1 /* 2 * Copyright 2011 Red Hat Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 * 22 * Authors: Ben Skeggs 23 */ 24 #include "disp.h" 25 #include "atom.h" 26 #include "core.h" 27 #include "head.h" 28 #include "wndw.h" 29 #include "handles.h" 30 31 #include <linux/backlight.h> 32 #include <linux/dma-mapping.h> 33 #include <linux/hdmi.h> 34 #include <linux/component.h> 35 #include <linux/iopoll.h> 36 37 #include <drm/display/drm_dp_helper.h> 38 #include <drm/display/drm_scdc_helper.h> 39 #include <drm/drm_atomic.h> 40 #include <drm/drm_atomic_helper.h> 41 #include <drm/drm_edid.h> 42 #include <drm/drm_eld.h> 43 #include <drm/drm_fb_helper.h> 44 #include <drm/drm_fixed.h> 45 #include <drm/drm_probe_helper.h> 46 #include <drm/drm_vblank.h> 47 48 #include <nvif/push507c.h> 49 50 #include <nvif/class.h> 51 #include <nvif/cl0002.h> 52 #include <nvif/event.h> 53 #include <nvif/if0012.h> 54 #include <nvif/if0014.h> 55 #include <nvif/timer.h> 56 57 #include <nvhw/class/cl507c.h> 58 #include <nvhw/class/cl507d.h> 59 #include <nvhw/class/cl837d.h> 60 #include <nvhw/class/cl887d.h> 61 #include <nvhw/class/cl907d.h> 62 #include <nvhw/class/cl917d.h> 63 64 #include "nouveau_drv.h" 65 #include "nouveau_dma.h" 66 #include "nouveau_gem.h" 67 #include "nouveau_connector.h" 68 #include "nouveau_encoder.h" 69 #include "nouveau_fence.h" 70 #include "nv50_display.h" 71 72 /****************************************************************************** 73 * EVO channel 74 *****************************************************************************/ 75 76 static int 77 nv50_chan_create(struct nvif_device *device, struct nvif_object *disp, 78 const s32 *oclass, u8 head, void *data, u32 size, 79 struct nv50_chan *chan) 80 { 81 struct nvif_sclass *sclass; 82 int ret, i, n; 83 84 chan->device = device; 85 86 ret = n = nvif_object_sclass_get(disp, &sclass); 87 if (ret < 0) 88 return ret; 89 90 while (oclass[0]) { 91 for (i = 0; i < n; i++) { 92 if (sclass[i].oclass == oclass[0]) { 93 ret = nvif_object_ctor(disp, "kmsChan", 0, 94 oclass[0], data, size, 95 &chan->user); 96 if (ret == 0) { 97 ret = nvif_object_map(&chan->user, NULL, 0); 98 if (ret) 99 nvif_object_dtor(&chan->user); 100 } 101 nvif_object_sclass_put(&sclass); 102 return ret; 103 } 104 } 105 oclass++; 106 } 107 108 nvif_object_sclass_put(&sclass); 109 return -ENOSYS; 110 } 111 112 static void 113 nv50_chan_destroy(struct nv50_chan *chan) 114 { 115 nvif_object_dtor(&chan->user); 116 } 117 118 /****************************************************************************** 119 * DMA EVO channel 120 *****************************************************************************/ 121 122 void 123 nv50_dmac_destroy(struct nv50_dmac *dmac) 124 { 125 nvif_object_dtor(&dmac->vram); 126 nvif_object_dtor(&dmac->sync); 127 128 nv50_chan_destroy(&dmac->base); 129 130 nvif_mem_dtor(&dmac->push.mem); 131 } 132 133 static void 134 nv50_dmac_kick(struct nvif_push *push) 135 { 136 struct nv50_dmac *dmac = container_of(push, typeof(*dmac), push); 137 138 dmac->cur = push->cur - (u32 __iomem *)dmac->push.mem.object.map.ptr; 139 if (dmac->put != dmac->cur) { 140 /* Push buffer fetches are not coherent with BAR1, we need to ensure 141 * writes have been flushed right through to VRAM before writing PUT. 142 */ 143 if (dmac->push.mem.type & NVIF_MEM_VRAM) { 144 struct nvif_device *device = dmac->base.device; 145 nvif_wr32(&device->object, 0x070000, 0x00000001); 146 nvif_msec(device, 2000, 147 if (!(nvif_rd32(&device->object, 0x070000) & 0x00000002)) 148 break; 149 ); 150 } 151 152 NVIF_WV32(&dmac->base.user, NV507C, PUT, PTR, dmac->cur); 153 dmac->put = dmac->cur; 154 } 155 156 push->bgn = push->cur; 157 } 158 159 static int 160 nv50_dmac_free(struct nv50_dmac *dmac) 161 { 162 u32 get = NVIF_RV32(&dmac->base.user, NV507C, GET, PTR); 163 if (get > dmac->cur) /* NVIDIA stay 5 away from GET, do the same. */ 164 return get - dmac->cur - 5; 165 return dmac->max - dmac->cur; 166 } 167 168 static int 169 nv50_dmac_wind(struct nv50_dmac *dmac) 170 { 171 /* Wait for GET to depart from the beginning of the push buffer to 172 * prevent writing PUT == GET, which would be ignored by HW. 173 */ 174 u32 get = NVIF_RV32(&dmac->base.user, NV507C, GET, PTR); 175 if (get == 0) { 176 /* Corner-case, HW idle, but non-committed work pending. */ 177 if (dmac->put == 0) 178 nv50_dmac_kick(&dmac->push); 179 180 if (nvif_msec(dmac->base.device, 2000, 181 if (NVIF_TV32(&dmac->base.user, NV507C, GET, PTR, >, 0)) 182 break; 183 ) < 0) 184 return -ETIMEDOUT; 185 } 186 187 PUSH_RSVD(&dmac->push, PUSH_JUMP(&dmac->push, 0)); 188 dmac->cur = 0; 189 return 0; 190 } 191 192 static int 193 nv50_dmac_wait(struct nvif_push *push, u32 size) 194 { 195 struct nv50_dmac *dmac = container_of(push, typeof(*dmac), push); 196 int free; 197 198 if (WARN_ON(size > dmac->max)) 199 return -EINVAL; 200 201 dmac->cur = push->cur - (u32 __iomem *)dmac->push.mem.object.map.ptr; 202 if (dmac->cur + size >= dmac->max) { 203 int ret = nv50_dmac_wind(dmac); 204 if (ret) 205 return ret; 206 207 push->cur = dmac->push.mem.object.map.ptr; 208 push->cur = push->cur + dmac->cur; 209 nv50_dmac_kick(push); 210 } 211 212 if (nvif_msec(dmac->base.device, 2000, 213 if ((free = nv50_dmac_free(dmac)) >= size) 214 break; 215 ) < 0) { 216 WARN_ON(1); 217 return -ETIMEDOUT; 218 } 219 220 push->bgn = dmac->push.mem.object.map.ptr; 221 push->bgn = push->bgn + dmac->cur; 222 push->cur = push->bgn; 223 push->end = push->cur + free; 224 return 0; 225 } 226 227 MODULE_PARM_DESC(kms_vram_pushbuf, "Place EVO/NVD push buffers in VRAM (default: auto)"); 228 static int nv50_dmac_vram_pushbuf = -1; 229 module_param_named(kms_vram_pushbuf, nv50_dmac_vram_pushbuf, int, 0400); 230 231 int 232 nv50_dmac_create(struct nouveau_drm *drm, 233 const s32 *oclass, u8 head, void *data, u32 size, s64 syncbuf, 234 struct nv50_dmac *dmac) 235 { 236 struct nvif_device *device = &drm->device; 237 struct nvif_object *disp = &drm->display->disp.object; 238 struct nvif_disp_chan_v0 *args = data; 239 u8 type = NVIF_MEM_COHERENT; 240 int ret; 241 242 /* Pascal added support for 47-bit physical addresses, but some 243 * parts of EVO still only accept 40-bit PAs. 244 * 245 * To avoid issues on systems with large amounts of RAM, and on 246 * systems where an IOMMU maps pages at a high address, we need 247 * to allocate push buffers in VRAM instead. 248 * 249 * This appears to match NVIDIA's behaviour on Pascal. 250 */ 251 if ((nv50_dmac_vram_pushbuf > 0) || 252 (nv50_dmac_vram_pushbuf < 0 && device->info.family == NV_DEVICE_INFO_V0_PASCAL)) 253 type |= NVIF_MEM_VRAM; 254 255 ret = nvif_mem_ctor_map(&drm->mmu, "kmsChanPush", type, 0x1000, &dmac->push.mem); 256 if (ret) 257 return ret; 258 259 dmac->push.wait = nv50_dmac_wait; 260 dmac->push.kick = nv50_dmac_kick; 261 dmac->push.bgn = dmac->push.mem.object.map.ptr; 262 dmac->push.cur = dmac->push.bgn; 263 dmac->push.end = dmac->push.bgn; 264 dmac->max = 0x1000/4 - 1; 265 266 /* EVO channels are affected by a HW bug where the last 12 DWORDs 267 * of the push buffer aren't able to be used safely. 268 */ 269 if (disp->oclass < GV100_DISP) 270 dmac->max -= 12; 271 272 args->pushbuf = nvif_handle(&dmac->push.mem.object); 273 274 ret = nv50_chan_create(device, disp, oclass, head, data, size, 275 &dmac->base); 276 if (ret) 277 return ret; 278 279 if (syncbuf < 0) 280 return 0; 281 282 ret = nvif_object_ctor(&dmac->base.user, "kmsSyncCtxDma", NV50_DISP_HANDLE_SYNCBUF, 283 NV_DMA_IN_MEMORY, 284 &(struct nv_dma_v0) { 285 .target = NV_DMA_V0_TARGET_VRAM, 286 .access = NV_DMA_V0_ACCESS_RDWR, 287 .start = syncbuf + 0x0000, 288 .limit = syncbuf + 0x0fff, 289 }, sizeof(struct nv_dma_v0), 290 &dmac->sync); 291 if (ret) 292 return ret; 293 294 ret = nvif_object_ctor(&dmac->base.user, "kmsVramCtxDma", NV50_DISP_HANDLE_VRAM, 295 NV_DMA_IN_MEMORY, 296 &(struct nv_dma_v0) { 297 .target = NV_DMA_V0_TARGET_VRAM, 298 .access = NV_DMA_V0_ACCESS_RDWR, 299 .start = 0, 300 .limit = device->info.ram_user - 1, 301 }, sizeof(struct nv_dma_v0), 302 &dmac->vram); 303 if (ret) 304 return ret; 305 306 return ret; 307 } 308 309 /****************************************************************************** 310 * Output path helpers 311 *****************************************************************************/ 312 static void 313 nv50_outp_dump_caps(struct nouveau_drm *drm, 314 struct nouveau_encoder *outp) 315 { 316 NV_DEBUG(drm, "%s caps: dp_interlace=%d\n", 317 outp->base.base.name, outp->caps.dp_interlace); 318 } 319 320 static int 321 nv50_outp_atomic_check_view(struct drm_encoder *encoder, 322 struct drm_crtc_state *crtc_state, 323 struct drm_connector_state *conn_state, 324 struct drm_display_mode *native_mode) 325 { 326 struct drm_display_mode *adjusted_mode = &crtc_state->adjusted_mode; 327 struct drm_display_mode *mode = &crtc_state->mode; 328 struct drm_connector *connector = conn_state->connector; 329 struct nouveau_conn_atom *asyc = nouveau_conn_atom(conn_state); 330 struct nouveau_drm *drm = nouveau_drm(encoder->dev); 331 332 NV_ATOMIC(drm, "%s atomic_check\n", encoder->name); 333 asyc->scaler.full = false; 334 if (!native_mode) 335 return 0; 336 337 if (asyc->scaler.mode == DRM_MODE_SCALE_NONE) { 338 switch (connector->connector_type) { 339 case DRM_MODE_CONNECTOR_LVDS: 340 case DRM_MODE_CONNECTOR_eDP: 341 /* Don't force scaler for EDID modes with 342 * same size as the native one (e.g. different 343 * refresh rate) 344 */ 345 if (mode->hdisplay == native_mode->hdisplay && 346 mode->vdisplay == native_mode->vdisplay && 347 mode->type & DRM_MODE_TYPE_DRIVER) 348 break; 349 mode = native_mode; 350 asyc->scaler.full = true; 351 break; 352 default: 353 break; 354 } 355 } else { 356 mode = native_mode; 357 } 358 359 if (!drm_mode_equal(adjusted_mode, mode)) { 360 drm_mode_copy(adjusted_mode, mode); 361 crtc_state->mode_changed = true; 362 } 363 364 return 0; 365 } 366 367 static void 368 nv50_outp_atomic_fix_depth(struct drm_encoder *encoder, struct drm_crtc_state *crtc_state) 369 { 370 struct nv50_head_atom *asyh = nv50_head_atom(crtc_state); 371 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 372 struct drm_display_mode *mode = &asyh->state.adjusted_mode; 373 unsigned int max_rate, mode_rate; 374 375 switch (nv_encoder->dcb->type) { 376 case DCB_OUTPUT_DP: 377 max_rate = nv_encoder->dp.link_nr * nv_encoder->dp.link_bw; 378 379 /* we don't support more than 10 anyway */ 380 asyh->or.bpc = min_t(u8, asyh->or.bpc, 10); 381 382 /* reduce the bpc until it works out */ 383 while (asyh->or.bpc > 6) { 384 mode_rate = DIV_ROUND_UP(mode->clock * asyh->or.bpc * 3, 8); 385 if (mode_rate <= max_rate) 386 break; 387 388 asyh->or.bpc -= 2; 389 } 390 break; 391 default: 392 break; 393 } 394 } 395 396 static int 397 nv50_outp_atomic_check(struct drm_encoder *encoder, 398 struct drm_crtc_state *crtc_state, 399 struct drm_connector_state *conn_state) 400 { 401 struct drm_connector *connector = conn_state->connector; 402 struct nouveau_connector *nv_connector = nouveau_connector(connector); 403 struct nv50_head_atom *asyh = nv50_head_atom(crtc_state); 404 int ret; 405 406 ret = nv50_outp_atomic_check_view(encoder, crtc_state, conn_state, 407 nv_connector->native_mode); 408 if (ret) 409 return ret; 410 411 if (crtc_state->mode_changed || crtc_state->connectors_changed) 412 asyh->or.bpc = connector->display_info.bpc; 413 414 /* We might have to reduce the bpc */ 415 nv50_outp_atomic_fix_depth(encoder, crtc_state); 416 417 return 0; 418 } 419 420 struct nouveau_connector * 421 nv50_outp_get_new_connector(struct drm_atomic_state *state, struct nouveau_encoder *outp) 422 { 423 struct drm_connector *connector; 424 struct drm_connector_state *connector_state; 425 struct drm_encoder *encoder = to_drm_encoder(outp); 426 int i; 427 428 for_each_new_connector_in_state(state, connector, connector_state, i) { 429 if (connector_state->best_encoder == encoder) 430 return nouveau_connector(connector); 431 } 432 433 return NULL; 434 } 435 436 struct nouveau_connector * 437 nv50_outp_get_old_connector(struct drm_atomic_state *state, struct nouveau_encoder *outp) 438 { 439 struct drm_connector *connector; 440 struct drm_connector_state *connector_state; 441 struct drm_encoder *encoder = to_drm_encoder(outp); 442 int i; 443 444 for_each_old_connector_in_state(state, connector, connector_state, i) { 445 if (connector_state->best_encoder == encoder) 446 return nouveau_connector(connector); 447 } 448 449 return NULL; 450 } 451 452 static struct nouveau_crtc * 453 nv50_outp_get_new_crtc(const struct drm_atomic_state *state, const struct nouveau_encoder *outp) 454 { 455 struct drm_crtc *crtc; 456 struct drm_crtc_state *crtc_state; 457 const u32 mask = drm_encoder_mask(&outp->base.base); 458 int i; 459 460 for_each_new_crtc_in_state(state, crtc, crtc_state, i) { 461 if (crtc_state->encoder_mask & mask) 462 return nouveau_crtc(crtc); 463 } 464 465 return NULL; 466 } 467 468 /****************************************************************************** 469 * DAC 470 *****************************************************************************/ 471 static void 472 nv50_dac_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state) 473 { 474 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 475 struct nv50_core *core = nv50_disp(encoder->dev)->core; 476 const u32 ctrl = NVDEF(NV507D, DAC_SET_CONTROL, OWNER, NONE); 477 478 core->func->dac->ctrl(core, nv_encoder->outp.or.id, ctrl, NULL); 479 nv_encoder->crtc = NULL; 480 } 481 482 static void 483 nv50_dac_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state) 484 { 485 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 486 struct nouveau_crtc *nv_crtc = nv50_outp_get_new_crtc(state, nv_encoder); 487 struct nv50_head_atom *asyh = 488 nv50_head_atom(drm_atomic_get_new_crtc_state(state, &nv_crtc->base)); 489 struct nv50_core *core = nv50_disp(encoder->dev)->core; 490 u32 ctrl = 0; 491 492 switch (nv_crtc->index) { 493 case 0: ctrl |= NVDEF(NV507D, DAC_SET_CONTROL, OWNER, HEAD0); break; 494 case 1: ctrl |= NVDEF(NV507D, DAC_SET_CONTROL, OWNER, HEAD1); break; 495 case 2: ctrl |= NVDEF(NV907D, DAC_SET_CONTROL, OWNER_MASK, HEAD2); break; 496 case 3: ctrl |= NVDEF(NV907D, DAC_SET_CONTROL, OWNER_MASK, HEAD3); break; 497 default: 498 WARN_ON(1); 499 break; 500 } 501 502 ctrl |= NVDEF(NV507D, DAC_SET_CONTROL, PROTOCOL, RGB_CRT); 503 504 if (!nvif_outp_acquired(&nv_encoder->outp)) 505 nvif_outp_acquire_dac(&nv_encoder->outp); 506 507 core->func->dac->ctrl(core, nv_encoder->outp.or.id, ctrl, asyh); 508 asyh->or.depth = 0; 509 510 nv_encoder->crtc = &nv_crtc->base; 511 } 512 513 static enum drm_connector_status 514 nv50_dac_detect(struct drm_encoder *encoder, struct drm_connector *connector) 515 { 516 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 517 u32 loadval; 518 int ret; 519 520 loadval = nouveau_drm(encoder->dev)->vbios.dactestval; 521 if (loadval == 0) 522 loadval = 340; 523 524 ret = nvif_outp_load_detect(&nv_encoder->outp, loadval); 525 if (ret <= 0) 526 return connector_status_disconnected; 527 528 return connector_status_connected; 529 } 530 531 static const struct drm_encoder_helper_funcs 532 nv50_dac_help = { 533 .atomic_check = nv50_outp_atomic_check, 534 .atomic_enable = nv50_dac_atomic_enable, 535 .atomic_disable = nv50_dac_atomic_disable, 536 .detect = nv50_dac_detect 537 }; 538 539 static void 540 nv50_dac_destroy(struct drm_encoder *encoder) 541 { 542 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 543 544 nvif_outp_dtor(&nv_encoder->outp); 545 546 drm_encoder_cleanup(encoder); 547 kfree(encoder); 548 } 549 550 static const struct drm_encoder_funcs 551 nv50_dac_func = { 552 .destroy = nv50_dac_destroy, 553 }; 554 555 static int 556 nv50_dac_create(struct nouveau_encoder *nv_encoder) 557 { 558 struct drm_connector *connector = &nv_encoder->conn->base; 559 struct nouveau_drm *drm = nouveau_drm(connector->dev); 560 struct nvkm_i2c *i2c = nvxx_i2c(drm); 561 struct nvkm_i2c_bus *bus; 562 struct drm_encoder *encoder; 563 struct dcb_output *dcbe = nv_encoder->dcb; 564 int type = DRM_MODE_ENCODER_DAC; 565 566 bus = nvkm_i2c_bus_find(i2c, dcbe->i2c_index); 567 if (bus) 568 nv_encoder->i2c = &bus->i2c; 569 570 encoder = to_drm_encoder(nv_encoder); 571 drm_encoder_init(connector->dev, encoder, &nv50_dac_func, type, 572 "dac-%04x-%04x", dcbe->hasht, dcbe->hashm); 573 drm_encoder_helper_add(encoder, &nv50_dac_help); 574 575 drm_connector_attach_encoder(connector, encoder); 576 return 0; 577 } 578 579 /* 580 * audio component binding for ELD notification 581 */ 582 static void 583 nv50_audio_component_eld_notify(struct drm_audio_component *acomp, int port, 584 int dev_id) 585 { 586 if (acomp && acomp->audio_ops && acomp->audio_ops->pin_eld_notify) 587 acomp->audio_ops->pin_eld_notify(acomp->audio_ops->audio_ptr, 588 port, dev_id); 589 } 590 591 static int 592 nv50_audio_component_get_eld(struct device *kdev, int port, int dev_id, 593 bool *enabled, unsigned char *buf, int max_bytes) 594 { 595 struct nouveau_drm *drm = dev_get_drvdata(kdev); 596 struct drm_encoder *encoder; 597 struct nouveau_encoder *nv_encoder; 598 struct nouveau_crtc *nv_crtc; 599 int ret = 0; 600 601 *enabled = false; 602 603 mutex_lock(&drm->audio.lock); 604 605 drm_for_each_encoder(encoder, drm->dev) { 606 struct nouveau_connector *nv_connector = NULL; 607 608 if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) 609 continue; /* TODO */ 610 611 nv_encoder = nouveau_encoder(encoder); 612 nv_connector = nv_encoder->conn; 613 nv_crtc = nouveau_crtc(nv_encoder->crtc); 614 615 if (!nv_crtc || nv_encoder->outp.or.id != port || nv_crtc->index != dev_id) 616 continue; 617 618 *enabled = nv_encoder->audio.enabled; 619 if (*enabled) { 620 ret = drm_eld_size(nv_connector->base.eld); 621 memcpy(buf, nv_connector->base.eld, 622 min(max_bytes, ret)); 623 } 624 break; 625 } 626 627 mutex_unlock(&drm->audio.lock); 628 629 return ret; 630 } 631 632 static const struct drm_audio_component_ops nv50_audio_component_ops = { 633 .get_eld = nv50_audio_component_get_eld, 634 }; 635 636 static int 637 nv50_audio_component_bind(struct device *kdev, struct device *hda_kdev, 638 void *data) 639 { 640 struct nouveau_drm *drm = dev_get_drvdata(kdev); 641 struct drm_audio_component *acomp = data; 642 643 if (WARN_ON(!device_link_add(hda_kdev, kdev, DL_FLAG_STATELESS))) 644 return -ENOMEM; 645 646 drm_modeset_lock_all(drm->dev); 647 acomp->ops = &nv50_audio_component_ops; 648 acomp->dev = kdev; 649 drm->audio.component = acomp; 650 drm_modeset_unlock_all(drm->dev); 651 return 0; 652 } 653 654 static void 655 nv50_audio_component_unbind(struct device *kdev, struct device *hda_kdev, 656 void *data) 657 { 658 struct nouveau_drm *drm = dev_get_drvdata(kdev); 659 struct drm_audio_component *acomp = data; 660 661 drm_modeset_lock_all(drm->dev); 662 drm->audio.component = NULL; 663 acomp->ops = NULL; 664 acomp->dev = NULL; 665 drm_modeset_unlock_all(drm->dev); 666 } 667 668 static const struct component_ops nv50_audio_component_bind_ops = { 669 .bind = nv50_audio_component_bind, 670 .unbind = nv50_audio_component_unbind, 671 }; 672 673 static void 674 nv50_audio_component_init(struct nouveau_drm *drm) 675 { 676 if (component_add(drm->dev->dev, &nv50_audio_component_bind_ops)) 677 return; 678 679 drm->audio.component_registered = true; 680 mutex_init(&drm->audio.lock); 681 } 682 683 static void 684 nv50_audio_component_fini(struct nouveau_drm *drm) 685 { 686 if (!drm->audio.component_registered) 687 return; 688 689 component_del(drm->dev->dev, &nv50_audio_component_bind_ops); 690 drm->audio.component_registered = false; 691 mutex_destroy(&drm->audio.lock); 692 } 693 694 /****************************************************************************** 695 * Audio 696 *****************************************************************************/ 697 static bool 698 nv50_audio_supported(struct drm_encoder *encoder) 699 { 700 struct nv50_disp *disp = nv50_disp(encoder->dev); 701 702 if (disp->disp->object.oclass <= GT200_DISP || 703 disp->disp->object.oclass == GT206_DISP) 704 return false; 705 706 if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) { 707 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 708 709 switch (nv_encoder->dcb->type) { 710 case DCB_OUTPUT_TMDS: 711 case DCB_OUTPUT_DP: 712 break; 713 default: 714 return false; 715 } 716 } 717 718 return true; 719 } 720 721 static void 722 nv50_audio_disable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc) 723 { 724 struct nouveau_drm *drm = nouveau_drm(encoder->dev); 725 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 726 struct nvif_outp *outp = &nv_encoder->outp; 727 728 if (!nv50_audio_supported(encoder)) 729 return; 730 731 mutex_lock(&drm->audio.lock); 732 if (nv_encoder->audio.enabled) { 733 nv_encoder->audio.enabled = false; 734 nvif_outp_hda_eld(&nv_encoder->outp, nv_crtc->index, NULL, 0); 735 } 736 mutex_unlock(&drm->audio.lock); 737 738 nv50_audio_component_eld_notify(drm->audio.component, outp->or.id, nv_crtc->index); 739 } 740 741 static void 742 nv50_audio_enable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc, 743 struct nouveau_connector *nv_connector, struct drm_atomic_state *state, 744 struct drm_display_mode *mode) 745 { 746 struct nouveau_drm *drm = nouveau_drm(encoder->dev); 747 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 748 struct nvif_outp *outp = &nv_encoder->outp; 749 750 if (!nv50_audio_supported(encoder) || !nv_connector->base.display_info.has_audio) 751 return; 752 753 mutex_lock(&drm->audio.lock); 754 755 nvif_outp_hda_eld(&nv_encoder->outp, nv_crtc->index, nv_connector->base.eld, 756 drm_eld_size(nv_connector->base.eld)); 757 nv_encoder->audio.enabled = true; 758 759 mutex_unlock(&drm->audio.lock); 760 761 nv50_audio_component_eld_notify(drm->audio.component, outp->or.id, nv_crtc->index); 762 } 763 764 /****************************************************************************** 765 * HDMI 766 *****************************************************************************/ 767 static void 768 nv50_hdmi_enable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc, 769 struct nouveau_connector *nv_connector, struct drm_atomic_state *state, 770 struct drm_display_mode *mode, bool hda) 771 { 772 struct nouveau_drm *drm = nouveau_drm(encoder->dev); 773 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 774 struct drm_hdmi_info *hdmi = &nv_connector->base.display_info.hdmi; 775 union hdmi_infoframe infoframe = { 0 }; 776 const u8 rekey = 56; /* binary driver, and tegra, constant */ 777 u32 max_ac_packet; 778 DEFINE_RAW_FLEX(struct nvif_outp_infoframe_v0, args, data, 17); 779 const u8 data_len = __member_size(args->data); 780 int ret, size; 781 782 max_ac_packet = mode->htotal - mode->hdisplay; 783 max_ac_packet -= rekey; 784 max_ac_packet -= 18; /* constant from tegra */ 785 max_ac_packet /= 32; 786 787 if (nv_encoder->i2c && hdmi->scdc.scrambling.supported) { 788 const bool high_tmds_clock_ratio = mode->clock > 340000; 789 u8 scdc; 790 791 ret = drm_scdc_readb(nv_encoder->i2c, SCDC_TMDS_CONFIG, &scdc); 792 if (ret < 0) { 793 NV_ERROR(drm, "Failure to read SCDC_TMDS_CONFIG: %d\n", ret); 794 return; 795 } 796 797 scdc &= ~(SCDC_TMDS_BIT_CLOCK_RATIO_BY_40 | SCDC_SCRAMBLING_ENABLE); 798 if (high_tmds_clock_ratio || hdmi->scdc.scrambling.low_rates) 799 scdc |= SCDC_SCRAMBLING_ENABLE; 800 if (high_tmds_clock_ratio) 801 scdc |= SCDC_TMDS_BIT_CLOCK_RATIO_BY_40; 802 803 ret = drm_scdc_writeb(nv_encoder->i2c, SCDC_TMDS_CONFIG, scdc); 804 if (ret < 0) 805 NV_ERROR(drm, "Failure to write SCDC_TMDS_CONFIG = 0x%02x: %d\n", 806 scdc, ret); 807 } 808 809 ret = nvif_outp_hdmi(&nv_encoder->outp, nv_crtc->index, true, max_ac_packet, rekey, 810 mode->clock, hdmi->scdc.supported, hdmi->scdc.scrambling.supported, 811 hdmi->scdc.scrambling.low_rates); 812 if (ret) 813 return; 814 815 /* AVI InfoFrame. */ 816 args->version = 0; 817 args->head = nv_crtc->index; 818 819 if (!drm_hdmi_avi_infoframe_from_display_mode(&infoframe.avi, &nv_connector->base, mode)) { 820 drm_hdmi_avi_infoframe_quant_range(&infoframe.avi, &nv_connector->base, mode, 821 HDMI_QUANTIZATION_RANGE_FULL); 822 823 size = hdmi_infoframe_pack(&infoframe, args->data, data_len); 824 } else { 825 size = 0; 826 } 827 828 nvif_outp_infoframe(&nv_encoder->outp, NVIF_OUTP_INFOFRAME_V0_AVI, args, size); 829 830 /* Vendor InfoFrame. */ 831 memset(args->data, 0, data_len); 832 if (!drm_hdmi_vendor_infoframe_from_display_mode(&infoframe.vendor.hdmi, 833 &nv_connector->base, mode)) 834 size = hdmi_infoframe_pack(&infoframe, args->data, data_len); 835 else 836 size = 0; 837 838 nvif_outp_infoframe(&nv_encoder->outp, NVIF_OUTP_INFOFRAME_V0_VSI, args, size); 839 840 nv_encoder->hdmi.enabled = true; 841 } 842 843 /****************************************************************************** 844 * MST 845 *****************************************************************************/ 846 #define nv50_mstm(p) container_of((p), struct nv50_mstm, mgr) 847 #define nv50_mstc(p) container_of((p), struct nv50_mstc, connector) 848 #define nv50_msto(p) container_of((p), struct nv50_msto, encoder) 849 850 struct nv50_mstc { 851 struct nv50_mstm *mstm; 852 struct drm_dp_mst_port *port; 853 struct drm_connector connector; 854 855 struct drm_display_mode *native; 856 struct edid *edid; 857 }; 858 859 struct nv50_msto { 860 struct drm_encoder encoder; 861 862 /* head is statically assigned on msto creation */ 863 struct nv50_head *head; 864 struct nv50_mstc *mstc; 865 bool disabled; 866 bool enabled; 867 868 u32 display_id; 869 }; 870 871 struct nouveau_encoder *nv50_real_outp(struct drm_encoder *encoder) 872 { 873 struct nv50_msto *msto; 874 875 if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) 876 return nouveau_encoder(encoder); 877 878 msto = nv50_msto(encoder); 879 if (!msto->mstc) 880 return NULL; 881 return msto->mstc->mstm->outp; 882 } 883 884 static void 885 nv50_msto_cleanup(struct drm_atomic_state *state, 886 struct drm_dp_mst_topology_state *new_mst_state, 887 struct drm_dp_mst_topology_mgr *mgr, 888 struct nv50_msto *msto) 889 { 890 struct nouveau_drm *drm = nouveau_drm(msto->encoder.dev); 891 struct drm_dp_mst_atomic_payload *new_payload = 892 drm_atomic_get_mst_payload_state(new_mst_state, msto->mstc->port); 893 struct drm_dp_mst_topology_state *old_mst_state = 894 drm_atomic_get_old_mst_topology_state(state, mgr); 895 const struct drm_dp_mst_atomic_payload *old_payload = 896 drm_atomic_get_mst_payload_state(old_mst_state, msto->mstc->port); 897 struct nv50_mstc *mstc = msto->mstc; 898 struct nv50_mstm *mstm = mstc->mstm; 899 900 NV_ATOMIC(drm, "%s: msto cleanup\n", msto->encoder.name); 901 902 if (msto->disabled) { 903 if (msto->head->func->display_id) { 904 nvif_outp_dp_mst_id_put(&mstm->outp->outp, msto->display_id); 905 msto->display_id = 0; 906 } 907 908 msto->mstc = NULL; 909 msto->disabled = false; 910 drm_dp_remove_payload_part2(mgr, new_mst_state, old_payload, new_payload); 911 } else if (msto->enabled) { 912 drm_dp_add_payload_part2(mgr, new_payload); 913 msto->enabled = false; 914 } 915 } 916 917 static void 918 nv50_msto_prepare(struct drm_atomic_state *state, 919 struct drm_dp_mst_topology_state *mst_state, 920 struct drm_dp_mst_topology_mgr *mgr, 921 struct nv50_msto *msto) 922 { 923 struct nouveau_drm *drm = nouveau_drm(msto->encoder.dev); 924 struct nv50_mstc *mstc = msto->mstc; 925 struct nv50_mstm *mstm = mstc->mstm; 926 struct drm_dp_mst_atomic_payload *payload; 927 int ret = 0; 928 929 NV_ATOMIC(drm, "%s: msto prepare\n", msto->encoder.name); 930 931 payload = drm_atomic_get_mst_payload_state(mst_state, mstc->port); 932 933 if (msto->disabled) { 934 drm_dp_remove_payload_part1(mgr, mst_state, payload); 935 nvif_outp_dp_mst_vcpi(&mstm->outp->outp, msto->head->base.index, 0, 0, 0, 0); 936 ret = 1; 937 } else { 938 if (msto->enabled) 939 ret = drm_dp_add_payload_part1(mgr, mst_state, payload); 940 } 941 942 if (ret == 0) { 943 nvif_outp_dp_mst_vcpi(&mstm->outp->outp, msto->head->base.index, 944 payload->vc_start_slot, payload->time_slots, 945 payload->pbn, 946 payload->time_slots * dfixed_trunc(mst_state->pbn_div)); 947 } else { 948 nvif_outp_dp_mst_vcpi(&mstm->outp->outp, msto->head->base.index, 0, 0, 0, 0); 949 } 950 } 951 952 static int 953 nv50_msto_atomic_check(struct drm_encoder *encoder, 954 struct drm_crtc_state *crtc_state, 955 struct drm_connector_state *conn_state) 956 { 957 struct drm_atomic_state *state = crtc_state->state; 958 struct drm_connector *connector = conn_state->connector; 959 struct drm_dp_mst_topology_state *mst_state; 960 struct nv50_mstc *mstc = nv50_mstc(connector); 961 struct nv50_mstm *mstm = mstc->mstm; 962 struct nv50_head_atom *asyh = nv50_head_atom(crtc_state); 963 int slots; 964 int ret; 965 966 ret = nv50_outp_atomic_check_view(encoder, crtc_state, conn_state, 967 mstc->native); 968 if (ret) 969 return ret; 970 971 if (!drm_atomic_crtc_needs_modeset(crtc_state)) 972 return 0; 973 974 /* 975 * When restoring duplicated states, we need to make sure that the bw 976 * remains the same and avoid recalculating it, as the connector's bpc 977 * may have changed after the state was duplicated 978 */ 979 if (!state->duplicated) { 980 const int clock = crtc_state->adjusted_mode.clock; 981 982 asyh->or.bpc = connector->display_info.bpc; 983 asyh->dp.pbn = drm_dp_calc_pbn_mode(clock, asyh->or.bpc * 3 << 4); 984 } 985 986 mst_state = drm_atomic_get_mst_topology_state(state, &mstm->mgr); 987 if (IS_ERR(mst_state)) 988 return PTR_ERR(mst_state); 989 990 if (!mst_state->pbn_div.full) { 991 struct nouveau_encoder *outp = mstc->mstm->outp; 992 993 mst_state->pbn_div = drm_dp_get_vc_payload_bw(outp->dp.link_bw, outp->dp.link_nr); 994 } 995 996 slots = drm_dp_atomic_find_time_slots(state, &mstm->mgr, mstc->port, asyh->dp.pbn); 997 if (slots < 0) 998 return slots; 999 1000 asyh->dp.tu = slots; 1001 1002 return 0; 1003 } 1004 1005 static u8 1006 nv50_dp_bpc_to_depth(unsigned int bpc) 1007 { 1008 switch (bpc) { 1009 case 6: return NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_BPP_18_444; 1010 case 8: return NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_BPP_24_444; 1011 case 10: 1012 default: return NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_BPP_30_444; 1013 } 1014 } 1015 1016 static void 1017 nv50_msto_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state) 1018 { 1019 struct nv50_msto *msto = nv50_msto(encoder); 1020 struct nv50_head *head = msto->head; 1021 struct nv50_head_atom *asyh = 1022 nv50_head_atom(drm_atomic_get_new_crtc_state(state, &head->base.base)); 1023 struct nv50_mstc *mstc = NULL; 1024 struct nv50_mstm *mstm = NULL; 1025 struct drm_connector *connector; 1026 struct drm_connector_list_iter conn_iter; 1027 u8 proto; 1028 1029 drm_connector_list_iter_begin(encoder->dev, &conn_iter); 1030 drm_for_each_connector_iter(connector, &conn_iter) { 1031 if (connector->state->best_encoder == &msto->encoder) { 1032 mstc = nv50_mstc(connector); 1033 mstm = mstc->mstm; 1034 break; 1035 } 1036 } 1037 drm_connector_list_iter_end(&conn_iter); 1038 1039 if (WARN_ON(!mstc)) 1040 return; 1041 1042 if (!mstm->links++) { 1043 nvif_outp_acquire_sor(&mstm->outp->outp, false /*TODO: MST audio... */); 1044 nouveau_dp_train(mstm->outp, true, 0, 0); 1045 } 1046 1047 if (head->func->display_id) { 1048 if (!WARN_ON(nvif_outp_dp_mst_id_get(&mstm->outp->outp, &msto->display_id))) 1049 head->func->display_id(head, msto->display_id); 1050 } 1051 1052 if (mstm->outp->outp.or.link & 1) 1053 proto = NV917D_SOR_SET_CONTROL_PROTOCOL_DP_A; 1054 else 1055 proto = NV917D_SOR_SET_CONTROL_PROTOCOL_DP_B; 1056 1057 mstm->outp->update(mstm->outp, head->base.index, asyh, proto, 1058 nv50_dp_bpc_to_depth(asyh->or.bpc)); 1059 1060 msto->mstc = mstc; 1061 msto->enabled = true; 1062 mstm->modified = true; 1063 } 1064 1065 static void 1066 nv50_msto_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state) 1067 { 1068 struct nv50_msto *msto = nv50_msto(encoder); 1069 struct nv50_mstc *mstc = msto->mstc; 1070 struct nv50_mstm *mstm = mstc->mstm; 1071 1072 if (msto->head->func->display_id) 1073 msto->head->func->display_id(msto->head, 0); 1074 1075 mstm->outp->update(mstm->outp, msto->head->base.index, NULL, 0, 0); 1076 mstm->modified = true; 1077 if (!--mstm->links) 1078 mstm->disabled = true; 1079 msto->disabled = true; 1080 } 1081 1082 static const struct drm_encoder_helper_funcs 1083 nv50_msto_help = { 1084 .atomic_disable = nv50_msto_atomic_disable, 1085 .atomic_enable = nv50_msto_atomic_enable, 1086 .atomic_check = nv50_msto_atomic_check, 1087 }; 1088 1089 static void 1090 nv50_msto_destroy(struct drm_encoder *encoder) 1091 { 1092 struct nv50_msto *msto = nv50_msto(encoder); 1093 drm_encoder_cleanup(&msto->encoder); 1094 kfree(msto); 1095 } 1096 1097 static const struct drm_encoder_funcs 1098 nv50_msto = { 1099 .destroy = nv50_msto_destroy, 1100 }; 1101 1102 static struct nv50_msto * 1103 nv50_msto_new(struct drm_device *dev, struct nv50_head *head, int id) 1104 { 1105 struct nv50_msto *msto; 1106 int ret; 1107 1108 msto = kzalloc(sizeof(*msto), GFP_KERNEL); 1109 if (!msto) 1110 return ERR_PTR(-ENOMEM); 1111 1112 ret = drm_encoder_init(dev, &msto->encoder, &nv50_msto, 1113 DRM_MODE_ENCODER_DPMST, "mst-%d", id); 1114 if (ret) { 1115 kfree(msto); 1116 return ERR_PTR(ret); 1117 } 1118 1119 drm_encoder_helper_add(&msto->encoder, &nv50_msto_help); 1120 msto->encoder.possible_crtcs = drm_crtc_mask(&head->base.base); 1121 msto->head = head; 1122 return msto; 1123 } 1124 1125 static struct drm_encoder * 1126 nv50_mstc_atomic_best_encoder(struct drm_connector *connector, 1127 struct drm_atomic_state *state) 1128 { 1129 struct drm_connector_state *connector_state = drm_atomic_get_new_connector_state(state, 1130 connector); 1131 struct nv50_mstc *mstc = nv50_mstc(connector); 1132 struct drm_crtc *crtc = connector_state->crtc; 1133 1134 if (!(mstc->mstm->outp->dcb->heads & drm_crtc_mask(crtc))) 1135 return NULL; 1136 1137 return &nv50_head(crtc)->msto->encoder; 1138 } 1139 1140 static enum drm_mode_status 1141 nv50_mstc_mode_valid(struct drm_connector *connector, 1142 const struct drm_display_mode *mode) 1143 { 1144 struct nv50_mstc *mstc = nv50_mstc(connector); 1145 struct nouveau_encoder *outp = mstc->mstm->outp; 1146 1147 /* TODO: calculate the PBN from the dotclock and validate against the 1148 * MSTB's max possible PBN 1149 */ 1150 1151 return nv50_dp_mode_valid(outp, mode, NULL); 1152 } 1153 1154 static int 1155 nv50_mstc_get_modes(struct drm_connector *connector) 1156 { 1157 struct nv50_mstc *mstc = nv50_mstc(connector); 1158 int ret = 0; 1159 1160 mstc->edid = drm_dp_mst_get_edid(&mstc->connector, mstc->port->mgr, mstc->port); 1161 drm_connector_update_edid_property(&mstc->connector, mstc->edid); 1162 if (mstc->edid) 1163 ret = drm_add_edid_modes(&mstc->connector, mstc->edid); 1164 1165 /* 1166 * XXX: Since we don't use HDR in userspace quite yet, limit the bpc 1167 * to 8 to save bandwidth on the topology. In the future, we'll want 1168 * to properly fix this by dynamically selecting the highest possible 1169 * bpc that would fit in the topology 1170 */ 1171 if (connector->display_info.bpc) 1172 connector->display_info.bpc = 1173 clamp(connector->display_info.bpc, 6U, 8U); 1174 else 1175 connector->display_info.bpc = 8; 1176 1177 if (mstc->native) 1178 drm_mode_destroy(mstc->connector.dev, mstc->native); 1179 mstc->native = nouveau_conn_native_mode(&mstc->connector); 1180 return ret; 1181 } 1182 1183 static int 1184 nv50_mstc_atomic_check(struct drm_connector *connector, 1185 struct drm_atomic_state *state) 1186 { 1187 struct nv50_mstc *mstc = nv50_mstc(connector); 1188 struct drm_dp_mst_topology_mgr *mgr = &mstc->mstm->mgr; 1189 1190 return drm_dp_atomic_release_time_slots(state, mgr, mstc->port); 1191 } 1192 1193 static int 1194 nv50_mstc_detect(struct drm_connector *connector, 1195 struct drm_modeset_acquire_ctx *ctx, bool force) 1196 { 1197 struct nv50_mstc *mstc = nv50_mstc(connector); 1198 int ret; 1199 1200 if (drm_connector_is_unregistered(connector)) 1201 return connector_status_disconnected; 1202 1203 ret = pm_runtime_get_sync(connector->dev->dev); 1204 if (ret < 0 && ret != -EACCES) { 1205 pm_runtime_put_autosuspend(connector->dev->dev); 1206 return connector_status_disconnected; 1207 } 1208 1209 ret = drm_dp_mst_detect_port(connector, ctx, mstc->port->mgr, 1210 mstc->port); 1211 if (ret != connector_status_connected) 1212 goto out; 1213 1214 out: 1215 pm_runtime_mark_last_busy(connector->dev->dev); 1216 pm_runtime_put_autosuspend(connector->dev->dev); 1217 return ret; 1218 } 1219 1220 static const struct drm_connector_helper_funcs 1221 nv50_mstc_help = { 1222 .get_modes = nv50_mstc_get_modes, 1223 .mode_valid = nv50_mstc_mode_valid, 1224 .atomic_best_encoder = nv50_mstc_atomic_best_encoder, 1225 .atomic_check = nv50_mstc_atomic_check, 1226 .detect_ctx = nv50_mstc_detect, 1227 }; 1228 1229 static void 1230 nv50_mstc_destroy(struct drm_connector *connector) 1231 { 1232 struct nv50_mstc *mstc = nv50_mstc(connector); 1233 1234 drm_connector_cleanup(&mstc->connector); 1235 drm_dp_mst_put_port_malloc(mstc->port); 1236 1237 kfree(mstc); 1238 } 1239 1240 static const struct drm_connector_funcs 1241 nv50_mstc = { 1242 .reset = nouveau_conn_reset, 1243 .fill_modes = drm_helper_probe_single_connector_modes, 1244 .destroy = nv50_mstc_destroy, 1245 .atomic_duplicate_state = nouveau_conn_atomic_duplicate_state, 1246 .atomic_destroy_state = nouveau_conn_atomic_destroy_state, 1247 .atomic_set_property = nouveau_conn_atomic_set_property, 1248 .atomic_get_property = nouveau_conn_atomic_get_property, 1249 }; 1250 1251 static int 1252 nv50_mstc_new(struct nv50_mstm *mstm, struct drm_dp_mst_port *port, 1253 const char *path, struct nv50_mstc **pmstc) 1254 { 1255 struct drm_device *dev = mstm->outp->base.base.dev; 1256 struct drm_crtc *crtc; 1257 struct nv50_mstc *mstc; 1258 int ret; 1259 1260 if (!(mstc = *pmstc = kzalloc(sizeof(*mstc), GFP_KERNEL))) 1261 return -ENOMEM; 1262 mstc->mstm = mstm; 1263 mstc->port = port; 1264 1265 ret = drm_connector_dynamic_init(dev, &mstc->connector, &nv50_mstc, 1266 DRM_MODE_CONNECTOR_DisplayPort, NULL); 1267 if (ret) { 1268 kfree(*pmstc); 1269 *pmstc = NULL; 1270 return ret; 1271 } 1272 1273 drm_connector_helper_add(&mstc->connector, &nv50_mstc_help); 1274 1275 mstc->connector.funcs->reset(&mstc->connector); 1276 nouveau_conn_attach_properties(&mstc->connector); 1277 1278 drm_for_each_crtc(crtc, dev) { 1279 if (!(mstm->outp->dcb->heads & drm_crtc_mask(crtc))) 1280 continue; 1281 1282 drm_connector_attach_encoder(&mstc->connector, 1283 &nv50_head(crtc)->msto->encoder); 1284 } 1285 1286 drm_object_attach_property(&mstc->connector.base, dev->mode_config.path_property, 0); 1287 drm_object_attach_property(&mstc->connector.base, dev->mode_config.tile_property, 0); 1288 drm_connector_set_path_property(&mstc->connector, path); 1289 drm_dp_mst_get_port_malloc(port); 1290 return 0; 1291 } 1292 1293 static void 1294 nv50_mstm_cleanup(struct drm_atomic_state *state, 1295 struct drm_dp_mst_topology_state *mst_state, 1296 struct nv50_mstm *mstm) 1297 { 1298 struct nouveau_drm *drm = nouveau_drm(mstm->outp->base.base.dev); 1299 struct drm_encoder *encoder; 1300 1301 NV_ATOMIC(drm, "%s: mstm cleanup\n", mstm->outp->base.base.name); 1302 drm_dp_check_act_status(&mstm->mgr); 1303 1304 drm_for_each_encoder(encoder, mstm->outp->base.base.dev) { 1305 if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) { 1306 struct nv50_msto *msto = nv50_msto(encoder); 1307 struct nv50_mstc *mstc = msto->mstc; 1308 if (mstc && mstc->mstm == mstm) 1309 nv50_msto_cleanup(state, mst_state, &mstm->mgr, msto); 1310 } 1311 } 1312 1313 if (mstm->disabled) { 1314 nouveau_dp_power_down(mstm->outp); 1315 nvif_outp_release(&mstm->outp->outp); 1316 mstm->disabled = false; 1317 } 1318 1319 mstm->modified = false; 1320 } 1321 1322 static void 1323 nv50_mstm_prepare(struct drm_atomic_state *state, 1324 struct drm_dp_mst_topology_state *mst_state, 1325 struct nv50_mstm *mstm) 1326 { 1327 struct nouveau_drm *drm = nouveau_drm(mstm->outp->base.base.dev); 1328 struct drm_encoder *encoder; 1329 1330 NV_ATOMIC(drm, "%s: mstm prepare\n", mstm->outp->base.base.name); 1331 1332 /* Disable payloads first */ 1333 drm_for_each_encoder(encoder, mstm->outp->base.base.dev) { 1334 if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) { 1335 struct nv50_msto *msto = nv50_msto(encoder); 1336 struct nv50_mstc *mstc = msto->mstc; 1337 if (mstc && mstc->mstm == mstm && msto->disabled) 1338 nv50_msto_prepare(state, mst_state, &mstm->mgr, msto); 1339 } 1340 } 1341 1342 /* Add payloads for new heads, while also updating the start slots of any unmodified (but 1343 * active) heads that may have had their VC slots shifted left after the previous step 1344 */ 1345 drm_for_each_encoder(encoder, mstm->outp->base.base.dev) { 1346 if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) { 1347 struct nv50_msto *msto = nv50_msto(encoder); 1348 struct nv50_mstc *mstc = msto->mstc; 1349 if (mstc && mstc->mstm == mstm && !msto->disabled) 1350 nv50_msto_prepare(state, mst_state, &mstm->mgr, msto); 1351 } 1352 } 1353 } 1354 1355 static struct drm_connector * 1356 nv50_mstm_add_connector(struct drm_dp_mst_topology_mgr *mgr, 1357 struct drm_dp_mst_port *port, const char *path) 1358 { 1359 struct nv50_mstm *mstm = nv50_mstm(mgr); 1360 struct nv50_mstc *mstc; 1361 int ret; 1362 1363 ret = nv50_mstc_new(mstm, port, path, &mstc); 1364 if (ret) 1365 return NULL; 1366 1367 return &mstc->connector; 1368 } 1369 1370 static const struct drm_dp_mst_topology_cbs 1371 nv50_mstm = { 1372 .add_connector = nv50_mstm_add_connector, 1373 }; 1374 1375 bool 1376 nv50_mstm_service(struct nouveau_drm *drm, 1377 struct nouveau_connector *nv_connector, 1378 struct nv50_mstm *mstm) 1379 { 1380 struct drm_dp_aux *aux = &nv_connector->aux; 1381 bool handled = true, ret = true; 1382 int rc; 1383 u8 esi[8] = {}; 1384 1385 while (handled) { 1386 u8 ack[8] = {}; 1387 1388 rc = drm_dp_dpcd_read(aux, DP_SINK_COUNT_ESI, esi, 8); 1389 if (rc != 8) { 1390 ret = false; 1391 break; 1392 } 1393 1394 drm_dp_mst_hpd_irq_handle_event(&mstm->mgr, esi, ack, &handled); 1395 if (!handled) 1396 break; 1397 1398 rc = drm_dp_dpcd_writeb(aux, DP_SINK_COUNT_ESI + 1, ack[1]); 1399 1400 if (rc != 1) { 1401 ret = false; 1402 break; 1403 } 1404 1405 drm_dp_mst_hpd_irq_send_new_request(&mstm->mgr); 1406 } 1407 1408 if (!ret) 1409 NV_DEBUG(drm, "Failed to handle ESI on %s: %d\n", 1410 nv_connector->base.name, rc); 1411 1412 return ret; 1413 } 1414 1415 void 1416 nv50_mstm_remove(struct nv50_mstm *mstm) 1417 { 1418 mstm->is_mst = false; 1419 drm_dp_mst_topology_mgr_set_mst(&mstm->mgr, false); 1420 } 1421 1422 int 1423 nv50_mstm_detect(struct nouveau_encoder *outp) 1424 { 1425 struct nv50_mstm *mstm = outp->dp.mstm; 1426 struct drm_dp_aux *aux; 1427 int ret; 1428 1429 if (!mstm || !mstm->can_mst) 1430 return 0; 1431 1432 aux = mstm->mgr.aux; 1433 1434 /* Clear any leftover MST state we didn't set ourselves by first 1435 * disabling MST if it was already enabled 1436 */ 1437 ret = drm_dp_dpcd_writeb(aux, DP_MSTM_CTRL, 0); 1438 if (ret < 0) 1439 return ret; 1440 1441 /* And start enabling */ 1442 ret = drm_dp_mst_topology_mgr_set_mst(&mstm->mgr, true); 1443 if (ret) 1444 return ret; 1445 1446 mstm->is_mst = true; 1447 return 1; 1448 } 1449 1450 static void 1451 nv50_mstm_fini(struct nouveau_encoder *outp) 1452 { 1453 struct nv50_mstm *mstm = outp->dp.mstm; 1454 1455 if (!mstm) 1456 return; 1457 1458 /* Don't change the MST state of this connector until we've finished 1459 * resuming, since we can't safely grab hpd_irq_lock in our resume 1460 * path to protect mstm->is_mst without potentially deadlocking 1461 */ 1462 mutex_lock(&outp->dp.hpd_irq_lock); 1463 mstm->suspended = true; 1464 mutex_unlock(&outp->dp.hpd_irq_lock); 1465 1466 if (mstm->is_mst) 1467 drm_dp_mst_topology_mgr_suspend(&mstm->mgr); 1468 } 1469 1470 static void 1471 nv50_mstm_init(struct nouveau_encoder *outp, bool runtime) 1472 { 1473 struct nv50_mstm *mstm = outp->dp.mstm; 1474 int ret = 0; 1475 1476 if (!mstm) 1477 return; 1478 1479 if (mstm->is_mst) { 1480 ret = drm_dp_mst_topology_mgr_resume(&mstm->mgr, !runtime); 1481 if (ret == -1) 1482 nv50_mstm_remove(mstm); 1483 } 1484 1485 mutex_lock(&outp->dp.hpd_irq_lock); 1486 mstm->suspended = false; 1487 mutex_unlock(&outp->dp.hpd_irq_lock); 1488 1489 if (ret == -1) 1490 drm_kms_helper_hotplug_event(mstm->mgr.dev); 1491 } 1492 1493 static void 1494 nv50_mstm_del(struct nv50_mstm **pmstm) 1495 { 1496 struct nv50_mstm *mstm = *pmstm; 1497 if (mstm) { 1498 drm_dp_mst_topology_mgr_destroy(&mstm->mgr); 1499 kfree(*pmstm); 1500 *pmstm = NULL; 1501 } 1502 } 1503 1504 static int 1505 nv50_mstm_new(struct nouveau_encoder *outp, struct drm_dp_aux *aux, int aux_max, 1506 int conn_base_id, struct nv50_mstm **pmstm) 1507 { 1508 const int max_payloads = hweight8(outp->dcb->heads); 1509 struct drm_device *dev = outp->base.base.dev; 1510 struct nv50_mstm *mstm; 1511 int ret; 1512 1513 if (!(mstm = *pmstm = kzalloc(sizeof(*mstm), GFP_KERNEL))) 1514 return -ENOMEM; 1515 mstm->outp = outp; 1516 mstm->mgr.cbs = &nv50_mstm; 1517 1518 ret = drm_dp_mst_topology_mgr_init(&mstm->mgr, dev, aux, aux_max, 1519 max_payloads, conn_base_id); 1520 if (ret) 1521 return ret; 1522 1523 return 0; 1524 } 1525 1526 /****************************************************************************** 1527 * SOR 1528 *****************************************************************************/ 1529 static void 1530 nv50_sor_update(struct nouveau_encoder *nv_encoder, u8 head, 1531 struct nv50_head_atom *asyh, u8 proto, u8 depth) 1532 { 1533 struct nv50_disp *disp = nv50_disp(nv_encoder->base.base.dev); 1534 struct nv50_core *core = disp->core; 1535 1536 if (!asyh) { 1537 nv_encoder->ctrl &= ~BIT(head); 1538 if (NVDEF_TEST(nv_encoder->ctrl, NV507D, SOR_SET_CONTROL, OWNER, ==, NONE)) 1539 nv_encoder->ctrl = 0; 1540 } else { 1541 nv_encoder->ctrl |= NVVAL(NV507D, SOR_SET_CONTROL, PROTOCOL, proto); 1542 nv_encoder->ctrl |= BIT(head); 1543 asyh->or.depth = depth; 1544 } 1545 1546 core->func->sor->ctrl(core, nv_encoder->outp.or.id, nv_encoder->ctrl, asyh); 1547 } 1548 1549 /* TODO: Should we extend this to PWM-only backlights? 1550 * As well, should we add a DRM helper for waiting for the backlight to acknowledge 1551 * the panel backlight has been shut off? Intel doesn't seem to do this, and uses a 1552 * fixed time delay from the vbios… 1553 */ 1554 static void 1555 nv50_sor_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state) 1556 { 1557 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 1558 struct nv50_head *head = nv50_head(nv_encoder->crtc); 1559 #ifdef CONFIG_DRM_NOUVEAU_BACKLIGHT 1560 struct nouveau_connector *nv_connector = nv50_outp_get_old_connector(state, nv_encoder); 1561 struct nouveau_drm *drm = nouveau_drm(nv_encoder->base.base.dev); 1562 struct nouveau_backlight *backlight = nv_connector->backlight; 1563 struct drm_dp_aux *aux = &nv_connector->aux; 1564 int ret; 1565 1566 if (backlight && backlight->uses_dpcd) { 1567 ret = drm_edp_backlight_disable(aux, &backlight->edp_info); 1568 if (ret < 0) 1569 NV_ERROR(drm, "Failed to disable backlight on [CONNECTOR:%d:%s]: %d\n", 1570 nv_connector->base.base.id, nv_connector->base.name, ret); 1571 } 1572 #endif 1573 1574 if (nv_encoder->dcb->type == DCB_OUTPUT_TMDS && nv_encoder->hdmi.enabled) { 1575 nvif_outp_hdmi(&nv_encoder->outp, head->base.index, 1576 false, 0, 0, 0, false, false, false); 1577 nv_encoder->hdmi.enabled = false; 1578 } 1579 1580 if (nv_encoder->dcb->type == DCB_OUTPUT_DP) 1581 nouveau_dp_power_down(nv_encoder); 1582 1583 if (head->func->display_id) 1584 head->func->display_id(head, 0); 1585 1586 nv_encoder->update(nv_encoder, head->base.index, NULL, 0, 0); 1587 nv50_audio_disable(encoder, &head->base); 1588 nv_encoder->crtc = NULL; 1589 } 1590 1591 // common/inc/displayport/displayport.h 1592 #define DP_CONFIG_WATERMARK_ADJUST 2 1593 #define DP_CONFIG_WATERMARK_LIMIT 20 1594 #define DP_CONFIG_INCREASED_WATERMARK_ADJUST 8 1595 #define DP_CONFIG_INCREASED_WATERMARK_LIMIT 22 1596 1597 static bool 1598 nv50_sor_dp_watermark_sst(struct nouveau_encoder *outp, 1599 struct nv50_head *head, struct nv50_head_atom *asyh) 1600 { 1601 bool enhancedFraming = outp->dp.dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP; 1602 u64 minRate = outp->dp.link_bw * 1000; 1603 unsigned tuSize = 64; 1604 unsigned waterMark; 1605 unsigned hBlankSym; 1606 unsigned vBlankSym; 1607 unsigned watermarkAdjust = DP_CONFIG_WATERMARK_ADJUST; 1608 unsigned watermarkMinimum = DP_CONFIG_WATERMARK_LIMIT; 1609 // depth is multiplied by 16 in case of DSC enable 1610 s32 hblank_symbols; 1611 // number of link clocks per line. 1612 int vblank_symbols = 0; 1613 bool bEnableDsc = false; 1614 unsigned surfaceWidth = asyh->mode.h.blanks - asyh->mode.h.blanke; 1615 unsigned rasterWidth = asyh->mode.h.active; 1616 unsigned depth = asyh->or.bpc * 3; 1617 unsigned DSC_FACTOR = bEnableDsc ? 16 : 1; 1618 u64 pixelClockHz = asyh->mode.clock * 1000; 1619 u64 PrecisionFactor = 100000, ratioF, watermarkF; 1620 u32 numLanesPerLink = outp->dp.link_nr; 1621 u32 numSymbolsPerLine; 1622 u32 BlankingBits; 1623 u32 surfaceWidthPerLink; 1624 u32 PixelSteeringBits; 1625 u64 NumBlankingLinkClocks; 1626 u32 MinHBlank; 1627 1628 if (outp->outp.info.dp.increased_wm) { 1629 watermarkAdjust = DP_CONFIG_INCREASED_WATERMARK_ADJUST; 1630 watermarkMinimum = DP_CONFIG_INCREASED_WATERMARK_LIMIT; 1631 } 1632 1633 if ((pixelClockHz * depth) >= (8 * minRate * outp->dp.link_nr * DSC_FACTOR)) 1634 { 1635 return false; 1636 } 1637 1638 // 1639 // For DSC, if (pclk * bpp) < (1/64 * orclk * 8 * lanes) then some TU may end up with 1640 // 0 active symbols. This may cause HW hang. Bug 200379426 1641 // 1642 if ((bEnableDsc) && 1643 ((pixelClockHz * depth) < div_u64(8 * minRate * outp->dp.link_nr * DSC_FACTOR, 64))) 1644 { 1645 return false; 1646 } 1647 1648 // 1649 // Perform the SST calculation. 1650 // For auto mode the watermark calculation does not need to track accumulated error the 1651 // formulas for manual mode will not work. So below calculation was extracted from the DTB. 1652 // 1653 ratioF = div_u64((u64)pixelClockHz * depth * PrecisionFactor, DSC_FACTOR); 1654 1655 ratioF = div_u64(ratioF, 8 * (u64) minRate * outp->dp.link_nr); 1656 1657 if (PrecisionFactor < ratioF) // Assert if we will end up with a negative number in below 1658 return false; 1659 1660 watermarkF = div_u64(ratioF * tuSize * (PrecisionFactor - ratioF), PrecisionFactor); 1661 waterMark = (unsigned)(watermarkAdjust + (div_u64(2 * div_u64(depth * PrecisionFactor, 8 * numLanesPerLink * DSC_FACTOR) + watermarkF, PrecisionFactor))); 1662 1663 // 1664 // Bounds check the watermark 1665 // 1666 numSymbolsPerLine = div_u64(surfaceWidth * depth, 8 * outp->dp.link_nr * DSC_FACTOR); 1667 1668 if (WARN_ON(waterMark > 39 || waterMark > numSymbolsPerLine)) 1669 return false; 1670 1671 // 1672 // Clamp the low side 1673 // 1674 if (waterMark < watermarkMinimum) 1675 waterMark = watermarkMinimum; 1676 1677 //Bits to send BS/BE/Extra symbols due to pixel padding 1678 //Also accounts for enhanced framing. 1679 BlankingBits = 3*8*numLanesPerLink + (enhancedFraming ? 3*8*numLanesPerLink : 0); 1680 1681 //VBID/MVID/MAUD sent 4 times all the time 1682 BlankingBits += 3*8*4; 1683 1684 surfaceWidthPerLink = surfaceWidth; 1685 1686 //Extra bits sent due to pixel steering 1687 u32 remain; 1688 div_u64_rem(surfaceWidthPerLink, numLanesPerLink, &remain); 1689 PixelSteeringBits = remain ? div_u64((numLanesPerLink - remain) * depth, DSC_FACTOR) : 0; 1690 1691 BlankingBits += PixelSteeringBits; 1692 NumBlankingLinkClocks = div_u64((u64)BlankingBits * PrecisionFactor, (8 * numLanesPerLink)); 1693 MinHBlank = (u32)(div_u64(div_u64(NumBlankingLinkClocks * pixelClockHz, minRate), PrecisionFactor)); 1694 MinHBlank += 12; 1695 1696 if (WARN_ON(MinHBlank > rasterWidth - surfaceWidth)) 1697 return false; 1698 1699 // Bug 702290 - Active Width should be greater than 60 1700 if (WARN_ON(surfaceWidth <= 60)) 1701 return false; 1702 1703 1704 hblank_symbols = (s32)(div_u64((u64)(rasterWidth - surfaceWidth - MinHBlank) * minRate, pixelClockHz)); 1705 1706 //reduce HBlank Symbols to account for secondary data packet 1707 hblank_symbols -= 1; //Stuffer latency to send BS 1708 hblank_symbols -= 3; //SPKT latency to send data to stuffer 1709 1710 hblank_symbols -= numLanesPerLink == 1 ? 9 : numLanesPerLink == 2 ? 6 : 3; 1711 1712 hBlankSym = (hblank_symbols < 0) ? 0 : hblank_symbols; 1713 1714 // Refer to dev_disp.ref for more information. 1715 // # symbols/vblank = ((SetRasterBlankEnd.X + SetRasterSize.Width - SetRasterBlankStart.X - 40) * link_clk / pclk) - Y - 1; 1716 // where Y = (# lanes == 4) 12 : (# lanes == 2) ? 21 : 39 1717 if (surfaceWidth < 40) 1718 { 1719 vblank_symbols = 0; 1720 } 1721 else 1722 { 1723 vblank_symbols = (s32)((div_u64((u64)(surfaceWidth - 40) * minRate, pixelClockHz))) - 1; 1724 1725 vblank_symbols -= numLanesPerLink == 1 ? 39 : numLanesPerLink == 2 ? 21 : 12; 1726 } 1727 1728 vBlankSym = (vblank_symbols < 0) ? 0 : vblank_symbols; 1729 1730 return nvif_outp_dp_sst(&outp->outp, head->base.index, waterMark, hBlankSym, vBlankSym); 1731 } 1732 1733 static void 1734 nv50_sor_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state) 1735 { 1736 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 1737 struct nouveau_crtc *nv_crtc = nv50_outp_get_new_crtc(state, nv_encoder); 1738 struct nv50_head_atom *asyh = 1739 nv50_head_atom(drm_atomic_get_new_crtc_state(state, &nv_crtc->base)); 1740 struct drm_display_mode *mode = &asyh->state.adjusted_mode; 1741 struct nv50_disp *disp = nv50_disp(encoder->dev); 1742 struct nv50_head *head = nv50_head(&nv_crtc->base); 1743 struct nvif_outp *outp = &nv_encoder->outp; 1744 struct drm_device *dev = encoder->dev; 1745 struct nouveau_drm *drm = nouveau_drm(dev); 1746 struct nouveau_connector *nv_connector; 1747 #ifdef CONFIG_DRM_NOUVEAU_BACKLIGHT 1748 struct nouveau_backlight *backlight; 1749 #endif 1750 struct nvbios *bios = &drm->vbios; 1751 bool lvds_dual = false, lvds_8bpc = false, hda = false; 1752 u8 proto = NV507D_SOR_SET_CONTROL_PROTOCOL_CUSTOM; 1753 u8 depth = NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_DEFAULT; 1754 1755 nv_connector = nv50_outp_get_new_connector(state, nv_encoder); 1756 nv_encoder->crtc = &nv_crtc->base; 1757 1758 if ((disp->disp->object.oclass == GT214_DISP || 1759 disp->disp->object.oclass >= GF110_DISP) && 1760 nv_encoder->dcb->type != DCB_OUTPUT_LVDS && 1761 nv_connector->base.display_info.has_audio) 1762 hda = true; 1763 1764 if (!nvif_outp_acquired(outp)) 1765 nvif_outp_acquire_sor(outp, hda); 1766 1767 switch (nv_encoder->dcb->type) { 1768 case DCB_OUTPUT_TMDS: 1769 if (disp->disp->object.oclass != NV50_DISP && 1770 nv_connector->base.display_info.is_hdmi) 1771 nv50_hdmi_enable(encoder, nv_crtc, nv_connector, state, mode, hda); 1772 1773 if (nv_encoder->outp.or.link & 1) { 1774 proto = NV507D_SOR_SET_CONTROL_PROTOCOL_SINGLE_TMDS_A; 1775 /* Only enable dual-link if: 1776 * - Need to (i.e. rate > 165MHz) 1777 * - DCB says we can 1778 * - Not an HDMI monitor, since there's no dual-link 1779 * on HDMI. 1780 */ 1781 if (mode->clock >= 165000 && 1782 nv_encoder->dcb->duallink_possible && 1783 !nv_connector->base.display_info.is_hdmi) 1784 proto = NV507D_SOR_SET_CONTROL_PROTOCOL_DUAL_TMDS; 1785 } else { 1786 proto = NV507D_SOR_SET_CONTROL_PROTOCOL_SINGLE_TMDS_B; 1787 } 1788 break; 1789 case DCB_OUTPUT_LVDS: 1790 proto = NV507D_SOR_SET_CONTROL_PROTOCOL_LVDS_CUSTOM; 1791 1792 if (bios->fp_no_ddc) { 1793 lvds_dual = bios->fp.dual_link; 1794 lvds_8bpc = bios->fp.if_is_24bit; 1795 } else { 1796 if (nv_connector->type == DCB_CONNECTOR_LVDS_SPWG) { 1797 if (((u8 *)nv_connector->edid)[121] == 2) 1798 lvds_dual = true; 1799 } else 1800 if (mode->clock >= bios->fp.duallink_transition_clk) { 1801 lvds_dual = true; 1802 } 1803 1804 if (lvds_dual) { 1805 if (bios->fp.strapless_is_24bit & 2) 1806 lvds_8bpc = true; 1807 } else { 1808 if (bios->fp.strapless_is_24bit & 1) 1809 lvds_8bpc = true; 1810 } 1811 1812 if (asyh->or.bpc == 8) 1813 lvds_8bpc = true; 1814 } 1815 1816 nvif_outp_lvds(&nv_encoder->outp, lvds_dual, lvds_8bpc); 1817 break; 1818 case DCB_OUTPUT_DP: 1819 nouveau_dp_train(nv_encoder, false, mode->clock, asyh->or.bpc); 1820 nv50_sor_dp_watermark_sst(nv_encoder, head, asyh); 1821 depth = nv50_dp_bpc_to_depth(asyh->or.bpc); 1822 1823 if (nv_encoder->outp.or.link & 1) 1824 proto = NV887D_SOR_SET_CONTROL_PROTOCOL_DP_A; 1825 else 1826 proto = NV887D_SOR_SET_CONTROL_PROTOCOL_DP_B; 1827 1828 #ifdef CONFIG_DRM_NOUVEAU_BACKLIGHT 1829 backlight = nv_connector->backlight; 1830 if (backlight && backlight->uses_dpcd) 1831 drm_edp_backlight_enable(&nv_connector->aux, &backlight->edp_info, 1832 (u16)backlight->dev->props.brightness); 1833 #endif 1834 1835 break; 1836 default: 1837 BUG(); 1838 break; 1839 } 1840 1841 if (head->func->display_id) 1842 head->func->display_id(head, BIT(nv_encoder->outp.id)); 1843 1844 nv_encoder->update(nv_encoder, nv_crtc->index, asyh, proto, depth); 1845 } 1846 1847 static const struct drm_encoder_helper_funcs 1848 nv50_sor_help = { 1849 .atomic_check = nv50_outp_atomic_check, 1850 .atomic_enable = nv50_sor_atomic_enable, 1851 .atomic_disable = nv50_sor_atomic_disable, 1852 }; 1853 1854 static void 1855 nv50_sor_destroy(struct drm_encoder *encoder) 1856 { 1857 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 1858 1859 nv50_mstm_del(&nv_encoder->dp.mstm); 1860 drm_encoder_cleanup(encoder); 1861 1862 if (nv_encoder->dcb->type == DCB_OUTPUT_DP) 1863 mutex_destroy(&nv_encoder->dp.hpd_irq_lock); 1864 1865 nvif_outp_dtor(&nv_encoder->outp); 1866 kfree(encoder); 1867 } 1868 1869 static const struct drm_encoder_funcs 1870 nv50_sor_func = { 1871 .destroy = nv50_sor_destroy, 1872 }; 1873 1874 static int 1875 nv50_sor_create(struct nouveau_encoder *nv_encoder) 1876 { 1877 struct drm_connector *connector = &nv_encoder->conn->base; 1878 struct nouveau_connector *nv_connector = nouveau_connector(connector); 1879 struct nouveau_drm *drm = nouveau_drm(connector->dev); 1880 struct nvkm_i2c *i2c = nvxx_i2c(drm); 1881 struct drm_encoder *encoder; 1882 struct dcb_output *dcbe = nv_encoder->dcb; 1883 struct nv50_disp *disp = nv50_disp(connector->dev); 1884 int type, ret; 1885 1886 switch (dcbe->type) { 1887 case DCB_OUTPUT_LVDS: type = DRM_MODE_ENCODER_LVDS; break; 1888 case DCB_OUTPUT_TMDS: 1889 case DCB_OUTPUT_DP: 1890 default: 1891 type = DRM_MODE_ENCODER_TMDS; 1892 break; 1893 } 1894 1895 nv_encoder->update = nv50_sor_update; 1896 1897 encoder = to_drm_encoder(nv_encoder); 1898 drm_encoder_init(connector->dev, encoder, &nv50_sor_func, type, 1899 "sor-%04x-%04x", dcbe->hasht, dcbe->hashm); 1900 drm_encoder_helper_add(encoder, &nv50_sor_help); 1901 1902 drm_connector_attach_encoder(connector, encoder); 1903 1904 disp->core->func->sor->get_caps(disp, nv_encoder, ffs(dcbe->or) - 1); 1905 nv50_outp_dump_caps(drm, nv_encoder); 1906 1907 if (dcbe->type == DCB_OUTPUT_DP) { 1908 mutex_init(&nv_encoder->dp.hpd_irq_lock); 1909 1910 if (disp->disp->object.oclass < GF110_DISP) { 1911 /* HW has no support for address-only 1912 * transactions, so we're required to 1913 * use custom I2C-over-AUX code. 1914 */ 1915 struct nvkm_i2c_aux *aux; 1916 1917 aux = nvkm_i2c_aux_find(i2c, dcbe->i2c_index); 1918 if (!aux) 1919 return -EINVAL; 1920 1921 nv_encoder->i2c = &aux->i2c; 1922 } else { 1923 nv_encoder->i2c = &nv_connector->aux.ddc; 1924 } 1925 1926 if (nv_connector->type != DCB_CONNECTOR_eDP && nv_encoder->outp.info.dp.mst) { 1927 ret = nv50_mstm_new(nv_encoder, &nv_connector->aux, 1928 16, nv_connector->base.base.id, 1929 &nv_encoder->dp.mstm); 1930 if (ret) 1931 return ret; 1932 } 1933 } else 1934 if (nv_encoder->outp.info.ddc != NVIF_OUTP_DDC_INVALID) { 1935 struct nvkm_i2c_bus *bus = 1936 nvkm_i2c_bus_find(i2c, dcbe->i2c_index); 1937 if (bus) 1938 nv_encoder->i2c = &bus->i2c; 1939 } 1940 1941 return 0; 1942 } 1943 1944 /****************************************************************************** 1945 * PIOR 1946 *****************************************************************************/ 1947 static int 1948 nv50_pior_atomic_check(struct drm_encoder *encoder, 1949 struct drm_crtc_state *crtc_state, 1950 struct drm_connector_state *conn_state) 1951 { 1952 int ret = nv50_outp_atomic_check(encoder, crtc_state, conn_state); 1953 if (ret) 1954 return ret; 1955 crtc_state->adjusted_mode.clock *= 2; 1956 return 0; 1957 } 1958 1959 static void 1960 nv50_pior_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state) 1961 { 1962 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 1963 struct nv50_core *core = nv50_disp(encoder->dev)->core; 1964 const u32 ctrl = NVDEF(NV507D, PIOR_SET_CONTROL, OWNER, NONE); 1965 1966 core->func->pior->ctrl(core, nv_encoder->outp.or.id, ctrl, NULL); 1967 nv_encoder->crtc = NULL; 1968 } 1969 1970 static void 1971 nv50_pior_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state) 1972 { 1973 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 1974 struct nouveau_crtc *nv_crtc = nv50_outp_get_new_crtc(state, nv_encoder); 1975 struct nv50_head_atom *asyh = 1976 nv50_head_atom(drm_atomic_get_new_crtc_state(state, &nv_crtc->base)); 1977 struct nv50_core *core = nv50_disp(encoder->dev)->core; 1978 u32 ctrl = 0; 1979 1980 switch (nv_crtc->index) { 1981 case 0: ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, OWNER, HEAD0); break; 1982 case 1: ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, OWNER, HEAD1); break; 1983 default: 1984 WARN_ON(1); 1985 break; 1986 } 1987 1988 switch (asyh->or.bpc) { 1989 case 10: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_BPP_30_444; break; 1990 case 8: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_BPP_24_444; break; 1991 case 6: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_BPP_18_444; break; 1992 default: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_DEFAULT; break; 1993 } 1994 1995 if (!nvif_outp_acquired(&nv_encoder->outp)) 1996 nvif_outp_acquire_pior(&nv_encoder->outp); 1997 1998 switch (nv_encoder->dcb->type) { 1999 case DCB_OUTPUT_TMDS: 2000 ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, PROTOCOL, EXT_TMDS_ENC); 2001 break; 2002 case DCB_OUTPUT_DP: 2003 ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, PROTOCOL, EXT_TMDS_ENC); 2004 nouveau_dp_train(nv_encoder, false, asyh->state.adjusted_mode.clock, 6); 2005 break; 2006 default: 2007 BUG(); 2008 break; 2009 } 2010 2011 core->func->pior->ctrl(core, nv_encoder->outp.or.id, ctrl, asyh); 2012 nv_encoder->crtc = &nv_crtc->base; 2013 } 2014 2015 static const struct drm_encoder_helper_funcs 2016 nv50_pior_help = { 2017 .atomic_check = nv50_pior_atomic_check, 2018 .atomic_enable = nv50_pior_atomic_enable, 2019 .atomic_disable = nv50_pior_atomic_disable, 2020 }; 2021 2022 static void 2023 nv50_pior_destroy(struct drm_encoder *encoder) 2024 { 2025 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 2026 2027 nvif_outp_dtor(&nv_encoder->outp); 2028 2029 drm_encoder_cleanup(encoder); 2030 2031 mutex_destroy(&nv_encoder->dp.hpd_irq_lock); 2032 kfree(encoder); 2033 } 2034 2035 static const struct drm_encoder_funcs 2036 nv50_pior_func = { 2037 .destroy = nv50_pior_destroy, 2038 }; 2039 2040 static int 2041 nv50_pior_create(struct nouveau_encoder *nv_encoder) 2042 { 2043 struct drm_connector *connector = &nv_encoder->conn->base; 2044 struct drm_device *dev = connector->dev; 2045 struct nouveau_drm *drm = nouveau_drm(dev); 2046 struct nv50_disp *disp = nv50_disp(dev); 2047 struct nvkm_i2c *i2c = nvxx_i2c(drm); 2048 struct nvkm_i2c_bus *bus = NULL; 2049 struct nvkm_i2c_aux *aux = NULL; 2050 struct i2c_adapter *ddc; 2051 struct drm_encoder *encoder; 2052 struct dcb_output *dcbe = nv_encoder->dcb; 2053 int type; 2054 2055 switch (dcbe->type) { 2056 case DCB_OUTPUT_TMDS: 2057 bus = nvkm_i2c_bus_find(i2c, nv_encoder->outp.info.ddc); 2058 ddc = bus ? &bus->i2c : NULL; 2059 type = DRM_MODE_ENCODER_TMDS; 2060 break; 2061 case DCB_OUTPUT_DP: 2062 aux = nvkm_i2c_aux_find(i2c, nv_encoder->outp.info.dp.aux); 2063 ddc = aux ? &aux->i2c : NULL; 2064 type = DRM_MODE_ENCODER_TMDS; 2065 break; 2066 default: 2067 return -ENODEV; 2068 } 2069 2070 nv_encoder->i2c = ddc; 2071 2072 mutex_init(&nv_encoder->dp.hpd_irq_lock); 2073 2074 encoder = to_drm_encoder(nv_encoder); 2075 drm_encoder_init(connector->dev, encoder, &nv50_pior_func, type, 2076 "pior-%04x-%04x", dcbe->hasht, dcbe->hashm); 2077 drm_encoder_helper_add(encoder, &nv50_pior_help); 2078 2079 drm_connector_attach_encoder(connector, encoder); 2080 2081 disp->core->func->pior->get_caps(disp, nv_encoder, ffs(dcbe->or) - 1); 2082 nv50_outp_dump_caps(drm, nv_encoder); 2083 2084 return 0; 2085 } 2086 2087 /****************************************************************************** 2088 * Atomic 2089 *****************************************************************************/ 2090 2091 static void 2092 nv50_disp_atomic_commit_core(struct drm_atomic_state *state, u32 *interlock) 2093 { 2094 struct drm_dp_mst_topology_mgr *mgr; 2095 struct drm_dp_mst_topology_state *mst_state; 2096 struct nouveau_drm *drm = nouveau_drm(state->dev); 2097 struct nv50_disp *disp = nv50_disp(drm->dev); 2098 struct nv50_atom *atom = nv50_atom(state); 2099 struct nv50_core *core = disp->core; 2100 struct nv50_outp_atom *outp; 2101 struct nv50_mstm *mstm; 2102 int i; 2103 2104 NV_ATOMIC(drm, "commit core %08x\n", interlock[NV50_DISP_INTERLOCK_BASE]); 2105 2106 for_each_new_mst_mgr_in_state(state, mgr, mst_state, i) { 2107 mstm = nv50_mstm(mgr); 2108 if (mstm->modified) 2109 nv50_mstm_prepare(state, mst_state, mstm); 2110 } 2111 2112 core->func->ntfy_init(disp->sync, NV50_DISP_CORE_NTFY); 2113 core->func->update(core, interlock, true); 2114 if (core->func->ntfy_wait_done(disp->sync, NV50_DISP_CORE_NTFY, 2115 disp->core->chan.base.device)) 2116 NV_ERROR(drm, "core notifier timeout\n"); 2117 2118 for_each_new_mst_mgr_in_state(state, mgr, mst_state, i) { 2119 mstm = nv50_mstm(mgr); 2120 if (mstm->modified) 2121 nv50_mstm_cleanup(state, mst_state, mstm); 2122 } 2123 2124 list_for_each_entry(outp, &atom->outp, head) { 2125 if (outp->encoder->encoder_type != DRM_MODE_ENCODER_DPMST) { 2126 struct nouveau_encoder *nv_encoder = nouveau_encoder(outp->encoder); 2127 2128 if (outp->enabled) { 2129 nv50_audio_enable(outp->encoder, nouveau_crtc(nv_encoder->crtc), 2130 nv_encoder->conn, NULL, NULL); 2131 outp->enabled = outp->disabled = false; 2132 } else { 2133 if (outp->disabled) { 2134 nvif_outp_release(&nv_encoder->outp); 2135 outp->disabled = false; 2136 } 2137 } 2138 } 2139 } 2140 } 2141 2142 static void 2143 nv50_disp_atomic_commit_wndw(struct drm_atomic_state *state, u32 *interlock) 2144 { 2145 struct drm_plane_state *new_plane_state; 2146 struct drm_plane *plane; 2147 int i; 2148 2149 for_each_new_plane_in_state(state, plane, new_plane_state, i) { 2150 struct nv50_wndw *wndw = nv50_wndw(plane); 2151 if (interlock[wndw->interlock.type] & wndw->interlock.data) { 2152 if (wndw->func->update) 2153 wndw->func->update(wndw, interlock); 2154 } 2155 } 2156 } 2157 2158 static void 2159 nv50_disp_atomic_commit_tail(struct drm_atomic_state *state) 2160 { 2161 struct drm_device *dev = state->dev; 2162 struct drm_crtc_state *new_crtc_state, *old_crtc_state; 2163 struct drm_crtc *crtc; 2164 struct drm_plane_state *new_plane_state; 2165 struct drm_plane *plane; 2166 struct nouveau_drm *drm = nouveau_drm(dev); 2167 struct nv50_disp *disp = nv50_disp(dev); 2168 struct nv50_atom *atom = nv50_atom(state); 2169 struct nv50_core *core = disp->core; 2170 struct nv50_outp_atom *outp, *outt; 2171 u32 interlock[NV50_DISP_INTERLOCK__SIZE] = {}; 2172 int i; 2173 bool flushed = false; 2174 2175 NV_ATOMIC(drm, "commit %d %d\n", atom->lock_core, atom->flush_disable); 2176 nv50_crc_atomic_stop_reporting(state); 2177 drm_atomic_helper_wait_for_fences(dev, state, false); 2178 drm_atomic_helper_wait_for_dependencies(state); 2179 drm_dp_mst_atomic_wait_for_dependencies(state); 2180 drm_atomic_helper_update_legacy_modeset_state(dev, state); 2181 drm_atomic_helper_calc_timestamping_constants(state); 2182 2183 if (atom->lock_core) 2184 mutex_lock(&disp->mutex); 2185 2186 /* Disable head(s). */ 2187 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { 2188 struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state); 2189 struct nv50_head *head = nv50_head(crtc); 2190 2191 NV_ATOMIC(drm, "%s: clr %04x (set %04x)\n", crtc->name, 2192 asyh->clr.mask, asyh->set.mask); 2193 2194 if (old_crtc_state->active && !new_crtc_state->active) { 2195 pm_runtime_put_noidle(dev->dev); 2196 drm_crtc_vblank_off(crtc); 2197 } 2198 2199 if (asyh->clr.mask) { 2200 nv50_head_flush_clr(head, asyh, atom->flush_disable); 2201 interlock[NV50_DISP_INTERLOCK_CORE] |= 1; 2202 } 2203 } 2204 2205 /* Disable plane(s). */ 2206 for_each_new_plane_in_state(state, plane, new_plane_state, i) { 2207 struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state); 2208 struct nv50_wndw *wndw = nv50_wndw(plane); 2209 2210 NV_ATOMIC(drm, "%s: clr %02x (set %02x)\n", plane->name, 2211 asyw->clr.mask, asyw->set.mask); 2212 if (!asyw->clr.mask) 2213 continue; 2214 2215 nv50_wndw_flush_clr(wndw, interlock, atom->flush_disable, asyw); 2216 } 2217 2218 /* Disable output path(s). */ 2219 list_for_each_entry(outp, &atom->outp, head) { 2220 const struct drm_encoder_helper_funcs *help; 2221 struct drm_encoder *encoder; 2222 2223 encoder = outp->encoder; 2224 help = encoder->helper_private; 2225 2226 NV_ATOMIC(drm, "%s: clr %02x (set %02x)\n", encoder->name, 2227 outp->clr.mask, outp->set.mask); 2228 2229 if (outp->clr.mask) { 2230 help->atomic_disable(encoder, state); 2231 outp->disabled = true; 2232 interlock[NV50_DISP_INTERLOCK_CORE] |= 1; 2233 } 2234 } 2235 2236 /* Flush disable. */ 2237 if (interlock[NV50_DISP_INTERLOCK_CORE]) { 2238 if (atom->flush_disable) { 2239 nv50_disp_atomic_commit_wndw(state, interlock); 2240 nv50_disp_atomic_commit_core(state, interlock); 2241 memset(interlock, 0x00, sizeof(interlock)); 2242 2243 flushed = true; 2244 } 2245 } 2246 2247 if (flushed) 2248 nv50_crc_atomic_release_notifier_contexts(state); 2249 nv50_crc_atomic_init_notifier_contexts(state); 2250 2251 /* Update output path(s). */ 2252 list_for_each_entry(outp, &atom->outp, head) { 2253 const struct drm_encoder_helper_funcs *help; 2254 struct drm_encoder *encoder; 2255 2256 encoder = outp->encoder; 2257 help = encoder->helper_private; 2258 2259 NV_ATOMIC(drm, "%s: set %02x (clr %02x)\n", encoder->name, 2260 outp->set.mask, outp->clr.mask); 2261 2262 if (outp->set.mask) { 2263 help->atomic_enable(encoder, state); 2264 outp->enabled = true; 2265 interlock[NV50_DISP_INTERLOCK_CORE] = 1; 2266 } 2267 } 2268 2269 /* Update head(s). */ 2270 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { 2271 struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state); 2272 struct nv50_head *head = nv50_head(crtc); 2273 2274 NV_ATOMIC(drm, "%s: set %04x (clr %04x)\n", crtc->name, 2275 asyh->set.mask, asyh->clr.mask); 2276 2277 if (asyh->set.mask) { 2278 nv50_head_flush_set(head, asyh); 2279 interlock[NV50_DISP_INTERLOCK_CORE] = 1; 2280 } 2281 2282 if (new_crtc_state->active) { 2283 if (!old_crtc_state->active) { 2284 drm_crtc_vblank_on(crtc); 2285 pm_runtime_get_noresume(dev->dev); 2286 } 2287 if (new_crtc_state->event) 2288 drm_crtc_vblank_get(crtc); 2289 } 2290 } 2291 2292 /* Update window->head assignment. 2293 * 2294 * This has to happen in an update that's not interlocked with 2295 * any window channels to avoid hitting HW error checks. 2296 * 2297 *TODO: Proper handling of window ownership (Turing apparently 2298 * supports non-fixed mappings). 2299 */ 2300 if (core->assign_windows) { 2301 core->func->wndw.owner(core); 2302 nv50_disp_atomic_commit_core(state, interlock); 2303 core->assign_windows = false; 2304 interlock[NV50_DISP_INTERLOCK_CORE] = 0; 2305 } 2306 2307 /* Finish updating head(s)... 2308 * 2309 * NVD is rather picky about both where window assignments can change, 2310 * *and* about certain core and window channel states matching. 2311 * 2312 * The EFI GOP driver on newer GPUs configures window channels with a 2313 * different output format to what we do, and the core channel update 2314 * in the assign_windows case above would result in a state mismatch. 2315 * 2316 * Delay some of the head update until after that point to workaround 2317 * the issue. This only affects the initial modeset. 2318 * 2319 * TODO: handle this better when adding flexible window mapping 2320 */ 2321 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { 2322 struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state); 2323 struct nv50_head *head = nv50_head(crtc); 2324 2325 NV_ATOMIC(drm, "%s: set %04x (clr %04x)\n", crtc->name, 2326 asyh->set.mask, asyh->clr.mask); 2327 2328 if (asyh->set.mask) { 2329 nv50_head_flush_set_wndw(head, asyh); 2330 interlock[NV50_DISP_INTERLOCK_CORE] = 1; 2331 } 2332 } 2333 2334 /* Update plane(s). */ 2335 for_each_new_plane_in_state(state, plane, new_plane_state, i) { 2336 struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state); 2337 struct nv50_wndw *wndw = nv50_wndw(plane); 2338 2339 NV_ATOMIC(drm, "%s: set %02x (clr %02x)\n", plane->name, 2340 asyw->set.mask, asyw->clr.mask); 2341 if ( !asyw->set.mask && 2342 (!asyw->clr.mask || atom->flush_disable)) 2343 continue; 2344 2345 nv50_wndw_flush_set(wndw, interlock, asyw); 2346 } 2347 2348 /* Flush update. */ 2349 nv50_disp_atomic_commit_wndw(state, interlock); 2350 2351 if (interlock[NV50_DISP_INTERLOCK_CORE]) { 2352 if (interlock[NV50_DISP_INTERLOCK_BASE] || 2353 interlock[NV50_DISP_INTERLOCK_OVLY] || 2354 interlock[NV50_DISP_INTERLOCK_WNDW] || 2355 !atom->state.legacy_cursor_update) 2356 nv50_disp_atomic_commit_core(state, interlock); 2357 else 2358 disp->core->func->update(disp->core, interlock, false); 2359 } 2360 2361 if (atom->lock_core) 2362 mutex_unlock(&disp->mutex); 2363 2364 list_for_each_entry_safe(outp, outt, &atom->outp, head) { 2365 list_del(&outp->head); 2366 kfree(outp); 2367 } 2368 2369 /* Wait for HW to signal completion. */ 2370 for_each_new_plane_in_state(state, plane, new_plane_state, i) { 2371 struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state); 2372 struct nv50_wndw *wndw = nv50_wndw(plane); 2373 int ret = nv50_wndw_wait_armed(wndw, asyw); 2374 if (ret) 2375 NV_ERROR(drm, "%s: timeout\n", plane->name); 2376 } 2377 2378 for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) { 2379 if (new_crtc_state->event) { 2380 unsigned long flags; 2381 /* Get correct count/ts if racing with vblank irq */ 2382 if (new_crtc_state->active) 2383 drm_crtc_accurate_vblank_count(crtc); 2384 spin_lock_irqsave(&crtc->dev->event_lock, flags); 2385 drm_crtc_send_vblank_event(crtc, new_crtc_state->event); 2386 spin_unlock_irqrestore(&crtc->dev->event_lock, flags); 2387 2388 new_crtc_state->event = NULL; 2389 if (new_crtc_state->active) 2390 drm_crtc_vblank_put(crtc); 2391 } 2392 } 2393 2394 nv50_crc_atomic_start_reporting(state); 2395 if (!flushed) 2396 nv50_crc_atomic_release_notifier_contexts(state); 2397 2398 drm_atomic_helper_commit_hw_done(state); 2399 drm_atomic_helper_cleanup_planes(dev, state); 2400 drm_atomic_helper_commit_cleanup_done(state); 2401 drm_atomic_state_put(state); 2402 2403 /* Drop the RPM ref we got from nv50_disp_atomic_commit() */ 2404 pm_runtime_mark_last_busy(dev->dev); 2405 pm_runtime_put_autosuspend(dev->dev); 2406 } 2407 2408 static void 2409 nv50_disp_atomic_commit_work(struct work_struct *work) 2410 { 2411 struct drm_atomic_state *state = 2412 container_of(work, typeof(*state), commit_work); 2413 nv50_disp_atomic_commit_tail(state); 2414 } 2415 2416 static int 2417 nv50_disp_atomic_commit(struct drm_device *dev, 2418 struct drm_atomic_state *state, bool nonblock) 2419 { 2420 struct drm_plane_state *new_plane_state; 2421 struct drm_plane *plane; 2422 int ret, i; 2423 2424 ret = pm_runtime_get_sync(dev->dev); 2425 if (ret < 0 && ret != -EACCES) { 2426 pm_runtime_put_autosuspend(dev->dev); 2427 return ret; 2428 } 2429 2430 ret = drm_atomic_helper_setup_commit(state, nonblock); 2431 if (ret) 2432 goto done; 2433 2434 INIT_WORK(&state->commit_work, nv50_disp_atomic_commit_work); 2435 2436 ret = drm_atomic_helper_prepare_planes(dev, state); 2437 if (ret) 2438 goto done; 2439 2440 if (!nonblock) { 2441 ret = drm_atomic_helper_wait_for_fences(dev, state, true); 2442 if (ret) 2443 goto err_cleanup; 2444 } 2445 2446 ret = drm_atomic_helper_swap_state(state, true); 2447 if (ret) 2448 goto err_cleanup; 2449 2450 for_each_new_plane_in_state(state, plane, new_plane_state, i) { 2451 struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state); 2452 struct nv50_wndw *wndw = nv50_wndw(plane); 2453 2454 if (asyw->set.image) 2455 nv50_wndw_ntfy_enable(wndw, asyw); 2456 } 2457 2458 drm_atomic_state_get(state); 2459 2460 /* 2461 * Grab another RPM ref for the commit tail, which will release the 2462 * ref when it's finished 2463 */ 2464 pm_runtime_get_noresume(dev->dev); 2465 2466 if (nonblock) 2467 queue_work(system_unbound_wq, &state->commit_work); 2468 else 2469 nv50_disp_atomic_commit_tail(state); 2470 2471 err_cleanup: 2472 if (ret) 2473 drm_atomic_helper_unprepare_planes(dev, state); 2474 done: 2475 pm_runtime_put_autosuspend(dev->dev); 2476 return ret; 2477 } 2478 2479 static struct nv50_outp_atom * 2480 nv50_disp_outp_atomic_add(struct nv50_atom *atom, struct drm_encoder *encoder) 2481 { 2482 struct nv50_outp_atom *outp; 2483 2484 list_for_each_entry(outp, &atom->outp, head) { 2485 if (outp->encoder == encoder) 2486 return outp; 2487 } 2488 2489 outp = kzalloc(sizeof(*outp), GFP_KERNEL); 2490 if (!outp) 2491 return ERR_PTR(-ENOMEM); 2492 2493 list_add(&outp->head, &atom->outp); 2494 outp->encoder = encoder; 2495 return outp; 2496 } 2497 2498 static int 2499 nv50_disp_outp_atomic_check_clr(struct nv50_atom *atom, 2500 struct drm_connector_state *old_connector_state) 2501 { 2502 struct drm_encoder *encoder = old_connector_state->best_encoder; 2503 struct drm_crtc_state *old_crtc_state, *new_crtc_state; 2504 struct drm_crtc *crtc; 2505 struct nv50_outp_atom *outp; 2506 2507 if (!(crtc = old_connector_state->crtc)) 2508 return 0; 2509 2510 old_crtc_state = drm_atomic_get_old_crtc_state(&atom->state, crtc); 2511 new_crtc_state = drm_atomic_get_new_crtc_state(&atom->state, crtc); 2512 if (old_crtc_state->active && drm_atomic_crtc_needs_modeset(new_crtc_state)) { 2513 outp = nv50_disp_outp_atomic_add(atom, encoder); 2514 if (IS_ERR(outp)) 2515 return PTR_ERR(outp); 2516 2517 if (outp->encoder->encoder_type == DRM_MODE_ENCODER_DPMST || 2518 nouveau_encoder(outp->encoder)->dcb->type == DCB_OUTPUT_DP) 2519 atom->flush_disable = true; 2520 outp->clr.ctrl = true; 2521 atom->lock_core = true; 2522 } 2523 2524 return 0; 2525 } 2526 2527 static int 2528 nv50_disp_outp_atomic_check_set(struct nv50_atom *atom, 2529 struct drm_connector_state *connector_state) 2530 { 2531 struct drm_encoder *encoder = connector_state->best_encoder; 2532 struct drm_crtc_state *new_crtc_state; 2533 struct drm_crtc *crtc; 2534 struct nv50_outp_atom *outp; 2535 2536 if (!(crtc = connector_state->crtc)) 2537 return 0; 2538 2539 new_crtc_state = drm_atomic_get_new_crtc_state(&atom->state, crtc); 2540 if (new_crtc_state->active && drm_atomic_crtc_needs_modeset(new_crtc_state)) { 2541 outp = nv50_disp_outp_atomic_add(atom, encoder); 2542 if (IS_ERR(outp)) 2543 return PTR_ERR(outp); 2544 2545 outp->set.ctrl = true; 2546 atom->lock_core = true; 2547 } 2548 2549 return 0; 2550 } 2551 2552 static int 2553 nv50_disp_atomic_check(struct drm_device *dev, struct drm_atomic_state *state) 2554 { 2555 struct nv50_atom *atom = nv50_atom(state); 2556 struct nv50_core *core = nv50_disp(dev)->core; 2557 struct drm_connector_state *old_connector_state, *new_connector_state; 2558 struct drm_connector *connector; 2559 struct drm_crtc_state *new_crtc_state; 2560 struct drm_crtc *crtc; 2561 struct nv50_head *head; 2562 struct nv50_head_atom *asyh; 2563 int ret, i; 2564 2565 if (core->assign_windows && core->func->head->static_wndw_map) { 2566 drm_for_each_crtc(crtc, dev) { 2567 new_crtc_state = drm_atomic_get_crtc_state(state, 2568 crtc); 2569 if (IS_ERR(new_crtc_state)) 2570 return PTR_ERR(new_crtc_state); 2571 2572 head = nv50_head(crtc); 2573 asyh = nv50_head_atom(new_crtc_state); 2574 core->func->head->static_wndw_map(head, asyh); 2575 } 2576 } 2577 2578 /* We need to handle colour management on a per-plane basis. */ 2579 for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) { 2580 if (new_crtc_state->color_mgmt_changed) { 2581 ret = drm_atomic_add_affected_planes(state, crtc); 2582 if (ret) 2583 return ret; 2584 } 2585 } 2586 2587 ret = drm_atomic_helper_check(dev, state); 2588 if (ret) 2589 return ret; 2590 2591 for_each_oldnew_connector_in_state(state, connector, old_connector_state, new_connector_state, i) { 2592 ret = nv50_disp_outp_atomic_check_clr(atom, old_connector_state); 2593 if (ret) 2594 return ret; 2595 2596 ret = nv50_disp_outp_atomic_check_set(atom, new_connector_state); 2597 if (ret) 2598 return ret; 2599 } 2600 2601 ret = drm_dp_mst_atomic_check(state); 2602 if (ret) 2603 return ret; 2604 2605 nv50_crc_atomic_check_outp(atom); 2606 2607 return 0; 2608 } 2609 2610 static void 2611 nv50_disp_atomic_state_clear(struct drm_atomic_state *state) 2612 { 2613 struct nv50_atom *atom = nv50_atom(state); 2614 struct nv50_outp_atom *outp, *outt; 2615 2616 list_for_each_entry_safe(outp, outt, &atom->outp, head) { 2617 list_del(&outp->head); 2618 kfree(outp); 2619 } 2620 2621 drm_atomic_state_default_clear(state); 2622 } 2623 2624 static void 2625 nv50_disp_atomic_state_free(struct drm_atomic_state *state) 2626 { 2627 struct nv50_atom *atom = nv50_atom(state); 2628 drm_atomic_state_default_release(&atom->state); 2629 kfree(atom); 2630 } 2631 2632 static struct drm_atomic_state * 2633 nv50_disp_atomic_state_alloc(struct drm_device *dev) 2634 { 2635 struct nv50_atom *atom; 2636 if (!(atom = kzalloc(sizeof(*atom), GFP_KERNEL)) || 2637 drm_atomic_state_init(dev, &atom->state) < 0) { 2638 kfree(atom); 2639 return NULL; 2640 } 2641 INIT_LIST_HEAD(&atom->outp); 2642 return &atom->state; 2643 } 2644 2645 static const struct drm_mode_config_funcs 2646 nv50_disp_func = { 2647 .fb_create = nouveau_user_framebuffer_create, 2648 .atomic_check = nv50_disp_atomic_check, 2649 .atomic_commit = nv50_disp_atomic_commit, 2650 .atomic_state_alloc = nv50_disp_atomic_state_alloc, 2651 .atomic_state_clear = nv50_disp_atomic_state_clear, 2652 .atomic_state_free = nv50_disp_atomic_state_free, 2653 }; 2654 2655 static const struct drm_mode_config_helper_funcs 2656 nv50_disp_helper_func = { 2657 .atomic_commit_setup = drm_dp_mst_atomic_setup_commit, 2658 }; 2659 2660 /****************************************************************************** 2661 * Init 2662 *****************************************************************************/ 2663 2664 static void 2665 nv50_display_fini(struct drm_device *dev, bool runtime, bool suspend) 2666 { 2667 struct nouveau_drm *drm = nouveau_drm(dev); 2668 struct drm_encoder *encoder; 2669 2670 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) { 2671 if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) 2672 nv50_mstm_fini(nouveau_encoder(encoder)); 2673 } 2674 2675 if (!runtime && !drm->headless) 2676 cancel_work_sync(&drm->hpd_work); 2677 } 2678 2679 static inline void 2680 nv50_display_read_hw_or_state(struct drm_device *dev, struct nv50_disp *disp, 2681 struct nouveau_encoder *outp) 2682 { 2683 struct drm_crtc *crtc; 2684 struct drm_connector_list_iter conn_iter; 2685 struct drm_connector *conn; 2686 struct nv50_head_atom *armh; 2687 const u32 encoder_mask = drm_encoder_mask(&outp->base.base); 2688 bool found_conn = false, found_head = false; 2689 u8 proto; 2690 int head_idx; 2691 int ret; 2692 2693 switch (outp->dcb->type) { 2694 case DCB_OUTPUT_TMDS: 2695 ret = nvif_outp_inherit_tmds(&outp->outp, &proto); 2696 break; 2697 case DCB_OUTPUT_DP: 2698 ret = nvif_outp_inherit_dp(&outp->outp, &proto); 2699 break; 2700 case DCB_OUTPUT_LVDS: 2701 ret = nvif_outp_inherit_lvds(&outp->outp, &proto); 2702 break; 2703 case DCB_OUTPUT_ANALOG: 2704 ret = nvif_outp_inherit_rgb_crt(&outp->outp, &proto); 2705 break; 2706 default: 2707 drm_dbg_kms(dev, "Readback for %s not implemented yet, skipping\n", 2708 outp->base.base.name); 2709 drm_WARN_ON(dev, true); 2710 return; 2711 } 2712 2713 if (ret < 0) 2714 return; 2715 2716 head_idx = ret; 2717 2718 drm_for_each_crtc(crtc, dev) { 2719 if (crtc->index != head_idx) 2720 continue; 2721 2722 armh = nv50_head_atom(crtc->state); 2723 found_head = true; 2724 break; 2725 } 2726 if (drm_WARN_ON(dev, !found_head)) 2727 return; 2728 2729 /* Figure out which connector is being used by this encoder */ 2730 drm_connector_list_iter_begin(dev, &conn_iter); 2731 nouveau_for_each_non_mst_connector_iter(conn, &conn_iter) { 2732 if (nouveau_connector(conn)->index == outp->dcb->connector) { 2733 found_conn = true; 2734 break; 2735 } 2736 } 2737 drm_connector_list_iter_end(&conn_iter); 2738 if (drm_WARN_ON(dev, !found_conn)) 2739 return; 2740 2741 armh->state.encoder_mask = encoder_mask; 2742 armh->state.connector_mask = drm_connector_mask(conn); 2743 armh->state.active = true; 2744 armh->state.enable = true; 2745 pm_runtime_get_noresume(dev->dev); 2746 2747 outp->crtc = crtc; 2748 outp->ctrl = NVVAL(NV507D, SOR_SET_CONTROL, PROTOCOL, proto) | BIT(crtc->index); 2749 2750 drm_connector_get(conn); 2751 conn->state->crtc = crtc; 2752 conn->state->best_encoder = &outp->base.base; 2753 } 2754 2755 /* Read back the currently programmed display state */ 2756 static void 2757 nv50_display_read_hw_state(struct nouveau_drm *drm) 2758 { 2759 struct drm_device *dev = drm->dev; 2760 struct drm_encoder *encoder; 2761 struct drm_modeset_acquire_ctx ctx; 2762 struct nv50_disp *disp = nv50_disp(dev); 2763 int ret; 2764 2765 DRM_MODESET_LOCK_ALL_BEGIN(dev, ctx, 0, ret); 2766 2767 drm_for_each_encoder(encoder, dev) { 2768 if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) 2769 continue; 2770 2771 nv50_display_read_hw_or_state(dev, disp, nouveau_encoder(encoder)); 2772 } 2773 2774 DRM_MODESET_LOCK_ALL_END(dev, ctx, ret); 2775 } 2776 2777 static int 2778 nv50_display_init(struct drm_device *dev, bool resume, bool runtime) 2779 { 2780 struct nv50_core *core = nv50_disp(dev)->core; 2781 struct drm_encoder *encoder; 2782 2783 if (resume || runtime) 2784 core->func->init(core); 2785 2786 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) { 2787 if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) { 2788 struct nouveau_encoder *nv_encoder = 2789 nouveau_encoder(encoder); 2790 nv50_mstm_init(nv_encoder, runtime); 2791 } 2792 } 2793 2794 if (!resume) 2795 nv50_display_read_hw_state(nouveau_drm(dev)); 2796 2797 return 0; 2798 } 2799 2800 static void 2801 nv50_display_destroy(struct drm_device *dev) 2802 { 2803 struct nv50_disp *disp = nv50_disp(dev); 2804 2805 nv50_audio_component_fini(nouveau_drm(dev)); 2806 2807 nvif_object_unmap(&disp->caps); 2808 nvif_object_dtor(&disp->caps); 2809 nv50_core_del(&disp->core); 2810 2811 nouveau_bo_unmap(disp->sync); 2812 if (disp->sync) 2813 nouveau_bo_unpin(disp->sync); 2814 nouveau_bo_fini(disp->sync); 2815 2816 nouveau_display(dev)->priv = NULL; 2817 kfree(disp); 2818 } 2819 2820 int 2821 nv50_display_create(struct drm_device *dev) 2822 { 2823 struct nouveau_drm *drm = nouveau_drm(dev); 2824 struct drm_connector *connector, *tmp; 2825 struct nv50_disp *disp; 2826 int ret, i; 2827 bool has_mst = false; 2828 2829 disp = kzalloc(sizeof(*disp), GFP_KERNEL); 2830 if (!disp) 2831 return -ENOMEM; 2832 2833 mutex_init(&disp->mutex); 2834 2835 nouveau_display(dev)->priv = disp; 2836 nouveau_display(dev)->dtor = nv50_display_destroy; 2837 nouveau_display(dev)->init = nv50_display_init; 2838 nouveau_display(dev)->fini = nv50_display_fini; 2839 disp->disp = &nouveau_display(dev)->disp; 2840 dev->mode_config.funcs = &nv50_disp_func; 2841 dev->mode_config.helper_private = &nv50_disp_helper_func; 2842 dev->mode_config.quirk_addfb_prefer_xbgr_30bpp = true; 2843 dev->mode_config.normalize_zpos = true; 2844 2845 /* small shared memory area we use for notifiers and semaphores */ 2846 ret = nouveau_bo_new(&drm->client, 4096, 0x1000, 2847 NOUVEAU_GEM_DOMAIN_VRAM, 2848 0, 0x0000, NULL, NULL, &disp->sync); 2849 if (!ret) { 2850 ret = nouveau_bo_pin(disp->sync, NOUVEAU_GEM_DOMAIN_VRAM, true); 2851 if (!ret) { 2852 ret = nouveau_bo_map(disp->sync); 2853 if (ret) 2854 nouveau_bo_unpin(disp->sync); 2855 } 2856 if (ret) 2857 nouveau_bo_fini(disp->sync); 2858 } 2859 2860 if (ret) 2861 goto out; 2862 2863 /* allocate master evo channel */ 2864 ret = nv50_core_new(drm, &disp->core); 2865 if (ret) 2866 goto out; 2867 2868 disp->core->func->init(disp->core); 2869 if (disp->core->func->caps_init) { 2870 ret = disp->core->func->caps_init(drm, disp); 2871 if (ret) 2872 goto out; 2873 } 2874 2875 /* Assign the correct format modifiers */ 2876 if (disp->disp->object.oclass >= TU102_DISP) 2877 nouveau_display(dev)->format_modifiers = wndwc57e_modifiers; 2878 else 2879 if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_FERMI) 2880 nouveau_display(dev)->format_modifiers = disp90xx_modifiers; 2881 else 2882 nouveau_display(dev)->format_modifiers = disp50xx_modifiers; 2883 2884 /* FIXME: 256x256 cursors are supported on Kepler, however unlike Maxwell and later 2885 * generations Kepler requires that we use small pages (4K) for cursor scanout surfaces. The 2886 * proper fix for this is to teach nouveau to migrate fbs being used for the cursor plane to 2887 * small page allocations in prepare_fb(). When this is implemented, we should also force 2888 * large pages (128K) for ovly fbs in order to fix Kepler ovlys. 2889 * But until then, just limit cursors to 128x128 - which is small enough to avoid ever using 2890 * large pages. 2891 */ 2892 if (disp->disp->object.oclass >= GM107_DISP) { 2893 dev->mode_config.cursor_width = 256; 2894 dev->mode_config.cursor_height = 256; 2895 } else if (disp->disp->object.oclass >= GK104_DISP) { 2896 dev->mode_config.cursor_width = 128; 2897 dev->mode_config.cursor_height = 128; 2898 } else { 2899 dev->mode_config.cursor_width = 64; 2900 dev->mode_config.cursor_height = 64; 2901 } 2902 2903 /* create encoder/connector objects based on VBIOS DCB table */ 2904 for_each_set_bit(i, &disp->disp->outp_mask, sizeof(disp->disp->outp_mask) * 8) { 2905 struct nouveau_encoder *outp; 2906 2907 outp = kzalloc(sizeof(*outp), GFP_KERNEL); 2908 if (!outp) 2909 break; 2910 2911 ret = nvif_outp_ctor(disp->disp, "kmsOutp", i, &outp->outp); 2912 if (ret) { 2913 kfree(outp); 2914 continue; 2915 } 2916 2917 connector = nouveau_connector_create(dev, outp->outp.info.conn); 2918 if (IS_ERR(connector)) { 2919 nvif_outp_dtor(&outp->outp); 2920 kfree(outp); 2921 continue; 2922 } 2923 2924 outp->base.base.possible_crtcs = outp->outp.info.heads; 2925 outp->base.base.possible_clones = 0; 2926 outp->conn = nouveau_connector(connector); 2927 2928 outp->dcb = kzalloc(sizeof(*outp->dcb), GFP_KERNEL); 2929 if (!outp->dcb) 2930 break; 2931 2932 switch (outp->outp.info.proto) { 2933 case NVIF_OUTP_RGB_CRT: 2934 outp->dcb->type = DCB_OUTPUT_ANALOG; 2935 outp->dcb->crtconf.maxfreq = outp->outp.info.rgb_crt.freq_max; 2936 break; 2937 case NVIF_OUTP_TMDS: 2938 outp->dcb->type = DCB_OUTPUT_TMDS; 2939 outp->dcb->duallink_possible = outp->outp.info.tmds.dual; 2940 break; 2941 case NVIF_OUTP_LVDS: 2942 outp->dcb->type = DCB_OUTPUT_LVDS; 2943 outp->dcb->lvdsconf.use_acpi_for_edid = outp->outp.info.lvds.acpi_edid; 2944 break; 2945 case NVIF_OUTP_DP: 2946 outp->dcb->type = DCB_OUTPUT_DP; 2947 outp->dcb->dpconf.link_nr = outp->outp.info.dp.link_nr; 2948 outp->dcb->dpconf.link_bw = outp->outp.info.dp.link_bw; 2949 if (outp->outp.info.dp.mst) 2950 has_mst = true; 2951 break; 2952 default: 2953 WARN_ON(1); 2954 continue; 2955 } 2956 2957 outp->dcb->heads = outp->outp.info.heads; 2958 outp->dcb->connector = outp->outp.info.conn; 2959 outp->dcb->i2c_index = outp->outp.info.ddc; 2960 2961 switch (outp->outp.info.type) { 2962 case NVIF_OUTP_DAC : ret = nv50_dac_create(outp); break; 2963 case NVIF_OUTP_SOR : ret = nv50_sor_create(outp); break; 2964 case NVIF_OUTP_PIOR: ret = nv50_pior_create(outp); break; 2965 default: 2966 WARN_ON(1); 2967 continue; 2968 } 2969 2970 if (ret) { 2971 NV_WARN(drm, "failed to create encoder %d/%d/%d: %d\n", 2972 i, outp->outp.info.type, outp->outp.info.proto, ret); 2973 } 2974 } 2975 2976 /* cull any connectors we created that don't have an encoder */ 2977 list_for_each_entry_safe(connector, tmp, &dev->mode_config.connector_list, head) { 2978 if (connector->possible_encoders) 2979 continue; 2980 2981 NV_WARN(drm, "%s has no encoders, removing\n", 2982 connector->name); 2983 connector->funcs->destroy(connector); 2984 } 2985 2986 /* create crtc objects to represent the hw heads */ 2987 for_each_set_bit(i, &disp->disp->head_mask, sizeof(disp->disp->head_mask) * 8) { 2988 struct nv50_head *head; 2989 2990 head = nv50_head_create(dev, i); 2991 if (IS_ERR(head)) { 2992 ret = PTR_ERR(head); 2993 goto out; 2994 } 2995 2996 if (has_mst) { 2997 head->msto = nv50_msto_new(dev, head, i); 2998 if (IS_ERR(head->msto)) { 2999 ret = PTR_ERR(head->msto); 3000 head->msto = NULL; 3001 goto out; 3002 } 3003 3004 /* 3005 * FIXME: This is a hack to workaround the following 3006 * issues: 3007 * 3008 * https://gitlab.gnome.org/GNOME/mutter/issues/759 3009 * https://gitlab.freedesktop.org/xorg/xserver/merge_requests/277 3010 * 3011 * Once these issues are closed, this should be 3012 * removed 3013 */ 3014 head->msto->encoder.possible_crtcs = disp->disp->head_mask; 3015 } 3016 } 3017 3018 /* Disable vblank irqs aggressively for power-saving, safe on nv50+ */ 3019 dev->vblank_disable_immediate = true; 3020 3021 nv50_audio_component_init(drm); 3022 3023 out: 3024 if (ret) 3025 nv50_display_destroy(dev); 3026 return ret; 3027 } 3028 3029 /****************************************************************************** 3030 * Format modifiers 3031 *****************************************************************************/ 3032 3033 /**************************************************************** 3034 * Log2(block height) ----------------------------+ * 3035 * Page Kind ----------------------------------+ | * 3036 * Gob Height/Page Kind Generation ------+ | | * 3037 * Sector layout -------+ | | | * 3038 * Compression ------+ | | | | */ 3039 const u64 disp50xx_modifiers[] = { /* | | | | | */ 3040 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 0), 3041 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 1), 3042 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 2), 3043 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 3), 3044 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 4), 3045 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 5), 3046 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 0), 3047 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 1), 3048 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 2), 3049 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 3), 3050 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 4), 3051 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 5), 3052 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 0), 3053 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 1), 3054 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 2), 3055 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 3), 3056 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 4), 3057 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 5), 3058 DRM_FORMAT_MOD_LINEAR, 3059 DRM_FORMAT_MOD_INVALID 3060 }; 3061 3062 /**************************************************************** 3063 * Log2(block height) ----------------------------+ * 3064 * Page Kind ----------------------------------+ | * 3065 * Gob Height/Page Kind Generation ------+ | | * 3066 * Sector layout -------+ | | | * 3067 * Compression ------+ | | | | */ 3068 const u64 disp90xx_modifiers[] = { /* | | | | | */ 3069 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 0), 3070 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 1), 3071 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 2), 3072 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 3), 3073 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 4), 3074 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 5), 3075 DRM_FORMAT_MOD_LINEAR, 3076 DRM_FORMAT_MOD_INVALID 3077 }; 3078