp, &proto);
2705 		break;
2706 	case DCB_OUTPUT_ANALOG:
2707 		ret = nvif_outp_inherit_rgb_crt(&outp->outp, &proto);
2708 		break;
2709 	default:
2710 		drm_dbg_kms(dev, "Readback for %s not implemented yet, skipping\n",
2711 			    outp->base.base.name);
2712 		drm_WARN_ON(dev, true);
2713 		return;
2714 	}
2715 
2716 	if (ret < 0)
2717 		return;
2718 
2719 	head_idx = ret;
2720 
2721 	drm_for_each_crtc(crtc, dev) {
2722 		if (crtc->index != head_idx)
2723 			continue;
2724 
2725 		armh = nv50_head_atom(crtc->state);
2726 		found_head = true;
2727 		break;
2728 	}
2729 	if (drm_WARN_ON(dev, !found_head))
2730 		return;
2731 
2732 	/* Figure out which connector is being used by this encoder */
2733 	drm_connector_list_iter_begin(dev, &conn_iter);
2734 	nouveau_for_each_non_mst_connector_iter(conn, &conn_iter) {
2735 		if (nouveau_connector(conn)->index == outp->dcb->connector) {
2736 			found_conn = true;
2737 			break;
2738 		}
2739 	}
2740 	drm_connector_list_iter_end(&conn_iter);
2741 	if (drm_WARN_ON(dev, !found_conn))
2742 		return;
2743 
2744 	armh->state.encoder_mask = encoder_mask;
2745 	armh->state.connector_mask = drm_connector_mask(conn);
2746 	armh->state.active = true;
2747 	armh->state.enable = true;
2748 	pm_runtime_get_noresume(dev->dev);
2749 
2750 	outp->crtc = crtc;
2751 	outp->ctrl = NVVAL(NV507D, SOR_SET_CONTROL, PROTOCOL, proto) | BIT(crtc->index);
2752 
2753 	drm_connector_get(conn);
2754 	conn->state->crtc = crtc;
2755 	conn->state->best_encoder = &outp->base.base;
2756 }
2757 
2758 /* Read back the currently programmed display state */
2759 static void
2760 nv50_display_read_hw_state(struct nouveau_drm *drm)
2761 {
2762 	struct drm_device *dev = drm->dev;
2763 	struct drm_encoder *encoder;
2764 	struct drm_modeset_acquire_ctx ctx;
2765 	struct nv50_disp *disp = nv50_disp(dev);
2766 	int ret;
2767 
2768 	DRM_MODESET_LOCK_ALL_BEGIN(dev, ctx, 0, ret);
2769 
2770 	drm_for_each_encoder(encoder, dev) {
2771 		if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST)
2772 			continue;
2773 
2774 		nv50_display_read_hw_or_state(dev, disp, nouveau_encoder(encoder));
2775 	}
2776 
2777 	DRM_MODESET_LOCK_ALL_END(dev, ctx, ret);
2778 }
2779 
2780 static int
2781 nv50_display_init(struct drm_device *dev, bool resume, bool runtime)
2782 {
2783 	struct nv50_core *core = nv50_disp(dev)->core;
2784 	struct drm_encoder *encoder;
2785 
2786 	if (resume || runtime)
2787 		core->func->init(core);
2788 
2789 	list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
2790 		if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) {
2791 			struct nouveau_encoder *nv_encoder =
2792 				nouveau_encoder(encoder);
2793 			nv50_mstm_init(nv_encoder, runtime);
2794 		}
2795 	}
2796 
2797 	if (!resume)
2798 		nv50_display_read_hw_state(nouveau_drm(dev));
2799 
2800 	return 0;
2801 }
2802 
2803 static void
2804 nv50_display_destroy(struct drm_device *dev)
2805 {
2806 	struct nv50_disp *disp = nv50_disp(dev);
2807 
2808 	nv50_audio_component_fini(nouveau_drm(dev));
2809 
2810 	nvif_object_unmap(&disp->caps);
2811 	nvif_object_dtor(&disp->caps);
2812 	nv50_core_del(&disp->core);
2813 
2814 	nouveau_bo_unmap(disp->sync);
2815 	if (disp->sync)
2816 		nouveau_bo_unpin(disp->sync);
2817 	nouveau_bo_fini(disp->sync);
2818 
2819 	nouveau_display(dev)->priv = NULL;
2820 	kfree(disp);
2821 }
2822 
2823 int
2824 nv50_display_create(struct drm_device *dev)
2825 {
2826 	struct nouveau_drm *drm = nouveau_drm(dev);
2827 	struct drm_connector *connector, *tmp;
2828 	struct nv50_disp *disp;
2829 	int ret, i;
2830 	bool has_mst = false;
2831 
2832 	disp = kzalloc(sizeof(*disp), GFP_KERNEL);
2833 	if (!disp)
2834 		return -ENOMEM;
2835 
2836 	mutex_init(&disp->mutex);
2837 
2838 	nouveau_display(dev)->priv = disp;
2839 	nouveau_display(dev)->dtor = nv50_display_destroy;
2840 	nouveau_display(dev)->init = nv50_display_init;
2841 	nouveau_display(dev)->fini = nv50_display_fini;
2842 	disp->disp = &nouveau_display(dev)->disp;
2843 	dev->mode_config.funcs = &nv50_disp_func;
2844 	dev->mode_config.helper_private = &nv50_disp_helper_func;
2845 	dev->mode_config.quirk_addfb_prefer_xbgr_30bpp = true;
2846 	dev->mode_config.normalize_zpos = true;
2847 
2848 	/* small shared memory area we use for notifiers and semaphores */
2849 	ret = nouveau_bo_new(&drm->client, 4096, 0x1000,
2850 			     NOUVEAU_GEM_DOMAIN_VRAM,
2851 			     0, 0x0000, NULL, NULL, &disp->sync);
2852 	if (!ret) {
2853 		ret = nouveau_bo_pin(disp->sync, NOUVEAU_GEM_DOMAIN_VRAM, true);
2854 		if (!ret) {
2855 			ret = nouveau_bo_map(disp->sync);
2856 			if (ret)
2857 				nouveau_bo_unpin(disp->sync);
2858 		}
2859 		if (ret)
2860 			nouveau_bo_fini(disp->sync);
2861 	}
2862 
2863 	if (ret)
2864 		goto out;
2865 
2866 	/* allocate master evo channel */
2867 	ret = nv50_core_new(drm, &disp->core);
2868 	if (ret)
2869 		goto out;
2870 
2871 	disp->core->func->init(disp->core);
2872 	if (disp->core->func->caps_init) {
2873 		ret = disp->core->func->caps_init(drm, disp);
2874 		if (ret)
2875 			goto out;
2876 	}
2877 
2878 	/* Assign the correct format modifiers */
2879 	if (disp->disp->object.oclass >= TU102_DISP)
2880 		nouveau_display(dev)->format_modifiers = wndwc57e_modifiers;
2881 	else
2882 	if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_FERMI)
2883 		nouveau_display(dev)->format_modifiers = disp90xx_modifiers;
2884 	else
2885 		nouveau_display(dev)->format_modifiers = disp50xx_modifiers;
2886 
2887 	/* FIXME: 256x256 cursors are supported on Kepler, however unlike Maxwell and later
2888 	 * generations Kepler requires that we use small pages (4K) for cursor scanout surfaces. The
2889 	 * proper fix for this is to teach nouveau to migrate fbs being used for the cursor plane to
2890 	 * small page allocations in prepare_fb(). When this is implemented, we should also force
2891 	 * large pages (128K) for ovly fbs in order to fix Kepler ovlys.
2892 	 * But until then, just limit cursors to 128x128 - which is small enough to avoid ever using
2893 	 * large pages.
2894 	 */
2895 	if (disp->disp->object.oclass >= GM107_DISP) {
2896 		dev->mode_config.cursor_width = 256;
2897 		dev->mode_config.cursor_height = 256;
2898 	} else if (disp->disp->object.oclass >= GK104_DISP) {
2899 		dev->mode_config.cursor_width = 128;
2900 		dev->mode_config.cursor_height = 128;
2901 	} else {
2902 		dev->mode_config.cursor_width = 64;
2903 		dev->mode_config.cursor_height = 64;
2904 	}
2905 
2906 	/* create encoder/connector objects based on VBIOS DCB table */
2907 	for_each_set_bit(i, &disp->disp->outp_mask, sizeof(disp->disp->outp_mask) * 8) {
2908 		struct nouveau_encoder *outp;
2909 
2910 		outp = kzalloc(sizeof(*outp), GFP_KERNEL);
2911 		if (!outp)
2912 			break;
2913 
2914 		ret = nvif_outp_ctor(disp->disp, "kmsOutp", i, &outp->outp);
2915 		if (ret) {
2916 			kfree(outp);
2917 			continue;
2918 		}
2919 
2920 		connector = nouveau_connector_create(dev, outp->outp.info.conn);
2921 		if (IS_ERR(connector)) {
2922 			nvif_outp_dtor(&outp->outp);
2923 			kfree(outp);
2924 			continue;
2925 		}
2926 
2927 		outp->base.base.possible_crtcs = outp->outp.info.heads;
2928 		outp->base.base.possible_clones = 0;
2929 		outp->conn = nouveau_connector(connector);
2930 
2931 		outp->dcb = kzalloc(sizeof(*outp->dcb), GFP_KERNEL);
2932 		if (!outp->dcb)
2933 			break;
2934 
2935 		switch (outp->outp.info.proto) {
2936 		case NVIF_OUTP_RGB_CRT:
2937 			outp->dcb->type = DCB_OUTPUT_ANALOG;
2938 			outp->dcb->crtconf.maxfreq = outp->outp.info.rgb_crt.freq_max;
2939 			break;
2940 		case NVIF_OUTP_TMDS:
2941 			outp->dcb->type = DCB_OUTPUT_TMDS;
2942 			outp->dcb->duallink_possible = outp->outp.info.tmds.dual;
2943 			break;
2944 		case NVIF_OUTP_LVDS:
2945 			outp->dcb->type = DCB_OUTPUT_LVDS;
2946 			outp->dcb->lvdsconf.use_acpi_for_edid = outp->outp.info.lvds.acpi_edid;
2947 			break;
2948 		case NVIF_OUTP_DP:
2949 			outp->dcb->type = DCB_OUTPUT_DP;
2950 			outp->dcb->dpconf.link_nr = outp->outp.info.dp.link_nr;
2951 			outp->dcb->dpconf.link_bw = outp->outp.info.dp.link_bw;
2952 			if (outp->outp.info.dp.mst)
2953 				has_mst = true;
2954 			break;
2955 		default:
2956 			WARN_ON(1);
2957 			continue;
2958 		}
2959 
2960 		outp->dcb->heads = outp->outp.info.heads;
2961 		outp->dcb->connector = outp->outp.info.conn;
2962 		outp->dcb->i2c_index = outp->outp.info.ddc;
2963 
2964 		switch (outp->outp.info.type) {
2965 		case NVIF_OUTP_DAC : ret = nv50_dac_create(outp); break;
2966 		case NVIF_OUTP_SOR : ret = nv50_sor_create(outp); break;
2967 		case NVIF_OUTP_PIOR: ret = nv50_pior_create(outp); break;
2968 		default:
2969 			WARN_ON(1);
2970 			continue;
2971 		}
2972 
2973 		if (ret) {
2974 			NV_WARN(drm, "failed to create encoder %d/%d/%d: %d\n",
2975 				i, outp->outp.info.type, outp->outp.info.proto, ret);
2976 		}
2977 	}
2978 
2979 	/* cull any connectors we created that don't have an encoder */
2980 	list_for_each_entry_safe(connector, tmp, &dev->mode_config.connector_list, head) {
2981 		if (connector->possible_encoders)
2982 			continue;
2983 
2984 		NV_WARN(drm, "%s has no encoders, removing\n",
2985 			connector->name);
2986 		connector->funcs->destroy(connector);
2987 	}
2988 
2989 	/* create crtc objects to represent the hw heads */
2990 	for_each_set_bit(i, &disp->disp->head_mask, sizeof(disp->disp->head_mask) * 8) {
2991 		struct nv50_head *head;
2992 
2993 		head = nv50_head_create(dev, i);
2994 		if (IS_ERR(head)) {
2995 			ret = PTR_ERR(head);
2996 			goto out;
2997 		}
2998 
2999 		if (has_mst) {
3000 			head->msto = nv50_msto_new(dev, head, i);
3001 			if (IS_ERR(head->msto)) {
3002 				ret = PTR_ERR(head->msto);
3003 				head->msto = NULL;
3004 				goto out;
3005 			}
3006 
3007 			/*
3008 			 * FIXME: This is a hack to workaround the following
3009 			 * issues:
3010 			 *
3011 			 * https://gitlab.gnome.org/GNOME/mutter/issues/759
3012 			 * https://gitlab.freedesktop.org/xorg/xserver/merge_requests/277
3013 			 *
3014 			 * Once these issues are closed, this should be
3015 			 * removed
3016 			 */
3017 			head->msto->encoder.possible_crtcs = disp->disp->head_mask;
3018 		}
3019 	}
3020 
3021 	/* Disable vblank irqs aggressively for power-saving, safe on nv50+ */
3022 	dev->vblank_disable_immediate = true;
3023 
3024 	nv50_audio_component_init(drm);
3025 
3026 out:
3027 	if (ret)
3028 		nv50_display_destroy(dev);
3029 	return ret;
3030 }
3031 
3032 /******************************************************************************
3033  * Format modifiers
3034  *****************************************************************************/
3035 
3036 /****************************************************************
3037  *            Log2(block height) ----------------------------+  *
3038  *            Page Kind ----------------------------------+  |  *
3039  *            Gob Height/Page Kind Generation ------+     |  |  *
3040  *                          Sector layout -------+  |     |  |  *
3041  *                          Compression ------+  |  |     |  |  */
3042 const u64 disp50xx_modifiers[] = { /*         |  |  |     |  |  */
3043 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 0),
3044 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 1),
3045 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 2),
3046 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 3),
3047 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 4),
3048 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 5),
3049 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 0),
3050 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 1),
3051 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 2),
3052 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 3),
3053 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 4),
3054 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 5),
3055 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 0),
3056 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 1),
3057 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 2),
3058 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 3),
3059 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 4),
3060 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 5),
3061 	DRM_FORMAT_MOD_LINEAR,
3062 	DRM_FORMAT_MOD_INVALID
3063 };
3064 
3065 /****************************************************************
3066  *            Log2(block height) ----------------------------+  *
3067  *            Page Kind ----------------------------------+  |  *
3068  *            Gob Height/Page Kind Generation ------+     |  |  *
3069  *                          Sector layout -------+  |     |  |  *
3070  *                          Compression ------+  |  |     |  |  */
3071 const u64 disp90xx_modifiers[] = { /*         |  |  |     |  |  */
3072 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 0),
3073 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 1),
3074 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 2),
3075 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 3),
3076 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 4),
3077 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 5),
3078 	DRM_FORMAT_MOD_LINEAR,
3079 	DRM_FORMAT_MOD_INVALID
3080 };
3081