1 /* 2 * Copyright 2011 Red Hat Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 * 22 * Authors: Ben Skeggs 23 */ 24 #include "disp.h" 25 #include "atom.h" 26 #include "core.h" 27 #include "head.h" 28 #include "wndw.h" 29 #include "handles.h" 30 31 #include <linux/dma-mapping.h> 32 #include <linux/hdmi.h> 33 #include <linux/component.h> 34 #include <linux/iopoll.h> 35 36 #include <drm/display/drm_dp_helper.h> 37 #include <drm/display/drm_scdc_helper.h> 38 #include <drm/drm_atomic.h> 39 #include <drm/drm_atomic_helper.h> 40 #include <drm/drm_edid.h> 41 #include <drm/drm_eld.h> 42 #include <drm/drm_fb_helper.h> 43 #include <drm/drm_fixed.h> 44 #include <drm/drm_probe_helper.h> 45 #include <drm/drm_vblank.h> 46 47 #include <nvif/push507c.h> 48 49 #include <nvif/class.h> 50 #include <nvif/cl0002.h> 51 #include <nvif/event.h> 52 #include <nvif/if0012.h> 53 #include <nvif/if0014.h> 54 #include <nvif/timer.h> 55 56 #include <nvhw/class/cl507c.h> 57 #include <nvhw/class/cl507d.h> 58 #include <nvhw/class/cl837d.h> 59 #include <nvhw/class/cl887d.h> 60 #include <nvhw/class/cl907d.h> 61 #include <nvhw/class/cl917d.h> 62 63 #include "nouveau_drv.h" 64 #include "nouveau_dma.h" 65 #include "nouveau_gem.h" 66 #include "nouveau_connector.h" 67 #include "nouveau_encoder.h" 68 #include "nouveau_fence.h" 69 #include "nv50_display.h" 70 71 /****************************************************************************** 72 * EVO channel 73 *****************************************************************************/ 74 75 static int 76 nv50_chan_create(struct nvif_device *device, struct nvif_object *disp, 77 const s32 *oclass, u8 head, void *data, u32 size, 78 struct nv50_chan *chan) 79 { 80 struct nvif_sclass *sclass; 81 int ret, i, n; 82 83 chan->device = device; 84 85 ret = n = nvif_object_sclass_get(disp, &sclass); 86 if (ret < 0) 87 return ret; 88 89 while (oclass[0]) { 90 for (i = 0; i < n; i++) { 91 if (sclass[i].oclass == oclass[0]) { 92 ret = nvif_object_ctor(disp, "kmsChan", 0, 93 oclass[0], data, size, 94 &chan->user); 95 if (ret == 0) 96 nvif_object_map(&chan->user, NULL, 0); 97 nvif_object_sclass_put(&sclass); 98 return ret; 99 } 100 } 101 oclass++; 102 } 103 104 nvif_object_sclass_put(&sclass); 105 return -ENOSYS; 106 } 107 108 static void 109 nv50_chan_destroy(struct nv50_chan *chan) 110 { 111 nvif_object_dtor(&chan->user); 112 } 113 114 /****************************************************************************** 115 * DMA EVO channel 116 *****************************************************************************/ 117 118 void 119 nv50_dmac_destroy(struct nv50_dmac *dmac) 120 { 121 nvif_object_dtor(&dmac->vram); 122 nvif_object_dtor(&dmac->sync); 123 124 nv50_chan_destroy(&dmac->base); 125 126 nvif_mem_dtor(&dmac->_push.mem); 127 } 128 129 static void 130 nv50_dmac_kick(struct nvif_push *push) 131 { 132 struct nv50_dmac *dmac = container_of(push, typeof(*dmac), _push); 133 134 dmac->cur = push->cur - (u32 __iomem *)dmac->_push.mem.object.map.ptr; 135 if (dmac->put != dmac->cur) { 136 /* Push buffer fetches are not coherent with BAR1, we need to ensure 137 * writes have been flushed right through to VRAM before writing PUT. 138 */ 139 if (dmac->push->mem.type & NVIF_MEM_VRAM) { 140 struct nvif_device *device = dmac->base.device; 141 nvif_wr32(&device->object, 0x070000, 0x00000001); 142 nvif_msec(device, 2000, 143 if (!(nvif_rd32(&device->object, 0x070000) & 0x00000002)) 144 break; 145 ); 146 } 147 148 NVIF_WV32(&dmac->base.user, NV507C, PUT, PTR, dmac->cur); 149 dmac->put = dmac->cur; 150 } 151 152 push->bgn = push->cur; 153 } 154 155 static int 156 nv50_dmac_free(struct nv50_dmac *dmac) 157 { 158 u32 get = NVIF_RV32(&dmac->base.user, NV507C, GET, PTR); 159 if (get > dmac->cur) /* NVIDIA stay 5 away from GET, do the same. */ 160 return get - dmac->cur - 5; 161 return dmac->max - dmac->cur; 162 } 163 164 static int 165 nv50_dmac_wind(struct nv50_dmac *dmac) 166 { 167 /* Wait for GET to depart from the beginning of the push buffer to 168 * prevent writing PUT == GET, which would be ignored by HW. 169 */ 170 u32 get = NVIF_RV32(&dmac->base.user, NV507C, GET, PTR); 171 if (get == 0) { 172 /* Corner-case, HW idle, but non-committed work pending. */ 173 if (dmac->put == 0) 174 nv50_dmac_kick(dmac->push); 175 176 if (nvif_msec(dmac->base.device, 2000, 177 if (NVIF_TV32(&dmac->base.user, NV507C, GET, PTR, >, 0)) 178 break; 179 ) < 0) 180 return -ETIMEDOUT; 181 } 182 183 PUSH_RSVD(dmac->push, PUSH_JUMP(dmac->push, 0)); 184 dmac->cur = 0; 185 return 0; 186 } 187 188 static int 189 nv50_dmac_wait(struct nvif_push *push, u32 size) 190 { 191 struct nv50_dmac *dmac = container_of(push, typeof(*dmac), _push); 192 int free; 193 194 if (WARN_ON(size > dmac->max)) 195 return -EINVAL; 196 197 dmac->cur = push->cur - (u32 __iomem *)dmac->_push.mem.object.map.ptr; 198 if (dmac->cur + size >= dmac->max) { 199 int ret = nv50_dmac_wind(dmac); 200 if (ret) 201 return ret; 202 203 push->cur = dmac->_push.mem.object.map.ptr; 204 push->cur = push->cur + dmac->cur; 205 nv50_dmac_kick(push); 206 } 207 208 if (nvif_msec(dmac->base.device, 2000, 209 if ((free = nv50_dmac_free(dmac)) >= size) 210 break; 211 ) < 0) { 212 WARN_ON(1); 213 return -ETIMEDOUT; 214 } 215 216 push->bgn = dmac->_push.mem.object.map.ptr; 217 push->bgn = push->bgn + dmac->cur; 218 push->cur = push->bgn; 219 push->end = push->cur + free; 220 return 0; 221 } 222 223 MODULE_PARM_DESC(kms_vram_pushbuf, "Place EVO/NVD push buffers in VRAM (default: auto)"); 224 static int nv50_dmac_vram_pushbuf = -1; 225 module_param_named(kms_vram_pushbuf, nv50_dmac_vram_pushbuf, int, 0400); 226 227 int 228 nv50_dmac_create(struct nvif_device *device, struct nvif_object *disp, 229 const s32 *oclass, u8 head, void *data, u32 size, s64 syncbuf, 230 struct nv50_dmac *dmac) 231 { 232 struct nouveau_cli *cli = (void *)device->object.client; 233 struct nvif_disp_chan_v0 *args = data; 234 u8 type = NVIF_MEM_COHERENT; 235 int ret; 236 237 mutex_init(&dmac->lock); 238 239 /* Pascal added support for 47-bit physical addresses, but some 240 * parts of EVO still only accept 40-bit PAs. 241 * 242 * To avoid issues on systems with large amounts of RAM, and on 243 * systems where an IOMMU maps pages at a high address, we need 244 * to allocate push buffers in VRAM instead. 245 * 246 * This appears to match NVIDIA's behaviour on Pascal. 247 */ 248 if ((nv50_dmac_vram_pushbuf > 0) || 249 (nv50_dmac_vram_pushbuf < 0 && device->info.family == NV_DEVICE_INFO_V0_PASCAL)) 250 type |= NVIF_MEM_VRAM; 251 252 ret = nvif_mem_ctor_map(&cli->mmu, "kmsChanPush", type, 0x1000, 253 &dmac->_push.mem); 254 if (ret) 255 return ret; 256 257 dmac->ptr = dmac->_push.mem.object.map.ptr; 258 dmac->_push.wait = nv50_dmac_wait; 259 dmac->_push.kick = nv50_dmac_kick; 260 dmac->push = &dmac->_push; 261 dmac->push->bgn = dmac->_push.mem.object.map.ptr; 262 dmac->push->cur = dmac->push->bgn; 263 dmac->push->end = dmac->push->bgn; 264 dmac->max = 0x1000/4 - 1; 265 266 /* EVO channels are affected by a HW bug where the last 12 DWORDs 267 * of the push buffer aren't able to be used safely. 268 */ 269 if (disp->oclass < GV100_DISP) 270 dmac->max -= 12; 271 272 args->pushbuf = nvif_handle(&dmac->_push.mem.object); 273 274 ret = nv50_chan_create(device, disp, oclass, head, data, size, 275 &dmac->base); 276 if (ret) 277 return ret; 278 279 if (syncbuf < 0) 280 return 0; 281 282 ret = nvif_object_ctor(&dmac->base.user, "kmsSyncCtxDma", NV50_DISP_HANDLE_SYNCBUF, 283 NV_DMA_IN_MEMORY, 284 &(struct nv_dma_v0) { 285 .target = NV_DMA_V0_TARGET_VRAM, 286 .access = NV_DMA_V0_ACCESS_RDWR, 287 .start = syncbuf + 0x0000, 288 .limit = syncbuf + 0x0fff, 289 }, sizeof(struct nv_dma_v0), 290 &dmac->sync); 291 if (ret) 292 return ret; 293 294 ret = nvif_object_ctor(&dmac->base.user, "kmsVramCtxDma", NV50_DISP_HANDLE_VRAM, 295 NV_DMA_IN_MEMORY, 296 &(struct nv_dma_v0) { 297 .target = NV_DMA_V0_TARGET_VRAM, 298 .access = NV_DMA_V0_ACCESS_RDWR, 299 .start = 0, 300 .limit = device->info.ram_user - 1, 301 }, sizeof(struct nv_dma_v0), 302 &dmac->vram); 303 if (ret) 304 return ret; 305 306 return ret; 307 } 308 309 /****************************************************************************** 310 * Output path helpers 311 *****************************************************************************/ 312 static void 313 nv50_outp_dump_caps(struct nouveau_drm *drm, 314 struct nouveau_encoder *outp) 315 { 316 NV_DEBUG(drm, "%s caps: dp_interlace=%d\n", 317 outp->base.base.name, outp->caps.dp_interlace); 318 } 319 320 static int 321 nv50_outp_atomic_check_view(struct drm_encoder *encoder, 322 struct drm_crtc_state *crtc_state, 323 struct drm_connector_state *conn_state, 324 struct drm_display_mode *native_mode) 325 { 326 struct drm_display_mode *adjusted_mode = &crtc_state->adjusted_mode; 327 struct drm_display_mode *mode = &crtc_state->mode; 328 struct drm_connector *connector = conn_state->connector; 329 struct nouveau_conn_atom *asyc = nouveau_conn_atom(conn_state); 330 struct nouveau_drm *drm = nouveau_drm(encoder->dev); 331 332 NV_ATOMIC(drm, "%s atomic_check\n", encoder->name); 333 asyc->scaler.full = false; 334 if (!native_mode) 335 return 0; 336 337 if (asyc->scaler.mode == DRM_MODE_SCALE_NONE) { 338 switch (connector->connector_type) { 339 case DRM_MODE_CONNECTOR_LVDS: 340 case DRM_MODE_CONNECTOR_eDP: 341 /* Don't force scaler for EDID modes with 342 * same size as the native one (e.g. different 343 * refresh rate) 344 */ 345 if (mode->hdisplay == native_mode->hdisplay && 346 mode->vdisplay == native_mode->vdisplay && 347 mode->type & DRM_MODE_TYPE_DRIVER) 348 break; 349 mode = native_mode; 350 asyc->scaler.full = true; 351 break; 352 default: 353 break; 354 } 355 } else { 356 mode = native_mode; 357 } 358 359 if (!drm_mode_equal(adjusted_mode, mode)) { 360 drm_mode_copy(adjusted_mode, mode); 361 crtc_state->mode_changed = true; 362 } 363 364 return 0; 365 } 366 367 static void 368 nv50_outp_atomic_fix_depth(struct drm_encoder *encoder, struct drm_crtc_state *crtc_state) 369 { 370 struct nv50_head_atom *asyh = nv50_head_atom(crtc_state); 371 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 372 struct drm_display_mode *mode = &asyh->state.adjusted_mode; 373 unsigned int max_rate, mode_rate; 374 375 switch (nv_encoder->dcb->type) { 376 case DCB_OUTPUT_DP: 377 max_rate = nv_encoder->dp.link_nr * nv_encoder->dp.link_bw; 378 379 /* we don't support more than 10 anyway */ 380 asyh->or.bpc = min_t(u8, asyh->or.bpc, 10); 381 382 /* reduce the bpc until it works out */ 383 while (asyh->or.bpc > 6) { 384 mode_rate = DIV_ROUND_UP(mode->clock * asyh->or.bpc * 3, 8); 385 if (mode_rate <= max_rate) 386 break; 387 388 asyh->or.bpc -= 2; 389 } 390 break; 391 default: 392 break; 393 } 394 } 395 396 static int 397 nv50_outp_atomic_check(struct drm_encoder *encoder, 398 struct drm_crtc_state *crtc_state, 399 struct drm_connector_state *conn_state) 400 { 401 struct drm_connector *connector = conn_state->connector; 402 struct nouveau_connector *nv_connector = nouveau_connector(connector); 403 struct nv50_head_atom *asyh = nv50_head_atom(crtc_state); 404 int ret; 405 406 ret = nv50_outp_atomic_check_view(encoder, crtc_state, conn_state, 407 nv_connector->native_mode); 408 if (ret) 409 return ret; 410 411 if (crtc_state->mode_changed || crtc_state->connectors_changed) 412 asyh->or.bpc = connector->display_info.bpc; 413 414 /* We might have to reduce the bpc */ 415 nv50_outp_atomic_fix_depth(encoder, crtc_state); 416 417 return 0; 418 } 419 420 struct nouveau_connector * 421 nv50_outp_get_new_connector(struct drm_atomic_state *state, struct nouveau_encoder *outp) 422 { 423 struct drm_connector *connector; 424 struct drm_connector_state *connector_state; 425 struct drm_encoder *encoder = to_drm_encoder(outp); 426 int i; 427 428 for_each_new_connector_in_state(state, connector, connector_state, i) { 429 if (connector_state->best_encoder == encoder) 430 return nouveau_connector(connector); 431 } 432 433 return NULL; 434 } 435 436 struct nouveau_connector * 437 nv50_outp_get_old_connector(struct drm_atomic_state *state, struct nouveau_encoder *outp) 438 { 439 struct drm_connector *connector; 440 struct drm_connector_state *connector_state; 441 struct drm_encoder *encoder = to_drm_encoder(outp); 442 int i; 443 444 for_each_old_connector_in_state(state, connector, connector_state, i) { 445 if (connector_state->best_encoder == encoder) 446 return nouveau_connector(connector); 447 } 448 449 return NULL; 450 } 451 452 static struct nouveau_crtc * 453 nv50_outp_get_new_crtc(const struct drm_atomic_state *state, const struct nouveau_encoder *outp) 454 { 455 struct drm_crtc *crtc; 456 struct drm_crtc_state *crtc_state; 457 const u32 mask = drm_encoder_mask(&outp->base.base); 458 int i; 459 460 for_each_new_crtc_in_state(state, crtc, crtc_state, i) { 461 if (crtc_state->encoder_mask & mask) 462 return nouveau_crtc(crtc); 463 } 464 465 return NULL; 466 } 467 468 /****************************************************************************** 469 * DAC 470 *****************************************************************************/ 471 static void 472 nv50_dac_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state) 473 { 474 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 475 struct nv50_core *core = nv50_disp(encoder->dev)->core; 476 const u32 ctrl = NVDEF(NV507D, DAC_SET_CONTROL, OWNER, NONE); 477 478 core->func->dac->ctrl(core, nv_encoder->outp.or.id, ctrl, NULL); 479 nv_encoder->crtc = NULL; 480 } 481 482 static void 483 nv50_dac_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state) 484 { 485 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 486 struct nouveau_crtc *nv_crtc = nv50_outp_get_new_crtc(state, nv_encoder); 487 struct nv50_head_atom *asyh = 488 nv50_head_atom(drm_atomic_get_new_crtc_state(state, &nv_crtc->base)); 489 struct nv50_core *core = nv50_disp(encoder->dev)->core; 490 u32 ctrl = 0; 491 492 switch (nv_crtc->index) { 493 case 0: ctrl |= NVDEF(NV507D, DAC_SET_CONTROL, OWNER, HEAD0); break; 494 case 1: ctrl |= NVDEF(NV507D, DAC_SET_CONTROL, OWNER, HEAD1); break; 495 case 2: ctrl |= NVDEF(NV907D, DAC_SET_CONTROL, OWNER_MASK, HEAD2); break; 496 case 3: ctrl |= NVDEF(NV907D, DAC_SET_CONTROL, OWNER_MASK, HEAD3); break; 497 default: 498 WARN_ON(1); 499 break; 500 } 501 502 ctrl |= NVDEF(NV507D, DAC_SET_CONTROL, PROTOCOL, RGB_CRT); 503 504 if (!nvif_outp_acquired(&nv_encoder->outp)) 505 nvif_outp_acquire_dac(&nv_encoder->outp); 506 507 core->func->dac->ctrl(core, nv_encoder->outp.or.id, ctrl, asyh); 508 asyh->or.depth = 0; 509 510 nv_encoder->crtc = &nv_crtc->base; 511 } 512 513 static enum drm_connector_status 514 nv50_dac_detect(struct drm_encoder *encoder, struct drm_connector *connector) 515 { 516 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 517 u32 loadval; 518 int ret; 519 520 loadval = nouveau_drm(encoder->dev)->vbios.dactestval; 521 if (loadval == 0) 522 loadval = 340; 523 524 ret = nvif_outp_load_detect(&nv_encoder->outp, loadval); 525 if (ret <= 0) 526 return connector_status_disconnected; 527 528 return connector_status_connected; 529 } 530 531 static const struct drm_encoder_helper_funcs 532 nv50_dac_help = { 533 .atomic_check = nv50_outp_atomic_check, 534 .atomic_enable = nv50_dac_atomic_enable, 535 .atomic_disable = nv50_dac_atomic_disable, 536 .detect = nv50_dac_detect 537 }; 538 539 static void 540 nv50_dac_destroy(struct drm_encoder *encoder) 541 { 542 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 543 544 nvif_outp_dtor(&nv_encoder->outp); 545 546 drm_encoder_cleanup(encoder); 547 kfree(encoder); 548 } 549 550 static const struct drm_encoder_funcs 551 nv50_dac_func = { 552 .destroy = nv50_dac_destroy, 553 }; 554 555 static int 556 nv50_dac_create(struct nouveau_encoder *nv_encoder) 557 { 558 struct drm_connector *connector = &nv_encoder->conn->base; 559 struct nouveau_drm *drm = nouveau_drm(connector->dev); 560 struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device); 561 struct nvkm_i2c_bus *bus; 562 struct drm_encoder *encoder; 563 struct dcb_output *dcbe = nv_encoder->dcb; 564 int type = DRM_MODE_ENCODER_DAC; 565 566 bus = nvkm_i2c_bus_find(i2c, dcbe->i2c_index); 567 if (bus) 568 nv_encoder->i2c = &bus->i2c; 569 570 encoder = to_drm_encoder(nv_encoder); 571 drm_encoder_init(connector->dev, encoder, &nv50_dac_func, type, 572 "dac-%04x-%04x", dcbe->hasht, dcbe->hashm); 573 drm_encoder_helper_add(encoder, &nv50_dac_help); 574 575 drm_connector_attach_encoder(connector, encoder); 576 return 0; 577 } 578 579 /* 580 * audio component binding for ELD notification 581 */ 582 static void 583 nv50_audio_component_eld_notify(struct drm_audio_component *acomp, int port, 584 int dev_id) 585 { 586 if (acomp && acomp->audio_ops && acomp->audio_ops->pin_eld_notify) 587 acomp->audio_ops->pin_eld_notify(acomp->audio_ops->audio_ptr, 588 port, dev_id); 589 } 590 591 static int 592 nv50_audio_component_get_eld(struct device *kdev, int port, int dev_id, 593 bool *enabled, unsigned char *buf, int max_bytes) 594 { 595 struct drm_device *drm_dev = dev_get_drvdata(kdev); 596 struct nouveau_drm *drm = nouveau_drm(drm_dev); 597 struct drm_encoder *encoder; 598 struct nouveau_encoder *nv_encoder; 599 struct nouveau_crtc *nv_crtc; 600 int ret = 0; 601 602 *enabled = false; 603 604 mutex_lock(&drm->audio.lock); 605 606 drm_for_each_encoder(encoder, drm->dev) { 607 struct nouveau_connector *nv_connector = NULL; 608 609 if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) 610 continue; /* TODO */ 611 612 nv_encoder = nouveau_encoder(encoder); 613 nv_connector = nv_encoder->conn; 614 nv_crtc = nouveau_crtc(nv_encoder->crtc); 615 616 if (!nv_crtc || nv_encoder->outp.or.id != port || nv_crtc->index != dev_id) 617 continue; 618 619 *enabled = nv_encoder->audio.enabled; 620 if (*enabled) { 621 ret = drm_eld_size(nv_connector->base.eld); 622 memcpy(buf, nv_connector->base.eld, 623 min(max_bytes, ret)); 624 } 625 break; 626 } 627 628 mutex_unlock(&drm->audio.lock); 629 630 return ret; 631 } 632 633 static const struct drm_audio_component_ops nv50_audio_component_ops = { 634 .get_eld = nv50_audio_component_get_eld, 635 }; 636 637 static int 638 nv50_audio_component_bind(struct device *kdev, struct device *hda_kdev, 639 void *data) 640 { 641 struct drm_device *drm_dev = dev_get_drvdata(kdev); 642 struct nouveau_drm *drm = nouveau_drm(drm_dev); 643 struct drm_audio_component *acomp = data; 644 645 if (WARN_ON(!device_link_add(hda_kdev, kdev, DL_FLAG_STATELESS))) 646 return -ENOMEM; 647 648 drm_modeset_lock_all(drm_dev); 649 acomp->ops = &nv50_audio_component_ops; 650 acomp->dev = kdev; 651 drm->audio.component = acomp; 652 drm_modeset_unlock_all(drm_dev); 653 return 0; 654 } 655 656 static void 657 nv50_audio_component_unbind(struct device *kdev, struct device *hda_kdev, 658 void *data) 659 { 660 struct drm_device *drm_dev = dev_get_drvdata(kdev); 661 struct nouveau_drm *drm = nouveau_drm(drm_dev); 662 struct drm_audio_component *acomp = data; 663 664 drm_modeset_lock_all(drm_dev); 665 drm->audio.component = NULL; 666 acomp->ops = NULL; 667 acomp->dev = NULL; 668 drm_modeset_unlock_all(drm_dev); 669 } 670 671 static const struct component_ops nv50_audio_component_bind_ops = { 672 .bind = nv50_audio_component_bind, 673 .unbind = nv50_audio_component_unbind, 674 }; 675 676 static void 677 nv50_audio_component_init(struct nouveau_drm *drm) 678 { 679 if (component_add(drm->dev->dev, &nv50_audio_component_bind_ops)) 680 return; 681 682 drm->audio.component_registered = true; 683 mutex_init(&drm->audio.lock); 684 } 685 686 static void 687 nv50_audio_component_fini(struct nouveau_drm *drm) 688 { 689 if (!drm->audio.component_registered) 690 return; 691 692 component_del(drm->dev->dev, &nv50_audio_component_bind_ops); 693 drm->audio.component_registered = false; 694 mutex_destroy(&drm->audio.lock); 695 } 696 697 /****************************************************************************** 698 * Audio 699 *****************************************************************************/ 700 static bool 701 nv50_audio_supported(struct drm_encoder *encoder) 702 { 703 struct nv50_disp *disp = nv50_disp(encoder->dev); 704 705 if (disp->disp->object.oclass <= GT200_DISP || 706 disp->disp->object.oclass == GT206_DISP) 707 return false; 708 709 if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) { 710 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 711 712 switch (nv_encoder->dcb->type) { 713 case DCB_OUTPUT_TMDS: 714 case DCB_OUTPUT_DP: 715 break; 716 default: 717 return false; 718 } 719 } 720 721 return true; 722 } 723 724 static void 725 nv50_audio_disable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc) 726 { 727 struct nouveau_drm *drm = nouveau_drm(encoder->dev); 728 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 729 struct nvif_outp *outp = &nv_encoder->outp; 730 731 if (!nv50_audio_supported(encoder)) 732 return; 733 734 mutex_lock(&drm->audio.lock); 735 if (nv_encoder->audio.enabled) { 736 nv_encoder->audio.enabled = false; 737 nvif_outp_hda_eld(&nv_encoder->outp, nv_crtc->index, NULL, 0); 738 } 739 mutex_unlock(&drm->audio.lock); 740 741 nv50_audio_component_eld_notify(drm->audio.component, outp->or.id, nv_crtc->index); 742 } 743 744 static void 745 nv50_audio_enable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc, 746 struct nouveau_connector *nv_connector, struct drm_atomic_state *state, 747 struct drm_display_mode *mode) 748 { 749 struct nouveau_drm *drm = nouveau_drm(encoder->dev); 750 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 751 struct nvif_outp *outp = &nv_encoder->outp; 752 753 if (!nv50_audio_supported(encoder) || !drm_detect_monitor_audio(nv_connector->edid)) 754 return; 755 756 mutex_lock(&drm->audio.lock); 757 758 nvif_outp_hda_eld(&nv_encoder->outp, nv_crtc->index, nv_connector->base.eld, 759 drm_eld_size(nv_connector->base.eld)); 760 nv_encoder->audio.enabled = true; 761 762 mutex_unlock(&drm->audio.lock); 763 764 nv50_audio_component_eld_notify(drm->audio.component, outp->or.id, nv_crtc->index); 765 } 766 767 /****************************************************************************** 768 * HDMI 769 *****************************************************************************/ 770 static void 771 nv50_hdmi_enable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc, 772 struct nouveau_connector *nv_connector, struct drm_atomic_state *state, 773 struct drm_display_mode *mode, bool hda) 774 { 775 struct nouveau_drm *drm = nouveau_drm(encoder->dev); 776 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 777 struct drm_hdmi_info *hdmi = &nv_connector->base.display_info.hdmi; 778 union hdmi_infoframe infoframe = { 0 }; 779 const u8 rekey = 56; /* binary driver, and tegra, constant */ 780 u32 max_ac_packet; 781 struct { 782 struct nvif_outp_infoframe_v0 infoframe; 783 u8 data[17]; 784 } args = { 0 }; 785 int ret, size; 786 787 max_ac_packet = mode->htotal - mode->hdisplay; 788 max_ac_packet -= rekey; 789 max_ac_packet -= 18; /* constant from tegra */ 790 max_ac_packet /= 32; 791 792 if (nv_encoder->i2c && hdmi->scdc.scrambling.supported) { 793 const bool high_tmds_clock_ratio = mode->clock > 340000; 794 u8 scdc; 795 796 ret = drm_scdc_readb(nv_encoder->i2c, SCDC_TMDS_CONFIG, &scdc); 797 if (ret < 0) { 798 NV_ERROR(drm, "Failure to read SCDC_TMDS_CONFIG: %d\n", ret); 799 return; 800 } 801 802 scdc &= ~(SCDC_TMDS_BIT_CLOCK_RATIO_BY_40 | SCDC_SCRAMBLING_ENABLE); 803 if (high_tmds_clock_ratio || hdmi->scdc.scrambling.low_rates) 804 scdc |= SCDC_SCRAMBLING_ENABLE; 805 if (high_tmds_clock_ratio) 806 scdc |= SCDC_TMDS_BIT_CLOCK_RATIO_BY_40; 807 808 ret = drm_scdc_writeb(nv_encoder->i2c, SCDC_TMDS_CONFIG, scdc); 809 if (ret < 0) 810 NV_ERROR(drm, "Failure to write SCDC_TMDS_CONFIG = 0x%02x: %d\n", 811 scdc, ret); 812 } 813 814 ret = nvif_outp_hdmi(&nv_encoder->outp, nv_crtc->index, true, max_ac_packet, rekey, 815 mode->clock, hdmi->scdc.supported, hdmi->scdc.scrambling.supported, 816 hdmi->scdc.scrambling.low_rates); 817 if (ret) 818 return; 819 820 /* AVI InfoFrame. */ 821 args.infoframe.version = 0; 822 args.infoframe.head = nv_crtc->index; 823 824 if (!drm_hdmi_avi_infoframe_from_display_mode(&infoframe.avi, &nv_connector->base, mode)) { 825 drm_hdmi_avi_infoframe_quant_range(&infoframe.avi, &nv_connector->base, mode, 826 HDMI_QUANTIZATION_RANGE_FULL); 827 828 size = hdmi_infoframe_pack(&infoframe, args.data, ARRAY_SIZE(args.data)); 829 } else { 830 size = 0; 831 } 832 833 nvif_outp_infoframe(&nv_encoder->outp, NVIF_OUTP_INFOFRAME_V0_AVI, &args.infoframe, size); 834 835 /* Vendor InfoFrame. */ 836 memset(&args.data, 0, sizeof(args.data)); 837 if (!drm_hdmi_vendor_infoframe_from_display_mode(&infoframe.vendor.hdmi, 838 &nv_connector->base, mode)) 839 size = hdmi_infoframe_pack(&infoframe, args.data, ARRAY_SIZE(args.data)); 840 else 841 size = 0; 842 843 nvif_outp_infoframe(&nv_encoder->outp, NVIF_OUTP_INFOFRAME_V0_VSI, &args.infoframe, size); 844 845 nv_encoder->hdmi.enabled = true; 846 } 847 848 /****************************************************************************** 849 * MST 850 *****************************************************************************/ 851 #define nv50_mstm(p) container_of((p), struct nv50_mstm, mgr) 852 #define nv50_mstc(p) container_of((p), struct nv50_mstc, connector) 853 #define nv50_msto(p) container_of((p), struct nv50_msto, encoder) 854 855 struct nv50_mstc { 856 struct nv50_mstm *mstm; 857 struct drm_dp_mst_port *port; 858 struct drm_connector connector; 859 860 struct drm_display_mode *native; 861 struct edid *edid; 862 }; 863 864 struct nv50_msto { 865 struct drm_encoder encoder; 866 867 /* head is statically assigned on msto creation */ 868 struct nv50_head *head; 869 struct nv50_mstc *mstc; 870 bool disabled; 871 bool enabled; 872 873 u32 display_id; 874 }; 875 876 struct nouveau_encoder *nv50_real_outp(struct drm_encoder *encoder) 877 { 878 struct nv50_msto *msto; 879 880 if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) 881 return nouveau_encoder(encoder); 882 883 msto = nv50_msto(encoder); 884 if (!msto->mstc) 885 return NULL; 886 return msto->mstc->mstm->outp; 887 } 888 889 static void 890 nv50_msto_cleanup(struct drm_atomic_state *state, 891 struct drm_dp_mst_topology_state *new_mst_state, 892 struct drm_dp_mst_topology_mgr *mgr, 893 struct nv50_msto *msto) 894 { 895 struct nouveau_drm *drm = nouveau_drm(msto->encoder.dev); 896 struct drm_dp_mst_atomic_payload *new_payload = 897 drm_atomic_get_mst_payload_state(new_mst_state, msto->mstc->port); 898 struct drm_dp_mst_topology_state *old_mst_state = 899 drm_atomic_get_old_mst_topology_state(state, mgr); 900 const struct drm_dp_mst_atomic_payload *old_payload = 901 drm_atomic_get_mst_payload_state(old_mst_state, msto->mstc->port); 902 struct nv50_mstc *mstc = msto->mstc; 903 struct nv50_mstm *mstm = mstc->mstm; 904 905 NV_ATOMIC(drm, "%s: msto cleanup\n", msto->encoder.name); 906 907 if (msto->disabled) { 908 if (msto->head->func->display_id) { 909 nvif_outp_dp_mst_id_put(&mstm->outp->outp, msto->display_id); 910 msto->display_id = 0; 911 } 912 913 msto->mstc = NULL; 914 msto->disabled = false; 915 drm_dp_remove_payload_part2(mgr, new_mst_state, old_payload, new_payload); 916 } else if (msto->enabled) { 917 drm_dp_add_payload_part2(mgr, state, new_payload); 918 msto->enabled = false; 919 } 920 } 921 922 static void 923 nv50_msto_prepare(struct drm_atomic_state *state, 924 struct drm_dp_mst_topology_state *mst_state, 925 struct drm_dp_mst_topology_mgr *mgr, 926 struct nv50_msto *msto) 927 { 928 struct nouveau_drm *drm = nouveau_drm(msto->encoder.dev); 929 struct nv50_mstc *mstc = msto->mstc; 930 struct nv50_mstm *mstm = mstc->mstm; 931 struct drm_dp_mst_atomic_payload *payload; 932 int ret = 0; 933 934 NV_ATOMIC(drm, "%s: msto prepare\n", msto->encoder.name); 935 936 payload = drm_atomic_get_mst_payload_state(mst_state, mstc->port); 937 938 if (msto->disabled) { 939 drm_dp_remove_payload_part1(mgr, mst_state, payload); 940 nvif_outp_dp_mst_vcpi(&mstm->outp->outp, msto->head->base.index, 0, 0, 0, 0); 941 ret = 1; 942 } else { 943 if (msto->enabled) 944 ret = drm_dp_add_payload_part1(mgr, mst_state, payload); 945 } 946 947 if (ret == 0) { 948 nvif_outp_dp_mst_vcpi(&mstm->outp->outp, msto->head->base.index, 949 payload->vc_start_slot, payload->time_slots, 950 payload->pbn, 951 payload->time_slots * dfixed_trunc(mst_state->pbn_div)); 952 } else { 953 nvif_outp_dp_mst_vcpi(&mstm->outp->outp, msto->head->base.index, 0, 0, 0, 0); 954 } 955 } 956 957 static int 958 nv50_msto_atomic_check(struct drm_encoder *encoder, 959 struct drm_crtc_state *crtc_state, 960 struct drm_connector_state *conn_state) 961 { 962 struct drm_atomic_state *state = crtc_state->state; 963 struct drm_connector *connector = conn_state->connector; 964 struct drm_dp_mst_topology_state *mst_state; 965 struct nv50_mstc *mstc = nv50_mstc(connector); 966 struct nv50_mstm *mstm = mstc->mstm; 967 struct nv50_head_atom *asyh = nv50_head_atom(crtc_state); 968 int slots; 969 int ret; 970 971 ret = nv50_outp_atomic_check_view(encoder, crtc_state, conn_state, 972 mstc->native); 973 if (ret) 974 return ret; 975 976 if (!drm_atomic_crtc_needs_modeset(crtc_state)) 977 return 0; 978 979 /* 980 * When restoring duplicated states, we need to make sure that the bw 981 * remains the same and avoid recalculating it, as the connector's bpc 982 * may have changed after the state was duplicated 983 */ 984 if (!state->duplicated) { 985 const int clock = crtc_state->adjusted_mode.clock; 986 987 asyh->or.bpc = connector->display_info.bpc; 988 asyh->dp.pbn = drm_dp_calc_pbn_mode(clock, asyh->or.bpc * 3 << 4); 989 } 990 991 mst_state = drm_atomic_get_mst_topology_state(state, &mstm->mgr); 992 if (IS_ERR(mst_state)) 993 return PTR_ERR(mst_state); 994 995 if (!mst_state->pbn_div.full) { 996 struct nouveau_encoder *outp = mstc->mstm->outp; 997 998 mst_state->pbn_div = drm_dp_get_vc_payload_bw(&mstm->mgr, 999 outp->dp.link_bw, outp->dp.link_nr); 1000 } 1001 1002 slots = drm_dp_atomic_find_time_slots(state, &mstm->mgr, mstc->port, asyh->dp.pbn); 1003 if (slots < 0) 1004 return slots; 1005 1006 asyh->dp.tu = slots; 1007 1008 return 0; 1009 } 1010 1011 static u8 1012 nv50_dp_bpc_to_depth(unsigned int bpc) 1013 { 1014 switch (bpc) { 1015 case 6: return NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_BPP_18_444; 1016 case 8: return NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_BPP_24_444; 1017 case 10: 1018 default: return NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_BPP_30_444; 1019 } 1020 } 1021 1022 static void 1023 nv50_msto_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state) 1024 { 1025 struct nv50_msto *msto = nv50_msto(encoder); 1026 struct nv50_head *head = msto->head; 1027 struct nv50_head_atom *asyh = 1028 nv50_head_atom(drm_atomic_get_new_crtc_state(state, &head->base.base)); 1029 struct nv50_mstc *mstc = NULL; 1030 struct nv50_mstm *mstm = NULL; 1031 struct drm_connector *connector; 1032 struct drm_connector_list_iter conn_iter; 1033 u8 proto; 1034 1035 drm_connector_list_iter_begin(encoder->dev, &conn_iter); 1036 drm_for_each_connector_iter(connector, &conn_iter) { 1037 if (connector->state->best_encoder == &msto->encoder) { 1038 mstc = nv50_mstc(connector); 1039 mstm = mstc->mstm; 1040 break; 1041 } 1042 } 1043 drm_connector_list_iter_end(&conn_iter); 1044 1045 if (WARN_ON(!mstc)) 1046 return; 1047 1048 if (!mstm->links++) { 1049 nvif_outp_acquire_sor(&mstm->outp->outp, false /*TODO: MST audio... */); 1050 nouveau_dp_train(mstm->outp, true, 0, 0); 1051 } 1052 1053 if (head->func->display_id) { 1054 if (!WARN_ON(nvif_outp_dp_mst_id_get(&mstm->outp->outp, &msto->display_id))) 1055 head->func->display_id(head, msto->display_id); 1056 } 1057 1058 if (mstm->outp->outp.or.link & 1) 1059 proto = NV917D_SOR_SET_CONTROL_PROTOCOL_DP_A; 1060 else 1061 proto = NV917D_SOR_SET_CONTROL_PROTOCOL_DP_B; 1062 1063 mstm->outp->update(mstm->outp, head->base.index, asyh, proto, 1064 nv50_dp_bpc_to_depth(asyh->or.bpc)); 1065 1066 msto->mstc = mstc; 1067 msto->enabled = true; 1068 mstm->modified = true; 1069 } 1070 1071 static void 1072 nv50_msto_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state) 1073 { 1074 struct nv50_msto *msto = nv50_msto(encoder); 1075 struct nv50_mstc *mstc = msto->mstc; 1076 struct nv50_mstm *mstm = mstc->mstm; 1077 1078 if (msto->head->func->display_id) 1079 msto->head->func->display_id(msto->head, 0); 1080 1081 mstm->outp->update(mstm->outp, msto->head->base.index, NULL, 0, 0); 1082 mstm->modified = true; 1083 if (!--mstm->links) 1084 mstm->disabled = true; 1085 msto->disabled = true; 1086 } 1087 1088 static const struct drm_encoder_helper_funcs 1089 nv50_msto_help = { 1090 .atomic_disable = nv50_msto_atomic_disable, 1091 .atomic_enable = nv50_msto_atomic_enable, 1092 .atomic_check = nv50_msto_atomic_check, 1093 }; 1094 1095 static void 1096 nv50_msto_destroy(struct drm_encoder *encoder) 1097 { 1098 struct nv50_msto *msto = nv50_msto(encoder); 1099 drm_encoder_cleanup(&msto->encoder); 1100 kfree(msto); 1101 } 1102 1103 static const struct drm_encoder_funcs 1104 nv50_msto = { 1105 .destroy = nv50_msto_destroy, 1106 }; 1107 1108 static struct nv50_msto * 1109 nv50_msto_new(struct drm_device *dev, struct nv50_head *head, int id) 1110 { 1111 struct nv50_msto *msto; 1112 int ret; 1113 1114 msto = kzalloc(sizeof(*msto), GFP_KERNEL); 1115 if (!msto) 1116 return ERR_PTR(-ENOMEM); 1117 1118 ret = drm_encoder_init(dev, &msto->encoder, &nv50_msto, 1119 DRM_MODE_ENCODER_DPMST, "mst-%d", id); 1120 if (ret) { 1121 kfree(msto); 1122 return ERR_PTR(ret); 1123 } 1124 1125 drm_encoder_helper_add(&msto->encoder, &nv50_msto_help); 1126 msto->encoder.possible_crtcs = drm_crtc_mask(&head->base.base); 1127 msto->head = head; 1128 return msto; 1129 } 1130 1131 static struct drm_encoder * 1132 nv50_mstc_atomic_best_encoder(struct drm_connector *connector, 1133 struct drm_atomic_state *state) 1134 { 1135 struct drm_connector_state *connector_state = drm_atomic_get_new_connector_state(state, 1136 connector); 1137 struct nv50_mstc *mstc = nv50_mstc(connector); 1138 struct drm_crtc *crtc = connector_state->crtc; 1139 1140 if (!(mstc->mstm->outp->dcb->heads & drm_crtc_mask(crtc))) 1141 return NULL; 1142 1143 return &nv50_head(crtc)->msto->encoder; 1144 } 1145 1146 static enum drm_mode_status 1147 nv50_mstc_mode_valid(struct drm_connector *connector, 1148 struct drm_display_mode *mode) 1149 { 1150 struct nv50_mstc *mstc = nv50_mstc(connector); 1151 struct nouveau_encoder *outp = mstc->mstm->outp; 1152 1153 /* TODO: calculate the PBN from the dotclock and validate against the 1154 * MSTB's max possible PBN 1155 */ 1156 1157 return nv50_dp_mode_valid(outp, mode, NULL); 1158 } 1159 1160 static int 1161 nv50_mstc_get_modes(struct drm_connector *connector) 1162 { 1163 struct nv50_mstc *mstc = nv50_mstc(connector); 1164 int ret = 0; 1165 1166 mstc->edid = drm_dp_mst_get_edid(&mstc->connector, mstc->port->mgr, mstc->port); 1167 drm_connector_update_edid_property(&mstc->connector, mstc->edid); 1168 if (mstc->edid) 1169 ret = drm_add_edid_modes(&mstc->connector, mstc->edid); 1170 1171 /* 1172 * XXX: Since we don't use HDR in userspace quite yet, limit the bpc 1173 * to 8 to save bandwidth on the topology. In the future, we'll want 1174 * to properly fix this by dynamically selecting the highest possible 1175 * bpc that would fit in the topology 1176 */ 1177 if (connector->display_info.bpc) 1178 connector->display_info.bpc = 1179 clamp(connector->display_info.bpc, 6U, 8U); 1180 else 1181 connector->display_info.bpc = 8; 1182 1183 if (mstc->native) 1184 drm_mode_destroy(mstc->connector.dev, mstc->native); 1185 mstc->native = nouveau_conn_native_mode(&mstc->connector); 1186 return ret; 1187 } 1188 1189 static int 1190 nv50_mstc_atomic_check(struct drm_connector *connector, 1191 struct drm_atomic_state *state) 1192 { 1193 struct nv50_mstc *mstc = nv50_mstc(connector); 1194 struct drm_dp_mst_topology_mgr *mgr = &mstc->mstm->mgr; 1195 1196 return drm_dp_atomic_release_time_slots(state, mgr, mstc->port); 1197 } 1198 1199 static int 1200 nv50_mstc_detect(struct drm_connector *connector, 1201 struct drm_modeset_acquire_ctx *ctx, bool force) 1202 { 1203 struct nv50_mstc *mstc = nv50_mstc(connector); 1204 int ret; 1205 1206 if (drm_connector_is_unregistered(connector)) 1207 return connector_status_disconnected; 1208 1209 ret = pm_runtime_get_sync(connector->dev->dev); 1210 if (ret < 0 && ret != -EACCES) { 1211 pm_runtime_put_autosuspend(connector->dev->dev); 1212 return connector_status_disconnected; 1213 } 1214 1215 ret = drm_dp_mst_detect_port(connector, ctx, mstc->port->mgr, 1216 mstc->port); 1217 if (ret != connector_status_connected) 1218 goto out; 1219 1220 out: 1221 pm_runtime_mark_last_busy(connector->dev->dev); 1222 pm_runtime_put_autosuspend(connector->dev->dev); 1223 return ret; 1224 } 1225 1226 static const struct drm_connector_helper_funcs 1227 nv50_mstc_help = { 1228 .get_modes = nv50_mstc_get_modes, 1229 .mode_valid = nv50_mstc_mode_valid, 1230 .atomic_best_encoder = nv50_mstc_atomic_best_encoder, 1231 .atomic_check = nv50_mstc_atomic_check, 1232 .detect_ctx = nv50_mstc_detect, 1233 }; 1234 1235 static void 1236 nv50_mstc_destroy(struct drm_connector *connector) 1237 { 1238 struct nv50_mstc *mstc = nv50_mstc(connector); 1239 1240 drm_connector_cleanup(&mstc->connector); 1241 drm_dp_mst_put_port_malloc(mstc->port); 1242 1243 kfree(mstc); 1244 } 1245 1246 static const struct drm_connector_funcs 1247 nv50_mstc = { 1248 .reset = nouveau_conn_reset, 1249 .fill_modes = drm_helper_probe_single_connector_modes, 1250 .destroy = nv50_mstc_destroy, 1251 .atomic_duplicate_state = nouveau_conn_atomic_duplicate_state, 1252 .atomic_destroy_state = nouveau_conn_atomic_destroy_state, 1253 .atomic_set_property = nouveau_conn_atomic_set_property, 1254 .atomic_get_property = nouveau_conn_atomic_get_property, 1255 }; 1256 1257 static int 1258 nv50_mstc_new(struct nv50_mstm *mstm, struct drm_dp_mst_port *port, 1259 const char *path, struct nv50_mstc **pmstc) 1260 { 1261 struct drm_device *dev = mstm->outp->base.base.dev; 1262 struct drm_crtc *crtc; 1263 struct nv50_mstc *mstc; 1264 int ret; 1265 1266 if (!(mstc = *pmstc = kzalloc(sizeof(*mstc), GFP_KERNEL))) 1267 return -ENOMEM; 1268 mstc->mstm = mstm; 1269 mstc->port = port; 1270 1271 ret = drm_connector_init(dev, &mstc->connector, &nv50_mstc, 1272 DRM_MODE_CONNECTOR_DisplayPort); 1273 if (ret) { 1274 kfree(*pmstc); 1275 *pmstc = NULL; 1276 return ret; 1277 } 1278 1279 drm_connector_helper_add(&mstc->connector, &nv50_mstc_help); 1280 1281 mstc->connector.funcs->reset(&mstc->connector); 1282 nouveau_conn_attach_properties(&mstc->connector); 1283 1284 drm_for_each_crtc(crtc, dev) { 1285 if (!(mstm->outp->dcb->heads & drm_crtc_mask(crtc))) 1286 continue; 1287 1288 drm_connector_attach_encoder(&mstc->connector, 1289 &nv50_head(crtc)->msto->encoder); 1290 } 1291 1292 drm_object_attach_property(&mstc->connector.base, dev->mode_config.path_property, 0); 1293 drm_object_attach_property(&mstc->connector.base, dev->mode_config.tile_property, 0); 1294 drm_connector_set_path_property(&mstc->connector, path); 1295 drm_dp_mst_get_port_malloc(port); 1296 return 0; 1297 } 1298 1299 static void 1300 nv50_mstm_cleanup(struct drm_atomic_state *state, 1301 struct drm_dp_mst_topology_state *mst_state, 1302 struct nv50_mstm *mstm) 1303 { 1304 struct nouveau_drm *drm = nouveau_drm(mstm->outp->base.base.dev); 1305 struct drm_encoder *encoder; 1306 1307 NV_ATOMIC(drm, "%s: mstm cleanup\n", mstm->outp->base.base.name); 1308 drm_dp_check_act_status(&mstm->mgr); 1309 1310 drm_for_each_encoder(encoder, mstm->outp->base.base.dev) { 1311 if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) { 1312 struct nv50_msto *msto = nv50_msto(encoder); 1313 struct nv50_mstc *mstc = msto->mstc; 1314 if (mstc && mstc->mstm == mstm) 1315 nv50_msto_cleanup(state, mst_state, &mstm->mgr, msto); 1316 } 1317 } 1318 1319 if (mstm->disabled) { 1320 nouveau_dp_power_down(mstm->outp); 1321 nvif_outp_release(&mstm->outp->outp); 1322 mstm->disabled = false; 1323 } 1324 1325 mstm->modified = false; 1326 } 1327 1328 static void 1329 nv50_mstm_prepare(struct drm_atomic_state *state, 1330 struct drm_dp_mst_topology_state *mst_state, 1331 struct nv50_mstm *mstm) 1332 { 1333 struct nouveau_drm *drm = nouveau_drm(mstm->outp->base.base.dev); 1334 struct drm_encoder *encoder; 1335 1336 NV_ATOMIC(drm, "%s: mstm prepare\n", mstm->outp->base.base.name); 1337 1338 /* Disable payloads first */ 1339 drm_for_each_encoder(encoder, mstm->outp->base.base.dev) { 1340 if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) { 1341 struct nv50_msto *msto = nv50_msto(encoder); 1342 struct nv50_mstc *mstc = msto->mstc; 1343 if (mstc && mstc->mstm == mstm && msto->disabled) 1344 nv50_msto_prepare(state, mst_state, &mstm->mgr, msto); 1345 } 1346 } 1347 1348 /* Add payloads for new heads, while also updating the start slots of any unmodified (but 1349 * active) heads that may have had their VC slots shifted left after the previous step 1350 */ 1351 drm_for_each_encoder(encoder, mstm->outp->base.base.dev) { 1352 if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) { 1353 struct nv50_msto *msto = nv50_msto(encoder); 1354 struct nv50_mstc *mstc = msto->mstc; 1355 if (mstc && mstc->mstm == mstm && !msto->disabled) 1356 nv50_msto_prepare(state, mst_state, &mstm->mgr, msto); 1357 } 1358 } 1359 } 1360 1361 static struct drm_connector * 1362 nv50_mstm_add_connector(struct drm_dp_mst_topology_mgr *mgr, 1363 struct drm_dp_mst_port *port, const char *path) 1364 { 1365 struct nv50_mstm *mstm = nv50_mstm(mgr); 1366 struct nv50_mstc *mstc; 1367 int ret; 1368 1369 ret = nv50_mstc_new(mstm, port, path, &mstc); 1370 if (ret) 1371 return NULL; 1372 1373 return &mstc->connector; 1374 } 1375 1376 static const struct drm_dp_mst_topology_cbs 1377 nv50_mstm = { 1378 .add_connector = nv50_mstm_add_connector, 1379 }; 1380 1381 bool 1382 nv50_mstm_service(struct nouveau_drm *drm, 1383 struct nouveau_connector *nv_connector, 1384 struct nv50_mstm *mstm) 1385 { 1386 struct drm_dp_aux *aux = &nv_connector->aux; 1387 bool handled = true, ret = true; 1388 int rc; 1389 u8 esi[8] = {}; 1390 1391 while (handled) { 1392 u8 ack[8] = {}; 1393 1394 rc = drm_dp_dpcd_read(aux, DP_SINK_COUNT_ESI, esi, 8); 1395 if (rc != 8) { 1396 ret = false; 1397 break; 1398 } 1399 1400 drm_dp_mst_hpd_irq_handle_event(&mstm->mgr, esi, ack, &handled); 1401 if (!handled) 1402 break; 1403 1404 rc = drm_dp_dpcd_writeb(aux, DP_SINK_COUNT_ESI + 1, ack[1]); 1405 1406 if (rc != 1) { 1407 ret = false; 1408 break; 1409 } 1410 1411 drm_dp_mst_hpd_irq_send_new_request(&mstm->mgr); 1412 } 1413 1414 if (!ret) 1415 NV_DEBUG(drm, "Failed to handle ESI on %s: %d\n", 1416 nv_connector->base.name, rc); 1417 1418 return ret; 1419 } 1420 1421 void 1422 nv50_mstm_remove(struct nv50_mstm *mstm) 1423 { 1424 mstm->is_mst = false; 1425 drm_dp_mst_topology_mgr_set_mst(&mstm->mgr, false); 1426 } 1427 1428 int 1429 nv50_mstm_detect(struct nouveau_encoder *outp) 1430 { 1431 struct nv50_mstm *mstm = outp->dp.mstm; 1432 struct drm_dp_aux *aux; 1433 int ret; 1434 1435 if (!mstm || !mstm->can_mst) 1436 return 0; 1437 1438 aux = mstm->mgr.aux; 1439 1440 /* Clear any leftover MST state we didn't set ourselves by first 1441 * disabling MST if it was already enabled 1442 */ 1443 ret = drm_dp_dpcd_writeb(aux, DP_MSTM_CTRL, 0); 1444 if (ret < 0) 1445 return ret; 1446 1447 /* And start enabling */ 1448 ret = drm_dp_mst_topology_mgr_set_mst(&mstm->mgr, true); 1449 if (ret) 1450 return ret; 1451 1452 mstm->is_mst = true; 1453 return 1; 1454 } 1455 1456 static void 1457 nv50_mstm_fini(struct nouveau_encoder *outp) 1458 { 1459 struct nv50_mstm *mstm = outp->dp.mstm; 1460 1461 if (!mstm) 1462 return; 1463 1464 /* Don't change the MST state of this connector until we've finished 1465 * resuming, since we can't safely grab hpd_irq_lock in our resume 1466 * path to protect mstm->is_mst without potentially deadlocking 1467 */ 1468 mutex_lock(&outp->dp.hpd_irq_lock); 1469 mstm->suspended = true; 1470 mutex_unlock(&outp->dp.hpd_irq_lock); 1471 1472 if (mstm->is_mst) 1473 drm_dp_mst_topology_mgr_suspend(&mstm->mgr); 1474 } 1475 1476 static void 1477 nv50_mstm_init(struct nouveau_encoder *outp, bool runtime) 1478 { 1479 struct nv50_mstm *mstm = outp->dp.mstm; 1480 int ret = 0; 1481 1482 if (!mstm) 1483 return; 1484 1485 if (mstm->is_mst) { 1486 ret = drm_dp_mst_topology_mgr_resume(&mstm->mgr, !runtime); 1487 if (ret == -1) 1488 nv50_mstm_remove(mstm); 1489 } 1490 1491 mutex_lock(&outp->dp.hpd_irq_lock); 1492 mstm->suspended = false; 1493 mutex_unlock(&outp->dp.hpd_irq_lock); 1494 1495 if (ret == -1) 1496 drm_kms_helper_hotplug_event(mstm->mgr.dev); 1497 } 1498 1499 static void 1500 nv50_mstm_del(struct nv50_mstm **pmstm) 1501 { 1502 struct nv50_mstm *mstm = *pmstm; 1503 if (mstm) { 1504 drm_dp_mst_topology_mgr_destroy(&mstm->mgr); 1505 kfree(*pmstm); 1506 *pmstm = NULL; 1507 } 1508 } 1509 1510 static int 1511 nv50_mstm_new(struct nouveau_encoder *outp, struct drm_dp_aux *aux, int aux_max, 1512 int conn_base_id, struct nv50_mstm **pmstm) 1513 { 1514 const int max_payloads = hweight8(outp->dcb->heads); 1515 struct drm_device *dev = outp->base.base.dev; 1516 struct nv50_mstm *mstm; 1517 int ret; 1518 1519 if (!(mstm = *pmstm = kzalloc(sizeof(*mstm), GFP_KERNEL))) 1520 return -ENOMEM; 1521 mstm->outp = outp; 1522 mstm->mgr.cbs = &nv50_mstm; 1523 1524 ret = drm_dp_mst_topology_mgr_init(&mstm->mgr, dev, aux, aux_max, 1525 max_payloads, conn_base_id); 1526 if (ret) 1527 return ret; 1528 1529 return 0; 1530 } 1531 1532 /****************************************************************************** 1533 * SOR 1534 *****************************************************************************/ 1535 static void 1536 nv50_sor_update(struct nouveau_encoder *nv_encoder, u8 head, 1537 struct nv50_head_atom *asyh, u8 proto, u8 depth) 1538 { 1539 struct nv50_disp *disp = nv50_disp(nv_encoder->base.base.dev); 1540 struct nv50_core *core = disp->core; 1541 1542 if (!asyh) { 1543 nv_encoder->ctrl &= ~BIT(head); 1544 if (NVDEF_TEST(nv_encoder->ctrl, NV507D, SOR_SET_CONTROL, OWNER, ==, NONE)) 1545 nv_encoder->ctrl = 0; 1546 } else { 1547 nv_encoder->ctrl |= NVVAL(NV507D, SOR_SET_CONTROL, PROTOCOL, proto); 1548 nv_encoder->ctrl |= BIT(head); 1549 asyh->or.depth = depth; 1550 } 1551 1552 core->func->sor->ctrl(core, nv_encoder->outp.or.id, nv_encoder->ctrl, asyh); 1553 } 1554 1555 /* TODO: Should we extend this to PWM-only backlights? 1556 * As well, should we add a DRM helper for waiting for the backlight to acknowledge 1557 * the panel backlight has been shut off? Intel doesn't seem to do this, and uses a 1558 * fixed time delay from the vbios… 1559 */ 1560 static void 1561 nv50_sor_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state) 1562 { 1563 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 1564 struct nv50_head *head = nv50_head(nv_encoder->crtc); 1565 #ifdef CONFIG_DRM_NOUVEAU_BACKLIGHT 1566 struct nouveau_connector *nv_connector = nv50_outp_get_old_connector(state, nv_encoder); 1567 struct nouveau_drm *drm = nouveau_drm(nv_encoder->base.base.dev); 1568 struct nouveau_backlight *backlight = nv_connector->backlight; 1569 struct drm_dp_aux *aux = &nv_connector->aux; 1570 int ret; 1571 1572 if (backlight && backlight->uses_dpcd) { 1573 ret = drm_edp_backlight_disable(aux, &backlight->edp_info); 1574 if (ret < 0) 1575 NV_ERROR(drm, "Failed to disable backlight on [CONNECTOR:%d:%s]: %d\n", 1576 nv_connector->base.base.id, nv_connector->base.name, ret); 1577 } 1578 #endif 1579 1580 if (nv_encoder->dcb->type == DCB_OUTPUT_TMDS && nv_encoder->hdmi.enabled) { 1581 nvif_outp_hdmi(&nv_encoder->outp, head->base.index, 1582 false, 0, 0, 0, false, false, false); 1583 nv_encoder->hdmi.enabled = false; 1584 } 1585 1586 if (nv_encoder->dcb->type == DCB_OUTPUT_DP) 1587 nouveau_dp_power_down(nv_encoder); 1588 1589 if (head->func->display_id) 1590 head->func->display_id(head, 0); 1591 1592 nv_encoder->update(nv_encoder, head->base.index, NULL, 0, 0); 1593 nv50_audio_disable(encoder, &head->base); 1594 nv_encoder->crtc = NULL; 1595 } 1596 1597 // common/inc/displayport/displayport.h 1598 #define DP_CONFIG_WATERMARK_ADJUST 2 1599 #define DP_CONFIG_WATERMARK_LIMIT 20 1600 #define DP_CONFIG_INCREASED_WATERMARK_ADJUST 8 1601 #define DP_CONFIG_INCREASED_WATERMARK_LIMIT 22 1602 1603 static bool 1604 nv50_sor_dp_watermark_sst(struct nouveau_encoder *outp, 1605 struct nv50_head *head, struct nv50_head_atom *asyh) 1606 { 1607 bool enhancedFraming = outp->dp.dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP; 1608 u64 minRate = outp->dp.link_bw * 1000; 1609 unsigned tuSize = 64; 1610 unsigned waterMark; 1611 unsigned hBlankSym; 1612 unsigned vBlankSym; 1613 unsigned watermarkAdjust = DP_CONFIG_WATERMARK_ADJUST; 1614 unsigned watermarkMinimum = DP_CONFIG_WATERMARK_LIMIT; 1615 // depth is multiplied by 16 in case of DSC enable 1616 s32 hblank_symbols; 1617 // number of link clocks per line. 1618 int vblank_symbols = 0; 1619 bool bEnableDsc = false; 1620 unsigned surfaceWidth = asyh->mode.h.blanks - asyh->mode.h.blanke; 1621 unsigned rasterWidth = asyh->mode.h.active; 1622 unsigned depth = asyh->or.bpc * 3; 1623 unsigned DSC_FACTOR = bEnableDsc ? 16 : 1; 1624 u64 pixelClockHz = asyh->mode.clock * 1000; 1625 u64 PrecisionFactor = 100000, ratioF, watermarkF; 1626 u32 numLanesPerLink = outp->dp.link_nr; 1627 u32 numSymbolsPerLine; 1628 u32 BlankingBits; 1629 u32 surfaceWidthPerLink; 1630 u32 PixelSteeringBits; 1631 u64 NumBlankingLinkClocks; 1632 u32 MinHBlank; 1633 1634 if (outp->outp.info.dp.increased_wm) { 1635 watermarkAdjust = DP_CONFIG_INCREASED_WATERMARK_ADJUST; 1636 watermarkMinimum = DP_CONFIG_INCREASED_WATERMARK_LIMIT; 1637 } 1638 1639 if ((pixelClockHz * depth) >= (8 * minRate * outp->dp.link_nr * DSC_FACTOR)) 1640 { 1641 return false; 1642 } 1643 1644 // 1645 // For DSC, if (pclk * bpp) < (1/64 * orclk * 8 * lanes) then some TU may end up with 1646 // 0 active symbols. This may cause HW hang. Bug 200379426 1647 // 1648 if ((bEnableDsc) && 1649 ((pixelClockHz * depth) < div_u64(8 * minRate * outp->dp.link_nr * DSC_FACTOR, 64))) 1650 { 1651 return false; 1652 } 1653 1654 // 1655 // Perform the SST calculation. 1656 // For auto mode the watermark calculation does not need to track accumulated error the 1657 // formulas for manual mode will not work. So below calculation was extracted from the DTB. 1658 // 1659 ratioF = div_u64((u64)pixelClockHz * depth * PrecisionFactor, DSC_FACTOR); 1660 1661 ratioF = div_u64(ratioF, 8 * (u64) minRate * outp->dp.link_nr); 1662 1663 if (PrecisionFactor < ratioF) // Assert if we will end up with a negative number in below 1664 return false; 1665 1666 watermarkF = div_u64(ratioF * tuSize * (PrecisionFactor - ratioF), PrecisionFactor); 1667 waterMark = (unsigned)(watermarkAdjust + (div_u64(2 * div_u64(depth * PrecisionFactor, 8 * numLanesPerLink * DSC_FACTOR) + watermarkF, PrecisionFactor))); 1668 1669 // 1670 // Bounds check the watermark 1671 // 1672 numSymbolsPerLine = div_u64(surfaceWidth * depth, 8 * outp->dp.link_nr * DSC_FACTOR); 1673 1674 if (WARN_ON(waterMark > 39 || waterMark > numSymbolsPerLine)) 1675 return false; 1676 1677 // 1678 // Clamp the low side 1679 // 1680 if (waterMark < watermarkMinimum) 1681 waterMark = watermarkMinimum; 1682 1683 //Bits to send BS/BE/Extra symbols due to pixel padding 1684 //Also accounts for enhanced framing. 1685 BlankingBits = 3*8*numLanesPerLink + (enhancedFraming ? 3*8*numLanesPerLink : 0); 1686 1687 //VBID/MVID/MAUD sent 4 times all the time 1688 BlankingBits += 3*8*4; 1689 1690 surfaceWidthPerLink = surfaceWidth; 1691 1692 //Extra bits sent due to pixel steering 1693 u32 remain; 1694 div_u64_rem(surfaceWidthPerLink, numLanesPerLink, &remain); 1695 PixelSteeringBits = remain ? div_u64((numLanesPerLink - remain) * depth, DSC_FACTOR) : 0; 1696 1697 BlankingBits += PixelSteeringBits; 1698 NumBlankingLinkClocks = div_u64((u64)BlankingBits * PrecisionFactor, (8 * numLanesPerLink)); 1699 MinHBlank = (u32)(div_u64(div_u64(NumBlankingLinkClocks * pixelClockHz, minRate), PrecisionFactor)); 1700 MinHBlank += 12; 1701 1702 if (WARN_ON(MinHBlank > rasterWidth - surfaceWidth)) 1703 return false; 1704 1705 // Bug 702290 - Active Width should be greater than 60 1706 if (WARN_ON(surfaceWidth <= 60)) 1707 return false; 1708 1709 1710 hblank_symbols = (s32)(div_u64((u64)(rasterWidth - surfaceWidth - MinHBlank) * minRate, pixelClockHz)); 1711 1712 //reduce HBlank Symbols to account for secondary data packet 1713 hblank_symbols -= 1; //Stuffer latency to send BS 1714 hblank_symbols -= 3; //SPKT latency to send data to stuffer 1715 1716 hblank_symbols -= numLanesPerLink == 1 ? 9 : numLanesPerLink == 2 ? 6 : 3; 1717 1718 hBlankSym = (hblank_symbols < 0) ? 0 : hblank_symbols; 1719 1720 // Refer to dev_disp.ref for more information. 1721 // # symbols/vblank = ((SetRasterBlankEnd.X + SetRasterSize.Width - SetRasterBlankStart.X - 40) * link_clk / pclk) - Y - 1; 1722 // where Y = (# lanes == 4) 12 : (# lanes == 2) ? 21 : 39 1723 if (surfaceWidth < 40) 1724 { 1725 vblank_symbols = 0; 1726 } 1727 else 1728 { 1729 vblank_symbols = (s32)((div_u64((u64)(surfaceWidth - 40) * minRate, pixelClockHz))) - 1; 1730 1731 vblank_symbols -= numLanesPerLink == 1 ? 39 : numLanesPerLink == 2 ? 21 : 12; 1732 } 1733 1734 vBlankSym = (vblank_symbols < 0) ? 0 : vblank_symbols; 1735 1736 return nvif_outp_dp_sst(&outp->outp, head->base.index, waterMark, hBlankSym, vBlankSym); 1737 } 1738 1739 static void 1740 nv50_sor_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state) 1741 { 1742 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 1743 struct nouveau_crtc *nv_crtc = nv50_outp_get_new_crtc(state, nv_encoder); 1744 struct nv50_head_atom *asyh = 1745 nv50_head_atom(drm_atomic_get_new_crtc_state(state, &nv_crtc->base)); 1746 struct drm_display_mode *mode = &asyh->state.adjusted_mode; 1747 struct nv50_disp *disp = nv50_disp(encoder->dev); 1748 struct nv50_head *head = nv50_head(&nv_crtc->base); 1749 struct nvif_outp *outp = &nv_encoder->outp; 1750 struct drm_device *dev = encoder->dev; 1751 struct nouveau_drm *drm = nouveau_drm(dev); 1752 struct nouveau_connector *nv_connector; 1753 #ifdef CONFIG_DRM_NOUVEAU_BACKLIGHT 1754 struct nouveau_backlight *backlight; 1755 #endif 1756 struct nvbios *bios = &drm->vbios; 1757 bool lvds_dual = false, lvds_8bpc = false, hda = false; 1758 u8 proto = NV507D_SOR_SET_CONTROL_PROTOCOL_CUSTOM; 1759 u8 depth = NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_DEFAULT; 1760 1761 nv_connector = nv50_outp_get_new_connector(state, nv_encoder); 1762 nv_encoder->crtc = &nv_crtc->base; 1763 1764 if ((disp->disp->object.oclass == GT214_DISP || 1765 disp->disp->object.oclass >= GF110_DISP) && 1766 nv_encoder->dcb->type != DCB_OUTPUT_LVDS && 1767 drm_detect_monitor_audio(nv_connector->edid)) 1768 hda = true; 1769 1770 if (!nvif_outp_acquired(outp)) 1771 nvif_outp_acquire_sor(outp, hda); 1772 1773 switch (nv_encoder->dcb->type) { 1774 case DCB_OUTPUT_TMDS: 1775 if (disp->disp->object.oclass != NV50_DISP && 1776 drm_detect_hdmi_monitor(nv_connector->edid)) 1777 nv50_hdmi_enable(encoder, nv_crtc, nv_connector, state, mode, hda); 1778 1779 if (nv_encoder->outp.or.link & 1) { 1780 proto = NV507D_SOR_SET_CONTROL_PROTOCOL_SINGLE_TMDS_A; 1781 /* Only enable dual-link if: 1782 * - Need to (i.e. rate > 165MHz) 1783 * - DCB says we can 1784 * - Not an HDMI monitor, since there's no dual-link 1785 * on HDMI. 1786 */ 1787 if (mode->clock >= 165000 && 1788 nv_encoder->dcb->duallink_possible && 1789 !drm_detect_hdmi_monitor(nv_connector->edid)) 1790 proto = NV507D_SOR_SET_CONTROL_PROTOCOL_DUAL_TMDS; 1791 } else { 1792 proto = NV507D_SOR_SET_CONTROL_PROTOCOL_SINGLE_TMDS_B; 1793 } 1794 break; 1795 case DCB_OUTPUT_LVDS: 1796 proto = NV507D_SOR_SET_CONTROL_PROTOCOL_LVDS_CUSTOM; 1797 1798 if (bios->fp_no_ddc) { 1799 lvds_dual = bios->fp.dual_link; 1800 lvds_8bpc = bios->fp.if_is_24bit; 1801 } else { 1802 if (nv_connector->type == DCB_CONNECTOR_LVDS_SPWG) { 1803 if (((u8 *)nv_connector->edid)[121] == 2) 1804 lvds_dual = true; 1805 } else 1806 if (mode->clock >= bios->fp.duallink_transition_clk) { 1807 lvds_dual = true; 1808 } 1809 1810 if (lvds_dual) { 1811 if (bios->fp.strapless_is_24bit & 2) 1812 lvds_8bpc = true; 1813 } else { 1814 if (bios->fp.strapless_is_24bit & 1) 1815 lvds_8bpc = true; 1816 } 1817 1818 if (asyh->or.bpc == 8) 1819 lvds_8bpc = true; 1820 } 1821 1822 nvif_outp_lvds(&nv_encoder->outp, lvds_dual, lvds_8bpc); 1823 break; 1824 case DCB_OUTPUT_DP: 1825 nouveau_dp_train(nv_encoder, false, mode->clock, asyh->or.bpc); 1826 nv50_sor_dp_watermark_sst(nv_encoder, head, asyh); 1827 depth = nv50_dp_bpc_to_depth(asyh->or.bpc); 1828 1829 if (nv_encoder->outp.or.link & 1) 1830 proto = NV887D_SOR_SET_CONTROL_PROTOCOL_DP_A; 1831 else 1832 proto = NV887D_SOR_SET_CONTROL_PROTOCOL_DP_B; 1833 1834 #ifdef CONFIG_DRM_NOUVEAU_BACKLIGHT 1835 backlight = nv_connector->backlight; 1836 if (backlight && backlight->uses_dpcd) 1837 drm_edp_backlight_enable(&nv_connector->aux, &backlight->edp_info, 1838 (u16)backlight->dev->props.brightness); 1839 #endif 1840 1841 break; 1842 default: 1843 BUG(); 1844 break; 1845 } 1846 1847 if (head->func->display_id) 1848 head->func->display_id(head, BIT(nv_encoder->outp.id)); 1849 1850 nv_encoder->update(nv_encoder, nv_crtc->index, asyh, proto, depth); 1851 } 1852 1853 static const struct drm_encoder_helper_funcs 1854 nv50_sor_help = { 1855 .atomic_check = nv50_outp_atomic_check, 1856 .atomic_enable = nv50_sor_atomic_enable, 1857 .atomic_disable = nv50_sor_atomic_disable, 1858 }; 1859 1860 static void 1861 nv50_sor_destroy(struct drm_encoder *encoder) 1862 { 1863 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 1864 1865 nv50_mstm_del(&nv_encoder->dp.mstm); 1866 drm_encoder_cleanup(encoder); 1867 1868 if (nv_encoder->dcb->type == DCB_OUTPUT_DP) 1869 mutex_destroy(&nv_encoder->dp.hpd_irq_lock); 1870 1871 nvif_outp_dtor(&nv_encoder->outp); 1872 kfree(encoder); 1873 } 1874 1875 static const struct drm_encoder_funcs 1876 nv50_sor_func = { 1877 .destroy = nv50_sor_destroy, 1878 }; 1879 1880 static int 1881 nv50_sor_create(struct nouveau_encoder *nv_encoder) 1882 { 1883 struct drm_connector *connector = &nv_encoder->conn->base; 1884 struct nouveau_connector *nv_connector = nouveau_connector(connector); 1885 struct nouveau_drm *drm = nouveau_drm(connector->dev); 1886 struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device); 1887 struct drm_encoder *encoder; 1888 struct dcb_output *dcbe = nv_encoder->dcb; 1889 struct nv50_disp *disp = nv50_disp(connector->dev); 1890 int type, ret; 1891 1892 switch (dcbe->type) { 1893 case DCB_OUTPUT_LVDS: type = DRM_MODE_ENCODER_LVDS; break; 1894 case DCB_OUTPUT_TMDS: 1895 case DCB_OUTPUT_DP: 1896 default: 1897 type = DRM_MODE_ENCODER_TMDS; 1898 break; 1899 } 1900 1901 nv_encoder->update = nv50_sor_update; 1902 1903 encoder = to_drm_encoder(nv_encoder); 1904 drm_encoder_init(connector->dev, encoder, &nv50_sor_func, type, 1905 "sor-%04x-%04x", dcbe->hasht, dcbe->hashm); 1906 drm_encoder_helper_add(encoder, &nv50_sor_help); 1907 1908 drm_connector_attach_encoder(connector, encoder); 1909 1910 disp->core->func->sor->get_caps(disp, nv_encoder, ffs(dcbe->or) - 1); 1911 nv50_outp_dump_caps(drm, nv_encoder); 1912 1913 if (dcbe->type == DCB_OUTPUT_DP) { 1914 mutex_init(&nv_encoder->dp.hpd_irq_lock); 1915 1916 if (disp->disp->object.oclass < GF110_DISP) { 1917 /* HW has no support for address-only 1918 * transactions, so we're required to 1919 * use custom I2C-over-AUX code. 1920 */ 1921 struct nvkm_i2c_aux *aux; 1922 1923 aux = nvkm_i2c_aux_find(i2c, dcbe->i2c_index); 1924 if (!aux) 1925 return -EINVAL; 1926 1927 nv_encoder->i2c = &aux->i2c; 1928 } else { 1929 nv_encoder->i2c = &nv_connector->aux.ddc; 1930 } 1931 1932 if (nv_connector->type != DCB_CONNECTOR_eDP && nv_encoder->outp.info.dp.mst) { 1933 ret = nv50_mstm_new(nv_encoder, &nv_connector->aux, 1934 16, nv_connector->base.base.id, 1935 &nv_encoder->dp.mstm); 1936 if (ret) 1937 return ret; 1938 } 1939 } else 1940 if (nv_encoder->outp.info.ddc != NVIF_OUTP_DDC_INVALID) { 1941 struct nvkm_i2c_bus *bus = 1942 nvkm_i2c_bus_find(i2c, dcbe->i2c_index); 1943 if (bus) 1944 nv_encoder->i2c = &bus->i2c; 1945 } 1946 1947 return 0; 1948 } 1949 1950 /****************************************************************************** 1951 * PIOR 1952 *****************************************************************************/ 1953 static int 1954 nv50_pior_atomic_check(struct drm_encoder *encoder, 1955 struct drm_crtc_state *crtc_state, 1956 struct drm_connector_state *conn_state) 1957 { 1958 int ret = nv50_outp_atomic_check(encoder, crtc_state, conn_state); 1959 if (ret) 1960 return ret; 1961 crtc_state->adjusted_mode.clock *= 2; 1962 return 0; 1963 } 1964 1965 static void 1966 nv50_pior_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state) 1967 { 1968 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 1969 struct nv50_core *core = nv50_disp(encoder->dev)->core; 1970 const u32 ctrl = NVDEF(NV507D, PIOR_SET_CONTROL, OWNER, NONE); 1971 1972 core->func->pior->ctrl(core, nv_encoder->outp.or.id, ctrl, NULL); 1973 nv_encoder->crtc = NULL; 1974 } 1975 1976 static void 1977 nv50_pior_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state) 1978 { 1979 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 1980 struct nouveau_crtc *nv_crtc = nv50_outp_get_new_crtc(state, nv_encoder); 1981 struct nv50_head_atom *asyh = 1982 nv50_head_atom(drm_atomic_get_new_crtc_state(state, &nv_crtc->base)); 1983 struct nv50_core *core = nv50_disp(encoder->dev)->core; 1984 u32 ctrl = 0; 1985 1986 switch (nv_crtc->index) { 1987 case 0: ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, OWNER, HEAD0); break; 1988 case 1: ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, OWNER, HEAD1); break; 1989 default: 1990 WARN_ON(1); 1991 break; 1992 } 1993 1994 switch (asyh->or.bpc) { 1995 case 10: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_BPP_30_444; break; 1996 case 8: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_BPP_24_444; break; 1997 case 6: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_BPP_18_444; break; 1998 default: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_DEFAULT; break; 1999 } 2000 2001 if (!nvif_outp_acquired(&nv_encoder->outp)) 2002 nvif_outp_acquire_pior(&nv_encoder->outp); 2003 2004 switch (nv_encoder->dcb->type) { 2005 case DCB_OUTPUT_TMDS: 2006 ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, PROTOCOL, EXT_TMDS_ENC); 2007 break; 2008 case DCB_OUTPUT_DP: 2009 ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, PROTOCOL, EXT_TMDS_ENC); 2010 nouveau_dp_train(nv_encoder, false, asyh->state.adjusted_mode.clock, 6); 2011 break; 2012 default: 2013 BUG(); 2014 break; 2015 } 2016 2017 core->func->pior->ctrl(core, nv_encoder->outp.or.id, ctrl, asyh); 2018 nv_encoder->crtc = &nv_crtc->base; 2019 } 2020 2021 static const struct drm_encoder_helper_funcs 2022 nv50_pior_help = { 2023 .atomic_check = nv50_pior_atomic_check, 2024 .atomic_enable = nv50_pior_atomic_enable, 2025 .atomic_disable = nv50_pior_atomic_disable, 2026 }; 2027 2028 static void 2029 nv50_pior_destroy(struct drm_encoder *encoder) 2030 { 2031 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 2032 2033 nvif_outp_dtor(&nv_encoder->outp); 2034 2035 drm_encoder_cleanup(encoder); 2036 2037 mutex_destroy(&nv_encoder->dp.hpd_irq_lock); 2038 kfree(encoder); 2039 } 2040 2041 static const struct drm_encoder_funcs 2042 nv50_pior_func = { 2043 .destroy = nv50_pior_destroy, 2044 }; 2045 2046 static int 2047 nv50_pior_create(struct nouveau_encoder *nv_encoder) 2048 { 2049 struct drm_connector *connector = &nv_encoder->conn->base; 2050 struct drm_device *dev = connector->dev; 2051 struct nouveau_drm *drm = nouveau_drm(dev); 2052 struct nv50_disp *disp = nv50_disp(dev); 2053 struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device); 2054 struct nvkm_i2c_bus *bus = NULL; 2055 struct nvkm_i2c_aux *aux = NULL; 2056 struct i2c_adapter *ddc; 2057 struct drm_encoder *encoder; 2058 struct dcb_output *dcbe = nv_encoder->dcb; 2059 int type; 2060 2061 switch (dcbe->type) { 2062 case DCB_OUTPUT_TMDS: 2063 bus = nvkm_i2c_bus_find(i2c, nv_encoder->outp.info.ddc); 2064 ddc = bus ? &bus->i2c : NULL; 2065 type = DRM_MODE_ENCODER_TMDS; 2066 break; 2067 case DCB_OUTPUT_DP: 2068 aux = nvkm_i2c_aux_find(i2c, nv_encoder->outp.info.dp.aux); 2069 ddc = aux ? &aux->i2c : NULL; 2070 type = DRM_MODE_ENCODER_TMDS; 2071 break; 2072 default: 2073 return -ENODEV; 2074 } 2075 2076 nv_encoder->i2c = ddc; 2077 2078 mutex_init(&nv_encoder->dp.hpd_irq_lock); 2079 2080 encoder = to_drm_encoder(nv_encoder); 2081 drm_encoder_init(connector->dev, encoder, &nv50_pior_func, type, 2082 "pior-%04x-%04x", dcbe->hasht, dcbe->hashm); 2083 drm_encoder_helper_add(encoder, &nv50_pior_help); 2084 2085 drm_connector_attach_encoder(connector, encoder); 2086 2087 disp->core->func->pior->get_caps(disp, nv_encoder, ffs(dcbe->or) - 1); 2088 nv50_outp_dump_caps(drm, nv_encoder); 2089 2090 return 0; 2091 } 2092 2093 /****************************************************************************** 2094 * Atomic 2095 *****************************************************************************/ 2096 2097 static void 2098 nv50_disp_atomic_commit_core(struct drm_atomic_state *state, u32 *interlock) 2099 { 2100 struct drm_dp_mst_topology_mgr *mgr; 2101 struct drm_dp_mst_topology_state *mst_state; 2102 struct nouveau_drm *drm = nouveau_drm(state->dev); 2103 struct nv50_disp *disp = nv50_disp(drm->dev); 2104 struct nv50_atom *atom = nv50_atom(state); 2105 struct nv50_core *core = disp->core; 2106 struct nv50_outp_atom *outp; 2107 struct nv50_mstm *mstm; 2108 int i; 2109 2110 NV_ATOMIC(drm, "commit core %08x\n", interlock[NV50_DISP_INTERLOCK_BASE]); 2111 2112 for_each_new_mst_mgr_in_state(state, mgr, mst_state, i) { 2113 mstm = nv50_mstm(mgr); 2114 if (mstm->modified) 2115 nv50_mstm_prepare(state, mst_state, mstm); 2116 } 2117 2118 core->func->ntfy_init(disp->sync, NV50_DISP_CORE_NTFY); 2119 core->func->update(core, interlock, true); 2120 if (core->func->ntfy_wait_done(disp->sync, NV50_DISP_CORE_NTFY, 2121 disp->core->chan.base.device)) 2122 NV_ERROR(drm, "core notifier timeout\n"); 2123 2124 for_each_new_mst_mgr_in_state(state, mgr, mst_state, i) { 2125 mstm = nv50_mstm(mgr); 2126 if (mstm->modified) 2127 nv50_mstm_cleanup(state, mst_state, mstm); 2128 } 2129 2130 list_for_each_entry(outp, &atom->outp, head) { 2131 if (outp->encoder->encoder_type != DRM_MODE_ENCODER_DPMST) { 2132 struct nouveau_encoder *nv_encoder = nouveau_encoder(outp->encoder); 2133 2134 if (outp->enabled) { 2135 nv50_audio_enable(outp->encoder, nouveau_crtc(nv_encoder->crtc), 2136 nv_encoder->conn, NULL, NULL); 2137 outp->enabled = outp->disabled = false; 2138 } else { 2139 if (outp->disabled) { 2140 nvif_outp_release(&nv_encoder->outp); 2141 outp->disabled = false; 2142 } 2143 } 2144 } 2145 } 2146 } 2147 2148 static void 2149 nv50_disp_atomic_commit_wndw(struct drm_atomic_state *state, u32 *interlock) 2150 { 2151 struct drm_plane_state *new_plane_state; 2152 struct drm_plane *plane; 2153 int i; 2154 2155 for_each_new_plane_in_state(state, plane, new_plane_state, i) { 2156 struct nv50_wndw *wndw = nv50_wndw(plane); 2157 if (interlock[wndw->interlock.type] & wndw->interlock.data) { 2158 if (wndw->func->update) 2159 wndw->func->update(wndw, interlock); 2160 } 2161 } 2162 } 2163 2164 static void 2165 nv50_disp_atomic_commit_tail(struct drm_atomic_state *state) 2166 { 2167 struct drm_device *dev = state->dev; 2168 struct drm_crtc_state *new_crtc_state, *old_crtc_state; 2169 struct drm_crtc *crtc; 2170 struct drm_plane_state *new_plane_state; 2171 struct drm_plane *plane; 2172 struct nouveau_drm *drm = nouveau_drm(dev); 2173 struct nv50_disp *disp = nv50_disp(dev); 2174 struct nv50_atom *atom = nv50_atom(state); 2175 struct nv50_core *core = disp->core; 2176 struct nv50_outp_atom *outp, *outt; 2177 u32 interlock[NV50_DISP_INTERLOCK__SIZE] = {}; 2178 int i; 2179 bool flushed = false; 2180 2181 NV_ATOMIC(drm, "commit %d %d\n", atom->lock_core, atom->flush_disable); 2182 nv50_crc_atomic_stop_reporting(state); 2183 drm_atomic_helper_wait_for_fences(dev, state, false); 2184 drm_atomic_helper_wait_for_dependencies(state); 2185 drm_dp_mst_atomic_wait_for_dependencies(state); 2186 drm_atomic_helper_update_legacy_modeset_state(dev, state); 2187 drm_atomic_helper_calc_timestamping_constants(state); 2188 2189 if (atom->lock_core) 2190 mutex_lock(&disp->mutex); 2191 2192 /* Disable head(s). */ 2193 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { 2194 struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state); 2195 struct nv50_head *head = nv50_head(crtc); 2196 2197 NV_ATOMIC(drm, "%s: clr %04x (set %04x)\n", crtc->name, 2198 asyh->clr.mask, asyh->set.mask); 2199 2200 if (old_crtc_state->active && !new_crtc_state->active) { 2201 pm_runtime_put_noidle(dev->dev); 2202 drm_crtc_vblank_off(crtc); 2203 } 2204 2205 if (asyh->clr.mask) { 2206 nv50_head_flush_clr(head, asyh, atom->flush_disable); 2207 interlock[NV50_DISP_INTERLOCK_CORE] |= 1; 2208 } 2209 } 2210 2211 /* Disable plane(s). */ 2212 for_each_new_plane_in_state(state, plane, new_plane_state, i) { 2213 struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state); 2214 struct nv50_wndw *wndw = nv50_wndw(plane); 2215 2216 NV_ATOMIC(drm, "%s: clr %02x (set %02x)\n", plane->name, 2217 asyw->clr.mask, asyw->set.mask); 2218 if (!asyw->clr.mask) 2219 continue; 2220 2221 nv50_wndw_flush_clr(wndw, interlock, atom->flush_disable, asyw); 2222 } 2223 2224 /* Disable output path(s). */ 2225 list_for_each_entry(outp, &atom->outp, head) { 2226 const struct drm_encoder_helper_funcs *help; 2227 struct drm_encoder *encoder; 2228 2229 encoder = outp->encoder; 2230 help = encoder->helper_private; 2231 2232 NV_ATOMIC(drm, "%s: clr %02x (set %02x)\n", encoder->name, 2233 outp->clr.mask, outp->set.mask); 2234 2235 if (outp->clr.mask) { 2236 help->atomic_disable(encoder, state); 2237 outp->disabled = true; 2238 interlock[NV50_DISP_INTERLOCK_CORE] |= 1; 2239 } 2240 } 2241 2242 /* Flush disable. */ 2243 if (interlock[NV50_DISP_INTERLOCK_CORE]) { 2244 if (atom->flush_disable) { 2245 nv50_disp_atomic_commit_wndw(state, interlock); 2246 nv50_disp_atomic_commit_core(state, interlock); 2247 memset(interlock, 0x00, sizeof(interlock)); 2248 2249 flushed = true; 2250 } 2251 } 2252 2253 if (flushed) 2254 nv50_crc_atomic_release_notifier_contexts(state); 2255 nv50_crc_atomic_init_notifier_contexts(state); 2256 2257 /* Update output path(s). */ 2258 list_for_each_entry(outp, &atom->outp, head) { 2259 const struct drm_encoder_helper_funcs *help; 2260 struct drm_encoder *encoder; 2261 2262 encoder = outp->encoder; 2263 help = encoder->helper_private; 2264 2265 NV_ATOMIC(drm, "%s: set %02x (clr %02x)\n", encoder->name, 2266 outp->set.mask, outp->clr.mask); 2267 2268 if (outp->set.mask) { 2269 help->atomic_enable(encoder, state); 2270 outp->enabled = true; 2271 interlock[NV50_DISP_INTERLOCK_CORE] = 1; 2272 } 2273 } 2274 2275 /* Update head(s). */ 2276 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { 2277 struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state); 2278 struct nv50_head *head = nv50_head(crtc); 2279 2280 NV_ATOMIC(drm, "%s: set %04x (clr %04x)\n", crtc->name, 2281 asyh->set.mask, asyh->clr.mask); 2282 2283 if (asyh->set.mask) { 2284 nv50_head_flush_set(head, asyh); 2285 interlock[NV50_DISP_INTERLOCK_CORE] = 1; 2286 } 2287 2288 if (new_crtc_state->active) { 2289 if (!old_crtc_state->active) { 2290 drm_crtc_vblank_on(crtc); 2291 pm_runtime_get_noresume(dev->dev); 2292 } 2293 if (new_crtc_state->event) 2294 drm_crtc_vblank_get(crtc); 2295 } 2296 } 2297 2298 /* Update window->head assignment. 2299 * 2300 * This has to happen in an update that's not interlocked with 2301 * any window channels to avoid hitting HW error checks. 2302 * 2303 *TODO: Proper handling of window ownership (Turing apparently 2304 * supports non-fixed mappings). 2305 */ 2306 if (core->assign_windows) { 2307 core->func->wndw.owner(core); 2308 nv50_disp_atomic_commit_core(state, interlock); 2309 core->assign_windows = false; 2310 interlock[NV50_DISP_INTERLOCK_CORE] = 0; 2311 } 2312 2313 /* Finish updating head(s)... 2314 * 2315 * NVD is rather picky about both where window assignments can change, 2316 * *and* about certain core and window channel states matching. 2317 * 2318 * The EFI GOP driver on newer GPUs configures window channels with a 2319 * different output format to what we do, and the core channel update 2320 * in the assign_windows case above would result in a state mismatch. 2321 * 2322 * Delay some of the head update until after that point to workaround 2323 * the issue. This only affects the initial modeset. 2324 * 2325 * TODO: handle this better when adding flexible window mapping 2326 */ 2327 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { 2328 struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state); 2329 struct nv50_head *head = nv50_head(crtc); 2330 2331 NV_ATOMIC(drm, "%s: set %04x (clr %04x)\n", crtc->name, 2332 asyh->set.mask, asyh->clr.mask); 2333 2334 if (asyh->set.mask) { 2335 nv50_head_flush_set_wndw(head, asyh); 2336 interlock[NV50_DISP_INTERLOCK_CORE] = 1; 2337 } 2338 } 2339 2340 /* Update plane(s). */ 2341 for_each_new_plane_in_state(state, plane, new_plane_state, i) { 2342 struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state); 2343 struct nv50_wndw *wndw = nv50_wndw(plane); 2344 2345 NV_ATOMIC(drm, "%s: set %02x (clr %02x)\n", plane->name, 2346 asyw->set.mask, asyw->clr.mask); 2347 if ( !asyw->set.mask && 2348 (!asyw->clr.mask || atom->flush_disable)) 2349 continue; 2350 2351 nv50_wndw_flush_set(wndw, interlock, asyw); 2352 } 2353 2354 /* Flush update. */ 2355 nv50_disp_atomic_commit_wndw(state, interlock); 2356 2357 if (interlock[NV50_DISP_INTERLOCK_CORE]) { 2358 if (interlock[NV50_DISP_INTERLOCK_BASE] || 2359 interlock[NV50_DISP_INTERLOCK_OVLY] || 2360 interlock[NV50_DISP_INTERLOCK_WNDW] || 2361 !atom->state.legacy_cursor_update) 2362 nv50_disp_atomic_commit_core(state, interlock); 2363 else 2364 disp->core->func->update(disp->core, interlock, false); 2365 } 2366 2367 if (atom->lock_core) 2368 mutex_unlock(&disp->mutex); 2369 2370 list_for_each_entry_safe(outp, outt, &atom->outp, head) { 2371 list_del(&outp->head); 2372 kfree(outp); 2373 } 2374 2375 /* Wait for HW to signal completion. */ 2376 for_each_new_plane_in_state(state, plane, new_plane_state, i) { 2377 struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state); 2378 struct nv50_wndw *wndw = nv50_wndw(plane); 2379 int ret = nv50_wndw_wait_armed(wndw, asyw); 2380 if (ret) 2381 NV_ERROR(drm, "%s: timeout\n", plane->name); 2382 } 2383 2384 for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) { 2385 if (new_crtc_state->event) { 2386 unsigned long flags; 2387 /* Get correct count/ts if racing with vblank irq */ 2388 if (new_crtc_state->active) 2389 drm_crtc_accurate_vblank_count(crtc); 2390 spin_lock_irqsave(&crtc->dev->event_lock, flags); 2391 drm_crtc_send_vblank_event(crtc, new_crtc_state->event); 2392 spin_unlock_irqrestore(&crtc->dev->event_lock, flags); 2393 2394 new_crtc_state->event = NULL; 2395 if (new_crtc_state->active) 2396 drm_crtc_vblank_put(crtc); 2397 } 2398 } 2399 2400 nv50_crc_atomic_start_reporting(state); 2401 if (!flushed) 2402 nv50_crc_atomic_release_notifier_contexts(state); 2403 2404 drm_atomic_helper_commit_hw_done(state); 2405 drm_atomic_helper_cleanup_planes(dev, state); 2406 drm_atomic_helper_commit_cleanup_done(state); 2407 drm_atomic_state_put(state); 2408 2409 /* Drop the RPM ref we got from nv50_disp_atomic_commit() */ 2410 pm_runtime_mark_last_busy(dev->dev); 2411 pm_runtime_put_autosuspend(dev->dev); 2412 } 2413 2414 static void 2415 nv50_disp_atomic_commit_work(struct work_struct *work) 2416 { 2417 struct drm_atomic_state *state = 2418 container_of(work, typeof(*state), commit_work); 2419 nv50_disp_atomic_commit_tail(state); 2420 } 2421 2422 static int 2423 nv50_disp_atomic_commit(struct drm_device *dev, 2424 struct drm_atomic_state *state, bool nonblock) 2425 { 2426 struct drm_plane_state *new_plane_state; 2427 struct drm_plane *plane; 2428 int ret, i; 2429 2430 ret = pm_runtime_get_sync(dev->dev); 2431 if (ret < 0 && ret != -EACCES) { 2432 pm_runtime_put_autosuspend(dev->dev); 2433 return ret; 2434 } 2435 2436 ret = drm_atomic_helper_setup_commit(state, nonblock); 2437 if (ret) 2438 goto done; 2439 2440 INIT_WORK(&state->commit_work, nv50_disp_atomic_commit_work); 2441 2442 ret = drm_atomic_helper_prepare_planes(dev, state); 2443 if (ret) 2444 goto done; 2445 2446 if (!nonblock) { 2447 ret = drm_atomic_helper_wait_for_fences(dev, state, true); 2448 if (ret) 2449 goto err_cleanup; 2450 } 2451 2452 ret = drm_atomic_helper_swap_state(state, true); 2453 if (ret) 2454 goto err_cleanup; 2455 2456 for_each_new_plane_in_state(state, plane, new_plane_state, i) { 2457 struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state); 2458 struct nv50_wndw *wndw = nv50_wndw(plane); 2459 2460 if (asyw->set.image) 2461 nv50_wndw_ntfy_enable(wndw, asyw); 2462 } 2463 2464 drm_atomic_state_get(state); 2465 2466 /* 2467 * Grab another RPM ref for the commit tail, which will release the 2468 * ref when it's finished 2469 */ 2470 pm_runtime_get_noresume(dev->dev); 2471 2472 if (nonblock) 2473 queue_work(system_unbound_wq, &state->commit_work); 2474 else 2475 nv50_disp_atomic_commit_tail(state); 2476 2477 err_cleanup: 2478 if (ret) 2479 drm_atomic_helper_cleanup_planes(dev, state); 2480 done: 2481 pm_runtime_put_autosuspend(dev->dev); 2482 return ret; 2483 } 2484 2485 static struct nv50_outp_atom * 2486 nv50_disp_outp_atomic_add(struct nv50_atom *atom, struct drm_encoder *encoder) 2487 { 2488 struct nv50_outp_atom *outp; 2489 2490 list_for_each_entry(outp, &atom->outp, head) { 2491 if (outp->encoder == encoder) 2492 return outp; 2493 } 2494 2495 outp = kzalloc(sizeof(*outp), GFP_KERNEL); 2496 if (!outp) 2497 return ERR_PTR(-ENOMEM); 2498 2499 list_add(&outp->head, &atom->outp); 2500 outp->encoder = encoder; 2501 return outp; 2502 } 2503 2504 static int 2505 nv50_disp_outp_atomic_check_clr(struct nv50_atom *atom, 2506 struct drm_connector_state *old_connector_state) 2507 { 2508 struct drm_encoder *encoder = old_connector_state->best_encoder; 2509 struct drm_crtc_state *old_crtc_state, *new_crtc_state; 2510 struct drm_crtc *crtc; 2511 struct nv50_outp_atom *outp; 2512 2513 if (!(crtc = old_connector_state->crtc)) 2514 return 0; 2515 2516 old_crtc_state = drm_atomic_get_old_crtc_state(&atom->state, crtc); 2517 new_crtc_state = drm_atomic_get_new_crtc_state(&atom->state, crtc); 2518 if (old_crtc_state->active && drm_atomic_crtc_needs_modeset(new_crtc_state)) { 2519 outp = nv50_disp_outp_atomic_add(atom, encoder); 2520 if (IS_ERR(outp)) 2521 return PTR_ERR(outp); 2522 2523 if (outp->encoder->encoder_type == DRM_MODE_ENCODER_DPMST || 2524 nouveau_encoder(outp->encoder)->dcb->type == DCB_OUTPUT_DP) 2525 atom->flush_disable = true; 2526 outp->clr.ctrl = true; 2527 atom->lock_core = true; 2528 } 2529 2530 return 0; 2531 } 2532 2533 static int 2534 nv50_disp_outp_atomic_check_set(struct nv50_atom *atom, 2535 struct drm_connector_state *connector_state) 2536 { 2537 struct drm_encoder *encoder = connector_state->best_encoder; 2538 struct drm_crtc_state *new_crtc_state; 2539 struct drm_crtc *crtc; 2540 struct nv50_outp_atom *outp; 2541 2542 if (!(crtc = connector_state->crtc)) 2543 return 0; 2544 2545 new_crtc_state = drm_atomic_get_new_crtc_state(&atom->state, crtc); 2546 if (new_crtc_state->active && drm_atomic_crtc_needs_modeset(new_crtc_state)) { 2547 outp = nv50_disp_outp_atomic_add(atom, encoder); 2548 if (IS_ERR(outp)) 2549 return PTR_ERR(outp); 2550 2551 outp->set.ctrl = true; 2552 atom->lock_core = true; 2553 } 2554 2555 return 0; 2556 } 2557 2558 static int 2559 nv50_disp_atomic_check(struct drm_device *dev, struct drm_atomic_state *state) 2560 { 2561 struct nv50_atom *atom = nv50_atom(state); 2562 struct nv50_core *core = nv50_disp(dev)->core; 2563 struct drm_connector_state *old_connector_state, *new_connector_state; 2564 struct drm_connector *connector; 2565 struct drm_crtc_state *new_crtc_state; 2566 struct drm_crtc *crtc; 2567 struct nv50_head *head; 2568 struct nv50_head_atom *asyh; 2569 int ret, i; 2570 2571 if (core->assign_windows && core->func->head->static_wndw_map) { 2572 drm_for_each_crtc(crtc, dev) { 2573 new_crtc_state = drm_atomic_get_crtc_state(state, 2574 crtc); 2575 if (IS_ERR(new_crtc_state)) 2576 return PTR_ERR(new_crtc_state); 2577 2578 head = nv50_head(crtc); 2579 asyh = nv50_head_atom(new_crtc_state); 2580 core->func->head->static_wndw_map(head, asyh); 2581 } 2582 } 2583 2584 /* We need to handle colour management on a per-plane basis. */ 2585 for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) { 2586 if (new_crtc_state->color_mgmt_changed) { 2587 ret = drm_atomic_add_affected_planes(state, crtc); 2588 if (ret) 2589 return ret; 2590 } 2591 } 2592 2593 ret = drm_atomic_helper_check(dev, state); 2594 if (ret) 2595 return ret; 2596 2597 for_each_oldnew_connector_in_state(state, connector, old_connector_state, new_connector_state, i) { 2598 ret = nv50_disp_outp_atomic_check_clr(atom, old_connector_state); 2599 if (ret) 2600 return ret; 2601 2602 ret = nv50_disp_outp_atomic_check_set(atom, new_connector_state); 2603 if (ret) 2604 return ret; 2605 } 2606 2607 ret = drm_dp_mst_atomic_check(state); 2608 if (ret) 2609 return ret; 2610 2611 nv50_crc_atomic_check_outp(atom); 2612 2613 return 0; 2614 } 2615 2616 static void 2617 nv50_disp_atomic_state_clear(struct drm_atomic_state *state) 2618 { 2619 struct nv50_atom *atom = nv50_atom(state); 2620 struct nv50_outp_atom *outp, *outt; 2621 2622 list_for_each_entry_safe(outp, outt, &atom->outp, head) { 2623 list_del(&outp->head); 2624 kfree(outp); 2625 } 2626 2627 drm_atomic_state_default_clear(state); 2628 } 2629 2630 static void 2631 nv50_disp_atomic_state_free(struct drm_atomic_state *state) 2632 { 2633 struct nv50_atom *atom = nv50_atom(state); 2634 drm_atomic_state_default_release(&atom->state); 2635 kfree(atom); 2636 } 2637 2638 static struct drm_atomic_state * 2639 nv50_disp_atomic_state_alloc(struct drm_device *dev) 2640 { 2641 struct nv50_atom *atom; 2642 if (!(atom = kzalloc(sizeof(*atom), GFP_KERNEL)) || 2643 drm_atomic_state_init(dev, &atom->state) < 0) { 2644 kfree(atom); 2645 return NULL; 2646 } 2647 INIT_LIST_HEAD(&atom->outp); 2648 return &atom->state; 2649 } 2650 2651 static const struct drm_mode_config_funcs 2652 nv50_disp_func = { 2653 .fb_create = nouveau_user_framebuffer_create, 2654 .output_poll_changed = drm_fb_helper_output_poll_changed, 2655 .atomic_check = nv50_disp_atomic_check, 2656 .atomic_commit = nv50_disp_atomic_commit, 2657 .atomic_state_alloc = nv50_disp_atomic_state_alloc, 2658 .atomic_state_clear = nv50_disp_atomic_state_clear, 2659 .atomic_state_free = nv50_disp_atomic_state_free, 2660 }; 2661 2662 static const struct drm_mode_config_helper_funcs 2663 nv50_disp_helper_func = { 2664 .atomic_commit_setup = drm_dp_mst_atomic_setup_commit, 2665 }; 2666 2667 /****************************************************************************** 2668 * Init 2669 *****************************************************************************/ 2670 2671 static void 2672 nv50_display_fini(struct drm_device *dev, bool runtime, bool suspend) 2673 { 2674 struct nouveau_drm *drm = nouveau_drm(dev); 2675 struct drm_encoder *encoder; 2676 2677 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) { 2678 if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) 2679 nv50_mstm_fini(nouveau_encoder(encoder)); 2680 } 2681 2682 if (!runtime) 2683 cancel_work_sync(&drm->hpd_work); 2684 } 2685 2686 static inline void 2687 nv50_display_read_hw_or_state(struct drm_device *dev, struct nv50_disp *disp, 2688 struct nouveau_encoder *outp) 2689 { 2690 struct drm_crtc *crtc; 2691 struct drm_connector_list_iter conn_iter; 2692 struct drm_connector *conn; 2693 struct nv50_head_atom *armh; 2694 const u32 encoder_mask = drm_encoder_mask(&outp->base.base); 2695 bool found_conn = false, found_head = false; 2696 u8 proto; 2697 int head_idx; 2698 int ret; 2699 2700 switch (outp->dcb->type) { 2701 case DCB_OUTPUT_TMDS: 2702 ret = nvif_outp_inherit_tmds(&outp->outp, &proto); 2703 break; 2704 case DCB_OUTPUT_DP: 2705 ret = nvif_outp_inherit_dp(&outp->outp, &proto); 2706 break; 2707 case DCB_OUTPUT_LVDS: 2708 ret = nvif_outp_inherit_lvds(&outp->outp, &proto); 2709 break; 2710 case DCB_OUTPUT_ANALOG: 2711 ret = nvif_outp_inherit_rgb_crt(&outp->outp, &proto); 2712 break; 2713 default: 2714 drm_dbg_kms(dev, "Readback for %s not implemented yet, skipping\n", 2715 outp->base.base.name); 2716 drm_WARN_ON(dev, true); 2717 return; 2718 } 2719 2720 if (ret < 0) 2721 return; 2722 2723 head_idx = ret; 2724 2725 drm_for_each_crtc(crtc, dev) { 2726 if (crtc->index != head_idx) 2727 continue; 2728 2729 armh = nv50_head_atom(crtc->state); 2730 found_head = true; 2731 break; 2732 } 2733 if (drm_WARN_ON(dev, !found_head)) 2734 return; 2735 2736 /* Figure out which connector is being used by this encoder */ 2737 drm_connector_list_iter_begin(dev, &conn_iter); 2738 nouveau_for_each_non_mst_connector_iter(conn, &conn_iter) { 2739 if (nouveau_connector(conn)->index == outp->dcb->connector) { 2740 found_conn = true; 2741 break; 2742 } 2743 } 2744 drm_connector_list_iter_end(&conn_iter); 2745 if (drm_WARN_ON(dev, !found_conn)) 2746 return; 2747 2748 armh->state.encoder_mask = encoder_mask; 2749 armh->state.connector_mask = drm_connector_mask(conn); 2750 armh->state.active = true; 2751 armh->state.enable = true; 2752 pm_runtime_get_noresume(dev->dev); 2753 2754 outp->crtc = crtc; 2755 outp->ctrl = NVVAL(NV507D, SOR_SET_CONTROL, PROTOCOL, proto) | BIT(crtc->index); 2756 2757 drm_connector_get(conn); 2758 conn->state->crtc = crtc; 2759 conn->state->best_encoder = &outp->base.base; 2760 } 2761 2762 /* Read back the currently programmed display state */ 2763 static void 2764 nv50_display_read_hw_state(struct nouveau_drm *drm) 2765 { 2766 struct drm_device *dev = drm->dev; 2767 struct drm_encoder *encoder; 2768 struct drm_modeset_acquire_ctx ctx; 2769 struct nv50_disp *disp = nv50_disp(dev); 2770 int ret; 2771 2772 DRM_MODESET_LOCK_ALL_BEGIN(dev, ctx, 0, ret); 2773 2774 drm_for_each_encoder(encoder, dev) { 2775 if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) 2776 continue; 2777 2778 nv50_display_read_hw_or_state(dev, disp, nouveau_encoder(encoder)); 2779 } 2780 2781 DRM_MODESET_LOCK_ALL_END(dev, ctx, ret); 2782 } 2783 2784 static int 2785 nv50_display_init(struct drm_device *dev, bool resume, bool runtime) 2786 { 2787 struct nv50_core *core = nv50_disp(dev)->core; 2788 struct drm_encoder *encoder; 2789 2790 if (resume || runtime) 2791 core->func->init(core); 2792 2793 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) { 2794 if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) { 2795 struct nouveau_encoder *nv_encoder = 2796 nouveau_encoder(encoder); 2797 nv50_mstm_init(nv_encoder, runtime); 2798 } 2799 } 2800 2801 if (!resume) 2802 nv50_display_read_hw_state(nouveau_drm(dev)); 2803 2804 return 0; 2805 } 2806 2807 static void 2808 nv50_display_destroy(struct drm_device *dev) 2809 { 2810 struct nv50_disp *disp = nv50_disp(dev); 2811 2812 nv50_audio_component_fini(nouveau_drm(dev)); 2813 2814 nvif_object_unmap(&disp->caps); 2815 nvif_object_dtor(&disp->caps); 2816 nv50_core_del(&disp->core); 2817 2818 nouveau_bo_unmap(disp->sync); 2819 if (disp->sync) 2820 nouveau_bo_unpin(disp->sync); 2821 nouveau_bo_ref(NULL, &disp->sync); 2822 2823 nouveau_display(dev)->priv = NULL; 2824 kfree(disp); 2825 } 2826 2827 int 2828 nv50_display_create(struct drm_device *dev) 2829 { 2830 struct nouveau_drm *drm = nouveau_drm(dev); 2831 struct drm_connector *connector, *tmp; 2832 struct nv50_disp *disp; 2833 int ret, i; 2834 bool has_mst = false; 2835 2836 disp = kzalloc(sizeof(*disp), GFP_KERNEL); 2837 if (!disp) 2838 return -ENOMEM; 2839 2840 mutex_init(&disp->mutex); 2841 2842 nouveau_display(dev)->priv = disp; 2843 nouveau_display(dev)->dtor = nv50_display_destroy; 2844 nouveau_display(dev)->init = nv50_display_init; 2845 nouveau_display(dev)->fini = nv50_display_fini; 2846 disp->disp = &nouveau_display(dev)->disp; 2847 dev->mode_config.funcs = &nv50_disp_func; 2848 dev->mode_config.helper_private = &nv50_disp_helper_func; 2849 dev->mode_config.quirk_addfb_prefer_xbgr_30bpp = true; 2850 dev->mode_config.normalize_zpos = true; 2851 2852 /* small shared memory area we use for notifiers and semaphores */ 2853 ret = nouveau_bo_new(&drm->client, 4096, 0x1000, 2854 NOUVEAU_GEM_DOMAIN_VRAM, 2855 0, 0x0000, NULL, NULL, &disp->sync); 2856 if (!ret) { 2857 ret = nouveau_bo_pin(disp->sync, NOUVEAU_GEM_DOMAIN_VRAM, true); 2858 if (!ret) { 2859 ret = nouveau_bo_map(disp->sync); 2860 if (ret) 2861 nouveau_bo_unpin(disp->sync); 2862 } 2863 if (ret) 2864 nouveau_bo_ref(NULL, &disp->sync); 2865 } 2866 2867 if (ret) 2868 goto out; 2869 2870 /* allocate master evo channel */ 2871 ret = nv50_core_new(drm, &disp->core); 2872 if (ret) 2873 goto out; 2874 2875 disp->core->func->init(disp->core); 2876 if (disp->core->func->caps_init) { 2877 ret = disp->core->func->caps_init(drm, disp); 2878 if (ret) 2879 goto out; 2880 } 2881 2882 /* Assign the correct format modifiers */ 2883 if (disp->disp->object.oclass >= TU102_DISP) 2884 nouveau_display(dev)->format_modifiers = wndwc57e_modifiers; 2885 else 2886 if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_FERMI) 2887 nouveau_display(dev)->format_modifiers = disp90xx_modifiers; 2888 else 2889 nouveau_display(dev)->format_modifiers = disp50xx_modifiers; 2890 2891 /* FIXME: 256x256 cursors are supported on Kepler, however unlike Maxwell and later 2892 * generations Kepler requires that we use small pages (4K) for cursor scanout surfaces. The 2893 * proper fix for this is to teach nouveau to migrate fbs being used for the cursor plane to 2894 * small page allocations in prepare_fb(). When this is implemented, we should also force 2895 * large pages (128K) for ovly fbs in order to fix Kepler ovlys. 2896 * But until then, just limit cursors to 128x128 - which is small enough to avoid ever using 2897 * large pages. 2898 */ 2899 if (disp->disp->object.oclass >= GM107_DISP) { 2900 dev->mode_config.cursor_width = 256; 2901 dev->mode_config.cursor_height = 256; 2902 } else if (disp->disp->object.oclass >= GK104_DISP) { 2903 dev->mode_config.cursor_width = 128; 2904 dev->mode_config.cursor_height = 128; 2905 } else { 2906 dev->mode_config.cursor_width = 64; 2907 dev->mode_config.cursor_height = 64; 2908 } 2909 2910 /* create encoder/connector objects based on VBIOS DCB table */ 2911 for_each_set_bit(i, &disp->disp->outp_mask, sizeof(disp->disp->outp_mask) * 8) { 2912 struct nouveau_encoder *outp; 2913 2914 outp = kzalloc(sizeof(*outp), GFP_KERNEL); 2915 if (!outp) 2916 break; 2917 2918 ret = nvif_outp_ctor(disp->disp, "kmsOutp", i, &outp->outp); 2919 if (ret) { 2920 kfree(outp); 2921 continue; 2922 } 2923 2924 connector = nouveau_connector_create(dev, outp->outp.info.conn); 2925 if (IS_ERR(connector)) { 2926 nvif_outp_dtor(&outp->outp); 2927 kfree(outp); 2928 continue; 2929 } 2930 2931 outp->base.base.possible_crtcs = outp->outp.info.heads; 2932 outp->base.base.possible_clones = 0; 2933 outp->conn = nouveau_connector(connector); 2934 2935 outp->dcb = kzalloc(sizeof(*outp->dcb), GFP_KERNEL); 2936 if (!outp->dcb) 2937 break; 2938 2939 switch (outp->outp.info.proto) { 2940 case NVIF_OUTP_RGB_CRT: 2941 outp->dcb->type = DCB_OUTPUT_ANALOG; 2942 outp->dcb->crtconf.maxfreq = outp->outp.info.rgb_crt.freq_max; 2943 break; 2944 case NVIF_OUTP_TMDS: 2945 outp->dcb->type = DCB_OUTPUT_TMDS; 2946 outp->dcb->duallink_possible = outp->outp.info.tmds.dual; 2947 break; 2948 case NVIF_OUTP_LVDS: 2949 outp->dcb->type = DCB_OUTPUT_LVDS; 2950 outp->dcb->lvdsconf.use_acpi_for_edid = outp->outp.info.lvds.acpi_edid; 2951 break; 2952 case NVIF_OUTP_DP: 2953 outp->dcb->type = DCB_OUTPUT_DP; 2954 outp->dcb->dpconf.link_nr = outp->outp.info.dp.link_nr; 2955 outp->dcb->dpconf.link_bw = outp->outp.info.dp.link_bw; 2956 if (outp->outp.info.dp.mst) 2957 has_mst = true; 2958 break; 2959 default: 2960 WARN_ON(1); 2961 continue; 2962 } 2963 2964 outp->dcb->heads = outp->outp.info.heads; 2965 outp->dcb->connector = outp->outp.info.conn; 2966 outp->dcb->i2c_index = outp->outp.info.ddc; 2967 2968 switch (outp->outp.info.type) { 2969 case NVIF_OUTP_DAC : ret = nv50_dac_create(outp); break; 2970 case NVIF_OUTP_SOR : ret = nv50_sor_create(outp); break; 2971 case NVIF_OUTP_PIOR: ret = nv50_pior_create(outp); break; 2972 default: 2973 WARN_ON(1); 2974 continue; 2975 } 2976 2977 if (ret) { 2978 NV_WARN(drm, "failed to create encoder %d/%d/%d: %d\n", 2979 i, outp->outp.info.type, outp->outp.info.proto, ret); 2980 } 2981 } 2982 2983 /* cull any connectors we created that don't have an encoder */ 2984 list_for_each_entry_safe(connector, tmp, &dev->mode_config.connector_list, head) { 2985 if (connector->possible_encoders) 2986 continue; 2987 2988 NV_WARN(drm, "%s has no encoders, removing\n", 2989 connector->name); 2990 connector->funcs->destroy(connector); 2991 } 2992 2993 /* create crtc objects to represent the hw heads */ 2994 for_each_set_bit(i, &disp->disp->head_mask, sizeof(disp->disp->head_mask) * 8) { 2995 struct nv50_head *head; 2996 2997 head = nv50_head_create(dev, i); 2998 if (IS_ERR(head)) { 2999 ret = PTR_ERR(head); 3000 goto out; 3001 } 3002 3003 if (has_mst) { 3004 head->msto = nv50_msto_new(dev, head, i); 3005 if (IS_ERR(head->msto)) { 3006 ret = PTR_ERR(head->msto); 3007 head->msto = NULL; 3008 goto out; 3009 } 3010 3011 /* 3012 * FIXME: This is a hack to workaround the following 3013 * issues: 3014 * 3015 * https://gitlab.gnome.org/GNOME/mutter/issues/759 3016 * https://gitlab.freedesktop.org/xorg/xserver/merge_requests/277 3017 * 3018 * Once these issues are closed, this should be 3019 * removed 3020 */ 3021 head->msto->encoder.possible_crtcs = disp->disp->head_mask; 3022 } 3023 } 3024 3025 /* Disable vblank irqs aggressively for power-saving, safe on nv50+ */ 3026 dev->vblank_disable_immediate = true; 3027 3028 nv50_audio_component_init(drm); 3029 3030 out: 3031 if (ret) 3032 nv50_display_destroy(dev); 3033 return ret; 3034 } 3035 3036 /****************************************************************************** 3037 * Format modifiers 3038 *****************************************************************************/ 3039 3040 /**************************************************************** 3041 * Log2(block height) ----------------------------+ * 3042 * Page Kind ----------------------------------+ | * 3043 * Gob Height/Page Kind Generation ------+ | | * 3044 * Sector layout -------+ | | | * 3045 * Compression ------+ | | | | */ 3046 const u64 disp50xx_modifiers[] = { /* | | | | | */ 3047 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 0), 3048 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 1), 3049 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 2), 3050 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 3), 3051 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 4), 3052 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 5), 3053 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 0), 3054 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 1), 3055 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 2), 3056 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 3), 3057 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 4), 3058 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 5), 3059 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 0), 3060 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 1), 3061 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 2), 3062 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 3), 3063 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 4), 3064 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 5), 3065 DRM_FORMAT_MOD_LINEAR, 3066 DRM_FORMAT_MOD_INVALID 3067 }; 3068 3069 /**************************************************************** 3070 * Log2(block height) ----------------------------+ * 3071 * Page Kind ----------------------------------+ | * 3072 * Gob Height/Page Kind Generation ------+ | | * 3073 * Sector layout -------+ | | | * 3074 * Compression ------+ | | | | */ 3075 const u64 disp90xx_modifiers[] = { /* | | | | | */ 3076 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 0), 3077 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 1), 3078 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 2), 3079 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 3), 3080 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 4), 3081 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 5), 3082 DRM_FORMAT_MOD_LINEAR, 3083 DRM_FORMAT_MOD_INVALID 3084 }; 3085