1 /* 2 * Copyright 2011 Red Hat Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 * 22 * Authors: Ben Skeggs 23 */ 24 #include "disp.h" 25 #include "atom.h" 26 #include "core.h" 27 #include "head.h" 28 #include "wndw.h" 29 #include "handles.h" 30 31 #include <linux/backlight.h> 32 #include <linux/dma-mapping.h> 33 #include <linux/hdmi.h> 34 #include <linux/component.h> 35 #include <linux/iopoll.h> 36 37 #include <drm/display/drm_dp_helper.h> 38 #include <drm/display/drm_scdc_helper.h> 39 #include <drm/drm_atomic.h> 40 #include <drm/drm_atomic_helper.h> 41 #include <drm/drm_edid.h> 42 #include <drm/drm_eld.h> 43 #include <drm/drm_fb_helper.h> 44 #include <drm/drm_fixed.h> 45 #include <drm/drm_probe_helper.h> 46 #include <drm/drm_vblank.h> 47 48 #include <nvif/push507c.h> 49 50 #include <nvif/class.h> 51 #include <nvif/cl0002.h> 52 #include <nvif/event.h> 53 #include <nvif/if0012.h> 54 #include <nvif/if0014.h> 55 #include <nvif/timer.h> 56 57 #include <nvhw/class/cl507c.h> 58 #include <nvhw/class/cl507d.h> 59 #include <nvhw/class/cl837d.h> 60 #include <nvhw/class/cl887d.h> 61 #include <nvhw/class/cl907d.h> 62 #include <nvhw/class/cl917d.h> 63 64 #include "nouveau_drv.h" 65 #include "nouveau_dma.h" 66 #include "nouveau_gem.h" 67 #include "nouveau_connector.h" 68 #include "nouveau_encoder.h" 69 #include "nouveau_fence.h" 70 #include "nv50_display.h" 71 72 /****************************************************************************** 73 * EVO channel 74 *****************************************************************************/ 75 76 static int 77 nv50_chan_create(struct nvif_device *device, struct nvif_object *disp, 78 const s32 *oclass, u8 head, void *data, u32 size, 79 struct nv50_chan *chan) 80 { 81 struct nvif_sclass *sclass; 82 int ret, i, n; 83 84 chan->device = device; 85 86 ret = n = nvif_object_sclass_get(disp, &sclass); 87 if (ret < 0) 88 return ret; 89 90 while (oclass[0]) { 91 for (i = 0; i < n; i++) { 92 if (sclass[i].oclass == oclass[0]) { 93 ret = nvif_object_ctor(disp, "kmsChan", 0, 94 oclass[0], data, size, 95 &chan->user); 96 if (ret == 0) { 97 ret = nvif_object_map(&chan->user, NULL, 0); 98 if (ret) 99 nvif_object_dtor(&chan->user); 100 } 101 nvif_object_sclass_put(&sclass); 102 return ret; 103 } 104 } 105 oclass++; 106 } 107 108 nvif_object_sclass_put(&sclass); 109 return -ENOSYS; 110 } 111 112 static void 113 nv50_chan_destroy(struct nv50_chan *chan) 114 { 115 nvif_object_dtor(&chan->user); 116 } 117 118 /****************************************************************************** 119 * DMA EVO channel 120 *****************************************************************************/ 121 122 void 123 nv50_dmac_destroy(struct nv50_dmac *dmac) 124 { 125 nvif_object_dtor(&dmac->vram); 126 nvif_object_dtor(&dmac->sync); 127 128 nv50_chan_destroy(&dmac->base); 129 130 nvif_mem_dtor(&dmac->push.mem); 131 } 132 133 static void 134 nv50_dmac_kick(struct nvif_push *push) 135 { 136 struct nv50_dmac *dmac = container_of(push, typeof(*dmac), push); 137 138 dmac->cur = push->cur - (u32 __iomem *)dmac->push.mem.object.map.ptr; 139 if (dmac->put != dmac->cur) { 140 /* Push buffer fetches are not coherent with BAR1, we need to ensure 141 * writes have been flushed right through to VRAM before writing PUT. 142 */ 143 if (dmac->push.mem.type & NVIF_MEM_VRAM) { 144 struct nvif_device *device = dmac->base.device; 145 nvif_wr32(&device->object, 0x070000, 0x00000001); 146 nvif_msec(device, 2000, 147 if (!(nvif_rd32(&device->object, 0x070000) & 0x00000002)) 148 break; 149 ); 150 } 151 152 NVIF_WV32(&dmac->base.user, NV507C, PUT, PTR, dmac->cur); 153 dmac->put = dmac->cur; 154 } 155 156 push->bgn = push->cur; 157 } 158 159 static int 160 nv50_dmac_free(struct nv50_dmac *dmac) 161 { 162 u32 get = NVIF_RV32(&dmac->base.user, NV507C, GET, PTR); 163 if (get > dmac->cur) /* NVIDIA stay 5 away from GET, do the same. */ 164 return get - dmac->cur - 5; 165 return dmac->max - dmac->cur; 166 } 167 168 static int 169 nv50_dmac_wind(struct nv50_dmac *dmac) 170 { 171 /* Wait for GET to depart from the beginning of the push buffer to 172 * prevent writing PUT == GET, which would be ignored by HW. 173 */ 174 u32 get = NVIF_RV32(&dmac->base.user, NV507C, GET, PTR); 175 if (get == 0) { 176 /* Corner-case, HW idle, but non-committed work pending. */ 177 if (dmac->put == 0) 178 nv50_dmac_kick(&dmac->push); 179 180 if (nvif_msec(dmac->base.device, 2000, 181 if (NVIF_TV32(&dmac->base.user, NV507C, GET, PTR, >, 0)) 182 break; 183 ) < 0) 184 return -ETIMEDOUT; 185 } 186 187 PUSH_RSVD(&dmac->push, PUSH_JUMP(&dmac->push, 0)); 188 dmac->cur = 0; 189 return 0; 190 } 191 192 static int 193 nv50_dmac_wait(struct nvif_push *push, u32 size) 194 { 195 struct nv50_dmac *dmac = container_of(push, typeof(*dmac), push); 196 int free; 197 198 if (WARN_ON(size > dmac->max)) 199 return -EINVAL; 200 201 dmac->cur = push->cur - (u32 __iomem *)dmac->push.mem.object.map.ptr; 202 if (dmac->cur + size >= dmac->max) { 203 int ret = nv50_dmac_wind(dmac); 204 if (ret) 205 return ret; 206 207 push->cur = dmac->push.mem.object.map.ptr; 208 push->cur = push->cur + dmac->cur; 209 nv50_dmac_kick(push); 210 } 211 212 if (nvif_msec(dmac->base.device, 2000, 213 if ((free = nv50_dmac_free(dmac)) >= size) 214 break; 215 ) < 0) { 216 WARN_ON(1); 217 return -ETIMEDOUT; 218 } 219 220 push->bgn = dmac->push.mem.object.map.ptr; 221 push->bgn = push->bgn + dmac->cur; 222 push->cur = push->bgn; 223 push->end = push->cur + free; 224 return 0; 225 } 226 227 MODULE_PARM_DESC(kms_vram_pushbuf, "Place EVO/NVD push buffers in VRAM (default: auto)"); 228 static int nv50_dmac_vram_pushbuf = -1; 229 module_param_named(kms_vram_pushbuf, nv50_dmac_vram_pushbuf, int, 0400); 230 231 int 232 nv50_dmac_create(struct nouveau_drm *drm, 233 const s32 *oclass, u8 head, void *data, u32 size, s64 syncbuf, 234 struct nv50_dmac *dmac) 235 { 236 struct nvif_device *device = &drm->device; 237 struct nvif_object *disp = &drm->display->disp.object; 238 struct nvif_disp_chan_v0 *args = data; 239 u8 type = NVIF_MEM_COHERENT; 240 int ret; 241 242 /* Pascal added support for 47-bit physical addresses, but some 243 * parts of EVO still only accept 40-bit PAs. 244 * 245 * To avoid issues on systems with large amounts of RAM, and on 246 * systems where an IOMMU maps pages at a high address, we need 247 * to allocate push buffers in VRAM instead. 248 * 249 * This appears to match NVIDIA's behaviour on Pascal. 250 */ 251 if ((nv50_dmac_vram_pushbuf > 0) || 252 (nv50_dmac_vram_pushbuf < 0 && device->info.family == NV_DEVICE_INFO_V0_PASCAL)) 253 type |= NVIF_MEM_VRAM; 254 255 ret = nvif_mem_ctor_map(&drm->mmu, "kmsChanPush", type, 0x1000, &dmac->push.mem); 256 if (ret) 257 return ret; 258 259 dmac->push.wait = nv50_dmac_wait; 260 dmac->push.kick = nv50_dmac_kick; 261 dmac->push.bgn = dmac->push.mem.object.map.ptr; 262 dmac->push.cur = dmac->push.bgn; 263 dmac->push.end = dmac->push.bgn; 264 dmac->max = 0x1000/4 - 1; 265 266 /* EVO channels are affected by a HW bug where the last 12 DWORDs 267 * of the push buffer aren't able to be used safely. 268 */ 269 if (disp->oclass < GV100_DISP) 270 dmac->max -= 12; 271 272 args->pushbuf = nvif_handle(&dmac->push.mem.object); 273 274 ret = nv50_chan_create(device, disp, oclass, head, data, size, 275 &dmac->base); 276 if (ret) 277 return ret; 278 279 if (syncbuf < 0) 280 return 0; 281 282 ret = nvif_object_ctor(&dmac->base.user, "kmsSyncCtxDma", NV50_DISP_HANDLE_SYNCBUF, 283 NV_DMA_IN_MEMORY, 284 &(struct nv_dma_v0) { 285 .target = NV_DMA_V0_TARGET_VRAM, 286 .access = NV_DMA_V0_ACCESS_RDWR, 287 .start = syncbuf + 0x0000, 288 .limit = syncbuf + 0x0fff, 289 }, sizeof(struct nv_dma_v0), 290 &dmac->sync); 291 if (ret) 292 return ret; 293 294 ret = nvif_object_ctor(&dmac->base.user, "kmsVramCtxDma", NV50_DISP_HANDLE_VRAM, 295 NV_DMA_IN_MEMORY, 296 &(struct nv_dma_v0) { 297 .target = NV_DMA_V0_TARGET_VRAM, 298 .access = NV_DMA_V0_ACCESS_RDWR, 299 .start = 0, 300 .limit = device->info.ram_user - 1, 301 }, sizeof(struct nv_dma_v0), 302 &dmac->vram); 303 if (ret) 304 return ret; 305 306 return ret; 307 } 308 309 /****************************************************************************** 310 * Output path helpers 311 *****************************************************************************/ 312 static void 313 nv50_outp_dump_caps(struct nouveau_drm *drm, 314 struct nouveau_encoder *outp) 315 { 316 NV_DEBUG(drm, "%s caps: dp_interlace=%d\n", 317 outp->base.base.name, outp->caps.dp_interlace); 318 } 319 320 static int 321 nv50_outp_atomic_check_view(struct drm_encoder *encoder, 322 struct drm_crtc_state *crtc_state, 323 struct drm_connector_state *conn_state, 324 struct drm_display_mode *native_mode) 325 { 326 struct drm_display_mode *adjusted_mode = &crtc_state->adjusted_mode; 327 struct drm_display_mode *mode = &crtc_state->mode; 328 struct drm_connector *connector = conn_state->connector; 329 struct nouveau_conn_atom *asyc = nouveau_conn_atom(conn_state); 330 struct nouveau_drm *drm = nouveau_drm(encoder->dev); 331 332 NV_ATOMIC(drm, "%s atomic_check\n", encoder->name); 333 asyc->scaler.full = false; 334 if (!native_mode) 335 return 0; 336 337 if (asyc->scaler.mode == DRM_MODE_SCALE_NONE) { 338 switch (connector->connector_type) { 339 case DRM_MODE_CONNECTOR_LVDS: 340 case DRM_MODE_CONNECTOR_eDP: 341 /* Don't force scaler for EDID modes with 342 * same size as the native one (e.g. different 343 * refresh rate) 344 */ 345 if (mode->hdisplay == native_mode->hdisplay && 346 mode->vdisplay == native_mode->vdisplay && 347 mode->type & DRM_MODE_TYPE_DRIVER) 348 break; 349 mode = native_mode; 350 asyc->scaler.full = true; 351 break; 352 default: 353 break; 354 } 355 } else { 356 mode = native_mode; 357 } 358 359 if (!drm_mode_equal(adjusted_mode, mode)) { 360 drm_mode_copy(adjusted_mode, mode); 361 crtc_state->mode_changed = true; 362 } 363 364 return 0; 365 } 366 367 static void 368 nv50_outp_atomic_fix_depth(struct drm_encoder *encoder, struct drm_crtc_state *crtc_state) 369 { 370 struct nv50_head_atom *asyh = nv50_head_atom(crtc_state); 371 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 372 struct drm_display_mode *mode = &asyh->state.adjusted_mode; 373 unsigned int max_rate, mode_rate; 374 375 switch (nv_encoder->dcb->type) { 376 case DCB_OUTPUT_DP: 377 max_rate = nv_encoder->dp.link_nr * nv_encoder->dp.link_bw; 378 379 /* we don't support more than 10 anyway */ 380 asyh->or.bpc = min_t(u8, asyh->or.bpc, 10); 381 382 /* reduce the bpc until it works out */ 383 while (asyh->or.bpc > 6) { 384 mode_rate = DIV_ROUND_UP(mode->clock * asyh->or.bpc * 3, 8); 385 if (mode_rate <= max_rate) 386 break; 387 388 asyh->or.bpc -= 2; 389 } 390 break; 391 default: 392 break; 393 } 394 } 395 396 static int 397 nv50_outp_atomic_check(struct drm_encoder *encoder, 398 struct drm_crtc_state *crtc_state, 399 struct drm_connector_state *conn_state) 400 { 401 struct drm_connector *connector = conn_state->connector; 402 struct nouveau_connector *nv_connector = nouveau_connector(connector); 403 struct nv50_head_atom *asyh = nv50_head_atom(crtc_state); 404 int ret; 405 406 ret = nv50_outp_atomic_check_view(encoder, crtc_state, conn_state, 407 nv_connector->native_mode); 408 if (ret) 409 return ret; 410 411 if (crtc_state->mode_changed || crtc_state->connectors_changed) 412 asyh->or.bpc = connector->display_info.bpc; 413 414 /* We might have to reduce the bpc */ 415 nv50_outp_atomic_fix_depth(encoder, crtc_state); 416 417 return 0; 418 } 419 420 struct nouveau_connector * 421 nv50_outp_get_new_connector(struct drm_atomic_state *state, struct nouveau_encoder *outp) 422 { 423 struct drm_connector *connector; 424 struct drm_connector_state *connector_state; 425 struct drm_encoder *encoder = to_drm_encoder(outp); 426 int i; 427 428 for_each_new_connector_in_state(state, connector, connector_state, i) { 429 if (connector_state->best_encoder == encoder) 430 return nouveau_connector(connector); 431 } 432 433 return NULL; 434 } 435 436 struct nouveau_connector * 437 nv50_outp_get_old_connector(struct drm_atomic_state *state, struct nouveau_encoder *outp) 438 { 439 struct drm_connector *connector; 440 struct drm_connector_state *connector_state; 441 struct drm_encoder *encoder = to_drm_encoder(outp); 442 int i; 443 444 for_each_old_connector_in_state(state, connector, connector_state, i) { 445 if (connector_state->best_encoder == encoder) 446 return nouveau_connector(connector); 447 } 448 449 return NULL; 450 } 451 452 static struct nouveau_crtc * 453 nv50_outp_get_new_crtc(const struct drm_atomic_state *state, const struct nouveau_encoder *outp) 454 { 455 struct drm_crtc *crtc; 456 struct drm_crtc_state *crtc_state; 457 const u32 mask = drm_encoder_mask(&outp->base.base); 458 int i; 459 460 for_each_new_crtc_in_state(state, crtc, crtc_state, i) { 461 if (crtc_state->encoder_mask & mask) 462 return nouveau_crtc(crtc); 463 } 464 465 return NULL; 466 } 467 468 /****************************************************************************** 469 * DAC 470 *****************************************************************************/ 471 static void 472 nv50_dac_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state) 473 { 474 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 475 struct nv50_core *core = nv50_disp(encoder->dev)->core; 476 const u32 ctrl = NVDEF(NV507D, DAC_SET_CONTROL, OWNER, NONE); 477 478 core->func->dac->ctrl(core, nv_encoder->outp.or.id, ctrl, NULL); 479 nv_encoder->crtc = NULL; 480 } 481 482 static void 483 nv50_dac_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state) 484 { 485 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 486 struct nouveau_crtc *nv_crtc = nv50_outp_get_new_crtc(state, nv_encoder); 487 struct nv50_head_atom *asyh = 488 nv50_head_atom(drm_atomic_get_new_crtc_state(state, &nv_crtc->base)); 489 struct nv50_core *core = nv50_disp(encoder->dev)->core; 490 u32 ctrl = 0; 491 492 switch (nv_crtc->index) { 493 case 0: ctrl |= NVDEF(NV507D, DAC_SET_CONTROL, OWNER, HEAD0); break; 494 case 1: ctrl |= NVDEF(NV507D, DAC_SET_CONTROL, OWNER, HEAD1); break; 495 case 2: ctrl |= NVDEF(NV907D, DAC_SET_CONTROL, OWNER_MASK, HEAD2); break; 496 case 3: ctrl |= NVDEF(NV907D, DAC_SET_CONTROL, OWNER_MASK, HEAD3); break; 497 default: 498 WARN_ON(1); 499 break; 500 } 501 502 ctrl |= NVDEF(NV507D, DAC_SET_CONTROL, PROTOCOL, RGB_CRT); 503 504 if (!nvif_outp_acquired(&nv_encoder->outp)) 505 nvif_outp_acquire_dac(&nv_encoder->outp); 506 507 core->func->dac->ctrl(core, nv_encoder->outp.or.id, ctrl, asyh); 508 asyh->or.depth = 0; 509 510 nv_encoder->crtc = &nv_crtc->base; 511 } 512 513 static enum drm_connector_status 514 nv50_dac_detect(struct drm_encoder *encoder, struct drm_connector *connector) 515 { 516 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 517 u32 loadval; 518 int ret; 519 520 loadval = nouveau_drm(encoder->dev)->vbios.dactestval; 521 if (loadval == 0) 522 loadval = 340; 523 524 ret = nvif_outp_load_detect(&nv_encoder->outp, loadval); 525 if (ret <= 0) 526 return connector_status_disconnected; 527 528 return connector_status_connected; 529 } 530 531 static const struct drm_encoder_helper_funcs 532 nv50_dac_help = { 533 .atomic_check = nv50_outp_atomic_check, 534 .atomic_enable = nv50_dac_atomic_enable, 535 .atomic_disable = nv50_dac_atomic_disable, 536 .detect = nv50_dac_detect 537 }; 538 539 static void 540 nv50_dac_destroy(struct drm_encoder *encoder) 541 { 542 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 543 544 nvif_outp_dtor(&nv_encoder->outp); 545 546 drm_encoder_cleanup(encoder); 547 kfree(encoder); 548 } 549 550 static const struct drm_encoder_funcs 551 nv50_dac_func = { 552 .destroy = nv50_dac_destroy, 553 }; 554 555 static int 556 nv50_dac_create(struct nouveau_encoder *nv_encoder) 557 { 558 struct drm_connector *connector = &nv_encoder->conn->base; 559 struct nouveau_drm *drm = nouveau_drm(connector->dev); 560 struct nvkm_i2c *i2c = nvxx_i2c(drm); 561 struct nvkm_i2c_bus *bus; 562 struct drm_encoder *encoder; 563 struct dcb_output *dcbe = nv_encoder->dcb; 564 int type = DRM_MODE_ENCODER_DAC; 565 566 bus = nvkm_i2c_bus_find(i2c, dcbe->i2c_index); 567 if (bus) 568 nv_encoder->i2c = &bus->i2c; 569 570 encoder = to_drm_encoder(nv_encoder); 571 drm_encoder_init(connector->dev, encoder, &nv50_dac_func, type, 572 "dac-%04x-%04x", dcbe->hasht, dcbe->hashm); 573 drm_encoder_helper_add(encoder, &nv50_dac_help); 574 575 drm_connector_attach_encoder(connector, encoder); 576 return 0; 577 } 578 579 /* 580 * audio component binding for ELD notification 581 */ 582 static void 583 nv50_audio_component_eld_notify(struct drm_audio_component *acomp, int port, 584 int dev_id) 585 { 586 if (acomp && acomp->audio_ops && acomp->audio_ops->pin_eld_notify) 587 acomp->audio_ops->pin_eld_notify(acomp->audio_ops->audio_ptr, 588 port, dev_id); 589 } 590 591 static int 592 nv50_audio_component_get_eld(struct device *kdev, int port, int dev_id, 593 bool *enabled, unsigned char *buf, int max_bytes) 594 { 595 struct nouveau_drm *drm = dev_get_drvdata(kdev); 596 struct drm_encoder *encoder; 597 struct nouveau_encoder *nv_encoder; 598 struct nouveau_crtc *nv_crtc; 599 int ret = 0; 600 601 *enabled = false; 602 603 mutex_lock(&drm->audio.lock); 604 605 drm_for_each_encoder(encoder, drm->dev) { 606 struct nouveau_connector *nv_connector = NULL; 607 608 if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) 609 continue; /* TODO */ 610 611 nv_encoder = nouveau_encoder(encoder); 612 nv_connector = nv_encoder->conn; 613 nv_crtc = nouveau_crtc(nv_encoder->crtc); 614 615 if (!nv_crtc || nv_encoder->outp.or.id != port || nv_crtc->index != dev_id) 616 continue; 617 618 *enabled = nv_encoder->audio.enabled; 619 if (*enabled) { 620 ret = drm_eld_size(nv_connector->base.eld); 621 memcpy(buf, nv_connector->base.eld, 622 min(max_bytes, ret)); 623 } 624 break; 625 } 626 627 mutex_unlock(&drm->audio.lock); 628 629 return ret; 630 } 631 632 static const struct drm_audio_component_ops nv50_audio_component_ops = { 633 .get_eld = nv50_audio_component_get_eld, 634 }; 635 636 static int 637 nv50_audio_component_bind(struct device *kdev, struct device *hda_kdev, 638 void *data) 639 { 640 struct nouveau_drm *drm = dev_get_drvdata(kdev); 641 struct drm_audio_component *acomp = data; 642 643 if (WARN_ON(!device_link_add(hda_kdev, kdev, DL_FLAG_STATELESS))) 644 return -ENOMEM; 645 646 drm_modeset_lock_all(drm->dev); 647 acomp->ops = &nv50_audio_component_ops; 648 acomp->dev = kdev; 649 drm->audio.component = acomp; 650 drm_modeset_unlock_all(drm->dev); 651 return 0; 652 } 653 654 static void 655 nv50_audio_component_unbind(struct device *kdev, struct device *hda_kdev, 656 void *data) 657 { 658 struct nouveau_drm *drm = dev_get_drvdata(kdev); 659 struct drm_audio_component *acomp = data; 660 661 drm_modeset_lock_all(drm->dev); 662 drm->audio.component = NULL; 663 acomp->ops = NULL; 664 acomp->dev = NULL; 665 drm_modeset_unlock_all(drm->dev); 666 } 667 668 static const struct component_ops nv50_audio_component_bind_ops = { 669 .bind = nv50_audio_component_bind, 670 .unbind = nv50_audio_component_unbind, 671 }; 672 673 static void 674 nv50_audio_component_init(struct nouveau_drm *drm) 675 { 676 if (component_add(drm->dev->dev, &nv50_audio_component_bind_ops)) 677 return; 678 679 drm->audio.component_registered = true; 680 mutex_init(&drm->audio.lock); 681 } 682 683 static void 684 nv50_audio_component_fini(struct nouveau_drm *drm) 685 { 686 if (!drm->audio.component_registered) 687 return; 688 689 component_del(drm->dev->dev, &nv50_audio_component_bind_ops); 690 drm->audio.component_registered = false; 691 mutex_destroy(&drm->audio.lock); 692 } 693 694 /****************************************************************************** 695 * Audio 696 *****************************************************************************/ 697 static bool 698 nv50_audio_supported(struct drm_encoder *encoder) 699 { 700 struct nv50_disp *disp = nv50_disp(encoder->dev); 701 702 if (disp->disp->object.oclass <= GT200_DISP || 703 disp->disp->object.oclass == GT206_DISP) 704 return false; 705 706 if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) { 707 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 708 709 switch (nv_encoder->dcb->type) { 710 case DCB_OUTPUT_TMDS: 711 case DCB_OUTPUT_DP: 712 break; 713 default: 714 return false; 715 } 716 } 717 718 return true; 719 } 720 721 static void 722 nv50_audio_disable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc) 723 { 724 struct nouveau_drm *drm = nouveau_drm(encoder->dev); 725 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 726 struct nvif_outp *outp = &nv_encoder->outp; 727 728 if (!nv50_audio_supported(encoder)) 729 return; 730 731 mutex_lock(&drm->audio.lock); 732 if (nv_encoder->audio.enabled) { 733 nv_encoder->audio.enabled = false; 734 nvif_outp_hda_eld(&nv_encoder->outp, nv_crtc->index, NULL, 0); 735 } 736 mutex_unlock(&drm->audio.lock); 737 738 nv50_audio_component_eld_notify(drm->audio.component, outp->or.id, nv_crtc->index); 739 } 740 741 static void 742 nv50_audio_enable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc, 743 struct nouveau_connector *nv_connector, struct drm_atomic_state *state, 744 struct drm_display_mode *mode) 745 { 746 struct nouveau_drm *drm = nouveau_drm(encoder->dev); 747 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 748 struct nvif_outp *outp = &nv_encoder->outp; 749 750 if (!nv50_audio_supported(encoder) || !nv_connector->base.display_info.has_audio) 751 return; 752 753 mutex_lock(&drm->audio.lock); 754 755 nvif_outp_hda_eld(&nv_encoder->outp, nv_crtc->index, nv_connector->base.eld, 756 drm_eld_size(nv_connector->base.eld)); 757 nv_encoder->audio.enabled = true; 758 759 mutex_unlock(&drm->audio.lock); 760 761 nv50_audio_component_eld_notify(drm->audio.component, outp->or.id, nv_crtc->index); 762 } 763 764 /****************************************************************************** 765 * HDMI 766 *****************************************************************************/ 767 static void 768 nv50_hdmi_enable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc, 769 struct nouveau_connector *nv_connector, struct drm_atomic_state *state, 770 struct drm_display_mode *mode, bool hda) 771 { 772 struct nouveau_drm *drm = nouveau_drm(encoder->dev); 773 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 774 struct drm_hdmi_info *hdmi = &nv_connector->base.display_info.hdmi; 775 union hdmi_infoframe infoframe = { 0 }; 776 const u8 rekey = 56; /* binary driver, and tegra, constant */ 777 u32 max_ac_packet; 778 struct { 779 struct nvif_outp_infoframe_v0 infoframe; 780 u8 data[17]; 781 } args = { 0 }; 782 int ret, size; 783 784 max_ac_packet = mode->htotal - mode->hdisplay; 785 max_ac_packet -= rekey; 786 max_ac_packet -= 18; /* constant from tegra */ 787 max_ac_packet /= 32; 788 789 if (nv_encoder->i2c && hdmi->scdc.scrambling.supported) { 790 const bool high_tmds_clock_ratio = mode->clock > 340000; 791 u8 scdc; 792 793 ret = drm_scdc_readb(nv_encoder->i2c, SCDC_TMDS_CONFIG, &scdc); 794 if (ret < 0) { 795 NV_ERROR(drm, "Failure to read SCDC_TMDS_CONFIG: %d\n", ret); 796 return; 797 } 798 799 scdc &= ~(SCDC_TMDS_BIT_CLOCK_RATIO_BY_40 | SCDC_SCRAMBLING_ENABLE); 800 if (high_tmds_clock_ratio || hdmi->scdc.scrambling.low_rates) 801 scdc |= SCDC_SCRAMBLING_ENABLE; 802 if (high_tmds_clock_ratio) 803 scdc |= SCDC_TMDS_BIT_CLOCK_RATIO_BY_40; 804 805 ret = drm_scdc_writeb(nv_encoder->i2c, SCDC_TMDS_CONFIG, scdc); 806 if (ret < 0) 807 NV_ERROR(drm, "Failure to write SCDC_TMDS_CONFIG = 0x%02x: %d\n", 808 scdc, ret); 809 } 810 811 ret = nvif_outp_hdmi(&nv_encoder->outp, nv_crtc->index, true, max_ac_packet, rekey, 812 mode->clock, hdmi->scdc.supported, hdmi->scdc.scrambling.supported, 813 hdmi->scdc.scrambling.low_rates); 814 if (ret) 815 return; 816 817 /* AVI InfoFrame. */ 818 args.infoframe.version = 0; 819 args.infoframe.head = nv_crtc->index; 820 821 if (!drm_hdmi_avi_infoframe_from_display_mode(&infoframe.avi, &nv_connector->base, mode)) { 822 drm_hdmi_avi_infoframe_quant_range(&infoframe.avi, &nv_connector->base, mode, 823 HDMI_QUANTIZATION_RANGE_FULL); 824 825 size = hdmi_infoframe_pack(&infoframe, args.data, ARRAY_SIZE(args.data)); 826 } else { 827 size = 0; 828 } 829 830 nvif_outp_infoframe(&nv_encoder->outp, NVIF_OUTP_INFOFRAME_V0_AVI, &args.infoframe, size); 831 832 /* Vendor InfoFrame. */ 833 memset(&args.data, 0, sizeof(args.data)); 834 if (!drm_hdmi_vendor_infoframe_from_display_mode(&infoframe.vendor.hdmi, 835 &nv_connector->base, mode)) 836 size = hdmi_infoframe_pack(&infoframe, args.data, ARRAY_SIZE(args.data)); 837 else 838 size = 0; 839 840 nvif_outp_infoframe(&nv_encoder->outp, NVIF_OUTP_INFOFRAME_V0_VSI, &args.infoframe, size); 841 842 nv_encoder->hdmi.enabled = true; 843 } 844 845 /****************************************************************************** 846 * MST 847 *****************************************************************************/ 848 #define nv50_mstm(p) container_of((p), struct nv50_mstm, mgr) 849 #define nv50_mstc(p) container_of((p), struct nv50_mstc, connector) 850 #define nv50_msto(p) container_of((p), struct nv50_msto, encoder) 851 852 struct nv50_mstc { 853 struct nv50_mstm *mstm; 854 struct drm_dp_mst_port *port; 855 struct drm_connector connector; 856 857 struct drm_display_mode *native; 858 struct edid *edid; 859 }; 860 861 struct nv50_msto { 862 struct drm_encoder encoder; 863 864 /* head is statically assigned on msto creation */ 865 struct nv50_head *head; 866 struct nv50_mstc *mstc; 867 bool disabled; 868 bool enabled; 869 870 u32 display_id; 871 }; 872 873 struct nouveau_encoder *nv50_real_outp(struct drm_encoder *encoder) 874 { 875 struct nv50_msto *msto; 876 877 if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) 878 return nouveau_encoder(encoder); 879 880 msto = nv50_msto(encoder); 881 if (!msto->mstc) 882 return NULL; 883 return msto->mstc->mstm->outp; 884 } 885 886 static void 887 nv50_msto_cleanup(struct drm_atomic_state *state, 888 struct drm_dp_mst_topology_state *new_mst_state, 889 struct drm_dp_mst_topology_mgr *mgr, 890 struct nv50_msto *msto) 891 { 892 struct nouveau_drm *drm = nouveau_drm(msto->encoder.dev); 893 struct drm_dp_mst_atomic_payload *new_payload = 894 drm_atomic_get_mst_payload_state(new_mst_state, msto->mstc->port); 895 struct drm_dp_mst_topology_state *old_mst_state = 896 drm_atomic_get_old_mst_topology_state(state, mgr); 897 const struct drm_dp_mst_atomic_payload *old_payload = 898 drm_atomic_get_mst_payload_state(old_mst_state, msto->mstc->port); 899 struct nv50_mstc *mstc = msto->mstc; 900 struct nv50_mstm *mstm = mstc->mstm; 901 902 NV_ATOMIC(drm, "%s: msto cleanup\n", msto->encoder.name); 903 904 if (msto->disabled) { 905 if (msto->head->func->display_id) { 906 nvif_outp_dp_mst_id_put(&mstm->outp->outp, msto->display_id); 907 msto->display_id = 0; 908 } 909 910 msto->mstc = NULL; 911 msto->disabled = false; 912 drm_dp_remove_payload_part2(mgr, new_mst_state, old_payload, new_payload); 913 } else if (msto->enabled) { 914 drm_dp_add_payload_part2(mgr, new_payload); 915 msto->enabled = false; 916 } 917 } 918 919 static void 920 nv50_msto_prepare(struct drm_atomic_state *state, 921 struct drm_dp_mst_topology_state *mst_state, 922 struct drm_dp_mst_topology_mgr *mgr, 923 struct nv50_msto *msto) 924 { 925 struct nouveau_drm *drm = nouveau_drm(msto->encoder.dev); 926 struct nv50_mstc *mstc = msto->mstc; 927 struct nv50_mstm *mstm = mstc->mstm; 928 struct drm_dp_mst_atomic_payload *payload; 929 int ret = 0; 930 931 NV_ATOMIC(drm, "%s: msto prepare\n", msto->encoder.name); 932 933 payload = drm_atomic_get_mst_payload_state(mst_state, mstc->port); 934 935 if (msto->disabled) { 936 drm_dp_remove_payload_part1(mgr, mst_state, payload); 937 nvif_outp_dp_mst_vcpi(&mstm->outp->outp, msto->head->base.index, 0, 0, 0, 0); 938 ret = 1; 939 } else { 940 if (msto->enabled) 941 ret = drm_dp_add_payload_part1(mgr, mst_state, payload); 942 } 943 944 if (ret == 0) { 945 nvif_outp_dp_mst_vcpi(&mstm->outp->outp, msto->head->base.index, 946 payload->vc_start_slot, payload->time_slots, 947 payload->pbn, 948 payload->time_slots * dfixed_trunc(mst_state->pbn_div)); 949 } else { 950 nvif_outp_dp_mst_vcpi(&mstm->outp->outp, msto->head->base.index, 0, 0, 0, 0); 951 } 952 } 953 954 static int 955 nv50_msto_atomic_check(struct drm_encoder *encoder, 956 struct drm_crtc_state *crtc_state, 957 struct drm_connector_state *conn_state) 958 { 959 struct drm_atomic_state *state = crtc_state->state; 960 struct drm_connector *connector = conn_state->connector; 961 struct drm_dp_mst_topology_state *mst_state; 962 struct nv50_mstc *mstc = nv50_mstc(connector); 963 struct nv50_mstm *mstm = mstc->mstm; 964 struct nv50_head_atom *asyh = nv50_head_atom(crtc_state); 965 int slots; 966 int ret; 967 968 ret = nv50_outp_atomic_check_view(encoder, crtc_state, conn_state, 969 mstc->native); 970 if (ret) 971 return ret; 972 973 if (!drm_atomic_crtc_needs_modeset(crtc_state)) 974 return 0; 975 976 /* 977 * When restoring duplicated states, we need to make sure that the bw 978 * remains the same and avoid recalculating it, as the connector's bpc 979 * may have changed after the state was duplicated 980 */ 981 if (!state->duplicated) { 982 const int clock = crtc_state->adjusted_mode.clock; 983 984 asyh->or.bpc = connector->display_info.bpc; 985 asyh->dp.pbn = drm_dp_calc_pbn_mode(clock, asyh->or.bpc * 3 << 4); 986 } 987 988 mst_state = drm_atomic_get_mst_topology_state(state, &mstm->mgr); 989 if (IS_ERR(mst_state)) 990 return PTR_ERR(mst_state); 991 992 if (!mst_state->pbn_div.full) { 993 struct nouveau_encoder *outp = mstc->mstm->outp; 994 995 mst_state->pbn_div = drm_dp_get_vc_payload_bw(&mstm->mgr, 996 outp->dp.link_bw, outp->dp.link_nr); 997 } 998 999 slots = drm_dp_atomic_find_time_slots(state, &mstm->mgr, mstc->port, asyh->dp.pbn); 1000 if (slots < 0) 1001 return slots; 1002 1003 asyh->dp.tu = slots; 1004 1005 return 0; 1006 } 1007 1008 static u8 1009 nv50_dp_bpc_to_depth(unsigned int bpc) 1010 { 1011 switch (bpc) { 1012 case 6: return NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_BPP_18_444; 1013 case 8: return NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_BPP_24_444; 1014 case 10: 1015 default: return NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_BPP_30_444; 1016 } 1017 } 1018 1019 static void 1020 nv50_msto_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state) 1021 { 1022 struct nv50_msto *msto = nv50_msto(encoder); 1023 struct nv50_head *head = msto->head; 1024 struct nv50_head_atom *asyh = 1025 nv50_head_atom(drm_atomic_get_new_crtc_state(state, &head->base.base)); 1026 struct nv50_mstc *mstc = NULL; 1027 struct nv50_mstm *mstm = NULL; 1028 struct drm_connector *connector; 1029 struct drm_connector_list_iter conn_iter; 1030 u8 proto; 1031 1032 drm_connector_list_iter_begin(encoder->dev, &conn_iter); 1033 drm_for_each_connector_iter(connector, &conn_iter) { 1034 if (connector->state->best_encoder == &msto->encoder) { 1035 mstc = nv50_mstc(connector); 1036 mstm = mstc->mstm; 1037 break; 1038 } 1039 } 1040 drm_connector_list_iter_end(&conn_iter); 1041 1042 if (WARN_ON(!mstc)) 1043 return; 1044 1045 if (!mstm->links++) { 1046 nvif_outp_acquire_sor(&mstm->outp->outp, false /*TODO: MST audio... */); 1047 nouveau_dp_train(mstm->outp, true, 0, 0); 1048 } 1049 1050 if (head->func->display_id) { 1051 if (!WARN_ON(nvif_outp_dp_mst_id_get(&mstm->outp->outp, &msto->display_id))) 1052 head->func->display_id(head, msto->display_id); 1053 } 1054 1055 if (mstm->outp->outp.or.link & 1) 1056 proto = NV917D_SOR_SET_CONTROL_PROTOCOL_DP_A; 1057 else 1058 proto = NV917D_SOR_SET_CONTROL_PROTOCOL_DP_B; 1059 1060 mstm->outp->update(mstm->outp, head->base.index, asyh, proto, 1061 nv50_dp_bpc_to_depth(asyh->or.bpc)); 1062 1063 msto->mstc = mstc; 1064 msto->enabled = true; 1065 mstm->modified = true; 1066 } 1067 1068 static void 1069 nv50_msto_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state) 1070 { 1071 struct nv50_msto *msto = nv50_msto(encoder); 1072 struct nv50_mstc *mstc = msto->mstc; 1073 struct nv50_mstm *mstm = mstc->mstm; 1074 1075 if (msto->head->func->display_id) 1076 msto->head->func->display_id(msto->head, 0); 1077 1078 mstm->outp->update(mstm->outp, msto->head->base.index, NULL, 0, 0); 1079 mstm->modified = true; 1080 if (!--mstm->links) 1081 mstm->disabled = true; 1082 msto->disabled = true; 1083 } 1084 1085 static const struct drm_encoder_helper_funcs 1086 nv50_msto_help = { 1087 .atomic_disable = nv50_msto_atomic_disable, 1088 .atomic_enable = nv50_msto_atomic_enable, 1089 .atomic_check = nv50_msto_atomic_check, 1090 }; 1091 1092 static void 1093 nv50_msto_destroy(struct drm_encoder *encoder) 1094 { 1095 struct nv50_msto *msto = nv50_msto(encoder); 1096 drm_encoder_cleanup(&msto->encoder); 1097 kfree(msto); 1098 } 1099 1100 static const struct drm_encoder_funcs 1101 nv50_msto = { 1102 .destroy = nv50_msto_destroy, 1103 }; 1104 1105 static struct nv50_msto * 1106 nv50_msto_new(struct drm_device *dev, struct nv50_head *head, int id) 1107 { 1108 struct nv50_msto *msto; 1109 int ret; 1110 1111 msto = kzalloc(sizeof(*msto), GFP_KERNEL); 1112 if (!msto) 1113 return ERR_PTR(-ENOMEM); 1114 1115 ret = drm_encoder_init(dev, &msto->encoder, &nv50_msto, 1116 DRM_MODE_ENCODER_DPMST, "mst-%d", id); 1117 if (ret) { 1118 kfree(msto); 1119 return ERR_PTR(ret); 1120 } 1121 1122 drm_encoder_helper_add(&msto->encoder, &nv50_msto_help); 1123 msto->encoder.possible_crtcs = drm_crtc_mask(&head->base.base); 1124 msto->head = head; 1125 return msto; 1126 } 1127 1128 static struct drm_encoder * 1129 nv50_mstc_atomic_best_encoder(struct drm_connector *connector, 1130 struct drm_atomic_state *state) 1131 { 1132 struct drm_connector_state *connector_state = drm_atomic_get_new_connector_state(state, 1133 connector); 1134 struct nv50_mstc *mstc = nv50_mstc(connector); 1135 struct drm_crtc *crtc = connector_state->crtc; 1136 1137 if (!(mstc->mstm->outp->dcb->heads & drm_crtc_mask(crtc))) 1138 return NULL; 1139 1140 return &nv50_head(crtc)->msto->encoder; 1141 } 1142 1143 static enum drm_mode_status 1144 nv50_mstc_mode_valid(struct drm_connector *connector, 1145 struct drm_display_mode *mode) 1146 { 1147 struct nv50_mstc *mstc = nv50_mstc(connector); 1148 struct nouveau_encoder *outp = mstc->mstm->outp; 1149 1150 /* TODO: calculate the PBN from the dotclock and validate against the 1151 * MSTB's max possible PBN 1152 */ 1153 1154 return nv50_dp_mode_valid(outp, mode, NULL); 1155 } 1156 1157 static int 1158 nv50_mstc_get_modes(struct drm_connector *connector) 1159 { 1160 struct nv50_mstc *mstc = nv50_mstc(connector); 1161 int ret = 0; 1162 1163 mstc->edid = drm_dp_mst_get_edid(&mstc->connector, mstc->port->mgr, mstc->port); 1164 drm_connector_update_edid_property(&mstc->connector, mstc->edid); 1165 if (mstc->edid) 1166 ret = drm_add_edid_modes(&mstc->connector, mstc->edid); 1167 1168 /* 1169 * XXX: Since we don't use HDR in userspace quite yet, limit the bpc 1170 * to 8 to save bandwidth on the topology. In the future, we'll want 1171 * to properly fix this by dynamically selecting the highest possible 1172 * bpc that would fit in the topology 1173 */ 1174 if (connector->display_info.bpc) 1175 connector->display_info.bpc = 1176 clamp(connector->display_info.bpc, 6U, 8U); 1177 else 1178 connector->display_info.bpc = 8; 1179 1180 if (mstc->native) 1181 drm_mode_destroy(mstc->connector.dev, mstc->native); 1182 mstc->native = nouveau_conn_native_mode(&mstc->connector); 1183 return ret; 1184 } 1185 1186 static int 1187 nv50_mstc_atomic_check(struct drm_connector *connector, 1188 struct drm_atomic_state *state) 1189 { 1190 struct nv50_mstc *mstc = nv50_mstc(connector); 1191 struct drm_dp_mst_topology_mgr *mgr = &mstc->mstm->mgr; 1192 1193 return drm_dp_atomic_release_time_slots(state, mgr, mstc->port); 1194 } 1195 1196 static int 1197 nv50_mstc_detect(struct drm_connector *connector, 1198 struct drm_modeset_acquire_ctx *ctx, bool force) 1199 { 1200 struct nv50_mstc *mstc = nv50_mstc(connector); 1201 int ret; 1202 1203 if (drm_connector_is_unregistered(connector)) 1204 return connector_status_disconnected; 1205 1206 ret = pm_runtime_get_sync(connector->dev->dev); 1207 if (ret < 0 && ret != -EACCES) { 1208 pm_runtime_put_autosuspend(connector->dev->dev); 1209 return connector_status_disconnected; 1210 } 1211 1212 ret = drm_dp_mst_detect_port(connector, ctx, mstc->port->mgr, 1213 mstc->port); 1214 if (ret != connector_status_connected) 1215 goto out; 1216 1217 out: 1218 pm_runtime_mark_last_busy(connector->dev->dev); 1219 pm_runtime_put_autosuspend(connector->dev->dev); 1220 return ret; 1221 } 1222 1223 static const struct drm_connector_helper_funcs 1224 nv50_mstc_help = { 1225 .get_modes = nv50_mstc_get_modes, 1226 .mode_valid = nv50_mstc_mode_valid, 1227 .atomic_best_encoder = nv50_mstc_atomic_best_encoder, 1228 .atomic_check = nv50_mstc_atomic_check, 1229 .detect_ctx = nv50_mstc_detect, 1230 }; 1231 1232 static void 1233 nv50_mstc_destroy(struct drm_connector *connector) 1234 { 1235 struct nv50_mstc *mstc = nv50_mstc(connector); 1236 1237 drm_connector_cleanup(&mstc->connector); 1238 drm_dp_mst_put_port_malloc(mstc->port); 1239 1240 kfree(mstc); 1241 } 1242 1243 static const struct drm_connector_funcs 1244 nv50_mstc = { 1245 .reset = nouveau_conn_reset, 1246 .fill_modes = drm_helper_probe_single_connector_modes, 1247 .destroy = nv50_mstc_destroy, 1248 .atomic_duplicate_state = nouveau_conn_atomic_duplicate_state, 1249 .atomic_destroy_state = nouveau_conn_atomic_destroy_state, 1250 .atomic_set_property = nouveau_conn_atomic_set_property, 1251 .atomic_get_property = nouveau_conn_atomic_get_property, 1252 }; 1253 1254 static int 1255 nv50_mstc_new(struct nv50_mstm *mstm, struct drm_dp_mst_port *port, 1256 const char *path, struct nv50_mstc **pmstc) 1257 { 1258 struct drm_device *dev = mstm->outp->base.base.dev; 1259 struct drm_crtc *crtc; 1260 struct nv50_mstc *mstc; 1261 int ret; 1262 1263 if (!(mstc = *pmstc = kzalloc(sizeof(*mstc), GFP_KERNEL))) 1264 return -ENOMEM; 1265 mstc->mstm = mstm; 1266 mstc->port = port; 1267 1268 ret = drm_connector_init(dev, &mstc->connector, &nv50_mstc, 1269 DRM_MODE_CONNECTOR_DisplayPort); 1270 if (ret) { 1271 kfree(*pmstc); 1272 *pmstc = NULL; 1273 return ret; 1274 } 1275 1276 drm_connector_helper_add(&mstc->connector, &nv50_mstc_help); 1277 1278 mstc->connector.funcs->reset(&mstc->connector); 1279 nouveau_conn_attach_properties(&mstc->connector); 1280 1281 drm_for_each_crtc(crtc, dev) { 1282 if (!(mstm->outp->dcb->heads & drm_crtc_mask(crtc))) 1283 continue; 1284 1285 drm_connector_attach_encoder(&mstc->connector, 1286 &nv50_head(crtc)->msto->encoder); 1287 } 1288 1289 drm_object_attach_property(&mstc->connector.base, dev->mode_config.path_property, 0); 1290 drm_object_attach_property(&mstc->connector.base, dev->mode_config.tile_property, 0); 1291 drm_connector_set_path_property(&mstc->connector, path); 1292 drm_dp_mst_get_port_malloc(port); 1293 return 0; 1294 } 1295 1296 static void 1297 nv50_mstm_cleanup(struct drm_atomic_state *state, 1298 struct drm_dp_mst_topology_state *mst_state, 1299 struct nv50_mstm *mstm) 1300 { 1301 struct nouveau_drm *drm = nouveau_drm(mstm->outp->base.base.dev); 1302 struct drm_encoder *encoder; 1303 1304 NV_ATOMIC(drm, "%s: mstm cleanup\n", mstm->outp->base.base.name); 1305 drm_dp_check_act_status(&mstm->mgr); 1306 1307 drm_for_each_encoder(encoder, mstm->outp->base.base.dev) { 1308 if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) { 1309 struct nv50_msto *msto = nv50_msto(encoder); 1310 struct nv50_mstc *mstc = msto->mstc; 1311 if (mstc && mstc->mstm == mstm) 1312 nv50_msto_cleanup(state, mst_state, &mstm->mgr, msto); 1313 } 1314 } 1315 1316 if (mstm->disabled) { 1317 nouveau_dp_power_down(mstm->outp); 1318 nvif_outp_release(&mstm->outp->outp); 1319 mstm->disabled = false; 1320 } 1321 1322 mstm->modified = false; 1323 } 1324 1325 static void 1326 nv50_mstm_prepare(struct drm_atomic_state *state, 1327 struct drm_dp_mst_topology_state *mst_state, 1328 struct nv50_mstm *mstm) 1329 { 1330 struct nouveau_drm *drm = nouveau_drm(mstm->outp->base.base.dev); 1331 struct drm_encoder *encoder; 1332 1333 NV_ATOMIC(drm, "%s: mstm prepare\n", mstm->outp->base.base.name); 1334 1335 /* Disable payloads first */ 1336 drm_for_each_encoder(encoder, mstm->outp->base.base.dev) { 1337 if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) { 1338 struct nv50_msto *msto = nv50_msto(encoder); 1339 struct nv50_mstc *mstc = msto->mstc; 1340 if (mstc && mstc->mstm == mstm && msto->disabled) 1341 nv50_msto_prepare(state, mst_state, &mstm->mgr, msto); 1342 } 1343 } 1344 1345 /* Add payloads for new heads, while also updating the start slots of any unmodified (but 1346 * active) heads that may have had their VC slots shifted left after the previous step 1347 */ 1348 drm_for_each_encoder(encoder, mstm->outp->base.base.dev) { 1349 if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) { 1350 struct nv50_msto *msto = nv50_msto(encoder); 1351 struct nv50_mstc *mstc = msto->mstc; 1352 if (mstc && mstc->mstm == mstm && !msto->disabled) 1353 nv50_msto_prepare(state, mst_state, &mstm->mgr, msto); 1354 } 1355 } 1356 } 1357 1358 static struct drm_connector * 1359 nv50_mstm_add_connector(struct drm_dp_mst_topology_mgr *mgr, 1360 struct drm_dp_mst_port *port, const char *path) 1361 { 1362 struct nv50_mstm *mstm = nv50_mstm(mgr); 1363 struct nv50_mstc *mstc; 1364 int ret; 1365 1366 ret = nv50_mstc_new(mstm, port, path, &mstc); 1367 if (ret) 1368 return NULL; 1369 1370 return &mstc->connector; 1371 } 1372 1373 static const struct drm_dp_mst_topology_cbs 1374 nv50_mstm = { 1375 .add_connector = nv50_mstm_add_connector, 1376 }; 1377 1378 bool 1379 nv50_mstm_service(struct nouveau_drm *drm, 1380 struct nouveau_connector *nv_connector, 1381 struct nv50_mstm *mstm) 1382 { 1383 struct drm_dp_aux *aux = &nv_connector->aux; 1384 bool handled = true, ret = true; 1385 int rc; 1386 u8 esi[8] = {}; 1387 1388 while (handled) { 1389 u8 ack[8] = {}; 1390 1391 rc = drm_dp_dpcd_read(aux, DP_SINK_COUNT_ESI, esi, 8); 1392 if (rc != 8) { 1393 ret = false; 1394 break; 1395 } 1396 1397 drm_dp_mst_hpd_irq_handle_event(&mstm->mgr, esi, ack, &handled); 1398 if (!handled) 1399 break; 1400 1401 rc = drm_dp_dpcd_writeb(aux, DP_SINK_COUNT_ESI + 1, ack[1]); 1402 1403 if (rc != 1) { 1404 ret = false; 1405 break; 1406 } 1407 1408 drm_dp_mst_hpd_irq_send_new_request(&mstm->mgr); 1409 } 1410 1411 if (!ret) 1412 NV_DEBUG(drm, "Failed to handle ESI on %s: %d\n", 1413 nv_connector->base.name, rc); 1414 1415 return ret; 1416 } 1417 1418 void 1419 nv50_mstm_remove(struct nv50_mstm *mstm) 1420 { 1421 mstm->is_mst = false; 1422 drm_dp_mst_topology_mgr_set_mst(&mstm->mgr, false); 1423 } 1424 1425 int 1426 nv50_mstm_detect(struct nouveau_encoder *outp) 1427 { 1428 struct nv50_mstm *mstm = outp->dp.mstm; 1429 struct drm_dp_aux *aux; 1430 int ret; 1431 1432 if (!mstm || !mstm->can_mst) 1433 return 0; 1434 1435 aux = mstm->mgr.aux; 1436 1437 /* Clear any leftover MST state we didn't set ourselves by first 1438 * disabling MST if it was already enabled 1439 */ 1440 ret = drm_dp_dpcd_writeb(aux, DP_MSTM_CTRL, 0); 1441 if (ret < 0) 1442 return ret; 1443 1444 /* And start enabling */ 1445 ret = drm_dp_mst_topology_mgr_set_mst(&mstm->mgr, true); 1446 if (ret) 1447 return ret; 1448 1449 mstm->is_mst = true; 1450 return 1; 1451 } 1452 1453 static void 1454 nv50_mstm_fini(struct nouveau_encoder *outp) 1455 { 1456 struct nv50_mstm *mstm = outp->dp.mstm; 1457 1458 if (!mstm) 1459 return; 1460 1461 /* Don't change the MST state of this connector until we've finished 1462 * resuming, since we can't safely grab hpd_irq_lock in our resume 1463 * path to protect mstm->is_mst without potentially deadlocking 1464 */ 1465 mutex_lock(&outp->dp.hpd_irq_lock); 1466 mstm->suspended = true; 1467 mutex_unlock(&outp->dp.hpd_irq_lock); 1468 1469 if (mstm->is_mst) 1470 drm_dp_mst_topology_mgr_suspend(&mstm->mgr); 1471 } 1472 1473 static void 1474 nv50_mstm_init(struct nouveau_encoder *outp, bool runtime) 1475 { 1476 struct nv50_mstm *mstm = outp->dp.mstm; 1477 int ret = 0; 1478 1479 if (!mstm) 1480 return; 1481 1482 if (mstm->is_mst) { 1483 ret = drm_dp_mst_topology_mgr_resume(&mstm->mgr, !runtime); 1484 if (ret == -1) 1485 nv50_mstm_remove(mstm); 1486 } 1487 1488 mutex_lock(&outp->dp.hpd_irq_lock); 1489 mstm->suspended = false; 1490 mutex_unlock(&outp->dp.hpd_irq_lock); 1491 1492 if (ret == -1) 1493 drm_kms_helper_hotplug_event(mstm->mgr.dev); 1494 } 1495 1496 static void 1497 nv50_mstm_del(struct nv50_mstm **pmstm) 1498 { 1499 struct nv50_mstm *mstm = *pmstm; 1500 if (mstm) { 1501 drm_dp_mst_topology_mgr_destroy(&mstm->mgr); 1502 kfree(*pmstm); 1503 *pmstm = NULL; 1504 } 1505 } 1506 1507 static int 1508 nv50_mstm_new(struct nouveau_encoder *outp, struct drm_dp_aux *aux, int aux_max, 1509 int conn_base_id, struct nv50_mstm **pmstm) 1510 { 1511 const int max_payloads = hweight8(outp->dcb->heads); 1512 struct drm_device *dev = outp->base.base.dev; 1513 struct nv50_mstm *mstm; 1514 int ret; 1515 1516 if (!(mstm = *pmstm = kzalloc(sizeof(*mstm), GFP_KERNEL))) 1517 return -ENOMEM; 1518 mstm->outp = outp; 1519 mstm->mgr.cbs = &nv50_mstm; 1520 1521 ret = drm_dp_mst_topology_mgr_init(&mstm->mgr, dev, aux, aux_max, 1522 max_payloads, conn_base_id); 1523 if (ret) 1524 return ret; 1525 1526 return 0; 1527 } 1528 1529 /****************************************************************************** 1530 * SOR 1531 *****************************************************************************/ 1532 static void 1533 nv50_sor_update(struct nouveau_encoder *nv_encoder, u8 head, 1534 struct nv50_head_atom *asyh, u8 proto, u8 depth) 1535 { 1536 struct nv50_disp *disp = nv50_disp(nv_encoder->base.base.dev); 1537 struct nv50_core *core = disp->core; 1538 1539 if (!asyh) { 1540 nv_encoder->ctrl &= ~BIT(head); 1541 if (NVDEF_TEST(nv_encoder->ctrl, NV507D, SOR_SET_CONTROL, OWNER, ==, NONE)) 1542 nv_encoder->ctrl = 0; 1543 } else { 1544 nv_encoder->ctrl |= NVVAL(NV507D, SOR_SET_CONTROL, PROTOCOL, proto); 1545 nv_encoder->ctrl |= BIT(head); 1546 asyh->or.depth = depth; 1547 } 1548 1549 core->func->sor->ctrl(core, nv_encoder->outp.or.id, nv_encoder->ctrl, asyh); 1550 } 1551 1552 /* TODO: Should we extend this to PWM-only backlights? 1553 * As well, should we add a DRM helper for waiting for the backlight to acknowledge 1554 * the panel backlight has been shut off? Intel doesn't seem to do this, and uses a 1555 * fixed time delay from the vbios… 1556 */ 1557 static void 1558 nv50_sor_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state) 1559 { 1560 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 1561 struct nv50_head *head = nv50_head(nv_encoder->crtc); 1562 #ifdef CONFIG_DRM_NOUVEAU_BACKLIGHT 1563 struct nouveau_connector *nv_connector = nv50_outp_get_old_connector(state, nv_encoder); 1564 struct nouveau_drm *drm = nouveau_drm(nv_encoder->base.base.dev); 1565 struct nouveau_backlight *backlight = nv_connector->backlight; 1566 struct drm_dp_aux *aux = &nv_connector->aux; 1567 int ret; 1568 1569 if (backlight && backlight->uses_dpcd) { 1570 ret = drm_edp_backlight_disable(aux, &backlight->edp_info); 1571 if (ret < 0) 1572 NV_ERROR(drm, "Failed to disable backlight on [CONNECTOR:%d:%s]: %d\n", 1573 nv_connector->base.base.id, nv_connector->base.name, ret); 1574 } 1575 #endif 1576 1577 if (nv_encoder->dcb->type == DCB_OUTPUT_TMDS && nv_encoder->hdmi.enabled) { 1578 nvif_outp_hdmi(&nv_encoder->outp, head->base.index, 1579 false, 0, 0, 0, false, false, false); 1580 nv_encoder->hdmi.enabled = false; 1581 } 1582 1583 if (nv_encoder->dcb->type == DCB_OUTPUT_DP) 1584 nouveau_dp_power_down(nv_encoder); 1585 1586 if (head->func->display_id) 1587 head->func->display_id(head, 0); 1588 1589 nv_encoder->update(nv_encoder, head->base.index, NULL, 0, 0); 1590 nv50_audio_disable(encoder, &head->base); 1591 nv_encoder->crtc = NULL; 1592 } 1593 1594 // common/inc/displayport/displayport.h 1595 #define DP_CONFIG_WATERMARK_ADJUST 2 1596 #define DP_CONFIG_WATERMARK_LIMIT 20 1597 #define DP_CONFIG_INCREASED_WATERMARK_ADJUST 8 1598 #define DP_CONFIG_INCREASED_WATERMARK_LIMIT 22 1599 1600 static bool 1601 nv50_sor_dp_watermark_sst(struct nouveau_encoder *outp, 1602 struct nv50_head *head, struct nv50_head_atom *asyh) 1603 { 1604 bool enhancedFraming = outp->dp.dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP; 1605 u64 minRate = outp->dp.link_bw * 1000; 1606 unsigned tuSize = 64; 1607 unsigned waterMark; 1608 unsigned hBlankSym; 1609 unsigned vBlankSym; 1610 unsigned watermarkAdjust = DP_CONFIG_WATERMARK_ADJUST; 1611 unsigned watermarkMinimum = DP_CONFIG_WATERMARK_LIMIT; 1612 // depth is multiplied by 16 in case of DSC enable 1613 s32 hblank_symbols; 1614 // number of link clocks per line. 1615 int vblank_symbols = 0; 1616 bool bEnableDsc = false; 1617 unsigned surfaceWidth = asyh->mode.h.blanks - asyh->mode.h.blanke; 1618 unsigned rasterWidth = asyh->mode.h.active; 1619 unsigned depth = asyh->or.bpc * 3; 1620 unsigned DSC_FACTOR = bEnableDsc ? 16 : 1; 1621 u64 pixelClockHz = asyh->mode.clock * 1000; 1622 u64 PrecisionFactor = 100000, ratioF, watermarkF; 1623 u32 numLanesPerLink = outp->dp.link_nr; 1624 u32 numSymbolsPerLine; 1625 u32 BlankingBits; 1626 u32 surfaceWidthPerLink; 1627 u32 PixelSteeringBits; 1628 u64 NumBlankingLinkClocks; 1629 u32 MinHBlank; 1630 1631 if (outp->outp.info.dp.increased_wm) { 1632 watermarkAdjust = DP_CONFIG_INCREASED_WATERMARK_ADJUST; 1633 watermarkMinimum = DP_CONFIG_INCREASED_WATERMARK_LIMIT; 1634 } 1635 1636 if ((pixelClockHz * depth) >= (8 * minRate * outp->dp.link_nr * DSC_FACTOR)) 1637 { 1638 return false; 1639 } 1640 1641 // 1642 // For DSC, if (pclk * bpp) < (1/64 * orclk * 8 * lanes) then some TU may end up with 1643 // 0 active symbols. This may cause HW hang. Bug 200379426 1644 // 1645 if ((bEnableDsc) && 1646 ((pixelClockHz * depth) < div_u64(8 * minRate * outp->dp.link_nr * DSC_FACTOR, 64))) 1647 { 1648 return false; 1649 } 1650 1651 // 1652 // Perform the SST calculation. 1653 // For auto mode the watermark calculation does not need to track accumulated error the 1654 // formulas for manual mode will not work. So below calculation was extracted from the DTB. 1655 // 1656 ratioF = div_u64((u64)pixelClockHz * depth * PrecisionFactor, DSC_FACTOR); 1657 1658 ratioF = div_u64(ratioF, 8 * (u64) minRate * outp->dp.link_nr); 1659 1660 if (PrecisionFactor < ratioF) // Assert if we will end up with a negative number in below 1661 return false; 1662 1663 watermarkF = div_u64(ratioF * tuSize * (PrecisionFactor - ratioF), PrecisionFactor); 1664 waterMark = (unsigned)(watermarkAdjust + (div_u64(2 * div_u64(depth * PrecisionFactor, 8 * numLanesPerLink * DSC_FACTOR) + watermarkF, PrecisionFactor))); 1665 1666 // 1667 // Bounds check the watermark 1668 // 1669 numSymbolsPerLine = div_u64(surfaceWidth * depth, 8 * outp->dp.link_nr * DSC_FACTOR); 1670 1671 if (WARN_ON(waterMark > 39 || waterMark > numSymbolsPerLine)) 1672 return false; 1673 1674 // 1675 // Clamp the low side 1676 // 1677 if (waterMark < watermarkMinimum) 1678 waterMark = watermarkMinimum; 1679 1680 //Bits to send BS/BE/Extra symbols due to pixel padding 1681 //Also accounts for enhanced framing. 1682 BlankingBits = 3*8*numLanesPerLink + (enhancedFraming ? 3*8*numLanesPerLink : 0); 1683 1684 //VBID/MVID/MAUD sent 4 times all the time 1685 BlankingBits += 3*8*4; 1686 1687 surfaceWidthPerLink = surfaceWidth; 1688 1689 //Extra bits sent due to pixel steering 1690 u32 remain; 1691 div_u64_rem(surfaceWidthPerLink, numLanesPerLink, &remain); 1692 PixelSteeringBits = remain ? div_u64((numLanesPerLink - remain) * depth, DSC_FACTOR) : 0; 1693 1694 BlankingBits += PixelSteeringBits; 1695 NumBlankingLinkClocks = div_u64((u64)BlankingBits * PrecisionFactor, (8 * numLanesPerLink)); 1696 MinHBlank = (u32)(div_u64(div_u64(NumBlankingLinkClocks * pixelClockHz, minRate), PrecisionFactor)); 1697 MinHBlank += 12; 1698 1699 if (WARN_ON(MinHBlank > rasterWidth - surfaceWidth)) 1700 return false; 1701 1702 // Bug 702290 - Active Width should be greater than 60 1703 if (WARN_ON(surfaceWidth <= 60)) 1704 return false; 1705 1706 1707 hblank_symbols = (s32)(div_u64((u64)(rasterWidth - surfaceWidth - MinHBlank) * minRate, pixelClockHz)); 1708 1709 //reduce HBlank Symbols to account for secondary data packet 1710 hblank_symbols -= 1; //Stuffer latency to send BS 1711 hblank_symbols -= 3; //SPKT latency to send data to stuffer 1712 1713 hblank_symbols -= numLanesPerLink == 1 ? 9 : numLanesPerLink == 2 ? 6 : 3; 1714 1715 hBlankSym = (hblank_symbols < 0) ? 0 : hblank_symbols; 1716 1717 // Refer to dev_disp.ref for more information. 1718 // # symbols/vblank = ((SetRasterBlankEnd.X + SetRasterSize.Width - SetRasterBlankStart.X - 40) * link_clk / pclk) - Y - 1; 1719 // where Y = (# lanes == 4) 12 : (# lanes == 2) ? 21 : 39 1720 if (surfaceWidth < 40) 1721 { 1722 vblank_symbols = 0; 1723 } 1724 else 1725 { 1726 vblank_symbols = (s32)((div_u64((u64)(surfaceWidth - 40) * minRate, pixelClockHz))) - 1; 1727 1728 vblank_symbols -= numLanesPerLink == 1 ? 39 : numLanesPerLink == 2 ? 21 : 12; 1729 } 1730 1731 vBlankSym = (vblank_symbols < 0) ? 0 : vblank_symbols; 1732 1733 return nvif_outp_dp_sst(&outp->outp, head->base.index, waterMark, hBlankSym, vBlankSym); 1734 } 1735 1736 static void 1737 nv50_sor_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state) 1738 { 1739 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 1740 struct nouveau_crtc *nv_crtc = nv50_outp_get_new_crtc(state, nv_encoder); 1741 struct nv50_head_atom *asyh = 1742 nv50_head_atom(drm_atomic_get_new_crtc_state(state, &nv_crtc->base)); 1743 struct drm_display_mode *mode = &asyh->state.adjusted_mode; 1744 struct nv50_disp *disp = nv50_disp(encoder->dev); 1745 struct nv50_head *head = nv50_head(&nv_crtc->base); 1746 struct nvif_outp *outp = &nv_encoder->outp; 1747 struct drm_device *dev = encoder->dev; 1748 struct nouveau_drm *drm = nouveau_drm(dev); 1749 struct nouveau_connector *nv_connector; 1750 #ifdef CONFIG_DRM_NOUVEAU_BACKLIGHT 1751 struct nouveau_backlight *backlight; 1752 #endif 1753 struct nvbios *bios = &drm->vbios; 1754 bool lvds_dual = false, lvds_8bpc = false, hda = false; 1755 u8 proto = NV507D_SOR_SET_CONTROL_PROTOCOL_CUSTOM; 1756 u8 depth = NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_DEFAULT; 1757 1758 nv_connector = nv50_outp_get_new_connector(state, nv_encoder); 1759 nv_encoder->crtc = &nv_crtc->base; 1760 1761 if ((disp->disp->object.oclass == GT214_DISP || 1762 disp->disp->object.oclass >= GF110_DISP) && 1763 nv_encoder->dcb->type != DCB_OUTPUT_LVDS && 1764 nv_connector->base.display_info.has_audio) 1765 hda = true; 1766 1767 if (!nvif_outp_acquired(outp)) 1768 nvif_outp_acquire_sor(outp, hda); 1769 1770 switch (nv_encoder->dcb->type) { 1771 case DCB_OUTPUT_TMDS: 1772 if (disp->disp->object.oclass != NV50_DISP && 1773 nv_connector->base.display_info.is_hdmi) 1774 nv50_hdmi_enable(encoder, nv_crtc, nv_connector, state, mode, hda); 1775 1776 if (nv_encoder->outp.or.link & 1) { 1777 proto = NV507D_SOR_SET_CONTROL_PROTOCOL_SINGLE_TMDS_A; 1778 /* Only enable dual-link if: 1779 * - Need to (i.e. rate > 165MHz) 1780 * - DCB says we can 1781 * - Not an HDMI monitor, since there's no dual-link 1782 * on HDMI. 1783 */ 1784 if (mode->clock >= 165000 && 1785 nv_encoder->dcb->duallink_possible && 1786 !nv_connector->base.display_info.is_hdmi) 1787 proto = NV507D_SOR_SET_CONTROL_PROTOCOL_DUAL_TMDS; 1788 } else { 1789 proto = NV507D_SOR_SET_CONTROL_PROTOCOL_SINGLE_TMDS_B; 1790 } 1791 break; 1792 case DCB_OUTPUT_LVDS: 1793 proto = NV507D_SOR_SET_CONTROL_PROTOCOL_LVDS_CUSTOM; 1794 1795 if (bios->fp_no_ddc) { 1796 lvds_dual = bios->fp.dual_link; 1797 lvds_8bpc = bios->fp.if_is_24bit; 1798 } else { 1799 if (nv_connector->type == DCB_CONNECTOR_LVDS_SPWG) { 1800 if (((u8 *)nv_connector->edid)[121] == 2) 1801 lvds_dual = true; 1802 } else 1803 if (mode->clock >= bios->fp.duallink_transition_clk) { 1804 lvds_dual = true; 1805 } 1806 1807 if (lvds_dual) { 1808 if (bios->fp.strapless_is_24bit & 2) 1809 lvds_8bpc = true; 1810 } else { 1811 if (bios->fp.strapless_is_24bit & 1) 1812 lvds_8bpc = true; 1813 } 1814 1815 if (asyh->or.bpc == 8) 1816 lvds_8bpc = true; 1817 } 1818 1819 nvif_outp_lvds(&nv_encoder->outp, lvds_dual, lvds_8bpc); 1820 break; 1821 case DCB_OUTPUT_DP: 1822 nouveau_dp_train(nv_encoder, false, mode->clock, asyh->or.bpc); 1823 nv50_sor_dp_watermark_sst(nv_encoder, head, asyh); 1824 depth = nv50_dp_bpc_to_depth(asyh->or.bpc); 1825 1826 if (nv_encoder->outp.or.link & 1) 1827 proto = NV887D_SOR_SET_CONTROL_PROTOCOL_DP_A; 1828 else 1829 proto = NV887D_SOR_SET_CONTROL_PROTOCOL_DP_B; 1830 1831 #ifdef CONFIG_DRM_NOUVEAU_BACKLIGHT 1832 backlight = nv_connector->backlight; 1833 if (backlight && backlight->uses_dpcd) 1834 drm_edp_backlight_enable(&nv_connector->aux, &backlight->edp_info, 1835 (u16)backlight->dev->props.brightness); 1836 #endif 1837 1838 break; 1839 default: 1840 BUG(); 1841 break; 1842 } 1843 1844 if (head->func->display_id) 1845 head->func->display_id(head, BIT(nv_encoder->outp.id)); 1846 1847 nv_encoder->update(nv_encoder, nv_crtc->index, asyh, proto, depth); 1848 } 1849 1850 static const struct drm_encoder_helper_funcs 1851 nv50_sor_help = { 1852 .atomic_check = nv50_outp_atomic_check, 1853 .atomic_enable = nv50_sor_atomic_enable, 1854 .atomic_disable = nv50_sor_atomic_disable, 1855 }; 1856 1857 static void 1858 nv50_sor_destroy(struct drm_encoder *encoder) 1859 { 1860 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 1861 1862 nv50_mstm_del(&nv_encoder->dp.mstm); 1863 drm_encoder_cleanup(encoder); 1864 1865 if (nv_encoder->dcb->type == DCB_OUTPUT_DP) 1866 mutex_destroy(&nv_encoder->dp.hpd_irq_lock); 1867 1868 nvif_outp_dtor(&nv_encoder->outp); 1869 kfree(encoder); 1870 } 1871 1872 static const struct drm_encoder_funcs 1873 nv50_sor_func = { 1874 .destroy = nv50_sor_destroy, 1875 }; 1876 1877 static int 1878 nv50_sor_create(struct nouveau_encoder *nv_encoder) 1879 { 1880 struct drm_connector *connector = &nv_encoder->conn->base; 1881 struct nouveau_connector *nv_connector = nouveau_connector(connector); 1882 struct nouveau_drm *drm = nouveau_drm(connector->dev); 1883 struct nvkm_i2c *i2c = nvxx_i2c(drm); 1884 struct drm_encoder *encoder; 1885 struct dcb_output *dcbe = nv_encoder->dcb; 1886 struct nv50_disp *disp = nv50_disp(connector->dev); 1887 int type, ret; 1888 1889 switch (dcbe->type) { 1890 case DCB_OUTPUT_LVDS: type = DRM_MODE_ENCODER_LVDS; break; 1891 case DCB_OUTPUT_TMDS: 1892 case DCB_OUTPUT_DP: 1893 default: 1894 type = DRM_MODE_ENCODER_TMDS; 1895 break; 1896 } 1897 1898 nv_encoder->update = nv50_sor_update; 1899 1900 encoder = to_drm_encoder(nv_encoder); 1901 drm_encoder_init(connector->dev, encoder, &nv50_sor_func, type, 1902 "sor-%04x-%04x", dcbe->hasht, dcbe->hashm); 1903 drm_encoder_helper_add(encoder, &nv50_sor_help); 1904 1905 drm_connector_attach_encoder(connector, encoder); 1906 1907 disp->core->func->sor->get_caps(disp, nv_encoder, ffs(dcbe->or) - 1); 1908 nv50_outp_dump_caps(drm, nv_encoder); 1909 1910 if (dcbe->type == DCB_OUTPUT_DP) { 1911 mutex_init(&nv_encoder->dp.hpd_irq_lock); 1912 1913 if (disp->disp->object.oclass < GF110_DISP) { 1914 /* HW has no support for address-only 1915 * transactions, so we're required to 1916 * use custom I2C-over-AUX code. 1917 */ 1918 struct nvkm_i2c_aux *aux; 1919 1920 aux = nvkm_i2c_aux_find(i2c, dcbe->i2c_index); 1921 if (!aux) 1922 return -EINVAL; 1923 1924 nv_encoder->i2c = &aux->i2c; 1925 } else { 1926 nv_encoder->i2c = &nv_connector->aux.ddc; 1927 } 1928 1929 if (nv_connector->type != DCB_CONNECTOR_eDP && nv_encoder->outp.info.dp.mst) { 1930 ret = nv50_mstm_new(nv_encoder, &nv_connector->aux, 1931 16, nv_connector->base.base.id, 1932 &nv_encoder->dp.mstm); 1933 if (ret) 1934 return ret; 1935 } 1936 } else 1937 if (nv_encoder->outp.info.ddc != NVIF_OUTP_DDC_INVALID) { 1938 struct nvkm_i2c_bus *bus = 1939 nvkm_i2c_bus_find(i2c, dcbe->i2c_index); 1940 if (bus) 1941 nv_encoder->i2c = &bus->i2c; 1942 } 1943 1944 return 0; 1945 } 1946 1947 /****************************************************************************** 1948 * PIOR 1949 *****************************************************************************/ 1950 static int 1951 nv50_pior_atomic_check(struct drm_encoder *encoder, 1952 struct drm_crtc_state *crtc_state, 1953 struct drm_connector_state *conn_state) 1954 { 1955 int ret = nv50_outp_atomic_check(encoder, crtc_state, conn_state); 1956 if (ret) 1957 return ret; 1958 crtc_state->adjusted_mode.clock *= 2; 1959 return 0; 1960 } 1961 1962 static void 1963 nv50_pior_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state) 1964 { 1965 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 1966 struct nv50_core *core = nv50_disp(encoder->dev)->core; 1967 const u32 ctrl = NVDEF(NV507D, PIOR_SET_CONTROL, OWNER, NONE); 1968 1969 core->func->pior->ctrl(core, nv_encoder->outp.or.id, ctrl, NULL); 1970 nv_encoder->crtc = NULL; 1971 } 1972 1973 static void 1974 nv50_pior_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state) 1975 { 1976 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 1977 struct nouveau_crtc *nv_crtc = nv50_outp_get_new_crtc(state, nv_encoder); 1978 struct nv50_head_atom *asyh = 1979 nv50_head_atom(drm_atomic_get_new_crtc_state(state, &nv_crtc->base)); 1980 struct nv50_core *core = nv50_disp(encoder->dev)->core; 1981 u32 ctrl = 0; 1982 1983 switch (nv_crtc->index) { 1984 case 0: ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, OWNER, HEAD0); break; 1985 case 1: ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, OWNER, HEAD1); break; 1986 default: 1987 WARN_ON(1); 1988 break; 1989 } 1990 1991 switch (asyh->or.bpc) { 1992 case 10: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_BPP_30_444; break; 1993 case 8: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_BPP_24_444; break; 1994 case 6: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_BPP_18_444; break; 1995 default: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_DEFAULT; break; 1996 } 1997 1998 if (!nvif_outp_acquired(&nv_encoder->outp)) 1999 nvif_outp_acquire_pior(&nv_encoder->outp); 2000 2001 switch (nv_encoder->dcb->type) { 2002 case DCB_OUTPUT_TMDS: 2003 ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, PROTOCOL, EXT_TMDS_ENC); 2004 break; 2005 case DCB_OUTPUT_DP: 2006 ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, PROTOCOL, EXT_TMDS_ENC); 2007 nouveau_dp_train(nv_encoder, false, asyh->state.adjusted_mode.clock, 6); 2008 break; 2009 default: 2010 BUG(); 2011 break; 2012 } 2013 2014 core->func->pior->ctrl(core, nv_encoder->outp.or.id, ctrl, asyh); 2015 nv_encoder->crtc = &nv_crtc->base; 2016 } 2017 2018 static const struct drm_encoder_helper_funcs 2019 nv50_pior_help = { 2020 .atomic_check = nv50_pior_atomic_check, 2021 .atomic_enable = nv50_pior_atomic_enable, 2022 .atomic_disable = nv50_pior_atomic_disable, 2023 }; 2024 2025 static void 2026 nv50_pior_destroy(struct drm_encoder *encoder) 2027 { 2028 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 2029 2030 nvif_outp_dtor(&nv_encoder->outp); 2031 2032 drm_encoder_cleanup(encoder); 2033 2034 mutex_destroy(&nv_encoder->dp.hpd_irq_lock); 2035 kfree(encoder); 2036 } 2037 2038 static const struct drm_encoder_funcs 2039 nv50_pior_func = { 2040 .destroy = nv50_pior_destroy, 2041 }; 2042 2043 static int 2044 nv50_pior_create(struct nouveau_encoder *nv_encoder) 2045 { 2046 struct drm_connector *connector = &nv_encoder->conn->base; 2047 struct drm_device *dev = connector->dev; 2048 struct nouveau_drm *drm = nouveau_drm(dev); 2049 struct nv50_disp *disp = nv50_disp(dev); 2050 struct nvkm_i2c *i2c = nvxx_i2c(drm); 2051 struct nvkm_i2c_bus *bus = NULL; 2052 struct nvkm_i2c_aux *aux = NULL; 2053 struct i2c_adapter *ddc; 2054 struct drm_encoder *encoder; 2055 struct dcb_output *dcbe = nv_encoder->dcb; 2056 int type; 2057 2058 switch (dcbe->type) { 2059 case DCB_OUTPUT_TMDS: 2060 bus = nvkm_i2c_bus_find(i2c, nv_encoder->outp.info.ddc); 2061 ddc = bus ? &bus->i2c : NULL; 2062 type = DRM_MODE_ENCODER_TMDS; 2063 break; 2064 case DCB_OUTPUT_DP: 2065 aux = nvkm_i2c_aux_find(i2c, nv_encoder->outp.info.dp.aux); 2066 ddc = aux ? &aux->i2c : NULL; 2067 type = DRM_MODE_ENCODER_TMDS; 2068 break; 2069 default: 2070 return -ENODEV; 2071 } 2072 2073 nv_encoder->i2c = ddc; 2074 2075 mutex_init(&nv_encoder->dp.hpd_irq_lock); 2076 2077 encoder = to_drm_encoder(nv_encoder); 2078 drm_encoder_init(connector->dev, encoder, &nv50_pior_func, type, 2079 "pior-%04x-%04x", dcbe->hasht, dcbe->hashm); 2080 drm_encoder_helper_add(encoder, &nv50_pior_help); 2081 2082 drm_connector_attach_encoder(connector, encoder); 2083 2084 disp->core->func->pior->get_caps(disp, nv_encoder, ffs(dcbe->or) - 1); 2085 nv50_outp_dump_caps(drm, nv_encoder); 2086 2087 return 0; 2088 } 2089 2090 /****************************************************************************** 2091 * Atomic 2092 *****************************************************************************/ 2093 2094 static void 2095 nv50_disp_atomic_commit_core(struct drm_atomic_state *state, u32 *interlock) 2096 { 2097 struct drm_dp_mst_topology_mgr *mgr; 2098 struct drm_dp_mst_topology_state *mst_state; 2099 struct nouveau_drm *drm = nouveau_drm(state->dev); 2100 struct nv50_disp *disp = nv50_disp(drm->dev); 2101 struct nv50_atom *atom = nv50_atom(state); 2102 struct nv50_core *core = disp->core; 2103 struct nv50_outp_atom *outp; 2104 struct nv50_mstm *mstm; 2105 int i; 2106 2107 NV_ATOMIC(drm, "commit core %08x\n", interlock[NV50_DISP_INTERLOCK_BASE]); 2108 2109 for_each_new_mst_mgr_in_state(state, mgr, mst_state, i) { 2110 mstm = nv50_mstm(mgr); 2111 if (mstm->modified) 2112 nv50_mstm_prepare(state, mst_state, mstm); 2113 } 2114 2115 core->func->ntfy_init(disp->sync, NV50_DISP_CORE_NTFY); 2116 core->func->update(core, interlock, true); 2117 if (core->func->ntfy_wait_done(disp->sync, NV50_DISP_CORE_NTFY, 2118 disp->core->chan.base.device)) 2119 NV_ERROR(drm, "core notifier timeout\n"); 2120 2121 for_each_new_mst_mgr_in_state(state, mgr, mst_state, i) { 2122 mstm = nv50_mstm(mgr); 2123 if (mstm->modified) 2124 nv50_mstm_cleanup(state, mst_state, mstm); 2125 } 2126 2127 list_for_each_entry(outp, &atom->outp, head) { 2128 if (outp->encoder->encoder_type != DRM_MODE_ENCODER_DPMST) { 2129 struct nouveau_encoder *nv_encoder = nouveau_encoder(outp->encoder); 2130 2131 if (outp->enabled) { 2132 nv50_audio_enable(outp->encoder, nouveau_crtc(nv_encoder->crtc), 2133 nv_encoder->conn, NULL, NULL); 2134 outp->enabled = outp->disabled = false; 2135 } else { 2136 if (outp->disabled) { 2137 nvif_outp_release(&nv_encoder->outp); 2138 outp->disabled = false; 2139 } 2140 } 2141 } 2142 } 2143 } 2144 2145 static void 2146 nv50_disp_atomic_commit_wndw(struct drm_atomic_state *state, u32 *interlock) 2147 { 2148 struct drm_plane_state *new_plane_state; 2149 struct drm_plane *plane; 2150 int i; 2151 2152 for_each_new_plane_in_state(state, plane, new_plane_state, i) { 2153 struct nv50_wndw *wndw = nv50_wndw(plane); 2154 if (interlock[wndw->interlock.type] & wndw->interlock.data) { 2155 if (wndw->func->update) 2156 wndw->func->update(wndw, interlock); 2157 } 2158 } 2159 } 2160 2161 static void 2162 nv50_disp_atomic_commit_tail(struct drm_atomic_state *state) 2163 { 2164 struct drm_device *dev = state->dev; 2165 struct drm_crtc_state *new_crtc_state, *old_crtc_state; 2166 struct drm_crtc *crtc; 2167 struct drm_plane_state *new_plane_state; 2168 struct drm_plane *plane; 2169 struct nouveau_drm *drm = nouveau_drm(dev); 2170 struct nv50_disp *disp = nv50_disp(dev); 2171 struct nv50_atom *atom = nv50_atom(state); 2172 struct nv50_core *core = disp->core; 2173 struct nv50_outp_atom *outp, *outt; 2174 u32 interlock[NV50_DISP_INTERLOCK__SIZE] = {}; 2175 int i; 2176 bool flushed = false; 2177 2178 NV_ATOMIC(drm, "commit %d %d\n", atom->lock_core, atom->flush_disable); 2179 nv50_crc_atomic_stop_reporting(state); 2180 drm_atomic_helper_wait_for_fences(dev, state, false); 2181 drm_atomic_helper_wait_for_dependencies(state); 2182 drm_dp_mst_atomic_wait_for_dependencies(state); 2183 drm_atomic_helper_update_legacy_modeset_state(dev, state); 2184 drm_atomic_helper_calc_timestamping_constants(state); 2185 2186 if (atom->lock_core) 2187 mutex_lock(&disp->mutex); 2188 2189 /* Disable head(s). */ 2190 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { 2191 struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state); 2192 struct nv50_head *head = nv50_head(crtc); 2193 2194 NV_ATOMIC(drm, "%s: clr %04x (set %04x)\n", crtc->name, 2195 asyh->clr.mask, asyh->set.mask); 2196 2197 if (old_crtc_state->active && !new_crtc_state->active) { 2198 pm_runtime_put_noidle(dev->dev); 2199 drm_crtc_vblank_off(crtc); 2200 } 2201 2202 if (asyh->clr.mask) { 2203 nv50_head_flush_clr(head, asyh, atom->flush_disable); 2204 interlock[NV50_DISP_INTERLOCK_CORE] |= 1; 2205 } 2206 } 2207 2208 /* Disable plane(s). */ 2209 for_each_new_plane_in_state(state, plane, new_plane_state, i) { 2210 struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state); 2211 struct nv50_wndw *wndw = nv50_wndw(plane); 2212 2213 NV_ATOMIC(drm, "%s: clr %02x (set %02x)\n", plane->name, 2214 asyw->clr.mask, asyw->set.mask); 2215 if (!asyw->clr.mask) 2216 continue; 2217 2218 nv50_wndw_flush_clr(wndw, interlock, atom->flush_disable, asyw); 2219 } 2220 2221 /* Disable output path(s). */ 2222 list_for_each_entry(outp, &atom->outp, head) { 2223 const struct drm_encoder_helper_funcs *help; 2224 struct drm_encoder *encoder; 2225 2226 encoder = outp->encoder; 2227 help = encoder->helper_private; 2228 2229 NV_ATOMIC(drm, "%s: clr %02x (set %02x)\n", encoder->name, 2230 outp->clr.mask, outp->set.mask); 2231 2232 if (outp->clr.mask) { 2233 help->atomic_disable(encoder, state); 2234 outp->disabled = true; 2235 interlock[NV50_DISP_INTERLOCK_CORE] |= 1; 2236 } 2237 } 2238 2239 /* Flush disable. */ 2240 if (interlock[NV50_DISP_INTERLOCK_CORE]) { 2241 if (atom->flush_disable) { 2242 nv50_disp_atomic_commit_wndw(state, interlock); 2243 nv50_disp_atomic_commit_core(state, interlock); 2244 memset(interlock, 0x00, sizeof(interlock)); 2245 2246 flushed = true; 2247 } 2248 } 2249 2250 if (flushed) 2251 nv50_crc_atomic_release_notifier_contexts(state); 2252 nv50_crc_atomic_init_notifier_contexts(state); 2253 2254 /* Update output path(s). */ 2255 list_for_each_entry(outp, &atom->outp, head) { 2256 const struct drm_encoder_helper_funcs *help; 2257 struct drm_encoder *encoder; 2258 2259 encoder = outp->encoder; 2260 help = encoder->helper_private; 2261 2262 NV_ATOMIC(drm, "%s: set %02x (clr %02x)\n", encoder->name, 2263 outp->set.mask, outp->clr.mask); 2264 2265 if (outp->set.mask) { 2266 help->atomic_enable(encoder, state); 2267 outp->enabled = true; 2268 interlock[NV50_DISP_INTERLOCK_CORE] = 1; 2269 } 2270 } 2271 2272 /* Update head(s). */ 2273 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { 2274 struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state); 2275 struct nv50_head *head = nv50_head(crtc); 2276 2277 NV_ATOMIC(drm, "%s: set %04x (clr %04x)\n", crtc->name, 2278 asyh->set.mask, asyh->clr.mask); 2279 2280 if (asyh->set.mask) { 2281 nv50_head_flush_set(head, asyh); 2282 interlock[NV50_DISP_INTERLOCK_CORE] = 1; 2283 } 2284 2285 if (new_crtc_state->active) { 2286 if (!old_crtc_state->active) { 2287 drm_crtc_vblank_on(crtc); 2288 pm_runtime_get_noresume(dev->dev); 2289 } 2290 if (new_crtc_state->event) 2291 drm_crtc_vblank_get(crtc); 2292 } 2293 } 2294 2295 /* Update window->head assignment. 2296 * 2297 * This has to happen in an update that's not interlocked with 2298 * any window channels to avoid hitting HW error checks. 2299 * 2300 *TODO: Proper handling of window ownership (Turing apparently 2301 * supports non-fixed mappings). 2302 */ 2303 if (core->assign_windows) { 2304 core->func->wndw.owner(core); 2305 nv50_disp_atomic_commit_core(state, interlock); 2306 core->assign_windows = false; 2307 interlock[NV50_DISP_INTERLOCK_CORE] = 0; 2308 } 2309 2310 /* Finish updating head(s)... 2311 * 2312 * NVD is rather picky about both where window assignments can change, 2313 * *and* about certain core and window channel states matching. 2314 * 2315 * The EFI GOP driver on newer GPUs configures window channels with a 2316 * different output format to what we do, and the core channel update 2317 * in the assign_windows case above would result in a state mismatch. 2318 * 2319 * Delay some of the head update until after that point to workaround 2320 * the issue. This only affects the initial modeset. 2321 * 2322 * TODO: handle this better when adding flexible window mapping 2323 */ 2324 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { 2325 struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state); 2326 struct nv50_head *head = nv50_head(crtc); 2327 2328 NV_ATOMIC(drm, "%s: set %04x (clr %04x)\n", crtc->name, 2329 asyh->set.mask, asyh->clr.mask); 2330 2331 if (asyh->set.mask) { 2332 nv50_head_flush_set_wndw(head, asyh); 2333 interlock[NV50_DISP_INTERLOCK_CORE] = 1; 2334 } 2335 } 2336 2337 /* Update plane(s). */ 2338 for_each_new_plane_in_state(state, plane, new_plane_state, i) { 2339 struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state); 2340 struct nv50_wndw *wndw = nv50_wndw(plane); 2341 2342 NV_ATOMIC(drm, "%s: set %02x (clr %02x)\n", plane->name, 2343 asyw->set.mask, asyw->clr.mask); 2344 if ( !asyw->set.mask && 2345 (!asyw->clr.mask || atom->flush_disable)) 2346 continue; 2347 2348 nv50_wndw_flush_set(wndw, interlock, asyw); 2349 } 2350 2351 /* Flush update. */ 2352 nv50_disp_atomic_commit_wndw(state, interlock); 2353 2354 if (interlock[NV50_DISP_INTERLOCK_CORE]) { 2355 if (interlock[NV50_DISP_INTERLOCK_BASE] || 2356 interlock[NV50_DISP_INTERLOCK_OVLY] || 2357 interlock[NV50_DISP_INTERLOCK_WNDW] || 2358 !atom->state.legacy_cursor_update) 2359 nv50_disp_atomic_commit_core(state, interlock); 2360 else 2361 disp->core->func->update(disp->core, interlock, false); 2362 } 2363 2364 if (atom->lock_core) 2365 mutex_unlock(&disp->mutex); 2366 2367 list_for_each_entry_safe(outp, outt, &atom->outp, head) { 2368 list_del(&outp->head); 2369 kfree(outp); 2370 } 2371 2372 /* Wait for HW to signal completion. */ 2373 for_each_new_plane_in_state(state, plane, new_plane_state, i) { 2374 struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state); 2375 struct nv50_wndw *wndw = nv50_wndw(plane); 2376 int ret = nv50_wndw_wait_armed(wndw, asyw); 2377 if (ret) 2378 NV_ERROR(drm, "%s: timeout\n", plane->name); 2379 } 2380 2381 for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) { 2382 if (new_crtc_state->event) { 2383 unsigned long flags; 2384 /* Get correct count/ts if racing with vblank irq */ 2385 if (new_crtc_state->active) 2386 drm_crtc_accurate_vblank_count(crtc); 2387 spin_lock_irqsave(&crtc->dev->event_lock, flags); 2388 drm_crtc_send_vblank_event(crtc, new_crtc_state->event); 2389 spin_unlock_irqrestore(&crtc->dev->event_lock, flags); 2390 2391 new_crtc_state->event = NULL; 2392 if (new_crtc_state->active) 2393 drm_crtc_vblank_put(crtc); 2394 } 2395 } 2396 2397 nv50_crc_atomic_start_reporting(state); 2398 if (!flushed) 2399 nv50_crc_atomic_release_notifier_contexts(state); 2400 2401 drm_atomic_helper_commit_hw_done(state); 2402 drm_atomic_helper_cleanup_planes(dev, state); 2403 drm_atomic_helper_commit_cleanup_done(state); 2404 drm_atomic_state_put(state); 2405 2406 /* Drop the RPM ref we got from nv50_disp_atomic_commit() */ 2407 pm_runtime_mark_last_busy(dev->dev); 2408 pm_runtime_put_autosuspend(dev->dev); 2409 } 2410 2411 static void 2412 nv50_disp_atomic_commit_work(struct work_struct *work) 2413 { 2414 struct drm_atomic_state *state = 2415 container_of(work, typeof(*state), commit_work); 2416 nv50_disp_atomic_commit_tail(state); 2417 } 2418 2419 static int 2420 nv50_disp_atomic_commit(struct drm_device *dev, 2421 struct drm_atomic_state *state, bool nonblock) 2422 { 2423 struct drm_plane_state *new_plane_state; 2424 struct drm_plane *plane; 2425 int ret, i; 2426 2427 ret = pm_runtime_get_sync(dev->dev); 2428 if (ret < 0 && ret != -EACCES) { 2429 pm_runtime_put_autosuspend(dev->dev); 2430 return ret; 2431 } 2432 2433 ret = drm_atomic_helper_setup_commit(state, nonblock); 2434 if (ret) 2435 goto done; 2436 2437 INIT_WORK(&state->commit_work, nv50_disp_atomic_commit_work); 2438 2439 ret = drm_atomic_helper_prepare_planes(dev, state); 2440 if (ret) 2441 goto done; 2442 2443 if (!nonblock) { 2444 ret = drm_atomic_helper_wait_for_fences(dev, state, true); 2445 if (ret) 2446 goto err_cleanup; 2447 } 2448 2449 ret = drm_atomic_helper_swap_state(state, true); 2450 if (ret) 2451 goto err_cleanup; 2452 2453 for_each_new_plane_in_state(state, plane, new_plane_state, i) { 2454 struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state); 2455 struct nv50_wndw *wndw = nv50_wndw(plane); 2456 2457 if (asyw->set.image) 2458 nv50_wndw_ntfy_enable(wndw, asyw); 2459 } 2460 2461 drm_atomic_state_get(state); 2462 2463 /* 2464 * Grab another RPM ref for the commit tail, which will release the 2465 * ref when it's finished 2466 */ 2467 pm_runtime_get_noresume(dev->dev); 2468 2469 if (nonblock) 2470 queue_work(system_unbound_wq, &state->commit_work); 2471 else 2472 nv50_disp_atomic_commit_tail(state); 2473 2474 err_cleanup: 2475 if (ret) 2476 drm_atomic_helper_unprepare_planes(dev, state); 2477 done: 2478 pm_runtime_put_autosuspend(dev->dev); 2479 return ret; 2480 } 2481 2482 static struct nv50_outp_atom * 2483 nv50_disp_outp_atomic_add(struct nv50_atom *atom, struct drm_encoder *encoder) 2484 { 2485 struct nv50_outp_atom *outp; 2486 2487 list_for_each_entry(outp, &atom->outp, head) { 2488 if (outp->encoder == encoder) 2489 return outp; 2490 } 2491 2492 outp = kzalloc(sizeof(*outp), GFP_KERNEL); 2493 if (!outp) 2494 return ERR_PTR(-ENOMEM); 2495 2496 list_add(&outp->head, &atom->outp); 2497 outp->encoder = encoder; 2498 return outp; 2499 } 2500 2501 static int 2502 nv50_disp_outp_atomic_check_clr(struct nv50_atom *atom, 2503 struct drm_connector_state *old_connector_state) 2504 { 2505 struct drm_encoder *encoder = old_connector_state->best_encoder; 2506 struct drm_crtc_state *old_crtc_state, *new_crtc_state; 2507 struct drm_crtc *crtc; 2508 struct nv50_outp_atom *outp; 2509 2510 if (!(crtc = old_connector_state->crtc)) 2511 return 0; 2512 2513 old_crtc_state = drm_atomic_get_old_crtc_state(&atom->state, crtc); 2514 new_crtc_state = drm_atomic_get_new_crtc_state(&atom->state, crtc); 2515 if (old_crtc_state->active && drm_atomic_crtc_needs_modeset(new_crtc_state)) { 2516 outp = nv50_disp_outp_atomic_add(atom, encoder); 2517 if (IS_ERR(outp)) 2518 return PTR_ERR(outp); 2519 2520 if (outp->encoder->encoder_type == DRM_MODE_ENCODER_DPMST || 2521 nouveau_encoder(outp->encoder)->dcb->type == DCB_OUTPUT_DP) 2522 atom->flush_disable = true; 2523 outp->clr.ctrl = true; 2524 atom->lock_core = true; 2525 } 2526 2527 return 0; 2528 } 2529 2530 static int 2531 nv50_disp_outp_atomic_check_set(struct nv50_atom *atom, 2532 struct drm_connector_state *connector_state) 2533 { 2534 struct drm_encoder *encoder = connector_state->best_encoder; 2535 struct drm_crtc_state *new_crtc_state; 2536 struct drm_crtc *crtc; 2537 struct nv50_outp_atom *outp; 2538 2539 if (!(crtc = connector_state->crtc)) 2540 return 0; 2541 2542 new_crtc_state = drm_atomic_get_new_crtc_state(&atom->state, crtc); 2543 if (new_crtc_state->active && drm_atomic_crtc_needs_modeset(new_crtc_state)) { 2544 outp = nv50_disp_outp_atomic_add(atom, encoder); 2545 if (IS_ERR(outp)) 2546 return PTR_ERR(outp); 2547 2548 outp->set.ctrl = true; 2549 atom->lock_core = true; 2550 } 2551 2552 return 0; 2553 } 2554 2555 static int 2556 nv50_disp_atomic_check(struct drm_device *dev, struct drm_atomic_state *state) 2557 { 2558 struct nv50_atom *atom = nv50_atom(state); 2559 struct nv50_core *core = nv50_disp(dev)->core; 2560 struct drm_connector_state *old_connector_state, *new_connector_state; 2561 struct drm_connector *connector; 2562 struct drm_crtc_state *new_crtc_state; 2563 struct drm_crtc *crtc; 2564 struct nv50_head *head; 2565 struct nv50_head_atom *asyh; 2566 int ret, i; 2567 2568 if (core->assign_windows && core->func->head->static_wndw_map) { 2569 drm_for_each_crtc(crtc, dev) { 2570 new_crtc_state = drm_atomic_get_crtc_state(state, 2571 crtc); 2572 if (IS_ERR(new_crtc_state)) 2573 return PTR_ERR(new_crtc_state); 2574 2575 head = nv50_head(crtc); 2576 asyh = nv50_head_atom(new_crtc_state); 2577 core->func->head->static_wndw_map(head, asyh); 2578 } 2579 } 2580 2581 /* We need to handle colour management on a per-plane basis. */ 2582 for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) { 2583 if (new_crtc_state->color_mgmt_changed) { 2584 ret = drm_atomic_add_affected_planes(state, crtc); 2585 if (ret) 2586 return ret; 2587 } 2588 } 2589 2590 ret = drm_atomic_helper_check(dev, state); 2591 if (ret) 2592 return ret; 2593 2594 for_each_oldnew_connector_in_state(state, connector, old_connector_state, new_connector_state, i) { 2595 ret = nv50_disp_outp_atomic_check_clr(atom, old_connector_state); 2596 if (ret) 2597 return ret; 2598 2599 ret = nv50_disp_outp_atomic_check_set(atom, new_connector_state); 2600 if (ret) 2601 return ret; 2602 } 2603 2604 ret = drm_dp_mst_atomic_check(state); 2605 if (ret) 2606 return ret; 2607 2608 nv50_crc_atomic_check_outp(atom); 2609 2610 return 0; 2611 } 2612 2613 static void 2614 nv50_disp_atomic_state_clear(struct drm_atomic_state *state) 2615 { 2616 struct nv50_atom *atom = nv50_atom(state); 2617 struct nv50_outp_atom *outp, *outt; 2618 2619 list_for_each_entry_safe(outp, outt, &atom->outp, head) { 2620 list_del(&outp->head); 2621 kfree(outp); 2622 } 2623 2624 drm_atomic_state_default_clear(state); 2625 } 2626 2627 static void 2628 nv50_disp_atomic_state_free(struct drm_atomic_state *state) 2629 { 2630 struct nv50_atom *atom = nv50_atom(state); 2631 drm_atomic_state_default_release(&atom->state); 2632 kfree(atom); 2633 } 2634 2635 static struct drm_atomic_state * 2636 nv50_disp_atomic_state_alloc(struct drm_device *dev) 2637 { 2638 struct nv50_atom *atom; 2639 if (!(atom = kzalloc(sizeof(*atom), GFP_KERNEL)) || 2640 drm_atomic_state_init(dev, &atom->state) < 0) { 2641 kfree(atom); 2642 return NULL; 2643 } 2644 INIT_LIST_HEAD(&atom->outp); 2645 return &atom->state; 2646 } 2647 2648 static const struct drm_mode_config_funcs 2649 nv50_disp_func = { 2650 .fb_create = nouveau_user_framebuffer_create, 2651 .atomic_check = nv50_disp_atomic_check, 2652 .atomic_commit = nv50_disp_atomic_commit, 2653 .atomic_state_alloc = nv50_disp_atomic_state_alloc, 2654 .atomic_state_clear = nv50_disp_atomic_state_clear, 2655 .atomic_state_free = nv50_disp_atomic_state_free, 2656 }; 2657 2658 static const struct drm_mode_config_helper_funcs 2659 nv50_disp_helper_func = { 2660 .atomic_commit_setup = drm_dp_mst_atomic_setup_commit, 2661 }; 2662 2663 /****************************************************************************** 2664 * Init 2665 *****************************************************************************/ 2666 2667 static void 2668 nv50_display_fini(struct drm_device *dev, bool runtime, bool suspend) 2669 { 2670 struct nouveau_drm *drm = nouveau_drm(dev); 2671 struct drm_encoder *encoder; 2672 2673 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) { 2674 if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) 2675 nv50_mstm_fini(nouveau_encoder(encoder)); 2676 } 2677 2678 if (!runtime && !drm->headless) 2679 cancel_work_sync(&drm->hpd_work); 2680 } 2681 2682 static inline void 2683 nv50_display_read_hw_or_state(struct drm_device *dev, struct nv50_disp *disp, 2684 struct nouveau_encoder *outp) 2685 { 2686 struct drm_crtc *crtc; 2687 struct drm_connector_list_iter conn_iter; 2688 struct drm_connector *conn; 2689 struct nv50_head_atom *armh; 2690 const u32 encoder_mask = drm_encoder_mask(&outp->base.base); 2691 bool found_conn = false, found_head = false; 2692 u8 proto; 2693 int head_idx; 2694 int ret; 2695 2696 switch (outp->dcb->type) { 2697 case DCB_OUTPUT_TMDS: 2698 ret = nvif_outp_inherit_tmds(&outp->outp, &proto); 2699 break; 2700 case DCB_OUTPUT_DP: 2701 ret = nvif_outp_inherit_dp(&outp->outp, &proto); 2702 break; 2703 case DCB_OUTPUT_LVDS: 2704 ret = nvif_outp_inherit_lvds(&outp->outp, &proto); 2705 break; 2706 case DCB_OUTPUT_ANALOG: 2707 ret = nvif_outp_inherit_rgb_crt(&outp->outp, &proto); 2708 break; 2709 default: 2710 drm_dbg_kms(dev, "Readback for %s not implemented yet, skipping\n", 2711 outp->base.base.name); 2712 drm_WARN_ON(dev, true); 2713 return; 2714 } 2715 2716 if (ret < 0) 2717 return; 2718 2719 head_idx = ret; 2720 2721 drm_for_each_crtc(crtc, dev) { 2722 if (crtc->index != head_idx) 2723 continue; 2724 2725 armh = nv50_head_atom(crtc->state); 2726 found_head = true; 2727 break; 2728 } 2729 if (drm_WARN_ON(dev, !found_head)) 2730 return; 2731 2732 /* Figure out which connector is being used by this encoder */ 2733 drm_connector_list_iter_begin(dev, &conn_iter); 2734 nouveau_for_each_non_mst_connector_iter(conn, &conn_iter) { 2735 if (nouveau_connector(conn)->index == outp->dcb->connector) { 2736 found_conn = true; 2737 break; 2738 } 2739 } 2740 drm_connector_list_iter_end(&conn_iter); 2741 if (drm_WARN_ON(dev, !found_conn)) 2742 return; 2743 2744 armh->state.encoder_mask = encoder_mask; 2745 armh->state.connector_mask = drm_connector_mask(conn); 2746 armh->state.active = true; 2747 armh->state.enable = true; 2748 pm_runtime_get_noresume(dev->dev); 2749 2750 outp->crtc = crtc; 2751 outp->ctrl = NVVAL(NV507D, SOR_SET_CONTROL, PROTOCOL, proto) | BIT(crtc->index); 2752 2753 drm_connector_get(conn); 2754 conn->state->crtc = crtc; 2755 conn->state->best_encoder = &outp->base.base; 2756 } 2757 2758 /* Read back the currently programmed display state */ 2759 static void 2760 nv50_display_read_hw_state(struct nouveau_drm *drm) 2761 { 2762 struct drm_device *dev = drm->dev; 2763 struct drm_encoder *encoder; 2764 struct drm_modeset_acquire_ctx ctx; 2765 struct nv50_disp *disp = nv50_disp(dev); 2766 int ret; 2767 2768 DRM_MODESET_LOCK_ALL_BEGIN(dev, ctx, 0, ret); 2769 2770 drm_for_each_encoder(encoder, dev) { 2771 if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) 2772 continue; 2773 2774 nv50_display_read_hw_or_state(dev, disp, nouveau_encoder(encoder)); 2775 } 2776 2777 DRM_MODESET_LOCK_ALL_END(dev, ctx, ret); 2778 } 2779 2780 static int 2781 nv50_display_init(struct drm_device *dev, bool resume, bool runtime) 2782 { 2783 struct nv50_core *core = nv50_disp(dev)->core; 2784 struct drm_encoder *encoder; 2785 2786 if (resume || runtime) 2787 core->func->init(core); 2788 2789 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) { 2790 if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) { 2791 struct nouveau_encoder *nv_encoder = 2792 nouveau_encoder(encoder); 2793 nv50_mstm_init(nv_encoder, runtime); 2794 } 2795 } 2796 2797 if (!resume) 2798 nv50_display_read_hw_state(nouveau_drm(dev)); 2799 2800 return 0; 2801 } 2802 2803 static void 2804 nv50_display_destroy(struct drm_device *dev) 2805 { 2806 struct nv50_disp *disp = nv50_disp(dev); 2807 2808 nv50_audio_component_fini(nouveau_drm(dev)); 2809 2810 nvif_object_unmap(&disp->caps); 2811 nvif_object_dtor(&disp->caps); 2812 nv50_core_del(&disp->core); 2813 2814 nouveau_bo_unmap(disp->sync); 2815 if (disp->sync) 2816 nouveau_bo_unpin(disp->sync); 2817 nouveau_bo_fini(disp->sync); 2818 2819 nouveau_display(dev)->priv = NULL; 2820 kfree(disp); 2821 } 2822 2823 int 2824 nv50_display_create(struct drm_device *dev) 2825 { 2826 struct nouveau_drm *drm = nouveau_drm(dev); 2827 struct drm_connector *connector, *tmp; 2828 struct nv50_disp *disp; 2829 int ret, i; 2830 bool has_mst = false; 2831 2832 disp = kzalloc(sizeof(*disp), GFP_KERNEL); 2833 if (!disp) 2834 return -ENOMEM; 2835 2836 mutex_init(&disp->mutex); 2837 2838 nouveau_display(dev)->priv = disp; 2839 nouveau_display(dev)->dtor = nv50_display_destroy; 2840 nouveau_display(dev)->init = nv50_display_init; 2841 nouveau_display(dev)->fini = nv50_display_fini; 2842 disp->disp = &nouveau_display(dev)->disp; 2843 dev->mode_config.funcs = &nv50_disp_func; 2844 dev->mode_config.helper_private = &nv50_disp_helper_func; 2845 dev->mode_config.quirk_addfb_prefer_xbgr_30bpp = true; 2846 dev->mode_config.normalize_zpos = true; 2847 2848 /* small shared memory area we use for notifiers and semaphores */ 2849 ret = nouveau_bo_new(&drm->client, 4096, 0x1000, 2850 NOUVEAU_GEM_DOMAIN_VRAM, 2851 0, 0x0000, NULL, NULL, &disp->sync); 2852 if (!ret) { 2853 ret = nouveau_bo_pin(disp->sync, NOUVEAU_GEM_DOMAIN_VRAM, true); 2854 if (!ret) { 2855 ret = nouveau_bo_map(disp->sync); 2856 if (ret) 2857 nouveau_bo_unpin(disp->sync); 2858 } 2859 if (ret) 2860 nouveau_bo_fini(disp->sync); 2861 } 2862 2863 if (ret) 2864 goto out; 2865 2866 /* allocate master evo channel */ 2867 ret = nv50_core_new(drm, &disp->core); 2868 if (ret) 2869 goto out; 2870 2871 disp->core->func->init(disp->core); 2872 if (disp->core->func->caps_init) { 2873 ret = disp->core->func->caps_init(drm, disp); 2874 if (ret) 2875 goto out; 2876 } 2877 2878 /* Assign the correct format modifiers */ 2879 if (disp->disp->object.oclass >= TU102_DISP) 2880 nouveau_display(dev)->format_modifiers = wndwc57e_modifiers; 2881 else 2882 if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_FERMI) 2883 nouveau_display(dev)->format_modifiers = disp90xx_modifiers; 2884 else 2885 nouveau_display(dev)->format_modifiers = disp50xx_modifiers; 2886 2887 /* FIXME: 256x256 cursors are supported on Kepler, however unlike Maxwell and later 2888 * generations Kepler requires that we use small pages (4K) for cursor scanout surfaces. The 2889 * proper fix for this is to teach nouveau to migrate fbs being used for the cursor plane to 2890 * small page allocations in prepare_fb(). When this is implemented, we should also force 2891 * large pages (128K) for ovly fbs in order to fix Kepler ovlys. 2892 * But until then, just limit cursors to 128x128 - which is small enough to avoid ever using 2893 * large pages. 2894 */ 2895 if (disp->disp->object.oclass >= GM107_DISP) { 2896 dev->mode_config.cursor_width = 256; 2897 dev->mode_config.cursor_height = 256; 2898 } else if (disp->disp->object.oclass >= GK104_DISP) { 2899 dev->mode_config.cursor_width = 128; 2900 dev->mode_config.cursor_height = 128; 2901 } else { 2902 dev->mode_config.cursor_width = 64; 2903 dev->mode_config.cursor_height = 64; 2904 } 2905 2906 /* create encoder/connector objects based on VBIOS DCB table */ 2907 for_each_set_bit(i, &disp->disp->outp_mask, sizeof(disp->disp->outp_mask) * 8) { 2908 struct nouveau_encoder *outp; 2909 2910 outp = kzalloc(sizeof(*outp), GFP_KERNEL); 2911 if (!outp) 2912 break; 2913 2914 ret = nvif_outp_ctor(disp->disp, "kmsOutp", i, &outp->outp); 2915 if (ret) { 2916 kfree(outp); 2917 continue; 2918 } 2919 2920 connector = nouveau_connector_create(dev, outp->outp.info.conn); 2921 if (IS_ERR(connector)) { 2922 nvif_outp_dtor(&outp->outp); 2923 kfree(outp); 2924 continue; 2925 } 2926 2927 outp->base.base.possible_crtcs = outp->outp.info.heads; 2928 outp->base.base.possible_clones = 0; 2929 outp->conn = nouveau_connector(connector); 2930 2931 outp->dcb = kzalloc(sizeof(*outp->dcb), GFP_KERNEL); 2932 if (!outp->dcb) 2933 break; 2934 2935 switch (outp->outp.info.proto) { 2936 case NVIF_OUTP_RGB_CRT: 2937 outp->dcb->type = DCB_OUTPUT_ANALOG; 2938 outp->dcb->crtconf.maxfreq = outp->outp.info.rgb_crt.freq_max; 2939 break; 2940 case NVIF_OUTP_TMDS: 2941 outp->dcb->type = DCB_OUTPUT_TMDS; 2942 outp->dcb->duallink_possible = outp->outp.info.tmds.dual; 2943 break; 2944 case NVIF_OUTP_LVDS: 2945 outp->dcb->type = DCB_OUTPUT_LVDS; 2946 outp->dcb->lvdsconf.use_acpi_for_edid = outp->outp.info.lvds.acpi_edid; 2947 break; 2948 case NVIF_OUTP_DP: 2949 outp->dcb->type = DCB_OUTPUT_DP; 2950 outp->dcb->dpconf.link_nr = outp->outp.info.dp.link_nr; 2951 outp->dcb->dpconf.link_bw = outp->outp.info.dp.link_bw; 2952 if (outp->outp.info.dp.mst) 2953 has_mst = true; 2954 break; 2955 default: 2956 WARN_ON(1); 2957 continue; 2958 } 2959 2960 outp->dcb->heads = outp->outp.info.heads; 2961 outp->dcb->connector = outp->outp.info.conn; 2962 outp->dcb->i2c_index = outp->outp.info.ddc; 2963 2964 switch (outp->outp.info.type) { 2965 case NVIF_OUTP_DAC : ret = nv50_dac_create(outp); break; 2966 case NVIF_OUTP_SOR : ret = nv50_sor_create(outp); break; 2967 case NVIF_OUTP_PIOR: ret = nv50_pior_create(outp); break; 2968 default: 2969 WARN_ON(1); 2970 continue; 2971 } 2972 2973 if (ret) { 2974 NV_WARN(drm, "failed to create encoder %d/%d/%d: %d\n", 2975 i, outp->outp.info.type, outp->outp.info.proto, ret); 2976 } 2977 } 2978 2979 /* cull any connectors we created that don't have an encoder */ 2980 list_for_each_entry_safe(connector, tmp, &dev->mode_config.connector_list, head) { 2981 if (connector->possible_encoders) 2982 continue; 2983 2984 NV_WARN(drm, "%s has no encoders, removing\n", 2985 connector->name); 2986 connector->funcs->destroy(connector); 2987 } 2988 2989 /* create crtc objects to represent the hw heads */ 2990 for_each_set_bit(i, &disp->disp->head_mask, sizeof(disp->disp->head_mask) * 8) { 2991 struct nv50_head *head; 2992 2993 head = nv50_head_create(dev, i); 2994 if (IS_ERR(head)) { 2995 ret = PTR_ERR(head); 2996 goto out; 2997 } 2998 2999 if (has_mst) { 3000 head->msto = nv50_msto_new(dev, head, i); 3001 if (IS_ERR(head->msto)) { 3002 ret = PTR_ERR(head->msto); 3003 head->msto = NULL; 3004 goto out; 3005 } 3006 3007 /* 3008 * FIXME: This is a hack to workaround the following 3009 * issues: 3010 * 3011 * https://gitlab.gnome.org/GNOME/mutter/issues/759 3012 * https://gitlab.freedesktop.org/xorg/xserver/merge_requests/277 3013 * 3014 * Once these issues are closed, this should be 3015 * removed 3016 */ 3017 head->msto->encoder.possible_crtcs = disp->disp->head_mask; 3018 } 3019 } 3020 3021 /* Disable vblank irqs aggressively for power-saving, safe on nv50+ */ 3022 dev->vblank_disable_immediate = true; 3023 3024 nv50_audio_component_init(drm); 3025 3026 out: 3027 if (ret) 3028 nv50_display_destroy(dev); 3029 return ret; 3030 } 3031 3032 /****************************************************************************** 3033 * Format modifiers 3034 *****************************************************************************/ 3035 3036 /**************************************************************** 3037 * Log2(block height) ----------------------------+ * 3038 * Page Kind ----------------------------------+ | * 3039 * Gob Height/Page Kind Generation ------+ | | * 3040 * Sector layout -------+ | | | * 3041 * Compression ------+ | | | | */ 3042 const u64 disp50xx_modifiers[] = { /* | | | | | */ 3043 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 0), 3044 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 1), 3045 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 2), 3046 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 3), 3047 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 4), 3048 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 5), 3049 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 0), 3050 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 1), 3051 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 2), 3052 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 3), 3053 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 4), 3054 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 5), 3055 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 0), 3056 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 1), 3057 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 2), 3058 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 3), 3059 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 4), 3060 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 5), 3061 DRM_FORMAT_MOD_LINEAR, 3062 DRM_FORMAT_MOD_INVALID 3063 }; 3064 3065 /**************************************************************** 3066 * Log2(block height) ----------------------------+ * 3067 * Page Kind ----------------------------------+ | * 3068 * Gob Height/Page Kind Generation ------+ | | * 3069 * Sector layout -------+ | | | * 3070 * Compression ------+ | | | | */ 3071 const u64 disp90xx_modifiers[] = { /* | | | | | */ 3072 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 0), 3073 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 1), 3074 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 2), 3075 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 3), 3076 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 4), 3077 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 5), 3078 DRM_FORMAT_MOD_LINEAR, 3079 DRM_FORMAT_MOD_INVALID 3080 }; 3081