1 /* 2 * Copyright 2011 Red Hat Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 * 22 * Authors: Ben Skeggs 23 */ 24 #include "disp.h" 25 #include "atom.h" 26 #include "core.h" 27 #include "head.h" 28 #include "wndw.h" 29 #include "handles.h" 30 31 #include <linux/dma-mapping.h> 32 #include <linux/hdmi.h> 33 #include <linux/component.h> 34 #include <linux/iopoll.h> 35 36 #include <drm/display/drm_dp_helper.h> 37 #include <drm/display/drm_scdc_helper.h> 38 #include <drm/drm_atomic.h> 39 #include <drm/drm_atomic_helper.h> 40 #include <drm/drm_edid.h> 41 #include <drm/drm_fb_helper.h> 42 #include <drm/drm_probe_helper.h> 43 #include <drm/drm_vblank.h> 44 45 #include <nvif/push507c.h> 46 47 #include <nvif/class.h> 48 #include <nvif/cl0002.h> 49 #include <nvif/event.h> 50 #include <nvif/if0012.h> 51 #include <nvif/if0014.h> 52 #include <nvif/timer.h> 53 54 #include <nvhw/class/cl507c.h> 55 #include <nvhw/class/cl507d.h> 56 #include <nvhw/class/cl837d.h> 57 #include <nvhw/class/cl887d.h> 58 #include <nvhw/class/cl907d.h> 59 #include <nvhw/class/cl917d.h> 60 61 #include "nouveau_drv.h" 62 #include "nouveau_dma.h" 63 #include "nouveau_gem.h" 64 #include "nouveau_connector.h" 65 #include "nouveau_encoder.h" 66 #include "nouveau_fence.h" 67 #include "nv50_display.h" 68 69 /****************************************************************************** 70 * EVO channel 71 *****************************************************************************/ 72 73 static int 74 nv50_chan_create(struct nvif_device *device, struct nvif_object *disp, 75 const s32 *oclass, u8 head, void *data, u32 size, 76 struct nv50_chan *chan) 77 { 78 struct nvif_sclass *sclass; 79 int ret, i, n; 80 81 chan->device = device; 82 83 ret = n = nvif_object_sclass_get(disp, &sclass); 84 if (ret < 0) 85 return ret; 86 87 while (oclass[0]) { 88 for (i = 0; i < n; i++) { 89 if (sclass[i].oclass == oclass[0]) { 90 ret = nvif_object_ctor(disp, "kmsChan", 0, 91 oclass[0], data, size, 92 &chan->user); 93 if (ret == 0) 94 nvif_object_map(&chan->user, NULL, 0); 95 nvif_object_sclass_put(&sclass); 96 return ret; 97 } 98 } 99 oclass++; 100 } 101 102 nvif_object_sclass_put(&sclass); 103 return -ENOSYS; 104 } 105 106 static void 107 nv50_chan_destroy(struct nv50_chan *chan) 108 { 109 nvif_object_dtor(&chan->user); 110 } 111 112 /****************************************************************************** 113 * DMA EVO channel 114 *****************************************************************************/ 115 116 void 117 nv50_dmac_destroy(struct nv50_dmac *dmac) 118 { 119 nvif_object_dtor(&dmac->vram); 120 nvif_object_dtor(&dmac->sync); 121 122 nv50_chan_destroy(&dmac->base); 123 124 nvif_mem_dtor(&dmac->_push.mem); 125 } 126 127 static void 128 nv50_dmac_kick(struct nvif_push *push) 129 { 130 struct nv50_dmac *dmac = container_of(push, typeof(*dmac), _push); 131 132 dmac->cur = push->cur - (u32 __iomem *)dmac->_push.mem.object.map.ptr; 133 if (dmac->put != dmac->cur) { 134 /* Push buffer fetches are not coherent with BAR1, we need to ensure 135 * writes have been flushed right through to VRAM before writing PUT. 136 */ 137 if (dmac->push->mem.type & NVIF_MEM_VRAM) { 138 struct nvif_device *device = dmac->base.device; 139 nvif_wr32(&device->object, 0x070000, 0x00000001); 140 nvif_msec(device, 2000, 141 if (!(nvif_rd32(&device->object, 0x070000) & 0x00000002)) 142 break; 143 ); 144 } 145 146 NVIF_WV32(&dmac->base.user, NV507C, PUT, PTR, dmac->cur); 147 dmac->put = dmac->cur; 148 } 149 150 push->bgn = push->cur; 151 } 152 153 static int 154 nv50_dmac_free(struct nv50_dmac *dmac) 155 { 156 u32 get = NVIF_RV32(&dmac->base.user, NV507C, GET, PTR); 157 if (get > dmac->cur) /* NVIDIA stay 5 away from GET, do the same. */ 158 return get - dmac->cur - 5; 159 return dmac->max - dmac->cur; 160 } 161 162 static int 163 nv50_dmac_wind(struct nv50_dmac *dmac) 164 { 165 /* Wait for GET to depart from the beginning of the push buffer to 166 * prevent writing PUT == GET, which would be ignored by HW. 167 */ 168 u32 get = NVIF_RV32(&dmac->base.user, NV507C, GET, PTR); 169 if (get == 0) { 170 /* Corner-case, HW idle, but non-committed work pending. */ 171 if (dmac->put == 0) 172 nv50_dmac_kick(dmac->push); 173 174 if (nvif_msec(dmac->base.device, 2000, 175 if (NVIF_TV32(&dmac->base.user, NV507C, GET, PTR, >, 0)) 176 break; 177 ) < 0) 178 return -ETIMEDOUT; 179 } 180 181 PUSH_RSVD(dmac->push, PUSH_JUMP(dmac->push, 0)); 182 dmac->cur = 0; 183 return 0; 184 } 185 186 static int 187 nv50_dmac_wait(struct nvif_push *push, u32 size) 188 { 189 struct nv50_dmac *dmac = container_of(push, typeof(*dmac), _push); 190 int free; 191 192 if (WARN_ON(size > dmac->max)) 193 return -EINVAL; 194 195 dmac->cur = push->cur - (u32 __iomem *)dmac->_push.mem.object.map.ptr; 196 if (dmac->cur + size >= dmac->max) { 197 int ret = nv50_dmac_wind(dmac); 198 if (ret) 199 return ret; 200 201 push->cur = dmac->_push.mem.object.map.ptr; 202 push->cur = push->cur + dmac->cur; 203 nv50_dmac_kick(push); 204 } 205 206 if (nvif_msec(dmac->base.device, 2000, 207 if ((free = nv50_dmac_free(dmac)) >= size) 208 break; 209 ) < 0) { 210 WARN_ON(1); 211 return -ETIMEDOUT; 212 } 213 214 push->bgn = dmac->_push.mem.object.map.ptr; 215 push->bgn = push->bgn + dmac->cur; 216 push->cur = push->bgn; 217 push->end = push->cur + free; 218 return 0; 219 } 220 221 MODULE_PARM_DESC(kms_vram_pushbuf, "Place EVO/NVD push buffers in VRAM (default: auto)"); 222 static int nv50_dmac_vram_pushbuf = -1; 223 module_param_named(kms_vram_pushbuf, nv50_dmac_vram_pushbuf, int, 0400); 224 225 int 226 nv50_dmac_create(struct nvif_device *device, struct nvif_object *disp, 227 const s32 *oclass, u8 head, void *data, u32 size, s64 syncbuf, 228 struct nv50_dmac *dmac) 229 { 230 struct nouveau_cli *cli = (void *)device->object.client; 231 struct nvif_disp_chan_v0 *args = data; 232 u8 type = NVIF_MEM_COHERENT; 233 int ret; 234 235 mutex_init(&dmac->lock); 236 237 /* Pascal added support for 47-bit physical addresses, but some 238 * parts of EVO still only accept 40-bit PAs. 239 * 240 * To avoid issues on systems with large amounts of RAM, and on 241 * systems where an IOMMU maps pages at a high address, we need 242 * to allocate push buffers in VRAM instead. 243 * 244 * This appears to match NVIDIA's behaviour on Pascal. 245 */ 246 if ((nv50_dmac_vram_pushbuf > 0) || 247 (nv50_dmac_vram_pushbuf < 0 && device->info.family == NV_DEVICE_INFO_V0_PASCAL)) 248 type |= NVIF_MEM_VRAM; 249 250 ret = nvif_mem_ctor_map(&cli->mmu, "kmsChanPush", type, 0x1000, 251 &dmac->_push.mem); 252 if (ret) 253 return ret; 254 255 dmac->ptr = dmac->_push.mem.object.map.ptr; 256 dmac->_push.wait = nv50_dmac_wait; 257 dmac->_push.kick = nv50_dmac_kick; 258 dmac->push = &dmac->_push; 259 dmac->push->bgn = dmac->_push.mem.object.map.ptr; 260 dmac->push->cur = dmac->push->bgn; 261 dmac->push->end = dmac->push->bgn; 262 dmac->max = 0x1000/4 - 1; 263 264 /* EVO channels are affected by a HW bug where the last 12 DWORDs 265 * of the push buffer aren't able to be used safely. 266 */ 267 if (disp->oclass < GV100_DISP) 268 dmac->max -= 12; 269 270 args->pushbuf = nvif_handle(&dmac->_push.mem.object); 271 272 ret = nv50_chan_create(device, disp, oclass, head, data, size, 273 &dmac->base); 274 if (ret) 275 return ret; 276 277 if (syncbuf < 0) 278 return 0; 279 280 ret = nvif_object_ctor(&dmac->base.user, "kmsSyncCtxDma", NV50_DISP_HANDLE_SYNCBUF, 281 NV_DMA_IN_MEMORY, 282 &(struct nv_dma_v0) { 283 .target = NV_DMA_V0_TARGET_VRAM, 284 .access = NV_DMA_V0_ACCESS_RDWR, 285 .start = syncbuf + 0x0000, 286 .limit = syncbuf + 0x0fff, 287 }, sizeof(struct nv_dma_v0), 288 &dmac->sync); 289 if (ret) 290 return ret; 291 292 ret = nvif_object_ctor(&dmac->base.user, "kmsVramCtxDma", NV50_DISP_HANDLE_VRAM, 293 NV_DMA_IN_MEMORY, 294 &(struct nv_dma_v0) { 295 .target = NV_DMA_V0_TARGET_VRAM, 296 .access = NV_DMA_V0_ACCESS_RDWR, 297 .start = 0, 298 .limit = device->info.ram_user - 1, 299 }, sizeof(struct nv_dma_v0), 300 &dmac->vram); 301 if (ret) 302 return ret; 303 304 return ret; 305 } 306 307 /****************************************************************************** 308 * Output path helpers 309 *****************************************************************************/ 310 static void 311 nv50_outp_dump_caps(struct nouveau_drm *drm, 312 struct nouveau_encoder *outp) 313 { 314 NV_DEBUG(drm, "%s caps: dp_interlace=%d\n", 315 outp->base.base.name, outp->caps.dp_interlace); 316 } 317 318 static int 319 nv50_outp_atomic_check_view(struct drm_encoder *encoder, 320 struct drm_crtc_state *crtc_state, 321 struct drm_connector_state *conn_state, 322 struct drm_display_mode *native_mode) 323 { 324 struct drm_display_mode *adjusted_mode = &crtc_state->adjusted_mode; 325 struct drm_display_mode *mode = &crtc_state->mode; 326 struct drm_connector *connector = conn_state->connector; 327 struct nouveau_conn_atom *asyc = nouveau_conn_atom(conn_state); 328 struct nouveau_drm *drm = nouveau_drm(encoder->dev); 329 330 NV_ATOMIC(drm, "%s atomic_check\n", encoder->name); 331 asyc->scaler.full = false; 332 if (!native_mode) 333 return 0; 334 335 if (asyc->scaler.mode == DRM_MODE_SCALE_NONE) { 336 switch (connector->connector_type) { 337 case DRM_MODE_CONNECTOR_LVDS: 338 case DRM_MODE_CONNECTOR_eDP: 339 /* Don't force scaler for EDID modes with 340 * same size as the native one (e.g. different 341 * refresh rate) 342 */ 343 if (mode->hdisplay == native_mode->hdisplay && 344 mode->vdisplay == native_mode->vdisplay && 345 mode->type & DRM_MODE_TYPE_DRIVER) 346 break; 347 mode = native_mode; 348 asyc->scaler.full = true; 349 break; 350 default: 351 break; 352 } 353 } else { 354 mode = native_mode; 355 } 356 357 if (!drm_mode_equal(adjusted_mode, mode)) { 358 drm_mode_copy(adjusted_mode, mode); 359 crtc_state->mode_changed = true; 360 } 361 362 return 0; 363 } 364 365 static void 366 nv50_outp_atomic_fix_depth(struct drm_encoder *encoder, struct drm_crtc_state *crtc_state) 367 { 368 struct nv50_head_atom *asyh = nv50_head_atom(crtc_state); 369 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 370 struct drm_display_mode *mode = &asyh->state.adjusted_mode; 371 unsigned int max_rate, mode_rate; 372 373 switch (nv_encoder->dcb->type) { 374 case DCB_OUTPUT_DP: 375 max_rate = nv_encoder->dp.link_nr * nv_encoder->dp.link_bw; 376 377 /* we don't support more than 10 anyway */ 378 asyh->or.bpc = min_t(u8, asyh->or.bpc, 10); 379 380 /* reduce the bpc until it works out */ 381 while (asyh->or.bpc > 6) { 382 mode_rate = DIV_ROUND_UP(mode->clock * asyh->or.bpc * 3, 8); 383 if (mode_rate <= max_rate) 384 break; 385 386 asyh->or.bpc -= 2; 387 } 388 break; 389 default: 390 break; 391 } 392 } 393 394 static int 395 nv50_outp_atomic_check(struct drm_encoder *encoder, 396 struct drm_crtc_state *crtc_state, 397 struct drm_connector_state *conn_state) 398 { 399 struct drm_connector *connector = conn_state->connector; 400 struct nouveau_connector *nv_connector = nouveau_connector(connector); 401 struct nv50_head_atom *asyh = nv50_head_atom(crtc_state); 402 int ret; 403 404 ret = nv50_outp_atomic_check_view(encoder, crtc_state, conn_state, 405 nv_connector->native_mode); 406 if (ret) 407 return ret; 408 409 if (crtc_state->mode_changed || crtc_state->connectors_changed) 410 asyh->or.bpc = connector->display_info.bpc; 411 412 /* We might have to reduce the bpc */ 413 nv50_outp_atomic_fix_depth(encoder, crtc_state); 414 415 return 0; 416 } 417 418 struct nouveau_connector * 419 nv50_outp_get_new_connector(struct drm_atomic_state *state, struct nouveau_encoder *outp) 420 { 421 struct drm_connector *connector; 422 struct drm_connector_state *connector_state; 423 struct drm_encoder *encoder = to_drm_encoder(outp); 424 int i; 425 426 for_each_new_connector_in_state(state, connector, connector_state, i) { 427 if (connector_state->best_encoder == encoder) 428 return nouveau_connector(connector); 429 } 430 431 return NULL; 432 } 433 434 struct nouveau_connector * 435 nv50_outp_get_old_connector(struct drm_atomic_state *state, struct nouveau_encoder *outp) 436 { 437 struct drm_connector *connector; 438 struct drm_connector_state *connector_state; 439 struct drm_encoder *encoder = to_drm_encoder(outp); 440 int i; 441 442 for_each_old_connector_in_state(state, connector, connector_state, i) { 443 if (connector_state->best_encoder == encoder) 444 return nouveau_connector(connector); 445 } 446 447 return NULL; 448 } 449 450 static struct nouveau_crtc * 451 nv50_outp_get_new_crtc(const struct drm_atomic_state *state, const struct nouveau_encoder *outp) 452 { 453 struct drm_crtc *crtc; 454 struct drm_crtc_state *crtc_state; 455 const u32 mask = drm_encoder_mask(&outp->base.base); 456 int i; 457 458 for_each_new_crtc_in_state(state, crtc, crtc_state, i) { 459 if (crtc_state->encoder_mask & mask) 460 return nouveau_crtc(crtc); 461 } 462 463 return NULL; 464 } 465 466 /****************************************************************************** 467 * DAC 468 *****************************************************************************/ 469 static void 470 nv50_dac_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state) 471 { 472 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 473 struct nv50_core *core = nv50_disp(encoder->dev)->core; 474 const u32 ctrl = NVDEF(NV507D, DAC_SET_CONTROL, OWNER, NONE); 475 476 core->func->dac->ctrl(core, nv_encoder->outp.or.id, ctrl, NULL); 477 nv_encoder->crtc = NULL; 478 } 479 480 static void 481 nv50_dac_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state) 482 { 483 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 484 struct nouveau_crtc *nv_crtc = nv50_outp_get_new_crtc(state, nv_encoder); 485 struct nv50_head_atom *asyh = 486 nv50_head_atom(drm_atomic_get_new_crtc_state(state, &nv_crtc->base)); 487 struct nv50_core *core = nv50_disp(encoder->dev)->core; 488 u32 ctrl = 0; 489 490 switch (nv_crtc->index) { 491 case 0: ctrl |= NVDEF(NV507D, DAC_SET_CONTROL, OWNER, HEAD0); break; 492 case 1: ctrl |= NVDEF(NV507D, DAC_SET_CONTROL, OWNER, HEAD1); break; 493 case 2: ctrl |= NVDEF(NV907D, DAC_SET_CONTROL, OWNER_MASK, HEAD2); break; 494 case 3: ctrl |= NVDEF(NV907D, DAC_SET_CONTROL, OWNER_MASK, HEAD3); break; 495 default: 496 WARN_ON(1); 497 break; 498 } 499 500 ctrl |= NVDEF(NV507D, DAC_SET_CONTROL, PROTOCOL, RGB_CRT); 501 502 if (!nvif_outp_acquired(&nv_encoder->outp)) 503 nvif_outp_acquire_dac(&nv_encoder->outp); 504 505 core->func->dac->ctrl(core, nv_encoder->outp.or.id, ctrl, asyh); 506 asyh->or.depth = 0; 507 508 nv_encoder->crtc = &nv_crtc->base; 509 } 510 511 static enum drm_connector_status 512 nv50_dac_detect(struct drm_encoder *encoder, struct drm_connector *connector) 513 { 514 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 515 u32 loadval; 516 int ret; 517 518 loadval = nouveau_drm(encoder->dev)->vbios.dactestval; 519 if (loadval == 0) 520 loadval = 340; 521 522 ret = nvif_outp_load_detect(&nv_encoder->outp, loadval); 523 if (ret <= 0) 524 return connector_status_disconnected; 525 526 return connector_status_connected; 527 } 528 529 static const struct drm_encoder_helper_funcs 530 nv50_dac_help = { 531 .atomic_check = nv50_outp_atomic_check, 532 .atomic_enable = nv50_dac_atomic_enable, 533 .atomic_disable = nv50_dac_atomic_disable, 534 .detect = nv50_dac_detect 535 }; 536 537 static void 538 nv50_dac_destroy(struct drm_encoder *encoder) 539 { 540 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 541 542 nvif_outp_dtor(&nv_encoder->outp); 543 544 drm_encoder_cleanup(encoder); 545 kfree(encoder); 546 } 547 548 static const struct drm_encoder_funcs 549 nv50_dac_func = { 550 .destroy = nv50_dac_destroy, 551 }; 552 553 static int 554 nv50_dac_create(struct nouveau_encoder *nv_encoder) 555 { 556 struct drm_connector *connector = &nv_encoder->conn->base; 557 struct nouveau_drm *drm = nouveau_drm(connector->dev); 558 struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device); 559 struct nvkm_i2c_bus *bus; 560 struct drm_encoder *encoder; 561 struct dcb_output *dcbe = nv_encoder->dcb; 562 int type = DRM_MODE_ENCODER_DAC; 563 564 bus = nvkm_i2c_bus_find(i2c, dcbe->i2c_index); 565 if (bus) 566 nv_encoder->i2c = &bus->i2c; 567 568 encoder = to_drm_encoder(nv_encoder); 569 drm_encoder_init(connector->dev, encoder, &nv50_dac_func, type, 570 "dac-%04x-%04x", dcbe->hasht, dcbe->hashm); 571 drm_encoder_helper_add(encoder, &nv50_dac_help); 572 573 drm_connector_attach_encoder(connector, encoder); 574 return 0; 575 } 576 577 /* 578 * audio component binding for ELD notification 579 */ 580 static void 581 nv50_audio_component_eld_notify(struct drm_audio_component *acomp, int port, 582 int dev_id) 583 { 584 if (acomp && acomp->audio_ops && acomp->audio_ops->pin_eld_notify) 585 acomp->audio_ops->pin_eld_notify(acomp->audio_ops->audio_ptr, 586 port, dev_id); 587 } 588 589 static int 590 nv50_audio_component_get_eld(struct device *kdev, int port, int dev_id, 591 bool *enabled, unsigned char *buf, int max_bytes) 592 { 593 struct drm_device *drm_dev = dev_get_drvdata(kdev); 594 struct nouveau_drm *drm = nouveau_drm(drm_dev); 595 struct drm_encoder *encoder; 596 struct nouveau_encoder *nv_encoder; 597 struct nouveau_crtc *nv_crtc; 598 int ret = 0; 599 600 *enabled = false; 601 602 mutex_lock(&drm->audio.lock); 603 604 drm_for_each_encoder(encoder, drm->dev) { 605 struct nouveau_connector *nv_connector = NULL; 606 607 if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) 608 continue; /* TODO */ 609 610 nv_encoder = nouveau_encoder(encoder); 611 nv_connector = nv_encoder->conn; 612 nv_crtc = nouveau_crtc(nv_encoder->crtc); 613 614 if (!nv_crtc || nv_encoder->outp.or.id != port || nv_crtc->index != dev_id) 615 continue; 616 617 *enabled = nv_encoder->audio.enabled; 618 if (*enabled) { 619 ret = drm_eld_size(nv_connector->base.eld); 620 memcpy(buf, nv_connector->base.eld, 621 min(max_bytes, ret)); 622 } 623 break; 624 } 625 626 mutex_unlock(&drm->audio.lock); 627 628 return ret; 629 } 630 631 static const struct drm_audio_component_ops nv50_audio_component_ops = { 632 .get_eld = nv50_audio_component_get_eld, 633 }; 634 635 static int 636 nv50_audio_component_bind(struct device *kdev, struct device *hda_kdev, 637 void *data) 638 { 639 struct drm_device *drm_dev = dev_get_drvdata(kdev); 640 struct nouveau_drm *drm = nouveau_drm(drm_dev); 641 struct drm_audio_component *acomp = data; 642 643 if (WARN_ON(!device_link_add(hda_kdev, kdev, DL_FLAG_STATELESS))) 644 return -ENOMEM; 645 646 drm_modeset_lock_all(drm_dev); 647 acomp->ops = &nv50_audio_component_ops; 648 acomp->dev = kdev; 649 drm->audio.component = acomp; 650 drm_modeset_unlock_all(drm_dev); 651 return 0; 652 } 653 654 static void 655 nv50_audio_component_unbind(struct device *kdev, struct device *hda_kdev, 656 void *data) 657 { 658 struct drm_device *drm_dev = dev_get_drvdata(kdev); 659 struct nouveau_drm *drm = nouveau_drm(drm_dev); 660 struct drm_audio_component *acomp = data; 661 662 drm_modeset_lock_all(drm_dev); 663 drm->audio.component = NULL; 664 acomp->ops = NULL; 665 acomp->dev = NULL; 666 drm_modeset_unlock_all(drm_dev); 667 } 668 669 static const struct component_ops nv50_audio_component_bind_ops = { 670 .bind = nv50_audio_component_bind, 671 .unbind = nv50_audio_component_unbind, 672 }; 673 674 static void 675 nv50_audio_component_init(struct nouveau_drm *drm) 676 { 677 if (component_add(drm->dev->dev, &nv50_audio_component_bind_ops)) 678 return; 679 680 drm->audio.component_registered = true; 681 mutex_init(&drm->audio.lock); 682 } 683 684 static void 685 nv50_audio_component_fini(struct nouveau_drm *drm) 686 { 687 if (!drm->audio.component_registered) 688 return; 689 690 component_del(drm->dev->dev, &nv50_audio_component_bind_ops); 691 drm->audio.component_registered = false; 692 mutex_destroy(&drm->audio.lock); 693 } 694 695 /****************************************************************************** 696 * Audio 697 *****************************************************************************/ 698 static bool 699 nv50_audio_supported(struct drm_encoder *encoder) 700 { 701 struct nv50_disp *disp = nv50_disp(encoder->dev); 702 703 if (disp->disp->object.oclass <= GT200_DISP || 704 disp->disp->object.oclass == GT206_DISP) 705 return false; 706 707 if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) { 708 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 709 710 switch (nv_encoder->dcb->type) { 711 case DCB_OUTPUT_TMDS: 712 case DCB_OUTPUT_DP: 713 break; 714 default: 715 return false; 716 } 717 } 718 719 return true; 720 } 721 722 static void 723 nv50_audio_disable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc) 724 { 725 struct nouveau_drm *drm = nouveau_drm(encoder->dev); 726 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 727 struct nvif_outp *outp = &nv_encoder->outp; 728 729 if (!nv50_audio_supported(encoder)) 730 return; 731 732 mutex_lock(&drm->audio.lock); 733 if (nv_encoder->audio.enabled) { 734 nv_encoder->audio.enabled = false; 735 nvif_outp_hda_eld(&nv_encoder->outp, nv_crtc->index, NULL, 0); 736 } 737 mutex_unlock(&drm->audio.lock); 738 739 nv50_audio_component_eld_notify(drm->audio.component, outp->or.id, nv_crtc->index); 740 } 741 742 static void 743 nv50_audio_enable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc, 744 struct nouveau_connector *nv_connector, struct drm_atomic_state *state, 745 struct drm_display_mode *mode) 746 { 747 struct nouveau_drm *drm = nouveau_drm(encoder->dev); 748 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 749 struct nvif_outp *outp = &nv_encoder->outp; 750 751 if (!nv50_audio_supported(encoder) || !drm_detect_monitor_audio(nv_connector->edid)) 752 return; 753 754 mutex_lock(&drm->audio.lock); 755 756 nvif_outp_hda_eld(&nv_encoder->outp, nv_crtc->index, nv_connector->base.eld, 757 drm_eld_size(nv_connector->base.eld)); 758 nv_encoder->audio.enabled = true; 759 760 mutex_unlock(&drm->audio.lock); 761 762 nv50_audio_component_eld_notify(drm->audio.component, outp->or.id, nv_crtc->index); 763 } 764 765 /****************************************************************************** 766 * HDMI 767 *****************************************************************************/ 768 static void 769 nv50_hdmi_enable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc, 770 struct nouveau_connector *nv_connector, struct drm_atomic_state *state, 771 struct drm_display_mode *mode, bool hda) 772 { 773 struct nouveau_drm *drm = nouveau_drm(encoder->dev); 774 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 775 struct drm_hdmi_info *hdmi = &nv_connector->base.display_info.hdmi; 776 union hdmi_infoframe infoframe = { 0 }; 777 const u8 rekey = 56; /* binary driver, and tegra, constant */ 778 u32 max_ac_packet; 779 struct { 780 struct nvif_outp_infoframe_v0 infoframe; 781 u8 data[17]; 782 } args = { 0 }; 783 int ret, size; 784 785 max_ac_packet = mode->htotal - mode->hdisplay; 786 max_ac_packet -= rekey; 787 max_ac_packet -= 18; /* constant from tegra */ 788 max_ac_packet /= 32; 789 790 if (nv_encoder->i2c && hdmi->scdc.scrambling.supported) { 791 const bool high_tmds_clock_ratio = mode->clock > 340000; 792 u8 scdc; 793 794 ret = drm_scdc_readb(nv_encoder->i2c, SCDC_TMDS_CONFIG, &scdc); 795 if (ret < 0) { 796 NV_ERROR(drm, "Failure to read SCDC_TMDS_CONFIG: %d\n", ret); 797 return; 798 } 799 800 scdc &= ~(SCDC_TMDS_BIT_CLOCK_RATIO_BY_40 | SCDC_SCRAMBLING_ENABLE); 801 if (high_tmds_clock_ratio || hdmi->scdc.scrambling.low_rates) 802 scdc |= SCDC_SCRAMBLING_ENABLE; 803 if (high_tmds_clock_ratio) 804 scdc |= SCDC_TMDS_BIT_CLOCK_RATIO_BY_40; 805 806 ret = drm_scdc_writeb(nv_encoder->i2c, SCDC_TMDS_CONFIG, scdc); 807 if (ret < 0) 808 NV_ERROR(drm, "Failure to write SCDC_TMDS_CONFIG = 0x%02x: %d\n", 809 scdc, ret); 810 } 811 812 ret = nvif_outp_hdmi(&nv_encoder->outp, nv_crtc->index, true, max_ac_packet, rekey, 813 mode->clock, hdmi->scdc.supported, hdmi->scdc.scrambling.supported, 814 hdmi->scdc.scrambling.low_rates); 815 if (ret) 816 return; 817 818 /* AVI InfoFrame. */ 819 args.infoframe.version = 0; 820 args.infoframe.head = nv_crtc->index; 821 822 if (!drm_hdmi_avi_infoframe_from_display_mode(&infoframe.avi, &nv_connector->base, mode)) { 823 drm_hdmi_avi_infoframe_quant_range(&infoframe.avi, &nv_connector->base, mode, 824 HDMI_QUANTIZATION_RANGE_FULL); 825 826 size = hdmi_infoframe_pack(&infoframe, args.data, ARRAY_SIZE(args.data)); 827 } else { 828 size = 0; 829 } 830 831 nvif_outp_infoframe(&nv_encoder->outp, NVIF_OUTP_INFOFRAME_V0_AVI, &args.infoframe, size); 832 833 /* Vendor InfoFrame. */ 834 memset(&args.data, 0, sizeof(args.data)); 835 if (!drm_hdmi_vendor_infoframe_from_display_mode(&infoframe.vendor.hdmi, 836 &nv_connector->base, mode)) 837 size = hdmi_infoframe_pack(&infoframe, args.data, ARRAY_SIZE(args.data)); 838 else 839 size = 0; 840 841 nvif_outp_infoframe(&nv_encoder->outp, NVIF_OUTP_INFOFRAME_V0_VSI, &args.infoframe, size); 842 843 nv_encoder->hdmi.enabled = true; 844 } 845 846 /****************************************************************************** 847 * MST 848 *****************************************************************************/ 849 #define nv50_mstm(p) container_of((p), struct nv50_mstm, mgr) 850 #define nv50_mstc(p) container_of((p), struct nv50_mstc, connector) 851 #define nv50_msto(p) container_of((p), struct nv50_msto, encoder) 852 853 struct nv50_mstc { 854 struct nv50_mstm *mstm; 855 struct drm_dp_mst_port *port; 856 struct drm_connector connector; 857 858 struct drm_display_mode *native; 859 struct edid *edid; 860 }; 861 862 struct nv50_msto { 863 struct drm_encoder encoder; 864 865 /* head is statically assigned on msto creation */ 866 struct nv50_head *head; 867 struct nv50_mstc *mstc; 868 bool disabled; 869 bool enabled; 870 871 u32 display_id; 872 }; 873 874 struct nouveau_encoder *nv50_real_outp(struct drm_encoder *encoder) 875 { 876 struct nv50_msto *msto; 877 878 if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) 879 return nouveau_encoder(encoder); 880 881 msto = nv50_msto(encoder); 882 if (!msto->mstc) 883 return NULL; 884 return msto->mstc->mstm->outp; 885 } 886 887 static void 888 nv50_msto_cleanup(struct drm_atomic_state *state, 889 struct drm_dp_mst_topology_state *new_mst_state, 890 struct drm_dp_mst_topology_mgr *mgr, 891 struct nv50_msto *msto) 892 { 893 struct nouveau_drm *drm = nouveau_drm(msto->encoder.dev); 894 struct drm_dp_mst_atomic_payload *new_payload = 895 drm_atomic_get_mst_payload_state(new_mst_state, msto->mstc->port); 896 struct drm_dp_mst_topology_state *old_mst_state = 897 drm_atomic_get_old_mst_topology_state(state, mgr); 898 const struct drm_dp_mst_atomic_payload *old_payload = 899 drm_atomic_get_mst_payload_state(old_mst_state, msto->mstc->port); 900 struct nv50_mstc *mstc = msto->mstc; 901 struct nv50_mstm *mstm = mstc->mstm; 902 903 NV_ATOMIC(drm, "%s: msto cleanup\n", msto->encoder.name); 904 905 if (msto->disabled) { 906 if (msto->head->func->display_id) { 907 nvif_outp_dp_mst_id_put(&mstm->outp->outp, msto->display_id); 908 msto->display_id = 0; 909 } 910 911 msto->mstc = NULL; 912 msto->disabled = false; 913 drm_dp_remove_payload_part2(mgr, new_mst_state, old_payload, new_payload); 914 } else if (msto->enabled) { 915 drm_dp_add_payload_part2(mgr, state, new_payload); 916 msto->enabled = false; 917 } 918 } 919 920 static void 921 nv50_msto_prepare(struct drm_atomic_state *state, 922 struct drm_dp_mst_topology_state *mst_state, 923 struct drm_dp_mst_topology_mgr *mgr, 924 struct nv50_msto *msto) 925 { 926 struct nouveau_drm *drm = nouveau_drm(msto->encoder.dev); 927 struct nv50_mstc *mstc = msto->mstc; 928 struct nv50_mstm *mstm = mstc->mstm; 929 struct drm_dp_mst_atomic_payload *payload; 930 int ret = 0; 931 932 NV_ATOMIC(drm, "%s: msto prepare\n", msto->encoder.name); 933 934 payload = drm_atomic_get_mst_payload_state(mst_state, mstc->port); 935 936 if (msto->disabled) { 937 drm_dp_remove_payload_part1(mgr, mst_state, payload); 938 nvif_outp_dp_mst_vcpi(&mstm->outp->outp, msto->head->base.index, 0, 0, 0, 0); 939 ret = 1; 940 } else { 941 if (msto->enabled) 942 ret = drm_dp_add_payload_part1(mgr, mst_state, payload); 943 } 944 945 if (ret == 0) { 946 nvif_outp_dp_mst_vcpi(&mstm->outp->outp, msto->head->base.index, 947 payload->vc_start_slot, payload->time_slots, 948 payload->pbn, payload->time_slots * mst_state->pbn_div); 949 } else { 950 nvif_outp_dp_mst_vcpi(&mstm->outp->outp, msto->head->base.index, 0, 0, 0, 0); 951 } 952 } 953 954 static int 955 nv50_msto_atomic_check(struct drm_encoder *encoder, 956 struct drm_crtc_state *crtc_state, 957 struct drm_connector_state *conn_state) 958 { 959 struct drm_atomic_state *state = crtc_state->state; 960 struct drm_connector *connector = conn_state->connector; 961 struct drm_dp_mst_topology_state *mst_state; 962 struct nv50_mstc *mstc = nv50_mstc(connector); 963 struct nv50_mstm *mstm = mstc->mstm; 964 struct nv50_head_atom *asyh = nv50_head_atom(crtc_state); 965 int slots; 966 int ret; 967 968 ret = nv50_outp_atomic_check_view(encoder, crtc_state, conn_state, 969 mstc->native); 970 if (ret) 971 return ret; 972 973 if (!drm_atomic_crtc_needs_modeset(crtc_state)) 974 return 0; 975 976 /* 977 * When restoring duplicated states, we need to make sure that the bw 978 * remains the same and avoid recalculating it, as the connector's bpc 979 * may have changed after the state was duplicated 980 */ 981 if (!state->duplicated) { 982 const int clock = crtc_state->adjusted_mode.clock; 983 984 asyh->or.bpc = connector->display_info.bpc; 985 asyh->dp.pbn = drm_dp_calc_pbn_mode(clock, asyh->or.bpc * 3, 986 false); 987 } 988 989 mst_state = drm_atomic_get_mst_topology_state(state, &mstm->mgr); 990 if (IS_ERR(mst_state)) 991 return PTR_ERR(mst_state); 992 993 if (!mst_state->pbn_div) { 994 struct nouveau_encoder *outp = mstc->mstm->outp; 995 996 mst_state->pbn_div = drm_dp_get_vc_payload_bw(&mstm->mgr, 997 outp->dp.link_bw, outp->dp.link_nr); 998 } 999 1000 slots = drm_dp_atomic_find_time_slots(state, &mstm->mgr, mstc->port, asyh->dp.pbn); 1001 if (slots < 0) 1002 return slots; 1003 1004 asyh->dp.tu = slots; 1005 1006 return 0; 1007 } 1008 1009 static u8 1010 nv50_dp_bpc_to_depth(unsigned int bpc) 1011 { 1012 switch (bpc) { 1013 case 6: return NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_BPP_18_444; 1014 case 8: return NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_BPP_24_444; 1015 case 10: 1016 default: return NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_BPP_30_444; 1017 } 1018 } 1019 1020 static void 1021 nv50_msto_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state) 1022 { 1023 struct nv50_msto *msto = nv50_msto(encoder); 1024 struct nv50_head *head = msto->head; 1025 struct nv50_head_atom *asyh = 1026 nv50_head_atom(drm_atomic_get_new_crtc_state(state, &head->base.base)); 1027 struct nv50_mstc *mstc = NULL; 1028 struct nv50_mstm *mstm = NULL; 1029 struct drm_connector *connector; 1030 struct drm_connector_list_iter conn_iter; 1031 u8 proto; 1032 1033 drm_connector_list_iter_begin(encoder->dev, &conn_iter); 1034 drm_for_each_connector_iter(connector, &conn_iter) { 1035 if (connector->state->best_encoder == &msto->encoder) { 1036 mstc = nv50_mstc(connector); 1037 mstm = mstc->mstm; 1038 break; 1039 } 1040 } 1041 drm_connector_list_iter_end(&conn_iter); 1042 1043 if (WARN_ON(!mstc)) 1044 return; 1045 1046 if (!mstm->links++) { 1047 nvif_outp_acquire_sor(&mstm->outp->outp, false /*TODO: MST audio... */); 1048 nouveau_dp_train(mstm->outp, true, 0, 0); 1049 } 1050 1051 if (head->func->display_id) { 1052 if (!WARN_ON(nvif_outp_dp_mst_id_get(&mstm->outp->outp, &msto->display_id))) 1053 head->func->display_id(head, msto->display_id); 1054 } 1055 1056 if (mstm->outp->outp.or.link & 1) 1057 proto = NV917D_SOR_SET_CONTROL_PROTOCOL_DP_A; 1058 else 1059 proto = NV917D_SOR_SET_CONTROL_PROTOCOL_DP_B; 1060 1061 mstm->outp->update(mstm->outp, head->base.index, asyh, proto, 1062 nv50_dp_bpc_to_depth(asyh->or.bpc)); 1063 1064 msto->mstc = mstc; 1065 msto->enabled = true; 1066 mstm->modified = true; 1067 } 1068 1069 static void 1070 nv50_msto_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state) 1071 { 1072 struct nv50_msto *msto = nv50_msto(encoder); 1073 struct nv50_mstc *mstc = msto->mstc; 1074 struct nv50_mstm *mstm = mstc->mstm; 1075 1076 if (msto->head->func->display_id) 1077 msto->head->func->display_id(msto->head, 0); 1078 1079 mstm->outp->update(mstm->outp, msto->head->base.index, NULL, 0, 0); 1080 mstm->modified = true; 1081 if (!--mstm->links) 1082 mstm->disabled = true; 1083 msto->disabled = true; 1084 } 1085 1086 static const struct drm_encoder_helper_funcs 1087 nv50_msto_help = { 1088 .atomic_disable = nv50_msto_atomic_disable, 1089 .atomic_enable = nv50_msto_atomic_enable, 1090 .atomic_check = nv50_msto_atomic_check, 1091 }; 1092 1093 static void 1094 nv50_msto_destroy(struct drm_encoder *encoder) 1095 { 1096 struct nv50_msto *msto = nv50_msto(encoder); 1097 drm_encoder_cleanup(&msto->encoder); 1098 kfree(msto); 1099 } 1100 1101 static const struct drm_encoder_funcs 1102 nv50_msto = { 1103 .destroy = nv50_msto_destroy, 1104 }; 1105 1106 static struct nv50_msto * 1107 nv50_msto_new(struct drm_device *dev, struct nv50_head *head, int id) 1108 { 1109 struct nv50_msto *msto; 1110 int ret; 1111 1112 msto = kzalloc(sizeof(*msto), GFP_KERNEL); 1113 if (!msto) 1114 return ERR_PTR(-ENOMEM); 1115 1116 ret = drm_encoder_init(dev, &msto->encoder, &nv50_msto, 1117 DRM_MODE_ENCODER_DPMST, "mst-%d", id); 1118 if (ret) { 1119 kfree(msto); 1120 return ERR_PTR(ret); 1121 } 1122 1123 drm_encoder_helper_add(&msto->encoder, &nv50_msto_help); 1124 msto->encoder.possible_crtcs = drm_crtc_mask(&head->base.base); 1125 msto->head = head; 1126 return msto; 1127 } 1128 1129 static struct drm_encoder * 1130 nv50_mstc_atomic_best_encoder(struct drm_connector *connector, 1131 struct drm_atomic_state *state) 1132 { 1133 struct drm_connector_state *connector_state = drm_atomic_get_new_connector_state(state, 1134 connector); 1135 struct nv50_mstc *mstc = nv50_mstc(connector); 1136 struct drm_crtc *crtc = connector_state->crtc; 1137 1138 if (!(mstc->mstm->outp->dcb->heads & drm_crtc_mask(crtc))) 1139 return NULL; 1140 1141 return &nv50_head(crtc)->msto->encoder; 1142 } 1143 1144 static enum drm_mode_status 1145 nv50_mstc_mode_valid(struct drm_connector *connector, 1146 struct drm_display_mode *mode) 1147 { 1148 struct nv50_mstc *mstc = nv50_mstc(connector); 1149 struct nouveau_encoder *outp = mstc->mstm->outp; 1150 1151 /* TODO: calculate the PBN from the dotclock and validate against the 1152 * MSTB's max possible PBN 1153 */ 1154 1155 return nv50_dp_mode_valid(outp, mode, NULL); 1156 } 1157 1158 static int 1159 nv50_mstc_get_modes(struct drm_connector *connector) 1160 { 1161 struct nv50_mstc *mstc = nv50_mstc(connector); 1162 int ret = 0; 1163 1164 mstc->edid = drm_dp_mst_get_edid(&mstc->connector, mstc->port->mgr, mstc->port); 1165 drm_connector_update_edid_property(&mstc->connector, mstc->edid); 1166 if (mstc->edid) 1167 ret = drm_add_edid_modes(&mstc->connector, mstc->edid); 1168 1169 /* 1170 * XXX: Since we don't use HDR in userspace quite yet, limit the bpc 1171 * to 8 to save bandwidth on the topology. In the future, we'll want 1172 * to properly fix this by dynamically selecting the highest possible 1173 * bpc that would fit in the topology 1174 */ 1175 if (connector->display_info.bpc) 1176 connector->display_info.bpc = 1177 clamp(connector->display_info.bpc, 6U, 8U); 1178 else 1179 connector->display_info.bpc = 8; 1180 1181 if (mstc->native) 1182 drm_mode_destroy(mstc->connector.dev, mstc->native); 1183 mstc->native = nouveau_conn_native_mode(&mstc->connector); 1184 return ret; 1185 } 1186 1187 static int 1188 nv50_mstc_atomic_check(struct drm_connector *connector, 1189 struct drm_atomic_state *state) 1190 { 1191 struct nv50_mstc *mstc = nv50_mstc(connector); 1192 struct drm_dp_mst_topology_mgr *mgr = &mstc->mstm->mgr; 1193 1194 return drm_dp_atomic_release_time_slots(state, mgr, mstc->port); 1195 } 1196 1197 static int 1198 nv50_mstc_detect(struct drm_connector *connector, 1199 struct drm_modeset_acquire_ctx *ctx, bool force) 1200 { 1201 struct nv50_mstc *mstc = nv50_mstc(connector); 1202 int ret; 1203 1204 if (drm_connector_is_unregistered(connector)) 1205 return connector_status_disconnected; 1206 1207 ret = pm_runtime_get_sync(connector->dev->dev); 1208 if (ret < 0 && ret != -EACCES) { 1209 pm_runtime_put_autosuspend(connector->dev->dev); 1210 return connector_status_disconnected; 1211 } 1212 1213 ret = drm_dp_mst_detect_port(connector, ctx, mstc->port->mgr, 1214 mstc->port); 1215 if (ret != connector_status_connected) 1216 goto out; 1217 1218 out: 1219 pm_runtime_mark_last_busy(connector->dev->dev); 1220 pm_runtime_put_autosuspend(connector->dev->dev); 1221 return ret; 1222 } 1223 1224 static const struct drm_connector_helper_funcs 1225 nv50_mstc_help = { 1226 .get_modes = nv50_mstc_get_modes, 1227 .mode_valid = nv50_mstc_mode_valid, 1228 .atomic_best_encoder = nv50_mstc_atomic_best_encoder, 1229 .atomic_check = nv50_mstc_atomic_check, 1230 .detect_ctx = nv50_mstc_detect, 1231 }; 1232 1233 static void 1234 nv50_mstc_destroy(struct drm_connector *connector) 1235 { 1236 struct nv50_mstc *mstc = nv50_mstc(connector); 1237 1238 drm_connector_cleanup(&mstc->connector); 1239 drm_dp_mst_put_port_malloc(mstc->port); 1240 1241 kfree(mstc); 1242 } 1243 1244 static const struct drm_connector_funcs 1245 nv50_mstc = { 1246 .reset = nouveau_conn_reset, 1247 .fill_modes = drm_helper_probe_single_connector_modes, 1248 .destroy = nv50_mstc_destroy, 1249 .atomic_duplicate_state = nouveau_conn_atomic_duplicate_state, 1250 .atomic_destroy_state = nouveau_conn_atomic_destroy_state, 1251 .atomic_set_property = nouveau_conn_atomic_set_property, 1252 .atomic_get_property = nouveau_conn_atomic_get_property, 1253 }; 1254 1255 static int 1256 nv50_mstc_new(struct nv50_mstm *mstm, struct drm_dp_mst_port *port, 1257 const char *path, struct nv50_mstc **pmstc) 1258 { 1259 struct drm_device *dev = mstm->outp->base.base.dev; 1260 struct drm_crtc *crtc; 1261 struct nv50_mstc *mstc; 1262 int ret; 1263 1264 if (!(mstc = *pmstc = kzalloc(sizeof(*mstc), GFP_KERNEL))) 1265 return -ENOMEM; 1266 mstc->mstm = mstm; 1267 mstc->port = port; 1268 1269 ret = drm_connector_init(dev, &mstc->connector, &nv50_mstc, 1270 DRM_MODE_CONNECTOR_DisplayPort); 1271 if (ret) { 1272 kfree(*pmstc); 1273 *pmstc = NULL; 1274 return ret; 1275 } 1276 1277 drm_connector_helper_add(&mstc->connector, &nv50_mstc_help); 1278 1279 mstc->connector.funcs->reset(&mstc->connector); 1280 nouveau_conn_attach_properties(&mstc->connector); 1281 1282 drm_for_each_crtc(crtc, dev) { 1283 if (!(mstm->outp->dcb->heads & drm_crtc_mask(crtc))) 1284 continue; 1285 1286 drm_connector_attach_encoder(&mstc->connector, 1287 &nv50_head(crtc)->msto->encoder); 1288 } 1289 1290 drm_object_attach_property(&mstc->connector.base, dev->mode_config.path_property, 0); 1291 drm_object_attach_property(&mstc->connector.base, dev->mode_config.tile_property, 0); 1292 drm_connector_set_path_property(&mstc->connector, path); 1293 drm_dp_mst_get_port_malloc(port); 1294 return 0; 1295 } 1296 1297 static void 1298 nv50_mstm_cleanup(struct drm_atomic_state *state, 1299 struct drm_dp_mst_topology_state *mst_state, 1300 struct nv50_mstm *mstm) 1301 { 1302 struct nouveau_drm *drm = nouveau_drm(mstm->outp->base.base.dev); 1303 struct drm_encoder *encoder; 1304 1305 NV_ATOMIC(drm, "%s: mstm cleanup\n", mstm->outp->base.base.name); 1306 drm_dp_check_act_status(&mstm->mgr); 1307 1308 drm_for_each_encoder(encoder, mstm->outp->base.base.dev) { 1309 if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) { 1310 struct nv50_msto *msto = nv50_msto(encoder); 1311 struct nv50_mstc *mstc = msto->mstc; 1312 if (mstc && mstc->mstm == mstm) 1313 nv50_msto_cleanup(state, mst_state, &mstm->mgr, msto); 1314 } 1315 } 1316 1317 if (mstm->disabled) { 1318 nouveau_dp_power_down(mstm->outp); 1319 nvif_outp_release(&mstm->outp->outp); 1320 mstm->disabled = false; 1321 } 1322 1323 mstm->modified = false; 1324 } 1325 1326 static void 1327 nv50_mstm_prepare(struct drm_atomic_state *state, 1328 struct drm_dp_mst_topology_state *mst_state, 1329 struct nv50_mstm *mstm) 1330 { 1331 struct nouveau_drm *drm = nouveau_drm(mstm->outp->base.base.dev); 1332 struct drm_encoder *encoder; 1333 1334 NV_ATOMIC(drm, "%s: mstm prepare\n", mstm->outp->base.base.name); 1335 1336 /* Disable payloads first */ 1337 drm_for_each_encoder(encoder, mstm->outp->base.base.dev) { 1338 if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) { 1339 struct nv50_msto *msto = nv50_msto(encoder); 1340 struct nv50_mstc *mstc = msto->mstc; 1341 if (mstc && mstc->mstm == mstm && msto->disabled) 1342 nv50_msto_prepare(state, mst_state, &mstm->mgr, msto); 1343 } 1344 } 1345 1346 /* Add payloads for new heads, while also updating the start slots of any unmodified (but 1347 * active) heads that may have had their VC slots shifted left after the previous step 1348 */ 1349 drm_for_each_encoder(encoder, mstm->outp->base.base.dev) { 1350 if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) { 1351 struct nv50_msto *msto = nv50_msto(encoder); 1352 struct nv50_mstc *mstc = msto->mstc; 1353 if (mstc && mstc->mstm == mstm && !msto->disabled) 1354 nv50_msto_prepare(state, mst_state, &mstm->mgr, msto); 1355 } 1356 } 1357 } 1358 1359 static struct drm_connector * 1360 nv50_mstm_add_connector(struct drm_dp_mst_topology_mgr *mgr, 1361 struct drm_dp_mst_port *port, const char *path) 1362 { 1363 struct nv50_mstm *mstm = nv50_mstm(mgr); 1364 struct nv50_mstc *mstc; 1365 int ret; 1366 1367 ret = nv50_mstc_new(mstm, port, path, &mstc); 1368 if (ret) 1369 return NULL; 1370 1371 return &mstc->connector; 1372 } 1373 1374 static const struct drm_dp_mst_topology_cbs 1375 nv50_mstm = { 1376 .add_connector = nv50_mstm_add_connector, 1377 }; 1378 1379 bool 1380 nv50_mstm_service(struct nouveau_drm *drm, 1381 struct nouveau_connector *nv_connector, 1382 struct nv50_mstm *mstm) 1383 { 1384 struct drm_dp_aux *aux = &nv_connector->aux; 1385 bool handled = true, ret = true; 1386 int rc; 1387 u8 esi[8] = {}; 1388 1389 while (handled) { 1390 u8 ack[8] = {}; 1391 1392 rc = drm_dp_dpcd_read(aux, DP_SINK_COUNT_ESI, esi, 8); 1393 if (rc != 8) { 1394 ret = false; 1395 break; 1396 } 1397 1398 drm_dp_mst_hpd_irq_handle_event(&mstm->mgr, esi, ack, &handled); 1399 if (!handled) 1400 break; 1401 1402 rc = drm_dp_dpcd_writeb(aux, DP_SINK_COUNT_ESI + 1, ack[1]); 1403 1404 if (rc != 1) { 1405 ret = false; 1406 break; 1407 } 1408 1409 drm_dp_mst_hpd_irq_send_new_request(&mstm->mgr); 1410 } 1411 1412 if (!ret) 1413 NV_DEBUG(drm, "Failed to handle ESI on %s: %d\n", 1414 nv_connector->base.name, rc); 1415 1416 return ret; 1417 } 1418 1419 void 1420 nv50_mstm_remove(struct nv50_mstm *mstm) 1421 { 1422 mstm->is_mst = false; 1423 drm_dp_mst_topology_mgr_set_mst(&mstm->mgr, false); 1424 } 1425 1426 int 1427 nv50_mstm_detect(struct nouveau_encoder *outp) 1428 { 1429 struct nv50_mstm *mstm = outp->dp.mstm; 1430 struct drm_dp_aux *aux; 1431 int ret; 1432 1433 if (!mstm || !mstm->can_mst) 1434 return 0; 1435 1436 aux = mstm->mgr.aux; 1437 1438 /* Clear any leftover MST state we didn't set ourselves by first 1439 * disabling MST if it was already enabled 1440 */ 1441 ret = drm_dp_dpcd_writeb(aux, DP_MSTM_CTRL, 0); 1442 if (ret < 0) 1443 return ret; 1444 1445 /* And start enabling */ 1446 ret = drm_dp_mst_topology_mgr_set_mst(&mstm->mgr, true); 1447 if (ret) 1448 return ret; 1449 1450 mstm->is_mst = true; 1451 return 1; 1452 } 1453 1454 static void 1455 nv50_mstm_fini(struct nouveau_encoder *outp) 1456 { 1457 struct nv50_mstm *mstm = outp->dp.mstm; 1458 1459 if (!mstm) 1460 return; 1461 1462 /* Don't change the MST state of this connector until we've finished 1463 * resuming, since we can't safely grab hpd_irq_lock in our resume 1464 * path to protect mstm->is_mst without potentially deadlocking 1465 */ 1466 mutex_lock(&outp->dp.hpd_irq_lock); 1467 mstm->suspended = true; 1468 mutex_unlock(&outp->dp.hpd_irq_lock); 1469 1470 if (mstm->is_mst) 1471 drm_dp_mst_topology_mgr_suspend(&mstm->mgr); 1472 } 1473 1474 static void 1475 nv50_mstm_init(struct nouveau_encoder *outp, bool runtime) 1476 { 1477 struct nv50_mstm *mstm = outp->dp.mstm; 1478 int ret = 0; 1479 1480 if (!mstm) 1481 return; 1482 1483 if (mstm->is_mst) { 1484 ret = drm_dp_mst_topology_mgr_resume(&mstm->mgr, !runtime); 1485 if (ret == -1) 1486 nv50_mstm_remove(mstm); 1487 } 1488 1489 mutex_lock(&outp->dp.hpd_irq_lock); 1490 mstm->suspended = false; 1491 mutex_unlock(&outp->dp.hpd_irq_lock); 1492 1493 if (ret == -1) 1494 drm_kms_helper_hotplug_event(mstm->mgr.dev); 1495 } 1496 1497 static void 1498 nv50_mstm_del(struct nv50_mstm **pmstm) 1499 { 1500 struct nv50_mstm *mstm = *pmstm; 1501 if (mstm) { 1502 drm_dp_mst_topology_mgr_destroy(&mstm->mgr); 1503 kfree(*pmstm); 1504 *pmstm = NULL; 1505 } 1506 } 1507 1508 static int 1509 nv50_mstm_new(struct nouveau_encoder *outp, struct drm_dp_aux *aux, int aux_max, 1510 int conn_base_id, struct nv50_mstm **pmstm) 1511 { 1512 const int max_payloads = hweight8(outp->dcb->heads); 1513 struct drm_device *dev = outp->base.base.dev; 1514 struct nv50_mstm *mstm; 1515 int ret; 1516 1517 if (!(mstm = *pmstm = kzalloc(sizeof(*mstm), GFP_KERNEL))) 1518 return -ENOMEM; 1519 mstm->outp = outp; 1520 mstm->mgr.cbs = &nv50_mstm; 1521 1522 ret = drm_dp_mst_topology_mgr_init(&mstm->mgr, dev, aux, aux_max, 1523 max_payloads, conn_base_id); 1524 if (ret) 1525 return ret; 1526 1527 return 0; 1528 } 1529 1530 /****************************************************************************** 1531 * SOR 1532 *****************************************************************************/ 1533 static void 1534 nv50_sor_update(struct nouveau_encoder *nv_encoder, u8 head, 1535 struct nv50_head_atom *asyh, u8 proto, u8 depth) 1536 { 1537 struct nv50_disp *disp = nv50_disp(nv_encoder->base.base.dev); 1538 struct nv50_core *core = disp->core; 1539 1540 if (!asyh) { 1541 nv_encoder->ctrl &= ~BIT(head); 1542 if (NVDEF_TEST(nv_encoder->ctrl, NV507D, SOR_SET_CONTROL, OWNER, ==, NONE)) 1543 nv_encoder->ctrl = 0; 1544 } else { 1545 nv_encoder->ctrl |= NVVAL(NV507D, SOR_SET_CONTROL, PROTOCOL, proto); 1546 nv_encoder->ctrl |= BIT(head); 1547 asyh->or.depth = depth; 1548 } 1549 1550 core->func->sor->ctrl(core, nv_encoder->outp.or.id, nv_encoder->ctrl, asyh); 1551 } 1552 1553 /* TODO: Should we extend this to PWM-only backlights? 1554 * As well, should we add a DRM helper for waiting for the backlight to acknowledge 1555 * the panel backlight has been shut off? Intel doesn't seem to do this, and uses a 1556 * fixed time delay from the vbios… 1557 */ 1558 static void 1559 nv50_sor_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state) 1560 { 1561 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 1562 struct nv50_head *head = nv50_head(nv_encoder->crtc); 1563 #ifdef CONFIG_DRM_NOUVEAU_BACKLIGHT 1564 struct nouveau_connector *nv_connector = nv50_outp_get_old_connector(state, nv_encoder); 1565 struct nouveau_drm *drm = nouveau_drm(nv_encoder->base.base.dev); 1566 struct nouveau_backlight *backlight = nv_connector->backlight; 1567 struct drm_dp_aux *aux = &nv_connector->aux; 1568 int ret; 1569 1570 if (backlight && backlight->uses_dpcd) { 1571 ret = drm_edp_backlight_disable(aux, &backlight->edp_info); 1572 if (ret < 0) 1573 NV_ERROR(drm, "Failed to disable backlight on [CONNECTOR:%d:%s]: %d\n", 1574 nv_connector->base.base.id, nv_connector->base.name, ret); 1575 } 1576 #endif 1577 1578 if (nv_encoder->dcb->type == DCB_OUTPUT_TMDS && nv_encoder->hdmi.enabled) { 1579 nvif_outp_hdmi(&nv_encoder->outp, head->base.index, 1580 false, 0, 0, 0, false, false, false); 1581 nv_encoder->hdmi.enabled = false; 1582 } 1583 1584 if (nv_encoder->dcb->type == DCB_OUTPUT_DP) 1585 nouveau_dp_power_down(nv_encoder); 1586 1587 if (head->func->display_id) 1588 head->func->display_id(head, 0); 1589 1590 nv_encoder->update(nv_encoder, head->base.index, NULL, 0, 0); 1591 nv50_audio_disable(encoder, &head->base); 1592 nv_encoder->crtc = NULL; 1593 } 1594 1595 // common/inc/displayport/displayport.h 1596 #define DP_CONFIG_WATERMARK_ADJUST 2 1597 #define DP_CONFIG_WATERMARK_LIMIT 20 1598 #define DP_CONFIG_INCREASED_WATERMARK_ADJUST 8 1599 #define DP_CONFIG_INCREASED_WATERMARK_LIMIT 22 1600 1601 static bool 1602 nv50_sor_dp_watermark_sst(struct nouveau_encoder *outp, 1603 struct nv50_head *head, struct nv50_head_atom *asyh) 1604 { 1605 bool enhancedFraming = outp->dp.dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP; 1606 u64 minRate = outp->dp.link_bw * 1000; 1607 unsigned tuSize = 64; 1608 unsigned waterMark; 1609 unsigned hBlankSym; 1610 unsigned vBlankSym; 1611 unsigned watermarkAdjust = DP_CONFIG_WATERMARK_ADJUST; 1612 unsigned watermarkMinimum = DP_CONFIG_WATERMARK_LIMIT; 1613 // depth is multiplied by 16 in case of DSC enable 1614 s32 hblank_symbols; 1615 // number of link clocks per line. 1616 int vblank_symbols = 0; 1617 bool bEnableDsc = false; 1618 unsigned surfaceWidth = asyh->mode.h.blanks - asyh->mode.h.blanke; 1619 unsigned rasterWidth = asyh->mode.h.active; 1620 unsigned depth = asyh->or.bpc * 3; 1621 unsigned DSC_FACTOR = bEnableDsc ? 16 : 1; 1622 u64 pixelClockHz = asyh->mode.clock * 1000; 1623 u64 PrecisionFactor = 100000, ratioF, watermarkF; 1624 u32 numLanesPerLink = outp->dp.link_nr; 1625 u32 numSymbolsPerLine; 1626 u32 BlankingBits; 1627 u32 surfaceWidthPerLink; 1628 u32 PixelSteeringBits; 1629 u64 NumBlankingLinkClocks; 1630 u32 MinHBlank; 1631 1632 if (outp->outp.info.dp.increased_wm) { 1633 watermarkAdjust = DP_CONFIG_INCREASED_WATERMARK_ADJUST; 1634 watermarkMinimum = DP_CONFIG_INCREASED_WATERMARK_LIMIT; 1635 } 1636 1637 if ((pixelClockHz * depth) >= (8 * minRate * outp->dp.link_nr * DSC_FACTOR)) 1638 { 1639 return false; 1640 } 1641 1642 // 1643 // For DSC, if (pclk * bpp) < (1/64 * orclk * 8 * lanes) then some TU may end up with 1644 // 0 active symbols. This may cause HW hang. Bug 200379426 1645 // 1646 if ((bEnableDsc) && 1647 ((pixelClockHz * depth) < div_u64(8 * minRate * outp->dp.link_nr * DSC_FACTOR, 64))) 1648 { 1649 return false; 1650 } 1651 1652 // 1653 // Perform the SST calculation. 1654 // For auto mode the watermark calculation does not need to track accumulated error the 1655 // formulas for manual mode will not work. So below calculation was extracted from the DTB. 1656 // 1657 ratioF = div_u64((u64)pixelClockHz * depth * PrecisionFactor, DSC_FACTOR); 1658 1659 ratioF = div_u64(ratioF, 8 * (u64) minRate * outp->dp.link_nr); 1660 1661 if (PrecisionFactor < ratioF) // Assert if we will end up with a negative number in below 1662 return false; 1663 1664 watermarkF = div_u64(ratioF * tuSize * (PrecisionFactor - ratioF), PrecisionFactor); 1665 waterMark = (unsigned)(watermarkAdjust + (div_u64(2 * div_u64(depth * PrecisionFactor, 8 * numLanesPerLink * DSC_FACTOR) + watermarkF, PrecisionFactor))); 1666 1667 // 1668 // Bounds check the watermark 1669 // 1670 numSymbolsPerLine = div_u64(surfaceWidth * depth, 8 * outp->dp.link_nr * DSC_FACTOR); 1671 1672 if (WARN_ON(waterMark > 39 || waterMark > numSymbolsPerLine)) 1673 return false; 1674 1675 // 1676 // Clamp the low side 1677 // 1678 if (waterMark < watermarkMinimum) 1679 waterMark = watermarkMinimum; 1680 1681 //Bits to send BS/BE/Extra symbols due to pixel padding 1682 //Also accounts for enhanced framing. 1683 BlankingBits = 3*8*numLanesPerLink + (enhancedFraming ? 3*8*numLanesPerLink : 0); 1684 1685 //VBID/MVID/MAUD sent 4 times all the time 1686 BlankingBits += 3*8*4; 1687 1688 surfaceWidthPerLink = surfaceWidth; 1689 1690 //Extra bits sent due to pixel steering 1691 u32 remain; 1692 div_u64_rem(surfaceWidthPerLink, numLanesPerLink, &remain); 1693 PixelSteeringBits = remain ? div_u64((numLanesPerLink - remain) * depth, DSC_FACTOR) : 0; 1694 1695 BlankingBits += PixelSteeringBits; 1696 NumBlankingLinkClocks = div_u64((u64)BlankingBits * PrecisionFactor, (8 * numLanesPerLink)); 1697 MinHBlank = (u32)(div_u64(div_u64(NumBlankingLinkClocks * pixelClockHz, minRate), PrecisionFactor)); 1698 MinHBlank += 12; 1699 1700 if (WARN_ON(MinHBlank > rasterWidth - surfaceWidth)) 1701 return false; 1702 1703 // Bug 702290 - Active Width should be greater than 60 1704 if (WARN_ON(surfaceWidth <= 60)) 1705 return false; 1706 1707 1708 hblank_symbols = (s32)(div_u64((u64)(rasterWidth - surfaceWidth - MinHBlank) * minRate, pixelClockHz)); 1709 1710 //reduce HBlank Symbols to account for secondary data packet 1711 hblank_symbols -= 1; //Stuffer latency to send BS 1712 hblank_symbols -= 3; //SPKT latency to send data to stuffer 1713 1714 hblank_symbols -= numLanesPerLink == 1 ? 9 : numLanesPerLink == 2 ? 6 : 3; 1715 1716 hBlankSym = (hblank_symbols < 0) ? 0 : hblank_symbols; 1717 1718 // Refer to dev_disp.ref for more information. 1719 // # symbols/vblank = ((SetRasterBlankEnd.X + SetRasterSize.Width - SetRasterBlankStart.X - 40) * link_clk / pclk) - Y - 1; 1720 // where Y = (# lanes == 4) 12 : (# lanes == 2) ? 21 : 39 1721 if (surfaceWidth < 40) 1722 { 1723 vblank_symbols = 0; 1724 } 1725 else 1726 { 1727 vblank_symbols = (s32)((div_u64((u64)(surfaceWidth - 40) * minRate, pixelClockHz))) - 1; 1728 1729 vblank_symbols -= numLanesPerLink == 1 ? 39 : numLanesPerLink == 2 ? 21 : 12; 1730 } 1731 1732 vBlankSym = (vblank_symbols < 0) ? 0 : vblank_symbols; 1733 1734 return nvif_outp_dp_sst(&outp->outp, head->base.index, waterMark, hBlankSym, vBlankSym); 1735 } 1736 1737 static void 1738 nv50_sor_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state) 1739 { 1740 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 1741 struct nouveau_crtc *nv_crtc = nv50_outp_get_new_crtc(state, nv_encoder); 1742 struct nv50_head_atom *asyh = 1743 nv50_head_atom(drm_atomic_get_new_crtc_state(state, &nv_crtc->base)); 1744 struct drm_display_mode *mode = &asyh->state.adjusted_mode; 1745 struct nv50_disp *disp = nv50_disp(encoder->dev); 1746 struct nv50_head *head = nv50_head(&nv_crtc->base); 1747 struct nvif_outp *outp = &nv_encoder->outp; 1748 struct drm_device *dev = encoder->dev; 1749 struct nouveau_drm *drm = nouveau_drm(dev); 1750 struct nouveau_connector *nv_connector; 1751 #ifdef CONFIG_DRM_NOUVEAU_BACKLIGHT 1752 struct nouveau_backlight *backlight; 1753 #endif 1754 struct nvbios *bios = &drm->vbios; 1755 bool lvds_dual = false, lvds_8bpc = false, hda = false; 1756 u8 proto = NV507D_SOR_SET_CONTROL_PROTOCOL_CUSTOM; 1757 u8 depth = NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_DEFAULT; 1758 1759 nv_connector = nv50_outp_get_new_connector(state, nv_encoder); 1760 nv_encoder->crtc = &nv_crtc->base; 1761 1762 if ((disp->disp->object.oclass == GT214_DISP || 1763 disp->disp->object.oclass >= GF110_DISP) && 1764 nv_encoder->dcb->type != DCB_OUTPUT_LVDS && 1765 drm_detect_monitor_audio(nv_connector->edid)) 1766 hda = true; 1767 1768 if (!nvif_outp_acquired(outp)) 1769 nvif_outp_acquire_sor(outp, hda); 1770 1771 switch (nv_encoder->dcb->type) { 1772 case DCB_OUTPUT_TMDS: 1773 if (disp->disp->object.oclass != NV50_DISP && 1774 drm_detect_hdmi_monitor(nv_connector->edid)) 1775 nv50_hdmi_enable(encoder, nv_crtc, nv_connector, state, mode, hda); 1776 1777 if (nv_encoder->outp.or.link & 1) { 1778 proto = NV507D_SOR_SET_CONTROL_PROTOCOL_SINGLE_TMDS_A; 1779 /* Only enable dual-link if: 1780 * - Need to (i.e. rate > 165MHz) 1781 * - DCB says we can 1782 * - Not an HDMI monitor, since there's no dual-link 1783 * on HDMI. 1784 */ 1785 if (mode->clock >= 165000 && 1786 nv_encoder->dcb->duallink_possible && 1787 !drm_detect_hdmi_monitor(nv_connector->edid)) 1788 proto = NV507D_SOR_SET_CONTROL_PROTOCOL_DUAL_TMDS; 1789 } else { 1790 proto = NV507D_SOR_SET_CONTROL_PROTOCOL_SINGLE_TMDS_B; 1791 } 1792 break; 1793 case DCB_OUTPUT_LVDS: 1794 proto = NV507D_SOR_SET_CONTROL_PROTOCOL_LVDS_CUSTOM; 1795 1796 if (bios->fp_no_ddc) { 1797 lvds_dual = bios->fp.dual_link; 1798 lvds_8bpc = bios->fp.if_is_24bit; 1799 } else { 1800 if (nv_connector->type == DCB_CONNECTOR_LVDS_SPWG) { 1801 if (((u8 *)nv_connector->edid)[121] == 2) 1802 lvds_dual = true; 1803 } else 1804 if (mode->clock >= bios->fp.duallink_transition_clk) { 1805 lvds_dual = true; 1806 } 1807 1808 if (lvds_dual) { 1809 if (bios->fp.strapless_is_24bit & 2) 1810 lvds_8bpc = true; 1811 } else { 1812 if (bios->fp.strapless_is_24bit & 1) 1813 lvds_8bpc = true; 1814 } 1815 1816 if (asyh->or.bpc == 8) 1817 lvds_8bpc = true; 1818 } 1819 1820 nvif_outp_lvds(&nv_encoder->outp, lvds_dual, lvds_8bpc); 1821 break; 1822 case DCB_OUTPUT_DP: 1823 nouveau_dp_train(nv_encoder, false, mode->clock, asyh->or.bpc); 1824 nv50_sor_dp_watermark_sst(nv_encoder, head, asyh); 1825 depth = nv50_dp_bpc_to_depth(asyh->or.bpc); 1826 1827 if (nv_encoder->outp.or.link & 1) 1828 proto = NV887D_SOR_SET_CONTROL_PROTOCOL_DP_A; 1829 else 1830 proto = NV887D_SOR_SET_CONTROL_PROTOCOL_DP_B; 1831 1832 #ifdef CONFIG_DRM_NOUVEAU_BACKLIGHT 1833 backlight = nv_connector->backlight; 1834 if (backlight && backlight->uses_dpcd) 1835 drm_edp_backlight_enable(&nv_connector->aux, &backlight->edp_info, 1836 (u16)backlight->dev->props.brightness); 1837 #endif 1838 1839 break; 1840 default: 1841 BUG(); 1842 break; 1843 } 1844 1845 if (head->func->display_id) 1846 head->func->display_id(head, BIT(nv_encoder->outp.id)); 1847 1848 nv_encoder->update(nv_encoder, nv_crtc->index, asyh, proto, depth); 1849 } 1850 1851 static const struct drm_encoder_helper_funcs 1852 nv50_sor_help = { 1853 .atomic_check = nv50_outp_atomic_check, 1854 .atomic_enable = nv50_sor_atomic_enable, 1855 .atomic_disable = nv50_sor_atomic_disable, 1856 }; 1857 1858 static void 1859 nv50_sor_destroy(struct drm_encoder *encoder) 1860 { 1861 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 1862 1863 nv50_mstm_del(&nv_encoder->dp.mstm); 1864 drm_encoder_cleanup(encoder); 1865 1866 if (nv_encoder->dcb->type == DCB_OUTPUT_DP) 1867 mutex_destroy(&nv_encoder->dp.hpd_irq_lock); 1868 1869 nvif_outp_dtor(&nv_encoder->outp); 1870 kfree(encoder); 1871 } 1872 1873 static const struct drm_encoder_funcs 1874 nv50_sor_func = { 1875 .destroy = nv50_sor_destroy, 1876 }; 1877 1878 static int 1879 nv50_sor_create(struct nouveau_encoder *nv_encoder) 1880 { 1881 struct drm_connector *connector = &nv_encoder->conn->base; 1882 struct nouveau_connector *nv_connector = nouveau_connector(connector); 1883 struct nouveau_drm *drm = nouveau_drm(connector->dev); 1884 struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device); 1885 struct drm_encoder *encoder; 1886 struct dcb_output *dcbe = nv_encoder->dcb; 1887 struct nv50_disp *disp = nv50_disp(connector->dev); 1888 int type, ret; 1889 1890 switch (dcbe->type) { 1891 case DCB_OUTPUT_LVDS: type = DRM_MODE_ENCODER_LVDS; break; 1892 case DCB_OUTPUT_TMDS: 1893 case DCB_OUTPUT_DP: 1894 default: 1895 type = DRM_MODE_ENCODER_TMDS; 1896 break; 1897 } 1898 1899 nv_encoder->update = nv50_sor_update; 1900 1901 encoder = to_drm_encoder(nv_encoder); 1902 drm_encoder_init(connector->dev, encoder, &nv50_sor_func, type, 1903 "sor-%04x-%04x", dcbe->hasht, dcbe->hashm); 1904 drm_encoder_helper_add(encoder, &nv50_sor_help); 1905 1906 drm_connector_attach_encoder(connector, encoder); 1907 1908 disp->core->func->sor->get_caps(disp, nv_encoder, ffs(dcbe->or) - 1); 1909 nv50_outp_dump_caps(drm, nv_encoder); 1910 1911 if (dcbe->type == DCB_OUTPUT_DP) { 1912 mutex_init(&nv_encoder->dp.hpd_irq_lock); 1913 1914 if (disp->disp->object.oclass < GF110_DISP) { 1915 /* HW has no support for address-only 1916 * transactions, so we're required to 1917 * use custom I2C-over-AUX code. 1918 */ 1919 struct nvkm_i2c_aux *aux; 1920 1921 aux = nvkm_i2c_aux_find(i2c, dcbe->i2c_index); 1922 if (!aux) 1923 return -EINVAL; 1924 1925 nv_encoder->i2c = &aux->i2c; 1926 } else { 1927 nv_encoder->i2c = &nv_connector->aux.ddc; 1928 } 1929 1930 if (nv_connector->type != DCB_CONNECTOR_eDP && nv_encoder->outp.info.dp.mst) { 1931 ret = nv50_mstm_new(nv_encoder, &nv_connector->aux, 1932 16, nv_connector->base.base.id, 1933 &nv_encoder->dp.mstm); 1934 if (ret) 1935 return ret; 1936 } 1937 } else 1938 if (nv_encoder->outp.info.ddc != NVIF_OUTP_DDC_INVALID) { 1939 struct nvkm_i2c_bus *bus = 1940 nvkm_i2c_bus_find(i2c, dcbe->i2c_index); 1941 if (bus) 1942 nv_encoder->i2c = &bus->i2c; 1943 } 1944 1945 return 0; 1946 } 1947 1948 /****************************************************************************** 1949 * PIOR 1950 *****************************************************************************/ 1951 static int 1952 nv50_pior_atomic_check(struct drm_encoder *encoder, 1953 struct drm_crtc_state *crtc_state, 1954 struct drm_connector_state *conn_state) 1955 { 1956 int ret = nv50_outp_atomic_check(encoder, crtc_state, conn_state); 1957 if (ret) 1958 return ret; 1959 crtc_state->adjusted_mode.clock *= 2; 1960 return 0; 1961 } 1962 1963 static void 1964 nv50_pior_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state) 1965 { 1966 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 1967 struct nv50_core *core = nv50_disp(encoder->dev)->core; 1968 const u32 ctrl = NVDEF(NV507D, PIOR_SET_CONTROL, OWNER, NONE); 1969 1970 core->func->pior->ctrl(core, nv_encoder->outp.or.id, ctrl, NULL); 1971 nv_encoder->crtc = NULL; 1972 } 1973 1974 static void 1975 nv50_pior_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state) 1976 { 1977 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 1978 struct nouveau_crtc *nv_crtc = nv50_outp_get_new_crtc(state, nv_encoder); 1979 struct nv50_head_atom *asyh = 1980 nv50_head_atom(drm_atomic_get_new_crtc_state(state, &nv_crtc->base)); 1981 struct nv50_core *core = nv50_disp(encoder->dev)->core; 1982 u32 ctrl = 0; 1983 1984 switch (nv_crtc->index) { 1985 case 0: ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, OWNER, HEAD0); break; 1986 case 1: ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, OWNER, HEAD1); break; 1987 default: 1988 WARN_ON(1); 1989 break; 1990 } 1991 1992 switch (asyh->or.bpc) { 1993 case 10: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_BPP_30_444; break; 1994 case 8: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_BPP_24_444; break; 1995 case 6: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_BPP_18_444; break; 1996 default: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_DEFAULT; break; 1997 } 1998 1999 if (!nvif_outp_acquired(&nv_encoder->outp)) 2000 nvif_outp_acquire_pior(&nv_encoder->outp); 2001 2002 switch (nv_encoder->dcb->type) { 2003 case DCB_OUTPUT_TMDS: 2004 ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, PROTOCOL, EXT_TMDS_ENC); 2005 break; 2006 case DCB_OUTPUT_DP: 2007 ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, PROTOCOL, EXT_TMDS_ENC); 2008 nouveau_dp_train(nv_encoder, false, asyh->state.adjusted_mode.clock, 6); 2009 break; 2010 default: 2011 BUG(); 2012 break; 2013 } 2014 2015 core->func->pior->ctrl(core, nv_encoder->outp.or.id, ctrl, asyh); 2016 nv_encoder->crtc = &nv_crtc->base; 2017 } 2018 2019 static const struct drm_encoder_helper_funcs 2020 nv50_pior_help = { 2021 .atomic_check = nv50_pior_atomic_check, 2022 .atomic_enable = nv50_pior_atomic_enable, 2023 .atomic_disable = nv50_pior_atomic_disable, 2024 }; 2025 2026 static void 2027 nv50_pior_destroy(struct drm_encoder *encoder) 2028 { 2029 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 2030 2031 nvif_outp_dtor(&nv_encoder->outp); 2032 2033 drm_encoder_cleanup(encoder); 2034 2035 mutex_destroy(&nv_encoder->dp.hpd_irq_lock); 2036 kfree(encoder); 2037 } 2038 2039 static const struct drm_encoder_funcs 2040 nv50_pior_func = { 2041 .destroy = nv50_pior_destroy, 2042 }; 2043 2044 static int 2045 nv50_pior_create(struct nouveau_encoder *nv_encoder) 2046 { 2047 struct drm_connector *connector = &nv_encoder->conn->base; 2048 struct drm_device *dev = connector->dev; 2049 struct nouveau_drm *drm = nouveau_drm(dev); 2050 struct nv50_disp *disp = nv50_disp(dev); 2051 struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device); 2052 struct nvkm_i2c_bus *bus = NULL; 2053 struct nvkm_i2c_aux *aux = NULL; 2054 struct i2c_adapter *ddc; 2055 struct drm_encoder *encoder; 2056 struct dcb_output *dcbe = nv_encoder->dcb; 2057 int type; 2058 2059 switch (dcbe->type) { 2060 case DCB_OUTPUT_TMDS: 2061 bus = nvkm_i2c_bus_find(i2c, nv_encoder->outp.info.ddc); 2062 ddc = bus ? &bus->i2c : NULL; 2063 type = DRM_MODE_ENCODER_TMDS; 2064 break; 2065 case DCB_OUTPUT_DP: 2066 aux = nvkm_i2c_aux_find(i2c, nv_encoder->outp.info.dp.aux); 2067 ddc = aux ? &aux->i2c : NULL; 2068 type = DRM_MODE_ENCODER_TMDS; 2069 break; 2070 default: 2071 return -ENODEV; 2072 } 2073 2074 nv_encoder->i2c = ddc; 2075 2076 mutex_init(&nv_encoder->dp.hpd_irq_lock); 2077 2078 encoder = to_drm_encoder(nv_encoder); 2079 drm_encoder_init(connector->dev, encoder, &nv50_pior_func, type, 2080 "pior-%04x-%04x", dcbe->hasht, dcbe->hashm); 2081 drm_encoder_helper_add(encoder, &nv50_pior_help); 2082 2083 drm_connector_attach_encoder(connector, encoder); 2084 2085 disp->core->func->pior->get_caps(disp, nv_encoder, ffs(dcbe->or) - 1); 2086 nv50_outp_dump_caps(drm, nv_encoder); 2087 2088 return 0; 2089 } 2090 2091 /****************************************************************************** 2092 * Atomic 2093 *****************************************************************************/ 2094 2095 static void 2096 nv50_disp_atomic_commit_core(struct drm_atomic_state *state, u32 *interlock) 2097 { 2098 struct drm_dp_mst_topology_mgr *mgr; 2099 struct drm_dp_mst_topology_state *mst_state; 2100 struct nouveau_drm *drm = nouveau_drm(state->dev); 2101 struct nv50_disp *disp = nv50_disp(drm->dev); 2102 struct nv50_atom *atom = nv50_atom(state); 2103 struct nv50_core *core = disp->core; 2104 struct nv50_outp_atom *outp; 2105 struct nv50_mstm *mstm; 2106 int i; 2107 2108 NV_ATOMIC(drm, "commit core %08x\n", interlock[NV50_DISP_INTERLOCK_BASE]); 2109 2110 for_each_new_mst_mgr_in_state(state, mgr, mst_state, i) { 2111 mstm = nv50_mstm(mgr); 2112 if (mstm->modified) 2113 nv50_mstm_prepare(state, mst_state, mstm); 2114 } 2115 2116 core->func->ntfy_init(disp->sync, NV50_DISP_CORE_NTFY); 2117 core->func->update(core, interlock, true); 2118 if (core->func->ntfy_wait_done(disp->sync, NV50_DISP_CORE_NTFY, 2119 disp->core->chan.base.device)) 2120 NV_ERROR(drm, "core notifier timeout\n"); 2121 2122 for_each_new_mst_mgr_in_state(state, mgr, mst_state, i) { 2123 mstm = nv50_mstm(mgr); 2124 if (mstm->modified) 2125 nv50_mstm_cleanup(state, mst_state, mstm); 2126 } 2127 2128 list_for_each_entry(outp, &atom->outp, head) { 2129 if (outp->encoder->encoder_type != DRM_MODE_ENCODER_DPMST) { 2130 struct nouveau_encoder *nv_encoder = nouveau_encoder(outp->encoder); 2131 2132 if (outp->enabled) { 2133 nv50_audio_enable(outp->encoder, nouveau_crtc(nv_encoder->crtc), 2134 nv_encoder->conn, NULL, NULL); 2135 outp->enabled = outp->disabled = false; 2136 } else { 2137 if (outp->disabled) { 2138 nvif_outp_release(&nv_encoder->outp); 2139 outp->disabled = false; 2140 } 2141 } 2142 } 2143 } 2144 } 2145 2146 static void 2147 nv50_disp_atomic_commit_wndw(struct drm_atomic_state *state, u32 *interlock) 2148 { 2149 struct drm_plane_state *new_plane_state; 2150 struct drm_plane *plane; 2151 int i; 2152 2153 for_each_new_plane_in_state(state, plane, new_plane_state, i) { 2154 struct nv50_wndw *wndw = nv50_wndw(plane); 2155 if (interlock[wndw->interlock.type] & wndw->interlock.data) { 2156 if (wndw->func->update) 2157 wndw->func->update(wndw, interlock); 2158 } 2159 } 2160 } 2161 2162 static void 2163 nv50_disp_atomic_commit_tail(struct drm_atomic_state *state) 2164 { 2165 struct drm_device *dev = state->dev; 2166 struct drm_crtc_state *new_crtc_state, *old_crtc_state; 2167 struct drm_crtc *crtc; 2168 struct drm_plane_state *new_plane_state; 2169 struct drm_plane *plane; 2170 struct nouveau_drm *drm = nouveau_drm(dev); 2171 struct nv50_disp *disp = nv50_disp(dev); 2172 struct nv50_atom *atom = nv50_atom(state); 2173 struct nv50_core *core = disp->core; 2174 struct nv50_outp_atom *outp, *outt; 2175 u32 interlock[NV50_DISP_INTERLOCK__SIZE] = {}; 2176 int i; 2177 bool flushed = false; 2178 2179 NV_ATOMIC(drm, "commit %d %d\n", atom->lock_core, atom->flush_disable); 2180 nv50_crc_atomic_stop_reporting(state); 2181 drm_atomic_helper_wait_for_fences(dev, state, false); 2182 drm_atomic_helper_wait_for_dependencies(state); 2183 drm_dp_mst_atomic_wait_for_dependencies(state); 2184 drm_atomic_helper_update_legacy_modeset_state(dev, state); 2185 drm_atomic_helper_calc_timestamping_constants(state); 2186 2187 if (atom->lock_core) 2188 mutex_lock(&disp->mutex); 2189 2190 /* Disable head(s). */ 2191 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { 2192 struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state); 2193 struct nv50_head *head = nv50_head(crtc); 2194 2195 NV_ATOMIC(drm, "%s: clr %04x (set %04x)\n", crtc->name, 2196 asyh->clr.mask, asyh->set.mask); 2197 2198 if (old_crtc_state->active && !new_crtc_state->active) { 2199 pm_runtime_put_noidle(dev->dev); 2200 drm_crtc_vblank_off(crtc); 2201 } 2202 2203 if (asyh->clr.mask) { 2204 nv50_head_flush_clr(head, asyh, atom->flush_disable); 2205 interlock[NV50_DISP_INTERLOCK_CORE] |= 1; 2206 } 2207 } 2208 2209 /* Disable plane(s). */ 2210 for_each_new_plane_in_state(state, plane, new_plane_state, i) { 2211 struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state); 2212 struct nv50_wndw *wndw = nv50_wndw(plane); 2213 2214 NV_ATOMIC(drm, "%s: clr %02x (set %02x)\n", plane->name, 2215 asyw->clr.mask, asyw->set.mask); 2216 if (!asyw->clr.mask) 2217 continue; 2218 2219 nv50_wndw_flush_clr(wndw, interlock, atom->flush_disable, asyw); 2220 } 2221 2222 /* Disable output path(s). */ 2223 list_for_each_entry(outp, &atom->outp, head) { 2224 const struct drm_encoder_helper_funcs *help; 2225 struct drm_encoder *encoder; 2226 2227 encoder = outp->encoder; 2228 help = encoder->helper_private; 2229 2230 NV_ATOMIC(drm, "%s: clr %02x (set %02x)\n", encoder->name, 2231 outp->clr.mask, outp->set.mask); 2232 2233 if (outp->clr.mask) { 2234 help->atomic_disable(encoder, state); 2235 outp->disabled = true; 2236 interlock[NV50_DISP_INTERLOCK_CORE] |= 1; 2237 } 2238 } 2239 2240 /* Flush disable. */ 2241 if (interlock[NV50_DISP_INTERLOCK_CORE]) { 2242 if (atom->flush_disable) { 2243 nv50_disp_atomic_commit_wndw(state, interlock); 2244 nv50_disp_atomic_commit_core(state, interlock); 2245 memset(interlock, 0x00, sizeof(interlock)); 2246 2247 flushed = true; 2248 } 2249 } 2250 2251 if (flushed) 2252 nv50_crc_atomic_release_notifier_contexts(state); 2253 nv50_crc_atomic_init_notifier_contexts(state); 2254 2255 /* Update output path(s). */ 2256 list_for_each_entry(outp, &atom->outp, head) { 2257 const struct drm_encoder_helper_funcs *help; 2258 struct drm_encoder *encoder; 2259 2260 encoder = outp->encoder; 2261 help = encoder->helper_private; 2262 2263 NV_ATOMIC(drm, "%s: set %02x (clr %02x)\n", encoder->name, 2264 outp->set.mask, outp->clr.mask); 2265 2266 if (outp->set.mask) { 2267 help->atomic_enable(encoder, state); 2268 outp->enabled = true; 2269 interlock[NV50_DISP_INTERLOCK_CORE] = 1; 2270 } 2271 } 2272 2273 /* Update head(s). */ 2274 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { 2275 struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state); 2276 struct nv50_head *head = nv50_head(crtc); 2277 2278 NV_ATOMIC(drm, "%s: set %04x (clr %04x)\n", crtc->name, 2279 asyh->set.mask, asyh->clr.mask); 2280 2281 if (asyh->set.mask) { 2282 nv50_head_flush_set(head, asyh); 2283 interlock[NV50_DISP_INTERLOCK_CORE] = 1; 2284 } 2285 2286 if (new_crtc_state->active) { 2287 if (!old_crtc_state->active) { 2288 drm_crtc_vblank_on(crtc); 2289 pm_runtime_get_noresume(dev->dev); 2290 } 2291 if (new_crtc_state->event) 2292 drm_crtc_vblank_get(crtc); 2293 } 2294 } 2295 2296 /* Update window->head assignment. 2297 * 2298 * This has to happen in an update that's not interlocked with 2299 * any window channels to avoid hitting HW error checks. 2300 * 2301 *TODO: Proper handling of window ownership (Turing apparently 2302 * supports non-fixed mappings). 2303 */ 2304 if (core->assign_windows) { 2305 core->func->wndw.owner(core); 2306 nv50_disp_atomic_commit_core(state, interlock); 2307 core->assign_windows = false; 2308 interlock[NV50_DISP_INTERLOCK_CORE] = 0; 2309 } 2310 2311 /* Finish updating head(s)... 2312 * 2313 * NVD is rather picky about both where window assignments can change, 2314 * *and* about certain core and window channel states matching. 2315 * 2316 * The EFI GOP driver on newer GPUs configures window channels with a 2317 * different output format to what we do, and the core channel update 2318 * in the assign_windows case above would result in a state mismatch. 2319 * 2320 * Delay some of the head update until after that point to workaround 2321 * the issue. This only affects the initial modeset. 2322 * 2323 * TODO: handle this better when adding flexible window mapping 2324 */ 2325 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { 2326 struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state); 2327 struct nv50_head *head = nv50_head(crtc); 2328 2329 NV_ATOMIC(drm, "%s: set %04x (clr %04x)\n", crtc->name, 2330 asyh->set.mask, asyh->clr.mask); 2331 2332 if (asyh->set.mask) { 2333 nv50_head_flush_set_wndw(head, asyh); 2334 interlock[NV50_DISP_INTERLOCK_CORE] = 1; 2335 } 2336 } 2337 2338 /* Update plane(s). */ 2339 for_each_new_plane_in_state(state, plane, new_plane_state, i) { 2340 struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state); 2341 struct nv50_wndw *wndw = nv50_wndw(plane); 2342 2343 NV_ATOMIC(drm, "%s: set %02x (clr %02x)\n", plane->name, 2344 asyw->set.mask, asyw->clr.mask); 2345 if ( !asyw->set.mask && 2346 (!asyw->clr.mask || atom->flush_disable)) 2347 continue; 2348 2349 nv50_wndw_flush_set(wndw, interlock, asyw); 2350 } 2351 2352 /* Flush update. */ 2353 nv50_disp_atomic_commit_wndw(state, interlock); 2354 2355 if (interlock[NV50_DISP_INTERLOCK_CORE]) { 2356 if (interlock[NV50_DISP_INTERLOCK_BASE] || 2357 interlock[NV50_DISP_INTERLOCK_OVLY] || 2358 interlock[NV50_DISP_INTERLOCK_WNDW] || 2359 !atom->state.legacy_cursor_update) 2360 nv50_disp_atomic_commit_core(state, interlock); 2361 else 2362 disp->core->func->update(disp->core, interlock, false); 2363 } 2364 2365 if (atom->lock_core) 2366 mutex_unlock(&disp->mutex); 2367 2368 list_for_each_entry_safe(outp, outt, &atom->outp, head) { 2369 list_del(&outp->head); 2370 kfree(outp); 2371 } 2372 2373 /* Wait for HW to signal completion. */ 2374 for_each_new_plane_in_state(state, plane, new_plane_state, i) { 2375 struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state); 2376 struct nv50_wndw *wndw = nv50_wndw(plane); 2377 int ret = nv50_wndw_wait_armed(wndw, asyw); 2378 if (ret) 2379 NV_ERROR(drm, "%s: timeout\n", plane->name); 2380 } 2381 2382 for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) { 2383 if (new_crtc_state->event) { 2384 unsigned long flags; 2385 /* Get correct count/ts if racing with vblank irq */ 2386 if (new_crtc_state->active) 2387 drm_crtc_accurate_vblank_count(crtc); 2388 spin_lock_irqsave(&crtc->dev->event_lock, flags); 2389 drm_crtc_send_vblank_event(crtc, new_crtc_state->event); 2390 spin_unlock_irqrestore(&crtc->dev->event_lock, flags); 2391 2392 new_crtc_state->event = NULL; 2393 if (new_crtc_state->active) 2394 drm_crtc_vblank_put(crtc); 2395 } 2396 } 2397 2398 nv50_crc_atomic_start_reporting(state); 2399 if (!flushed) 2400 nv50_crc_atomic_release_notifier_contexts(state); 2401 2402 drm_atomic_helper_commit_hw_done(state); 2403 drm_atomic_helper_cleanup_planes(dev, state); 2404 drm_atomic_helper_commit_cleanup_done(state); 2405 drm_atomic_state_put(state); 2406 2407 /* Drop the RPM ref we got from nv50_disp_atomic_commit() */ 2408 pm_runtime_mark_last_busy(dev->dev); 2409 pm_runtime_put_autosuspend(dev->dev); 2410 } 2411 2412 static void 2413 nv50_disp_atomic_commit_work(struct work_struct *work) 2414 { 2415 struct drm_atomic_state *state = 2416 container_of(work, typeof(*state), commit_work); 2417 nv50_disp_atomic_commit_tail(state); 2418 } 2419 2420 static int 2421 nv50_disp_atomic_commit(struct drm_device *dev, 2422 struct drm_atomic_state *state, bool nonblock) 2423 { 2424 struct drm_plane_state *new_plane_state; 2425 struct drm_plane *plane; 2426 int ret, i; 2427 2428 ret = pm_runtime_get_sync(dev->dev); 2429 if (ret < 0 && ret != -EACCES) { 2430 pm_runtime_put_autosuspend(dev->dev); 2431 return ret; 2432 } 2433 2434 ret = drm_atomic_helper_setup_commit(state, nonblock); 2435 if (ret) 2436 goto done; 2437 2438 INIT_WORK(&state->commit_work, nv50_disp_atomic_commit_work); 2439 2440 ret = drm_atomic_helper_prepare_planes(dev, state); 2441 if (ret) 2442 goto done; 2443 2444 if (!nonblock) { 2445 ret = drm_atomic_helper_wait_for_fences(dev, state, true); 2446 if (ret) 2447 goto err_cleanup; 2448 } 2449 2450 ret = drm_atomic_helper_swap_state(state, true); 2451 if (ret) 2452 goto err_cleanup; 2453 2454 for_each_new_plane_in_state(state, plane, new_plane_state, i) { 2455 struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state); 2456 struct nv50_wndw *wndw = nv50_wndw(plane); 2457 2458 if (asyw->set.image) 2459 nv50_wndw_ntfy_enable(wndw, asyw); 2460 } 2461 2462 drm_atomic_state_get(state); 2463 2464 /* 2465 * Grab another RPM ref for the commit tail, which will release the 2466 * ref when it's finished 2467 */ 2468 pm_runtime_get_noresume(dev->dev); 2469 2470 if (nonblock) 2471 queue_work(system_unbound_wq, &state->commit_work); 2472 else 2473 nv50_disp_atomic_commit_tail(state); 2474 2475 err_cleanup: 2476 if (ret) 2477 drm_atomic_helper_cleanup_planes(dev, state); 2478 done: 2479 pm_runtime_put_autosuspend(dev->dev); 2480 return ret; 2481 } 2482 2483 static struct nv50_outp_atom * 2484 nv50_disp_outp_atomic_add(struct nv50_atom *atom, struct drm_encoder *encoder) 2485 { 2486 struct nv50_outp_atom *outp; 2487 2488 list_for_each_entry(outp, &atom->outp, head) { 2489 if (outp->encoder == encoder) 2490 return outp; 2491 } 2492 2493 outp = kzalloc(sizeof(*outp), GFP_KERNEL); 2494 if (!outp) 2495 return ERR_PTR(-ENOMEM); 2496 2497 list_add(&outp->head, &atom->outp); 2498 outp->encoder = encoder; 2499 return outp; 2500 } 2501 2502 static int 2503 nv50_disp_outp_atomic_check_clr(struct nv50_atom *atom, 2504 struct drm_connector_state *old_connector_state) 2505 { 2506 struct drm_encoder *encoder = old_connector_state->best_encoder; 2507 struct drm_crtc_state *old_crtc_state, *new_crtc_state; 2508 struct drm_crtc *crtc; 2509 struct nv50_outp_atom *outp; 2510 2511 if (!(crtc = old_connector_state->crtc)) 2512 return 0; 2513 2514 old_crtc_state = drm_atomic_get_old_crtc_state(&atom->state, crtc); 2515 new_crtc_state = drm_atomic_get_new_crtc_state(&atom->state, crtc); 2516 if (old_crtc_state->active && drm_atomic_crtc_needs_modeset(new_crtc_state)) { 2517 outp = nv50_disp_outp_atomic_add(atom, encoder); 2518 if (IS_ERR(outp)) 2519 return PTR_ERR(outp); 2520 2521 if (outp->encoder->encoder_type == DRM_MODE_ENCODER_DPMST || 2522 nouveau_encoder(outp->encoder)->dcb->type == DCB_OUTPUT_DP) 2523 atom->flush_disable = true; 2524 outp->clr.ctrl = true; 2525 atom->lock_core = true; 2526 } 2527 2528 return 0; 2529 } 2530 2531 static int 2532 nv50_disp_outp_atomic_check_set(struct nv50_atom *atom, 2533 struct drm_connector_state *connector_state) 2534 { 2535 struct drm_encoder *encoder = connector_state->best_encoder; 2536 struct drm_crtc_state *new_crtc_state; 2537 struct drm_crtc *crtc; 2538 struct nv50_outp_atom *outp; 2539 2540 if (!(crtc = connector_state->crtc)) 2541 return 0; 2542 2543 new_crtc_state = drm_atomic_get_new_crtc_state(&atom->state, crtc); 2544 if (new_crtc_state->active && drm_atomic_crtc_needs_modeset(new_crtc_state)) { 2545 outp = nv50_disp_outp_atomic_add(atom, encoder); 2546 if (IS_ERR(outp)) 2547 return PTR_ERR(outp); 2548 2549 outp->set.ctrl = true; 2550 atom->lock_core = true; 2551 } 2552 2553 return 0; 2554 } 2555 2556 static int 2557 nv50_disp_atomic_check(struct drm_device *dev, struct drm_atomic_state *state) 2558 { 2559 struct nv50_atom *atom = nv50_atom(state); 2560 struct nv50_core *core = nv50_disp(dev)->core; 2561 struct drm_connector_state *old_connector_state, *new_connector_state; 2562 struct drm_connector *connector; 2563 struct drm_crtc_state *new_crtc_state; 2564 struct drm_crtc *crtc; 2565 struct nv50_head *head; 2566 struct nv50_head_atom *asyh; 2567 int ret, i; 2568 2569 if (core->assign_windows && core->func->head->static_wndw_map) { 2570 drm_for_each_crtc(crtc, dev) { 2571 new_crtc_state = drm_atomic_get_crtc_state(state, 2572 crtc); 2573 if (IS_ERR(new_crtc_state)) 2574 return PTR_ERR(new_crtc_state); 2575 2576 head = nv50_head(crtc); 2577 asyh = nv50_head_atom(new_crtc_state); 2578 core->func->head->static_wndw_map(head, asyh); 2579 } 2580 } 2581 2582 /* We need to handle colour management on a per-plane basis. */ 2583 for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) { 2584 if (new_crtc_state->color_mgmt_changed) { 2585 ret = drm_atomic_add_affected_planes(state, crtc); 2586 if (ret) 2587 return ret; 2588 } 2589 } 2590 2591 ret = drm_atomic_helper_check(dev, state); 2592 if (ret) 2593 return ret; 2594 2595 for_each_oldnew_connector_in_state(state, connector, old_connector_state, new_connector_state, i) { 2596 ret = nv50_disp_outp_atomic_check_clr(atom, old_connector_state); 2597 if (ret) 2598 return ret; 2599 2600 ret = nv50_disp_outp_atomic_check_set(atom, new_connector_state); 2601 if (ret) 2602 return ret; 2603 } 2604 2605 ret = drm_dp_mst_atomic_check(state); 2606 if (ret) 2607 return ret; 2608 2609 nv50_crc_atomic_check_outp(atom); 2610 2611 return 0; 2612 } 2613 2614 static void 2615 nv50_disp_atomic_state_clear(struct drm_atomic_state *state) 2616 { 2617 struct nv50_atom *atom = nv50_atom(state); 2618 struct nv50_outp_atom *outp, *outt; 2619 2620 list_for_each_entry_safe(outp, outt, &atom->outp, head) { 2621 list_del(&outp->head); 2622 kfree(outp); 2623 } 2624 2625 drm_atomic_state_default_clear(state); 2626 } 2627 2628 static void 2629 nv50_disp_atomic_state_free(struct drm_atomic_state *state) 2630 { 2631 struct nv50_atom *atom = nv50_atom(state); 2632 drm_atomic_state_default_release(&atom->state); 2633 kfree(atom); 2634 } 2635 2636 static struct drm_atomic_state * 2637 nv50_disp_atomic_state_alloc(struct drm_device *dev) 2638 { 2639 struct nv50_atom *atom; 2640 if (!(atom = kzalloc(sizeof(*atom), GFP_KERNEL)) || 2641 drm_atomic_state_init(dev, &atom->state) < 0) { 2642 kfree(atom); 2643 return NULL; 2644 } 2645 INIT_LIST_HEAD(&atom->outp); 2646 return &atom->state; 2647 } 2648 2649 static const struct drm_mode_config_funcs 2650 nv50_disp_func = { 2651 .fb_create = nouveau_user_framebuffer_create, 2652 .output_poll_changed = drm_fb_helper_output_poll_changed, 2653 .atomic_check = nv50_disp_atomic_check, 2654 .atomic_commit = nv50_disp_atomic_commit, 2655 .atomic_state_alloc = nv50_disp_atomic_state_alloc, 2656 .atomic_state_clear = nv50_disp_atomic_state_clear, 2657 .atomic_state_free = nv50_disp_atomic_state_free, 2658 }; 2659 2660 static const struct drm_mode_config_helper_funcs 2661 nv50_disp_helper_func = { 2662 .atomic_commit_setup = drm_dp_mst_atomic_setup_commit, 2663 }; 2664 2665 /****************************************************************************** 2666 * Init 2667 *****************************************************************************/ 2668 2669 static void 2670 nv50_display_fini(struct drm_device *dev, bool runtime, bool suspend) 2671 { 2672 struct nouveau_drm *drm = nouveau_drm(dev); 2673 struct drm_encoder *encoder; 2674 2675 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) { 2676 if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) 2677 nv50_mstm_fini(nouveau_encoder(encoder)); 2678 } 2679 2680 if (!runtime) 2681 cancel_work_sync(&drm->hpd_work); 2682 } 2683 2684 static inline void 2685 nv50_display_read_hw_or_state(struct drm_device *dev, struct nv50_disp *disp, 2686 struct nouveau_encoder *outp) 2687 { 2688 struct drm_crtc *crtc; 2689 struct drm_connector_list_iter conn_iter; 2690 struct drm_connector *conn; 2691 struct nv50_head_atom *armh; 2692 const u32 encoder_mask = drm_encoder_mask(&outp->base.base); 2693 bool found_conn = false, found_head = false; 2694 u8 proto; 2695 int head_idx; 2696 int ret; 2697 2698 switch (outp->dcb->type) { 2699 case DCB_OUTPUT_TMDS: 2700 ret = nvif_outp_inherit_tmds(&outp->outp, &proto); 2701 break; 2702 case DCB_OUTPUT_DP: 2703 ret = nvif_outp_inherit_dp(&outp->outp, &proto); 2704 break; 2705 case DCB_OUTPUT_LVDS: 2706 ret = nvif_outp_inherit_lvds(&outp->outp, &proto); 2707 break; 2708 case DCB_OUTPUT_ANALOG: 2709 ret = nvif_outp_inherit_rgb_crt(&outp->outp, &proto); 2710 break; 2711 default: 2712 drm_dbg_kms(dev, "Readback for %s not implemented yet, skipping\n", 2713 outp->base.base.name); 2714 drm_WARN_ON(dev, true); 2715 return; 2716 } 2717 2718 if (ret < 0) 2719 return; 2720 2721 head_idx = ret; 2722 2723 drm_for_each_crtc(crtc, dev) { 2724 if (crtc->index != head_idx) 2725 continue; 2726 2727 armh = nv50_head_atom(crtc->state); 2728 found_head = true; 2729 break; 2730 } 2731 if (drm_WARN_ON(dev, !found_head)) 2732 return; 2733 2734 /* Figure out which connector is being used by this encoder */ 2735 drm_connector_list_iter_begin(dev, &conn_iter); 2736 nouveau_for_each_non_mst_connector_iter(conn, &conn_iter) { 2737 if (nouveau_connector(conn)->index == outp->dcb->connector) { 2738 found_conn = true; 2739 break; 2740 } 2741 } 2742 drm_connector_list_iter_end(&conn_iter); 2743 if (drm_WARN_ON(dev, !found_conn)) 2744 return; 2745 2746 armh->state.encoder_mask = encoder_mask; 2747 armh->state.connector_mask = drm_connector_mask(conn); 2748 armh->state.active = true; 2749 armh->state.enable = true; 2750 pm_runtime_get_noresume(dev->dev); 2751 2752 outp->crtc = crtc; 2753 outp->ctrl = NVVAL(NV507D, SOR_SET_CONTROL, PROTOCOL, proto) | BIT(crtc->index); 2754 2755 drm_connector_get(conn); 2756 conn->state->crtc = crtc; 2757 conn->state->best_encoder = &outp->base.base; 2758 } 2759 2760 /* Read back the currently programmed display state */ 2761 static void 2762 nv50_display_read_hw_state(struct nouveau_drm *drm) 2763 { 2764 struct drm_device *dev = drm->dev; 2765 struct drm_encoder *encoder; 2766 struct drm_modeset_acquire_ctx ctx; 2767 struct nv50_disp *disp = nv50_disp(dev); 2768 int ret; 2769 2770 DRM_MODESET_LOCK_ALL_BEGIN(dev, ctx, 0, ret); 2771 2772 drm_for_each_encoder(encoder, dev) { 2773 if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) 2774 continue; 2775 2776 nv50_display_read_hw_or_state(dev, disp, nouveau_encoder(encoder)); 2777 } 2778 2779 DRM_MODESET_LOCK_ALL_END(dev, ctx, ret); 2780 } 2781 2782 static int 2783 nv50_display_init(struct drm_device *dev, bool resume, bool runtime) 2784 { 2785 struct nv50_core *core = nv50_disp(dev)->core; 2786 struct drm_encoder *encoder; 2787 2788 if (resume || runtime) 2789 core->func->init(core); 2790 2791 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) { 2792 if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) { 2793 struct nouveau_encoder *nv_encoder = 2794 nouveau_encoder(encoder); 2795 nv50_mstm_init(nv_encoder, runtime); 2796 } 2797 } 2798 2799 if (!resume) 2800 nv50_display_read_hw_state(nouveau_drm(dev)); 2801 2802 return 0; 2803 } 2804 2805 static void 2806 nv50_display_destroy(struct drm_device *dev) 2807 { 2808 struct nv50_disp *disp = nv50_disp(dev); 2809 2810 nv50_audio_component_fini(nouveau_drm(dev)); 2811 2812 nvif_object_unmap(&disp->caps); 2813 nvif_object_dtor(&disp->caps); 2814 nv50_core_del(&disp->core); 2815 2816 nouveau_bo_unmap(disp->sync); 2817 if (disp->sync) 2818 nouveau_bo_unpin(disp->sync); 2819 nouveau_bo_ref(NULL, &disp->sync); 2820 2821 nouveau_display(dev)->priv = NULL; 2822 kfree(disp); 2823 } 2824 2825 int 2826 nv50_display_create(struct drm_device *dev) 2827 { 2828 struct nouveau_drm *drm = nouveau_drm(dev); 2829 struct drm_connector *connector, *tmp; 2830 struct nv50_disp *disp; 2831 int ret, i; 2832 bool has_mst = false; 2833 2834 disp = kzalloc(sizeof(*disp), GFP_KERNEL); 2835 if (!disp) 2836 return -ENOMEM; 2837 2838 mutex_init(&disp->mutex); 2839 2840 nouveau_display(dev)->priv = disp; 2841 nouveau_display(dev)->dtor = nv50_display_destroy; 2842 nouveau_display(dev)->init = nv50_display_init; 2843 nouveau_display(dev)->fini = nv50_display_fini; 2844 disp->disp = &nouveau_display(dev)->disp; 2845 dev->mode_config.funcs = &nv50_disp_func; 2846 dev->mode_config.helper_private = &nv50_disp_helper_func; 2847 dev->mode_config.quirk_addfb_prefer_xbgr_30bpp = true; 2848 dev->mode_config.normalize_zpos = true; 2849 2850 /* small shared memory area we use for notifiers and semaphores */ 2851 ret = nouveau_bo_new(&drm->client, 4096, 0x1000, 2852 NOUVEAU_GEM_DOMAIN_VRAM, 2853 0, 0x0000, NULL, NULL, &disp->sync); 2854 if (!ret) { 2855 ret = nouveau_bo_pin(disp->sync, NOUVEAU_GEM_DOMAIN_VRAM, true); 2856 if (!ret) { 2857 ret = nouveau_bo_map(disp->sync); 2858 if (ret) 2859 nouveau_bo_unpin(disp->sync); 2860 } 2861 if (ret) 2862 nouveau_bo_ref(NULL, &disp->sync); 2863 } 2864 2865 if (ret) 2866 goto out; 2867 2868 /* allocate master evo channel */ 2869 ret = nv50_core_new(drm, &disp->core); 2870 if (ret) 2871 goto out; 2872 2873 disp->core->func->init(disp->core); 2874 if (disp->core->func->caps_init) { 2875 ret = disp->core->func->caps_init(drm, disp); 2876 if (ret) 2877 goto out; 2878 } 2879 2880 /* Assign the correct format modifiers */ 2881 if (disp->disp->object.oclass >= TU102_DISP) 2882 nouveau_display(dev)->format_modifiers = wndwc57e_modifiers; 2883 else 2884 if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_FERMI) 2885 nouveau_display(dev)->format_modifiers = disp90xx_modifiers; 2886 else 2887 nouveau_display(dev)->format_modifiers = disp50xx_modifiers; 2888 2889 /* FIXME: 256x256 cursors are supported on Kepler, however unlike Maxwell and later 2890 * generations Kepler requires that we use small pages (4K) for cursor scanout surfaces. The 2891 * proper fix for this is to teach nouveau to migrate fbs being used for the cursor plane to 2892 * small page allocations in prepare_fb(). When this is implemented, we should also force 2893 * large pages (128K) for ovly fbs in order to fix Kepler ovlys. 2894 * But until then, just limit cursors to 128x128 - which is small enough to avoid ever using 2895 * large pages. 2896 */ 2897 if (disp->disp->object.oclass >= GM107_DISP) { 2898 dev->mode_config.cursor_width = 256; 2899 dev->mode_config.cursor_height = 256; 2900 } else if (disp->disp->object.oclass >= GK104_DISP) { 2901 dev->mode_config.cursor_width = 128; 2902 dev->mode_config.cursor_height = 128; 2903 } else { 2904 dev->mode_config.cursor_width = 64; 2905 dev->mode_config.cursor_height = 64; 2906 } 2907 2908 /* create encoder/connector objects based on VBIOS DCB table */ 2909 for_each_set_bit(i, &disp->disp->outp_mask, sizeof(disp->disp->outp_mask) * 8) { 2910 struct nouveau_encoder *outp; 2911 2912 outp = kzalloc(sizeof(*outp), GFP_KERNEL); 2913 if (!outp) 2914 break; 2915 2916 ret = nvif_outp_ctor(disp->disp, "kmsOutp", i, &outp->outp); 2917 if (ret) { 2918 kfree(outp); 2919 continue; 2920 } 2921 2922 connector = nouveau_connector_create(dev, outp->outp.info.conn); 2923 if (IS_ERR(connector)) { 2924 nvif_outp_dtor(&outp->outp); 2925 kfree(outp); 2926 continue; 2927 } 2928 2929 outp->base.base.possible_crtcs = outp->outp.info.heads; 2930 outp->base.base.possible_clones = 0; 2931 outp->conn = nouveau_connector(connector); 2932 2933 outp->dcb = kzalloc(sizeof(*outp->dcb), GFP_KERNEL); 2934 if (!outp->dcb) 2935 break; 2936 2937 switch (outp->outp.info.proto) { 2938 case NVIF_OUTP_RGB_CRT: 2939 outp->dcb->type = DCB_OUTPUT_ANALOG; 2940 outp->dcb->crtconf.maxfreq = outp->outp.info.rgb_crt.freq_max; 2941 break; 2942 case NVIF_OUTP_TMDS: 2943 outp->dcb->type = DCB_OUTPUT_TMDS; 2944 outp->dcb->duallink_possible = outp->outp.info.tmds.dual; 2945 break; 2946 case NVIF_OUTP_LVDS: 2947 outp->dcb->type = DCB_OUTPUT_LVDS; 2948 outp->dcb->lvdsconf.use_acpi_for_edid = outp->outp.info.lvds.acpi_edid; 2949 break; 2950 case NVIF_OUTP_DP: 2951 outp->dcb->type = DCB_OUTPUT_DP; 2952 outp->dcb->dpconf.link_nr = outp->outp.info.dp.link_nr; 2953 outp->dcb->dpconf.link_bw = outp->outp.info.dp.link_bw; 2954 if (outp->outp.info.dp.mst) 2955 has_mst = true; 2956 break; 2957 default: 2958 WARN_ON(1); 2959 continue; 2960 } 2961 2962 outp->dcb->heads = outp->outp.info.heads; 2963 outp->dcb->connector = outp->outp.info.conn; 2964 outp->dcb->i2c_index = outp->outp.info.ddc; 2965 2966 switch (outp->outp.info.type) { 2967 case NVIF_OUTP_DAC : ret = nv50_dac_create(outp); break; 2968 case NVIF_OUTP_SOR : ret = nv50_sor_create(outp); break; 2969 case NVIF_OUTP_PIOR: ret = nv50_pior_create(outp); break; 2970 default: 2971 WARN_ON(1); 2972 continue; 2973 } 2974 2975 if (ret) { 2976 NV_WARN(drm, "failed to create encoder %d/%d/%d: %d\n", 2977 i, outp->outp.info.type, outp->outp.info.proto, ret); 2978 } 2979 } 2980 2981 /* cull any connectors we created that don't have an encoder */ 2982 list_for_each_entry_safe(connector, tmp, &dev->mode_config.connector_list, head) { 2983 if (connector->possible_encoders) 2984 continue; 2985 2986 NV_WARN(drm, "%s has no encoders, removing\n", 2987 connector->name); 2988 connector->funcs->destroy(connector); 2989 } 2990 2991 /* create crtc objects to represent the hw heads */ 2992 for_each_set_bit(i, &disp->disp->head_mask, sizeof(disp->disp->head_mask) * 8) { 2993 struct nv50_head *head; 2994 2995 head = nv50_head_create(dev, i); 2996 if (IS_ERR(head)) { 2997 ret = PTR_ERR(head); 2998 goto out; 2999 } 3000 3001 if (has_mst) { 3002 head->msto = nv50_msto_new(dev, head, i); 3003 if (IS_ERR(head->msto)) { 3004 ret = PTR_ERR(head->msto); 3005 head->msto = NULL; 3006 goto out; 3007 } 3008 3009 /* 3010 * FIXME: This is a hack to workaround the following 3011 * issues: 3012 * 3013 * https://gitlab.gnome.org/GNOME/mutter/issues/759 3014 * https://gitlab.freedesktop.org/xorg/xserver/merge_requests/277 3015 * 3016 * Once these issues are closed, this should be 3017 * removed 3018 */ 3019 head->msto->encoder.possible_crtcs = disp->disp->head_mask; 3020 } 3021 } 3022 3023 /* Disable vblank irqs aggressively for power-saving, safe on nv50+ */ 3024 dev->vblank_disable_immediate = true; 3025 3026 nv50_audio_component_init(drm); 3027 3028 out: 3029 if (ret) 3030 nv50_display_destroy(dev); 3031 return ret; 3032 } 3033 3034 /****************************************************************************** 3035 * Format modifiers 3036 *****************************************************************************/ 3037 3038 /**************************************************************** 3039 * Log2(block height) ----------------------------+ * 3040 * Page Kind ----------------------------------+ | * 3041 * Gob Height/Page Kind Generation ------+ | | * 3042 * Sector layout -------+ | | | * 3043 * Compression ------+ | | | | */ 3044 const u64 disp50xx_modifiers[] = { /* | | | | | */ 3045 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 0), 3046 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 1), 3047 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 2), 3048 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 3), 3049 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 4), 3050 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 5), 3051 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 0), 3052 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 1), 3053 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 2), 3054 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 3), 3055 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 4), 3056 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 5), 3057 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 0), 3058 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 1), 3059 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 2), 3060 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 3), 3061 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 4), 3062 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 5), 3063 DRM_FORMAT_MOD_LINEAR, 3064 DRM_FORMAT_MOD_INVALID 3065 }; 3066 3067 /**************************************************************** 3068 * Log2(block height) ----------------------------+ * 3069 * Page Kind ----------------------------------+ | * 3070 * Gob Height/Page Kind Generation ------+ | | * 3071 * Sector layout -------+ | | | * 3072 * Compression ------+ | | | | */ 3073 const u64 disp90xx_modifiers[] = { /* | | | | | */ 3074 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 0), 3075 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 1), 3076 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 2), 3077 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 3), 3078 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 4), 3079 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 5), 3080 DRM_FORMAT_MOD_LINEAR, 3081 DRM_FORMAT_MOD_INVALID 3082 }; 3083