1 /* 2 * Copyright 2011 Red Hat Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 * 22 * Authors: Ben Skeggs 23 */ 24 #include "disp.h" 25 #include "atom.h" 26 #include "core.h" 27 #include "head.h" 28 #include "wndw.h" 29 #include "handles.h" 30 31 #include <linux/backlight.h> 32 #include <linux/dma-mapping.h> 33 #include <linux/hdmi.h> 34 #include <linux/component.h> 35 #include <linux/iopoll.h> 36 37 #include <drm/display/drm_dp_helper.h> 38 #include <drm/display/drm_scdc_helper.h> 39 #include <drm/drm_atomic.h> 40 #include <drm/drm_atomic_helper.h> 41 #include <drm/drm_edid.h> 42 #include <drm/drm_eld.h> 43 #include <drm/drm_fb_helper.h> 44 #include <drm/drm_fixed.h> 45 #include <drm/drm_probe_helper.h> 46 #include <drm/drm_vblank.h> 47 48 #include <nvif/push507c.h> 49 50 #include <nvif/class.h> 51 #include <nvif/cl0002.h> 52 #include <nvif/event.h> 53 #include <nvif/if0012.h> 54 #include <nvif/if0014.h> 55 #include <nvif/timer.h> 56 57 #include <nvhw/class/cl507c.h> 58 #include <nvhw/class/cl507d.h> 59 #include <nvhw/class/cl837d.h> 60 #include <nvhw/class/cl887d.h> 61 #include <nvhw/class/cl907d.h> 62 #include <nvhw/class/cl917d.h> 63 64 #include "nouveau_drv.h" 65 #include "nouveau_dma.h" 66 #include "nouveau_gem.h" 67 #include "nouveau_connector.h" 68 #include "nouveau_encoder.h" 69 #include "nouveau_fence.h" 70 #include "nv50_display.h" 71 72 /****************************************************************************** 73 * EVO channel 74 *****************************************************************************/ 75 76 static int 77 nv50_chan_create(struct nvif_device *device, struct nvif_object *disp, 78 const s32 *oclass, u8 head, void *data, u32 size, 79 struct nv50_chan *chan) 80 { 81 struct nvif_sclass *sclass; 82 int ret, i, n; 83 84 chan->device = device; 85 86 ret = n = nvif_object_sclass_get(disp, &sclass); 87 if (ret < 0) 88 return ret; 89 90 while (oclass[0]) { 91 for (i = 0; i < n; i++) { 92 if (sclass[i].oclass == oclass[0]) { 93 ret = nvif_object_ctor(disp, "kmsChan", 0, 94 oclass[0], data, size, 95 &chan->user); 96 if (ret == 0) { 97 ret = nvif_object_map(&chan->user, NULL, 0); 98 if (ret) 99 nvif_object_dtor(&chan->user); 100 } 101 nvif_object_sclass_put(&sclass); 102 return ret; 103 } 104 } 105 oclass++; 106 } 107 108 nvif_object_sclass_put(&sclass); 109 return -ENOSYS; 110 } 111 112 static void 113 nv50_chan_destroy(struct nv50_chan *chan) 114 { 115 nvif_object_dtor(&chan->user); 116 } 117 118 /****************************************************************************** 119 * DMA EVO channel 120 *****************************************************************************/ 121 122 void 123 nv50_dmac_destroy(struct nv50_dmac *dmac) 124 { 125 nvif_object_dtor(&dmac->vram); 126 nvif_object_dtor(&dmac->sync); 127 128 nv50_chan_destroy(&dmac->base); 129 130 nvif_mem_dtor(&dmac->push.mem); 131 } 132 133 static void 134 nv50_dmac_kick(struct nvif_push *push) 135 { 136 struct nv50_dmac *dmac = container_of(push, typeof(*dmac), push); 137 138 dmac->cur = push->cur - (u32 __iomem *)dmac->push.mem.object.map.ptr; 139 if (dmac->put != dmac->cur) { 140 /* Push buffer fetches are not coherent with BAR1, we need to ensure 141 * writes have been flushed right through to VRAM before writing PUT. 142 */ 143 if (dmac->push.mem.type & NVIF_MEM_VRAM) { 144 struct nvif_device *device = dmac->base.device; 145 nvif_wr32(&device->object, 0x070000, 0x00000001); 146 nvif_msec(device, 2000, 147 if (!(nvif_rd32(&device->object, 0x070000) & 0x00000002)) 148 break; 149 ); 150 } 151 152 NVIF_WV32(&dmac->base.user, NV507C, PUT, PTR, dmac->cur); 153 dmac->put = dmac->cur; 154 } 155 156 push->bgn = push->cur; 157 } 158 159 static int 160 nv50_dmac_free(struct nv50_dmac *dmac) 161 { 162 u32 get = NVIF_RV32(&dmac->base.user, NV507C, GET, PTR); 163 if (get > dmac->cur) /* NVIDIA stay 5 away from GET, do the same. */ 164 return get - dmac->cur - 5; 165 return dmac->max - dmac->cur; 166 } 167 168 static int 169 nv50_dmac_wind(struct nv50_dmac *dmac) 170 { 171 /* Wait for GET to depart from the beginning of the push buffer to 172 * prevent writing PUT == GET, which would be ignored by HW. 173 */ 174 u32 get = NVIF_RV32(&dmac->base.user, NV507C, GET, PTR); 175 if (get == 0) { 176 /* Corner-case, HW idle, but non-committed work pending. */ 177 if (dmac->put == 0) 178 nv50_dmac_kick(&dmac->push); 179 180 if (nvif_msec(dmac->base.device, 2000, 181 if (NVIF_TV32(&dmac->base.user, NV507C, GET, PTR, >, 0)) 182 break; 183 ) < 0) 184 return -ETIMEDOUT; 185 } 186 187 PUSH_RSVD(&dmac->push, PUSH_JUMP(&dmac->push, 0)); 188 dmac->cur = 0; 189 return 0; 190 } 191 192 static int 193 nv50_dmac_wait(struct nvif_push *push, u32 size) 194 { 195 struct nv50_dmac *dmac = container_of(push, typeof(*dmac), push); 196 int free; 197 198 if (WARN_ON(size > dmac->max)) 199 return -EINVAL; 200 201 dmac->cur = push->cur - (u32 __iomem *)dmac->push.mem.object.map.ptr; 202 if (dmac->cur + size >= dmac->max) { 203 int ret = nv50_dmac_wind(dmac); 204 if (ret) 205 return ret; 206 207 push->cur = dmac->push.mem.object.map.ptr; 208 push->cur = push->cur + dmac->cur; 209 nv50_dmac_kick(push); 210 } 211 212 if (nvif_msec(dmac->base.device, 2000, 213 if ((free = nv50_dmac_free(dmac)) >= size) 214 break; 215 ) < 0) { 216 WARN_ON(1); 217 return -ETIMEDOUT; 218 } 219 220 push->bgn = dmac->push.mem.object.map.ptr; 221 push->bgn = push->bgn + dmac->cur; 222 push->cur = push->bgn; 223 push->end = push->cur + free; 224 return 0; 225 } 226 227 MODULE_PARM_DESC(kms_vram_pushbuf, "Place EVO/NVD push buffers in VRAM (default: auto)"); 228 static int nv50_dmac_vram_pushbuf = -1; 229 module_param_named(kms_vram_pushbuf, nv50_dmac_vram_pushbuf, int, 0400); 230 231 int 232 nv50_dmac_create(struct nouveau_drm *drm, 233 const s32 *oclass, u8 head, void *data, u32 size, s64 syncbuf, 234 struct nv50_dmac *dmac) 235 { 236 struct nvif_device *device = &drm->device; 237 struct nvif_object *disp = &drm->display->disp.object; 238 struct nvif_disp_chan_v0 *args = data; 239 u8 type = NVIF_MEM_COHERENT; 240 int ret; 241 242 /* Pascal added support for 47-bit physical addresses, but some 243 * parts of EVO still only accept 40-bit PAs. 244 * 245 * To avoid issues on systems with large amounts of RAM, and on 246 * systems where an IOMMU maps pages at a high address, we need 247 * to allocate push buffers in VRAM instead. 248 * 249 * This appears to match NVIDIA's behaviour on Pascal. 250 */ 251 if ((nv50_dmac_vram_pushbuf > 0) || 252 (nv50_dmac_vram_pushbuf < 0 && device->info.family == NV_DEVICE_INFO_V0_PASCAL)) 253 type |= NVIF_MEM_VRAM; 254 255 ret = nvif_mem_ctor_map(&drm->mmu, "kmsChanPush", type, 0x1000, &dmac->push.mem); 256 if (ret) 257 return ret; 258 259 dmac->push.wait = nv50_dmac_wait; 260 dmac->push.kick = nv50_dmac_kick; 261 dmac->push.bgn = dmac->push.mem.object.map.ptr; 262 dmac->push.cur = dmac->push.bgn; 263 dmac->push.end = dmac->push.bgn; 264 dmac->max = 0x1000/4 - 1; 265 266 /* EVO channels are affected by a HW bug where the last 12 DWORDs 267 * of the push buffer aren't able to be used safely. 268 */ 269 if (disp->oclass < GV100_DISP) 270 dmac->max -= 12; 271 272 args->pushbuf = nvif_handle(&dmac->push.mem.object); 273 274 ret = nv50_chan_create(device, disp, oclass, head, data, size, 275 &dmac->base); 276 if (ret) 277 return ret; 278 279 if (syncbuf < 0) 280 return 0; 281 282 /* No CTXDMAs on Blackwell. */ 283 if (disp->oclass >= GB202_DISP) { 284 /* "handle != NULL_HANDLE" is used to determine enable status 285 * in a number of places, so fill in some fake object handles. 286 */ 287 dmac->sync.handle = NV50_DISP_HANDLE_SYNCBUF; 288 dmac->vram.handle = NV50_DISP_HANDLE_VRAM; 289 return 0; 290 } 291 292 ret = nvif_object_ctor(&dmac->base.user, "kmsSyncCtxDma", NV50_DISP_HANDLE_SYNCBUF, 293 NV_DMA_IN_MEMORY, 294 &(struct nv_dma_v0) { 295 .target = NV_DMA_V0_TARGET_VRAM, 296 .access = NV_DMA_V0_ACCESS_RDWR, 297 .start = syncbuf + 0x0000, 298 .limit = syncbuf + 0x0fff, 299 }, sizeof(struct nv_dma_v0), 300 &dmac->sync); 301 if (ret) 302 return ret; 303 304 ret = nvif_object_ctor(&dmac->base.user, "kmsVramCtxDma", NV50_DISP_HANDLE_VRAM, 305 NV_DMA_IN_MEMORY, 306 &(struct nv_dma_v0) { 307 .target = NV_DMA_V0_TARGET_VRAM, 308 .access = NV_DMA_V0_ACCESS_RDWR, 309 .start = 0, 310 .limit = device->info.ram_user - 1, 311 }, sizeof(struct nv_dma_v0), 312 &dmac->vram); 313 if (ret) 314 return ret; 315 316 return ret; 317 } 318 319 /****************************************************************************** 320 * Output path helpers 321 *****************************************************************************/ 322 static void 323 nv50_outp_dump_caps(struct nouveau_drm *drm, 324 struct nouveau_encoder *outp) 325 { 326 NV_DEBUG(drm, "%s caps: dp_interlace=%d\n", 327 outp->base.base.name, outp->caps.dp_interlace); 328 } 329 330 static int 331 nv50_outp_atomic_check_view(struct drm_encoder *encoder, 332 struct drm_crtc_state *crtc_state, 333 struct drm_connector_state *conn_state, 334 struct drm_display_mode *native_mode) 335 { 336 struct drm_display_mode *adjusted_mode = &crtc_state->adjusted_mode; 337 struct drm_display_mode *mode = &crtc_state->mode; 338 struct drm_connector *connector = conn_state->connector; 339 struct nouveau_conn_atom *asyc = nouveau_conn_atom(conn_state); 340 struct nouveau_drm *drm = nouveau_drm(encoder->dev); 341 342 NV_ATOMIC(drm, "%s atomic_check\n", encoder->name); 343 asyc->scaler.full = false; 344 if (!native_mode) 345 return 0; 346 347 if (asyc->scaler.mode == DRM_MODE_SCALE_NONE) { 348 switch (connector->connector_type) { 349 case DRM_MODE_CONNECTOR_LVDS: 350 case DRM_MODE_CONNECTOR_eDP: 351 /* Don't force scaler for EDID modes with 352 * same size as the native one (e.g. different 353 * refresh rate) 354 */ 355 if (mode->hdisplay == native_mode->hdisplay && 356 mode->vdisplay == native_mode->vdisplay && 357 mode->type & DRM_MODE_TYPE_DRIVER) 358 break; 359 mode = native_mode; 360 asyc->scaler.full = true; 361 break; 362 default: 363 break; 364 } 365 } else { 366 mode = native_mode; 367 } 368 369 if (!drm_mode_equal(adjusted_mode, mode)) { 370 drm_mode_copy(adjusted_mode, mode); 371 crtc_state->mode_changed = true; 372 } 373 374 return 0; 375 } 376 377 static void 378 nv50_outp_atomic_fix_depth(struct drm_encoder *encoder, struct drm_crtc_state *crtc_state) 379 { 380 struct nv50_head_atom *asyh = nv50_head_atom(crtc_state); 381 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 382 struct drm_display_mode *mode = &asyh->state.adjusted_mode; 383 unsigned int max_rate, mode_rate; 384 385 switch (nv_encoder->dcb->type) { 386 case DCB_OUTPUT_DP: 387 max_rate = nv_encoder->dp.link_nr * nv_encoder->dp.link_bw; 388 389 /* we don't support more than 10 anyway */ 390 asyh->or.bpc = min_t(u8, asyh->or.bpc, 10); 391 392 /* reduce the bpc until it works out */ 393 while (asyh->or.bpc > 6) { 394 mode_rate = DIV_ROUND_UP(mode->clock * asyh->or.bpc * 3, 8); 395 if (mode_rate <= max_rate) 396 break; 397 398 asyh->or.bpc -= 2; 399 } 400 break; 401 default: 402 break; 403 } 404 } 405 406 static int 407 nv50_outp_atomic_check(struct drm_encoder *encoder, 408 struct drm_crtc_state *crtc_state, 409 struct drm_connector_state *conn_state) 410 { 411 struct drm_connector *connector = conn_state->connector; 412 struct nouveau_connector *nv_connector = nouveau_connector(connector); 413 struct nv50_head_atom *asyh = nv50_head_atom(crtc_state); 414 int ret; 415 416 ret = nv50_outp_atomic_check_view(encoder, crtc_state, conn_state, 417 nv_connector->native_mode); 418 if (ret) 419 return ret; 420 421 if (crtc_state->mode_changed || crtc_state->connectors_changed) 422 asyh->or.bpc = connector->display_info.bpc; 423 424 /* We might have to reduce the bpc */ 425 nv50_outp_atomic_fix_depth(encoder, crtc_state); 426 427 return 0; 428 } 429 430 struct nouveau_connector * 431 nv50_outp_get_new_connector(struct drm_atomic_state *state, struct nouveau_encoder *outp) 432 { 433 struct drm_connector *connector; 434 struct drm_connector_state *connector_state; 435 struct drm_encoder *encoder = to_drm_encoder(outp); 436 int i; 437 438 for_each_new_connector_in_state(state, connector, connector_state, i) { 439 if (connector_state->best_encoder == encoder) 440 return nouveau_connector(connector); 441 } 442 443 return NULL; 444 } 445 446 struct nouveau_connector * 447 nv50_outp_get_old_connector(struct drm_atomic_state *state, struct nouveau_encoder *outp) 448 { 449 struct drm_connector *connector; 450 struct drm_connector_state *connector_state; 451 struct drm_encoder *encoder = to_drm_encoder(outp); 452 int i; 453 454 for_each_old_connector_in_state(state, connector, connector_state, i) { 455 if (connector_state->best_encoder == encoder) 456 return nouveau_connector(connector); 457 } 458 459 return NULL; 460 } 461 462 static struct nouveau_crtc * 463 nv50_outp_get_new_crtc(const struct drm_atomic_state *state, const struct nouveau_encoder *outp) 464 { 465 struct drm_crtc *crtc; 466 struct drm_crtc_state *crtc_state; 467 const u32 mask = drm_encoder_mask(&outp->base.base); 468 int i; 469 470 for_each_new_crtc_in_state(state, crtc, crtc_state, i) { 471 if (crtc_state->encoder_mask & mask) 472 return nouveau_crtc(crtc); 473 } 474 475 return NULL; 476 } 477 478 /****************************************************************************** 479 * DAC 480 *****************************************************************************/ 481 static void 482 nv50_dac_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state) 483 { 484 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 485 struct nv50_core *core = nv50_disp(encoder->dev)->core; 486 const u32 ctrl = NVDEF(NV507D, DAC_SET_CONTROL, OWNER, NONE); 487 488 core->func->dac->ctrl(core, nv_encoder->outp.or.id, ctrl, NULL); 489 nv_encoder->crtc = NULL; 490 } 491 492 static void 493 nv50_dac_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state) 494 { 495 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 496 struct nouveau_crtc *nv_crtc = nv50_outp_get_new_crtc(state, nv_encoder); 497 struct nv50_head_atom *asyh = 498 nv50_head_atom(drm_atomic_get_new_crtc_state(state, &nv_crtc->base)); 499 struct nv50_core *core = nv50_disp(encoder->dev)->core; 500 u32 ctrl = 0; 501 502 switch (nv_crtc->index) { 503 case 0: ctrl |= NVDEF(NV507D, DAC_SET_CONTROL, OWNER, HEAD0); break; 504 case 1: ctrl |= NVDEF(NV507D, DAC_SET_CONTROL, OWNER, HEAD1); break; 505 case 2: ctrl |= NVDEF(NV907D, DAC_SET_CONTROL, OWNER_MASK, HEAD2); break; 506 case 3: ctrl |= NVDEF(NV907D, DAC_SET_CONTROL, OWNER_MASK, HEAD3); break; 507 default: 508 WARN_ON(1); 509 break; 510 } 511 512 ctrl |= NVDEF(NV507D, DAC_SET_CONTROL, PROTOCOL, RGB_CRT); 513 514 if (!nvif_outp_acquired(&nv_encoder->outp)) 515 nvif_outp_acquire_dac(&nv_encoder->outp); 516 517 core->func->dac->ctrl(core, nv_encoder->outp.or.id, ctrl, asyh); 518 asyh->or.depth = 0; 519 520 nv_encoder->crtc = &nv_crtc->base; 521 } 522 523 static enum drm_connector_status 524 nv50_dac_detect(struct drm_encoder *encoder, struct drm_connector *connector) 525 { 526 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 527 u32 loadval; 528 int ret; 529 530 loadval = nouveau_drm(encoder->dev)->vbios.dactestval; 531 if (loadval == 0) 532 loadval = 340; 533 534 ret = nvif_outp_load_detect(&nv_encoder->outp, loadval); 535 if (ret <= 0) 536 return connector_status_disconnected; 537 538 return connector_status_connected; 539 } 540 541 static const struct drm_encoder_helper_funcs 542 nv50_dac_help = { 543 .atomic_check = nv50_outp_atomic_check, 544 .atomic_enable = nv50_dac_atomic_enable, 545 .atomic_disable = nv50_dac_atomic_disable, 546 .detect = nv50_dac_detect 547 }; 548 549 static void 550 nv50_dac_destroy(struct drm_encoder *encoder) 551 { 552 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 553 554 nvif_outp_dtor(&nv_encoder->outp); 555 556 drm_encoder_cleanup(encoder); 557 kfree(encoder); 558 } 559 560 static const struct drm_encoder_funcs 561 nv50_dac_func = { 562 .destroy = nv50_dac_destroy, 563 }; 564 565 static int 566 nv50_dac_create(struct nouveau_encoder *nv_encoder) 567 { 568 struct drm_connector *connector = &nv_encoder->conn->base; 569 struct nouveau_drm *drm = nouveau_drm(connector->dev); 570 struct nvkm_i2c *i2c = nvxx_i2c(drm); 571 struct nvkm_i2c_bus *bus; 572 struct drm_encoder *encoder; 573 struct dcb_output *dcbe = nv_encoder->dcb; 574 int type = DRM_MODE_ENCODER_DAC; 575 576 bus = nvkm_i2c_bus_find(i2c, dcbe->i2c_index); 577 if (bus) 578 nv_encoder->i2c = &bus->i2c; 579 580 encoder = to_drm_encoder(nv_encoder); 581 drm_encoder_init(connector->dev, encoder, &nv50_dac_func, type, 582 "dac-%04x-%04x", dcbe->hasht, dcbe->hashm); 583 drm_encoder_helper_add(encoder, &nv50_dac_help); 584 585 drm_connector_attach_encoder(connector, encoder); 586 return 0; 587 } 588 589 /* 590 * audio component binding for ELD notification 591 */ 592 static void 593 nv50_audio_component_eld_notify(struct drm_audio_component *acomp, int port, 594 int dev_id) 595 { 596 if (acomp && acomp->audio_ops && acomp->audio_ops->pin_eld_notify) 597 acomp->audio_ops->pin_eld_notify(acomp->audio_ops->audio_ptr, 598 port, dev_id); 599 } 600 601 static int 602 nv50_audio_component_get_eld(struct device *kdev, int port, int dev_id, 603 bool *enabled, unsigned char *buf, int max_bytes) 604 { 605 struct nouveau_drm *drm = dev_get_drvdata(kdev); 606 struct drm_encoder *encoder; 607 struct nouveau_encoder *nv_encoder; 608 struct nouveau_crtc *nv_crtc; 609 int ret = 0; 610 611 *enabled = false; 612 613 mutex_lock(&drm->audio.lock); 614 615 drm_for_each_encoder(encoder, drm->dev) { 616 struct nouveau_connector *nv_connector = NULL; 617 618 if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) 619 continue; /* TODO */ 620 621 nv_encoder = nouveau_encoder(encoder); 622 nv_connector = nv_encoder->conn; 623 nv_crtc = nouveau_crtc(nv_encoder->crtc); 624 625 if (!nv_crtc || nv_encoder->outp.or.id != port || nv_crtc->index != dev_id) 626 continue; 627 628 *enabled = nv_encoder->audio.enabled; 629 if (*enabled) { 630 ret = drm_eld_size(nv_connector->base.eld); 631 memcpy(buf, nv_connector->base.eld, 632 min(max_bytes, ret)); 633 } 634 break; 635 } 636 637 mutex_unlock(&drm->audio.lock); 638 639 return ret; 640 } 641 642 static const struct drm_audio_component_ops nv50_audio_component_ops = { 643 .get_eld = nv50_audio_component_get_eld, 644 }; 645 646 static int 647 nv50_audio_component_bind(struct device *kdev, struct device *hda_kdev, 648 void *data) 649 { 650 struct nouveau_drm *drm = dev_get_drvdata(kdev); 651 struct drm_audio_component *acomp = data; 652 653 if (WARN_ON(!device_link_add(hda_kdev, kdev, DL_FLAG_STATELESS))) 654 return -ENOMEM; 655 656 drm_modeset_lock_all(drm->dev); 657 acomp->ops = &nv50_audio_component_ops; 658 acomp->dev = kdev; 659 drm->audio.component = acomp; 660 drm_modeset_unlock_all(drm->dev); 661 return 0; 662 } 663 664 static void 665 nv50_audio_component_unbind(struct device *kdev, struct device *hda_kdev, 666 void *data) 667 { 668 struct nouveau_drm *drm = dev_get_drvdata(kdev); 669 struct drm_audio_component *acomp = data; 670 671 drm_modeset_lock_all(drm->dev); 672 drm->audio.component = NULL; 673 acomp->ops = NULL; 674 acomp->dev = NULL; 675 drm_modeset_unlock_all(drm->dev); 676 } 677 678 static const struct component_ops nv50_audio_component_bind_ops = { 679 .bind = nv50_audio_component_bind, 680 .unbind = nv50_audio_component_unbind, 681 }; 682 683 static void 684 nv50_audio_component_init(struct nouveau_drm *drm) 685 { 686 if (component_add(drm->dev->dev, &nv50_audio_component_bind_ops)) 687 return; 688 689 drm->audio.component_registered = true; 690 mutex_init(&drm->audio.lock); 691 } 692 693 static void 694 nv50_audio_component_fini(struct nouveau_drm *drm) 695 { 696 if (!drm->audio.component_registered) 697 return; 698 699 component_del(drm->dev->dev, &nv50_audio_component_bind_ops); 700 drm->audio.component_registered = false; 701 mutex_destroy(&drm->audio.lock); 702 } 703 704 /****************************************************************************** 705 * Audio 706 *****************************************************************************/ 707 static bool 708 nv50_audio_supported(struct drm_encoder *encoder) 709 { 710 struct nv50_disp *disp = nv50_disp(encoder->dev); 711 712 if (disp->disp->object.oclass <= GT200_DISP || 713 disp->disp->object.oclass == GT206_DISP) 714 return false; 715 716 if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) { 717 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 718 719 switch (nv_encoder->dcb->type) { 720 case DCB_OUTPUT_TMDS: 721 case DCB_OUTPUT_DP: 722 break; 723 default: 724 return false; 725 } 726 } 727 728 return true; 729 } 730 731 static void 732 nv50_audio_disable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc) 733 { 734 struct nouveau_drm *drm = nouveau_drm(encoder->dev); 735 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 736 struct nvif_outp *outp = &nv_encoder->outp; 737 738 if (!nv50_audio_supported(encoder)) 739 return; 740 741 mutex_lock(&drm->audio.lock); 742 if (nv_encoder->audio.enabled) { 743 nv_encoder->audio.enabled = false; 744 nvif_outp_hda_eld(&nv_encoder->outp, nv_crtc->index, NULL, 0); 745 } 746 mutex_unlock(&drm->audio.lock); 747 748 nv50_audio_component_eld_notify(drm->audio.component, outp->or.id, nv_crtc->index); 749 } 750 751 static void 752 nv50_audio_enable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc, 753 struct nouveau_connector *nv_connector, struct drm_atomic_state *state, 754 struct drm_display_mode *mode) 755 { 756 struct nouveau_drm *drm = nouveau_drm(encoder->dev); 757 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 758 struct nvif_outp *outp = &nv_encoder->outp; 759 760 if (!nv50_audio_supported(encoder) || !nv_connector->base.display_info.has_audio) 761 return; 762 763 mutex_lock(&drm->audio.lock); 764 765 nvif_outp_hda_eld(&nv_encoder->outp, nv_crtc->index, nv_connector->base.eld, 766 drm_eld_size(nv_connector->base.eld)); 767 nv_encoder->audio.enabled = true; 768 769 mutex_unlock(&drm->audio.lock); 770 771 nv50_audio_component_eld_notify(drm->audio.component, outp->or.id, nv_crtc->index); 772 } 773 774 /****************************************************************************** 775 * HDMI 776 *****************************************************************************/ 777 static void 778 nv50_hdmi_enable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc, 779 struct nouveau_connector *nv_connector, struct drm_atomic_state *state, 780 struct drm_display_mode *mode, bool hda) 781 { 782 struct nouveau_drm *drm = nouveau_drm(encoder->dev); 783 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 784 struct drm_hdmi_info *hdmi = &nv_connector->base.display_info.hdmi; 785 union hdmi_infoframe infoframe = { 0 }; 786 const u8 rekey = 56; /* binary driver, and tegra, constant */ 787 u32 max_ac_packet; 788 DEFINE_RAW_FLEX(struct nvif_outp_infoframe_v0, args, data, 17); 789 const u8 data_len = __member_size(args->data); 790 int ret, size; 791 792 max_ac_packet = mode->htotal - mode->hdisplay; 793 max_ac_packet -= rekey; 794 max_ac_packet -= 18; /* constant from tegra */ 795 max_ac_packet /= 32; 796 797 if (nv_encoder->i2c && hdmi->scdc.scrambling.supported) { 798 const bool high_tmds_clock_ratio = mode->clock > 340000; 799 u8 scdc; 800 801 ret = drm_scdc_readb(nv_encoder->i2c, SCDC_TMDS_CONFIG, &scdc); 802 if (ret < 0) { 803 NV_ERROR(drm, "Failure to read SCDC_TMDS_CONFIG: %d\n", ret); 804 return; 805 } 806 807 scdc &= ~(SCDC_TMDS_BIT_CLOCK_RATIO_BY_40 | SCDC_SCRAMBLING_ENABLE); 808 if (high_tmds_clock_ratio || hdmi->scdc.scrambling.low_rates) 809 scdc |= SCDC_SCRAMBLING_ENABLE; 810 if (high_tmds_clock_ratio) 811 scdc |= SCDC_TMDS_BIT_CLOCK_RATIO_BY_40; 812 813 ret = drm_scdc_writeb(nv_encoder->i2c, SCDC_TMDS_CONFIG, scdc); 814 if (ret < 0) 815 NV_ERROR(drm, "Failure to write SCDC_TMDS_CONFIG = 0x%02x: %d\n", 816 scdc, ret); 817 } 818 819 ret = nvif_outp_hdmi(&nv_encoder->outp, nv_crtc->index, true, max_ac_packet, rekey, 820 mode->clock, hdmi->scdc.supported, hdmi->scdc.scrambling.supported, 821 hdmi->scdc.scrambling.low_rates); 822 if (ret) 823 return; 824 825 /* AVI InfoFrame. */ 826 args->version = 0; 827 args->head = nv_crtc->index; 828 829 if (!drm_hdmi_avi_infoframe_from_display_mode(&infoframe.avi, &nv_connector->base, mode)) { 830 drm_hdmi_avi_infoframe_quant_range(&infoframe.avi, &nv_connector->base, mode, 831 HDMI_QUANTIZATION_RANGE_FULL); 832 833 size = hdmi_infoframe_pack(&infoframe, args->data, data_len); 834 } else { 835 size = 0; 836 } 837 838 nvif_outp_infoframe(&nv_encoder->outp, NVIF_OUTP_INFOFRAME_V0_AVI, args, size); 839 840 /* Vendor InfoFrame. */ 841 memset(args->data, 0, data_len); 842 if (!drm_hdmi_vendor_infoframe_from_display_mode(&infoframe.vendor.hdmi, 843 &nv_connector->base, mode)) 844 size = hdmi_infoframe_pack(&infoframe, args->data, data_len); 845 else 846 size = 0; 847 848 nvif_outp_infoframe(&nv_encoder->outp, NVIF_OUTP_INFOFRAME_V0_VSI, args, size); 849 850 nv_encoder->hdmi.enabled = true; 851 } 852 853 /****************************************************************************** 854 * MST 855 *****************************************************************************/ 856 #define nv50_mstm(p) container_of((p), struct nv50_mstm, mgr) 857 #define nv50_mstc(p) container_of((p), struct nv50_mstc, connector) 858 #define nv50_msto(p) container_of((p), struct nv50_msto, encoder) 859 860 struct nv50_mstc { 861 struct nv50_mstm *mstm; 862 struct drm_dp_mst_port *port; 863 struct drm_connector connector; 864 865 struct drm_display_mode *native; 866 struct edid *edid; 867 }; 868 869 struct nv50_msto { 870 struct drm_encoder encoder; 871 872 /* head is statically assigned on msto creation */ 873 struct nv50_head *head; 874 struct nv50_mstc *mstc; 875 bool disabled; 876 bool enabled; 877 878 u32 display_id; 879 }; 880 881 struct nouveau_encoder *nv50_real_outp(struct drm_encoder *encoder) 882 { 883 struct nv50_msto *msto; 884 885 if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) 886 return nouveau_encoder(encoder); 887 888 msto = nv50_msto(encoder); 889 if (!msto->mstc) 890 return NULL; 891 return msto->mstc->mstm->outp; 892 } 893 894 static void 895 nv50_msto_cleanup(struct drm_atomic_state *state, 896 struct drm_dp_mst_topology_state *new_mst_state, 897 struct drm_dp_mst_topology_mgr *mgr, 898 struct nv50_msto *msto) 899 { 900 struct nouveau_drm *drm = nouveau_drm(msto->encoder.dev); 901 struct drm_dp_mst_atomic_payload *new_payload = 902 drm_atomic_get_mst_payload_state(new_mst_state, msto->mstc->port); 903 struct drm_dp_mst_topology_state *old_mst_state = 904 drm_atomic_get_old_mst_topology_state(state, mgr); 905 const struct drm_dp_mst_atomic_payload *old_payload = 906 drm_atomic_get_mst_payload_state(old_mst_state, msto->mstc->port); 907 struct nv50_mstc *mstc = msto->mstc; 908 struct nv50_mstm *mstm = mstc->mstm; 909 910 NV_ATOMIC(drm, "%s: msto cleanup\n", msto->encoder.name); 911 912 if (msto->disabled) { 913 if (msto->head->func->display_id) { 914 nvif_outp_dp_mst_id_put(&mstm->outp->outp, msto->display_id); 915 msto->display_id = 0; 916 } 917 918 msto->mstc = NULL; 919 msto->disabled = false; 920 drm_dp_remove_payload_part2(mgr, new_mst_state, old_payload, new_payload); 921 } else if (msto->enabled) { 922 drm_dp_add_payload_part2(mgr, new_payload); 923 msto->enabled = false; 924 } 925 } 926 927 static void 928 nv50_msto_prepare(struct drm_atomic_state *state, 929 struct drm_dp_mst_topology_state *mst_state, 930 struct drm_dp_mst_topology_mgr *mgr, 931 struct nv50_msto *msto) 932 { 933 struct nouveau_drm *drm = nouveau_drm(msto->encoder.dev); 934 struct nv50_mstc *mstc = msto->mstc; 935 struct nv50_mstm *mstm = mstc->mstm; 936 struct drm_dp_mst_atomic_payload *payload; 937 int ret = 0; 938 939 NV_ATOMIC(drm, "%s: msto prepare\n", msto->encoder.name); 940 941 payload = drm_atomic_get_mst_payload_state(mst_state, mstc->port); 942 943 if (msto->disabled) { 944 drm_dp_remove_payload_part1(mgr, mst_state, payload); 945 nvif_outp_dp_mst_vcpi(&mstm->outp->outp, msto->head->base.index, 0, 0, 0, 0); 946 ret = 1; 947 } else { 948 if (msto->enabled) 949 ret = drm_dp_add_payload_part1(mgr, mst_state, payload); 950 } 951 952 if (ret == 0) { 953 nvif_outp_dp_mst_vcpi(&mstm->outp->outp, msto->head->base.index, 954 payload->vc_start_slot, payload->time_slots, 955 payload->pbn, 956 payload->time_slots * dfixed_trunc(mst_state->pbn_div)); 957 } else { 958 nvif_outp_dp_mst_vcpi(&mstm->outp->outp, msto->head->base.index, 0, 0, 0, 0); 959 } 960 } 961 962 static int 963 nv50_msto_atomic_check(struct drm_encoder *encoder, 964 struct drm_crtc_state *crtc_state, 965 struct drm_connector_state *conn_state) 966 { 967 struct drm_atomic_state *state = crtc_state->state; 968 struct drm_connector *connector = conn_state->connector; 969 struct drm_dp_mst_topology_state *mst_state; 970 struct nv50_mstc *mstc = nv50_mstc(connector); 971 struct nv50_mstm *mstm = mstc->mstm; 972 struct nv50_head_atom *asyh = nv50_head_atom(crtc_state); 973 int slots; 974 int ret; 975 976 ret = nv50_outp_atomic_check_view(encoder, crtc_state, conn_state, 977 mstc->native); 978 if (ret) 979 return ret; 980 981 if (!drm_atomic_crtc_needs_modeset(crtc_state)) 982 return 0; 983 984 /* 985 * When restoring duplicated states, we need to make sure that the bw 986 * remains the same and avoid recalculating it, as the connector's bpc 987 * may have changed after the state was duplicated 988 */ 989 if (!state->duplicated) { 990 const int clock = crtc_state->adjusted_mode.clock; 991 992 asyh->or.bpc = connector->display_info.bpc; 993 asyh->dp.pbn = drm_dp_calc_pbn_mode(clock, asyh->or.bpc * 3 << 4); 994 } 995 996 mst_state = drm_atomic_get_mst_topology_state(state, &mstm->mgr); 997 if (IS_ERR(mst_state)) 998 return PTR_ERR(mst_state); 999 1000 if (!mst_state->pbn_div.full) { 1001 struct nouveau_encoder *outp = mstc->mstm->outp; 1002 1003 mst_state->pbn_div = drm_dp_get_vc_payload_bw(outp->dp.link_bw, outp->dp.link_nr); 1004 } 1005 1006 slots = drm_dp_atomic_find_time_slots(state, &mstm->mgr, mstc->port, asyh->dp.pbn); 1007 if (slots < 0) 1008 return slots; 1009 1010 asyh->dp.tu = slots; 1011 1012 return 0; 1013 } 1014 1015 static u8 1016 nv50_dp_bpc_to_depth(unsigned int bpc) 1017 { 1018 switch (bpc) { 1019 case 6: return NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_BPP_18_444; 1020 case 8: return NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_BPP_24_444; 1021 case 10: 1022 default: return NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_BPP_30_444; 1023 } 1024 } 1025 1026 static void 1027 nv50_msto_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state) 1028 { 1029 struct nv50_msto *msto = nv50_msto(encoder); 1030 struct nv50_head *head = msto->head; 1031 struct nv50_head_atom *asyh = 1032 nv50_head_atom(drm_atomic_get_new_crtc_state(state, &head->base.base)); 1033 struct nv50_mstc *mstc = NULL; 1034 struct nv50_mstm *mstm = NULL; 1035 struct drm_connector *connector; 1036 struct drm_connector_list_iter conn_iter; 1037 u8 proto; 1038 1039 drm_connector_list_iter_begin(encoder->dev, &conn_iter); 1040 drm_for_each_connector_iter(connector, &conn_iter) { 1041 if (connector->state->best_encoder == &msto->encoder) { 1042 mstc = nv50_mstc(connector); 1043 mstm = mstc->mstm; 1044 break; 1045 } 1046 } 1047 drm_connector_list_iter_end(&conn_iter); 1048 1049 if (WARN_ON(!mstc)) 1050 return; 1051 1052 if (!mstm->links++) { 1053 nvif_outp_acquire_sor(&mstm->outp->outp, false /*TODO: MST audio... */); 1054 nouveau_dp_train(mstm->outp, true, 0, 0); 1055 } 1056 1057 if (head->func->display_id) { 1058 if (!WARN_ON(nvif_outp_dp_mst_id_get(&mstm->outp->outp, &msto->display_id))) 1059 head->func->display_id(head, msto->display_id); 1060 } 1061 1062 if (mstm->outp->outp.or.link & 1) 1063 proto = NV917D_SOR_SET_CONTROL_PROTOCOL_DP_A; 1064 else 1065 proto = NV917D_SOR_SET_CONTROL_PROTOCOL_DP_B; 1066 1067 mstm->outp->update(mstm->outp, head->base.index, asyh, proto, 1068 nv50_dp_bpc_to_depth(asyh->or.bpc)); 1069 1070 msto->mstc = mstc; 1071 msto->enabled = true; 1072 mstm->modified = true; 1073 } 1074 1075 static void 1076 nv50_msto_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state) 1077 { 1078 struct nv50_msto *msto = nv50_msto(encoder); 1079 struct nv50_mstc *mstc = msto->mstc; 1080 struct nv50_mstm *mstm = mstc->mstm; 1081 1082 if (msto->head->func->display_id) 1083 msto->head->func->display_id(msto->head, 0); 1084 1085 mstm->outp->update(mstm->outp, msto->head->base.index, NULL, 0, 0); 1086 mstm->modified = true; 1087 if (!--mstm->links) 1088 mstm->disabled = true; 1089 msto->disabled = true; 1090 } 1091 1092 static const struct drm_encoder_helper_funcs 1093 nv50_msto_help = { 1094 .atomic_disable = nv50_msto_atomic_disable, 1095 .atomic_enable = nv50_msto_atomic_enable, 1096 .atomic_check = nv50_msto_atomic_check, 1097 }; 1098 1099 static void 1100 nv50_msto_destroy(struct drm_encoder *encoder) 1101 { 1102 struct nv50_msto *msto = nv50_msto(encoder); 1103 drm_encoder_cleanup(&msto->encoder); 1104 kfree(msto); 1105 } 1106 1107 static const struct drm_encoder_funcs 1108 nv50_msto = { 1109 .destroy = nv50_msto_destroy, 1110 }; 1111 1112 static struct nv50_msto * 1113 nv50_msto_new(struct drm_device *dev, struct nv50_head *head, int id) 1114 { 1115 struct nv50_msto *msto; 1116 int ret; 1117 1118 msto = kzalloc(sizeof(*msto), GFP_KERNEL); 1119 if (!msto) 1120 return ERR_PTR(-ENOMEM); 1121 1122 ret = drm_encoder_init(dev, &msto->encoder, &nv50_msto, 1123 DRM_MODE_ENCODER_DPMST, "mst-%d", id); 1124 if (ret) { 1125 kfree(msto); 1126 return ERR_PTR(ret); 1127 } 1128 1129 drm_encoder_helper_add(&msto->encoder, &nv50_msto_help); 1130 msto->encoder.possible_crtcs = drm_crtc_mask(&head->base.base); 1131 msto->head = head; 1132 return msto; 1133 } 1134 1135 static struct drm_encoder * 1136 nv50_mstc_atomic_best_encoder(struct drm_connector *connector, 1137 struct drm_atomic_state *state) 1138 { 1139 struct drm_connector_state *connector_state = drm_atomic_get_new_connector_state(state, 1140 connector); 1141 struct nv50_mstc *mstc = nv50_mstc(connector); 1142 struct drm_crtc *crtc = connector_state->crtc; 1143 1144 if (!(mstc->mstm->outp->dcb->heads & drm_crtc_mask(crtc))) 1145 return NULL; 1146 1147 return &nv50_head(crtc)->msto->encoder; 1148 } 1149 1150 static enum drm_mode_status 1151 nv50_mstc_mode_valid(struct drm_connector *connector, 1152 const struct drm_display_mode *mode) 1153 { 1154 struct nv50_mstc *mstc = nv50_mstc(connector); 1155 struct nouveau_encoder *outp = mstc->mstm->outp; 1156 1157 /* TODO: calculate the PBN from the dotclock and validate against the 1158 * MSTB's max possible PBN 1159 */ 1160 1161 return nv50_dp_mode_valid(outp, mode, NULL); 1162 } 1163 1164 static int 1165 nv50_mstc_get_modes(struct drm_connector *connector) 1166 { 1167 struct nv50_mstc *mstc = nv50_mstc(connector); 1168 int ret = 0; 1169 1170 mstc->edid = drm_dp_mst_get_edid(&mstc->connector, mstc->port->mgr, mstc->port); 1171 drm_connector_update_edid_property(&mstc->connector, mstc->edid); 1172 if (mstc->edid) 1173 ret = drm_add_edid_modes(&mstc->connector, mstc->edid); 1174 1175 /* 1176 * XXX: Since we don't use HDR in userspace quite yet, limit the bpc 1177 * to 8 to save bandwidth on the topology. In the future, we'll want 1178 * to properly fix this by dynamically selecting the highest possible 1179 * bpc that would fit in the topology 1180 */ 1181 if (connector->display_info.bpc) 1182 connector->display_info.bpc = 1183 clamp(connector->display_info.bpc, 6U, 8U); 1184 else 1185 connector->display_info.bpc = 8; 1186 1187 if (mstc->native) 1188 drm_mode_destroy(mstc->connector.dev, mstc->native); 1189 mstc->native = nouveau_conn_native_mode(&mstc->connector); 1190 return ret; 1191 } 1192 1193 static int 1194 nv50_mstc_atomic_check(struct drm_connector *connector, 1195 struct drm_atomic_state *state) 1196 { 1197 struct nv50_mstc *mstc = nv50_mstc(connector); 1198 struct drm_dp_mst_topology_mgr *mgr = &mstc->mstm->mgr; 1199 1200 return drm_dp_atomic_release_time_slots(state, mgr, mstc->port); 1201 } 1202 1203 static int 1204 nv50_mstc_detect(struct drm_connector *connector, 1205 struct drm_modeset_acquire_ctx *ctx, bool force) 1206 { 1207 struct nv50_mstc *mstc = nv50_mstc(connector); 1208 int ret; 1209 1210 if (drm_connector_is_unregistered(connector)) 1211 return connector_status_disconnected; 1212 1213 ret = pm_runtime_get_sync(connector->dev->dev); 1214 if (ret < 0 && ret != -EACCES) { 1215 pm_runtime_put_autosuspend(connector->dev->dev); 1216 return connector_status_disconnected; 1217 } 1218 1219 ret = drm_dp_mst_detect_port(connector, ctx, mstc->port->mgr, 1220 mstc->port); 1221 if (ret != connector_status_connected) 1222 goto out; 1223 1224 out: 1225 pm_runtime_mark_last_busy(connector->dev->dev); 1226 pm_runtime_put_autosuspend(connector->dev->dev); 1227 return ret; 1228 } 1229 1230 static const struct drm_connector_helper_funcs 1231 nv50_mstc_help = { 1232 .get_modes = nv50_mstc_get_modes, 1233 .mode_valid = nv50_mstc_mode_valid, 1234 .atomic_best_encoder = nv50_mstc_atomic_best_encoder, 1235 .atomic_check = nv50_mstc_atomic_check, 1236 .detect_ctx = nv50_mstc_detect, 1237 }; 1238 1239 static void 1240 nv50_mstc_destroy(struct drm_connector *connector) 1241 { 1242 struct nv50_mstc *mstc = nv50_mstc(connector); 1243 1244 drm_connector_cleanup(&mstc->connector); 1245 drm_dp_mst_put_port_malloc(mstc->port); 1246 1247 kfree(mstc); 1248 } 1249 1250 static const struct drm_connector_funcs 1251 nv50_mstc = { 1252 .reset = nouveau_conn_reset, 1253 .fill_modes = drm_helper_probe_single_connector_modes, 1254 .destroy = nv50_mstc_destroy, 1255 .atomic_duplicate_state = nouveau_conn_atomic_duplicate_state, 1256 .atomic_destroy_state = nouveau_conn_atomic_destroy_state, 1257 .atomic_set_property = nouveau_conn_atomic_set_property, 1258 .atomic_get_property = nouveau_conn_atomic_get_property, 1259 }; 1260 1261 static int 1262 nv50_mstc_new(struct nv50_mstm *mstm, struct drm_dp_mst_port *port, 1263 const char *path, struct nv50_mstc **pmstc) 1264 { 1265 struct drm_device *dev = mstm->outp->base.base.dev; 1266 struct drm_crtc *crtc; 1267 struct nv50_mstc *mstc; 1268 int ret; 1269 1270 if (!(mstc = *pmstc = kzalloc(sizeof(*mstc), GFP_KERNEL))) 1271 return -ENOMEM; 1272 mstc->mstm = mstm; 1273 mstc->port = port; 1274 1275 ret = drm_connector_dynamic_init(dev, &mstc->connector, &nv50_mstc, 1276 DRM_MODE_CONNECTOR_DisplayPort, NULL); 1277 if (ret) { 1278 kfree(*pmstc); 1279 *pmstc = NULL; 1280 return ret; 1281 } 1282 1283 drm_connector_helper_add(&mstc->connector, &nv50_mstc_help); 1284 1285 mstc->connector.funcs->reset(&mstc->connector); 1286 nouveau_conn_attach_properties(&mstc->connector); 1287 1288 drm_for_each_crtc(crtc, dev) { 1289 if (!(mstm->outp->dcb->heads & drm_crtc_mask(crtc))) 1290 continue; 1291 1292 drm_connector_attach_encoder(&mstc->connector, 1293 &nv50_head(crtc)->msto->encoder); 1294 } 1295 1296 drm_object_attach_property(&mstc->connector.base, dev->mode_config.path_property, 0); 1297 drm_object_attach_property(&mstc->connector.base, dev->mode_config.tile_property, 0); 1298 drm_connector_set_path_property(&mstc->connector, path); 1299 drm_dp_mst_get_port_malloc(port); 1300 return 0; 1301 } 1302 1303 static void 1304 nv50_mstm_cleanup(struct drm_atomic_state *state, 1305 struct drm_dp_mst_topology_state *mst_state, 1306 struct nv50_mstm *mstm) 1307 { 1308 struct nouveau_drm *drm = nouveau_drm(mstm->outp->base.base.dev); 1309 struct drm_encoder *encoder; 1310 1311 NV_ATOMIC(drm, "%s: mstm cleanup\n", mstm->outp->base.base.name); 1312 drm_dp_check_act_status(&mstm->mgr); 1313 1314 drm_for_each_encoder(encoder, mstm->outp->base.base.dev) { 1315 if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) { 1316 struct nv50_msto *msto = nv50_msto(encoder); 1317 struct nv50_mstc *mstc = msto->mstc; 1318 if (mstc && mstc->mstm == mstm) 1319 nv50_msto_cleanup(state, mst_state, &mstm->mgr, msto); 1320 } 1321 } 1322 1323 if (mstm->disabled) { 1324 nouveau_dp_power_down(mstm->outp); 1325 nvif_outp_release(&mstm->outp->outp); 1326 mstm->disabled = false; 1327 } 1328 1329 mstm->modified = false; 1330 } 1331 1332 static void 1333 nv50_mstm_prepare(struct drm_atomic_state *state, 1334 struct drm_dp_mst_topology_state *mst_state, 1335 struct nv50_mstm *mstm) 1336 { 1337 struct nouveau_drm *drm = nouveau_drm(mstm->outp->base.base.dev); 1338 struct drm_encoder *encoder; 1339 1340 NV_ATOMIC(drm, "%s: mstm prepare\n", mstm->outp->base.base.name); 1341 1342 /* Disable payloads first */ 1343 drm_for_each_encoder(encoder, mstm->outp->base.base.dev) { 1344 if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) { 1345 struct nv50_msto *msto = nv50_msto(encoder); 1346 struct nv50_mstc *mstc = msto->mstc; 1347 if (mstc && mstc->mstm == mstm && msto->disabled) 1348 nv50_msto_prepare(state, mst_state, &mstm->mgr, msto); 1349 } 1350 } 1351 1352 /* Add payloads for new heads, while also updating the start slots of any unmodified (but 1353 * active) heads that may have had their VC slots shifted left after the previous step 1354 */ 1355 drm_for_each_encoder(encoder, mstm->outp->base.base.dev) { 1356 if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) { 1357 struct nv50_msto *msto = nv50_msto(encoder); 1358 struct nv50_mstc *mstc = msto->mstc; 1359 if (mstc && mstc->mstm == mstm && !msto->disabled) 1360 nv50_msto_prepare(state, mst_state, &mstm->mgr, msto); 1361 } 1362 } 1363 } 1364 1365 static struct drm_connector * 1366 nv50_mstm_add_connector(struct drm_dp_mst_topology_mgr *mgr, 1367 struct drm_dp_mst_port *port, const char *path) 1368 { 1369 struct nv50_mstm *mstm = nv50_mstm(mgr); 1370 struct nv50_mstc *mstc; 1371 int ret; 1372 1373 ret = nv50_mstc_new(mstm, port, path, &mstc); 1374 if (ret) 1375 return NULL; 1376 1377 return &mstc->connector; 1378 } 1379 1380 static const struct drm_dp_mst_topology_cbs 1381 nv50_mstm = { 1382 .add_connector = nv50_mstm_add_connector, 1383 }; 1384 1385 bool 1386 nv50_mstm_service(struct nouveau_drm *drm, 1387 struct nouveau_connector *nv_connector, 1388 struct nv50_mstm *mstm) 1389 { 1390 struct drm_dp_aux *aux = &nv_connector->aux; 1391 bool handled = true, ret = true; 1392 int rc; 1393 u8 esi[8] = {}; 1394 1395 while (handled) { 1396 u8 ack[8] = {}; 1397 1398 rc = drm_dp_dpcd_read(aux, DP_SINK_COUNT_ESI, esi, 8); 1399 if (rc != 8) { 1400 ret = false; 1401 break; 1402 } 1403 1404 drm_dp_mst_hpd_irq_handle_event(&mstm->mgr, esi, ack, &handled); 1405 if (!handled) 1406 break; 1407 1408 rc = drm_dp_dpcd_writeb(aux, DP_SINK_COUNT_ESI + 1, ack[1]); 1409 1410 if (rc != 1) { 1411 ret = false; 1412 break; 1413 } 1414 1415 drm_dp_mst_hpd_irq_send_new_request(&mstm->mgr); 1416 } 1417 1418 if (!ret) 1419 NV_DEBUG(drm, "Failed to handle ESI on %s: %d\n", 1420 nv_connector->base.name, rc); 1421 1422 return ret; 1423 } 1424 1425 void 1426 nv50_mstm_remove(struct nv50_mstm *mstm) 1427 { 1428 mstm->is_mst = false; 1429 drm_dp_mst_topology_mgr_set_mst(&mstm->mgr, false); 1430 } 1431 1432 int 1433 nv50_mstm_detect(struct nouveau_encoder *outp) 1434 { 1435 struct nv50_mstm *mstm = outp->dp.mstm; 1436 struct drm_dp_aux *aux; 1437 int ret; 1438 1439 if (!mstm || !mstm->can_mst) 1440 return 0; 1441 1442 aux = mstm->mgr.aux; 1443 1444 /* Clear any leftover MST state we didn't set ourselves by first 1445 * disabling MST if it was already enabled 1446 */ 1447 ret = drm_dp_dpcd_writeb(aux, DP_MSTM_CTRL, 0); 1448 if (ret < 0) 1449 return ret; 1450 1451 /* And start enabling */ 1452 ret = drm_dp_mst_topology_mgr_set_mst(&mstm->mgr, true); 1453 if (ret) 1454 return ret; 1455 1456 mstm->is_mst = true; 1457 return 1; 1458 } 1459 1460 static void 1461 nv50_mstm_fini(struct nouveau_encoder *outp) 1462 { 1463 struct nv50_mstm *mstm = outp->dp.mstm; 1464 1465 if (!mstm) 1466 return; 1467 1468 /* Don't change the MST state of this connector until we've finished 1469 * resuming, since we can't safely grab hpd_irq_lock in our resume 1470 * path to protect mstm->is_mst without potentially deadlocking 1471 */ 1472 mutex_lock(&outp->dp.hpd_irq_lock); 1473 mstm->suspended = true; 1474 mutex_unlock(&outp->dp.hpd_irq_lock); 1475 1476 if (mstm->is_mst) 1477 drm_dp_mst_topology_mgr_suspend(&mstm->mgr); 1478 } 1479 1480 static void 1481 nv50_mstm_init(struct nouveau_encoder *outp, bool runtime) 1482 { 1483 struct nv50_mstm *mstm = outp->dp.mstm; 1484 int ret = 0; 1485 1486 if (!mstm) 1487 return; 1488 1489 if (mstm->is_mst) { 1490 ret = drm_dp_mst_topology_mgr_resume(&mstm->mgr, !runtime); 1491 if (ret == -1) 1492 nv50_mstm_remove(mstm); 1493 } 1494 1495 mutex_lock(&outp->dp.hpd_irq_lock); 1496 mstm->suspended = false; 1497 mutex_unlock(&outp->dp.hpd_irq_lock); 1498 1499 if (ret == -1) 1500 drm_kms_helper_hotplug_event(mstm->mgr.dev); 1501 } 1502 1503 static void 1504 nv50_mstm_del(struct nv50_mstm **pmstm) 1505 { 1506 struct nv50_mstm *mstm = *pmstm; 1507 if (mstm) { 1508 drm_dp_mst_topology_mgr_destroy(&mstm->mgr); 1509 kfree(*pmstm); 1510 *pmstm = NULL; 1511 } 1512 } 1513 1514 static int 1515 nv50_mstm_new(struct nouveau_encoder *outp, struct drm_dp_aux *aux, int aux_max, 1516 int conn_base_id, struct nv50_mstm **pmstm) 1517 { 1518 const int max_payloads = hweight8(outp->dcb->heads); 1519 struct drm_device *dev = outp->base.base.dev; 1520 struct nv50_mstm *mstm; 1521 int ret; 1522 1523 if (!(mstm = *pmstm = kzalloc(sizeof(*mstm), GFP_KERNEL))) 1524 return -ENOMEM; 1525 mstm->outp = outp; 1526 mstm->mgr.cbs = &nv50_mstm; 1527 1528 ret = drm_dp_mst_topology_mgr_init(&mstm->mgr, dev, aux, aux_max, 1529 max_payloads, conn_base_id); 1530 if (ret) 1531 return ret; 1532 1533 return 0; 1534 } 1535 1536 /****************************************************************************** 1537 * SOR 1538 *****************************************************************************/ 1539 static void 1540 nv50_sor_update(struct nouveau_encoder *nv_encoder, u8 head, 1541 struct nv50_head_atom *asyh, u8 proto, u8 depth) 1542 { 1543 struct nv50_disp *disp = nv50_disp(nv_encoder->base.base.dev); 1544 struct nv50_core *core = disp->core; 1545 1546 if (!asyh) { 1547 nv_encoder->ctrl &= ~BIT(head); 1548 if (NVDEF_TEST(nv_encoder->ctrl, NV507D, SOR_SET_CONTROL, OWNER, ==, NONE)) 1549 nv_encoder->ctrl = 0; 1550 } else { 1551 nv_encoder->ctrl |= NVVAL(NV507D, SOR_SET_CONTROL, PROTOCOL, proto); 1552 nv_encoder->ctrl |= BIT(head); 1553 asyh->or.depth = depth; 1554 } 1555 1556 core->func->sor->ctrl(core, nv_encoder->outp.or.id, nv_encoder->ctrl, asyh); 1557 } 1558 1559 /* TODO: Should we extend this to PWM-only backlights? 1560 * As well, should we add a DRM helper for waiting for the backlight to acknowledge 1561 * the panel backlight has been shut off? Intel doesn't seem to do this, and uses a 1562 * fixed time delay from the vbios… 1563 */ 1564 static void 1565 nv50_sor_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state) 1566 { 1567 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 1568 struct nv50_head *head = nv50_head(nv_encoder->crtc); 1569 #ifdef CONFIG_DRM_NOUVEAU_BACKLIGHT 1570 struct nouveau_connector *nv_connector = nv50_outp_get_old_connector(state, nv_encoder); 1571 struct nouveau_drm *drm = nouveau_drm(nv_encoder->base.base.dev); 1572 struct nouveau_backlight *backlight = nv_connector->backlight; 1573 struct drm_dp_aux *aux = &nv_connector->aux; 1574 int ret; 1575 1576 if (backlight && backlight->uses_dpcd) { 1577 ret = drm_edp_backlight_disable(aux, &backlight->edp_info); 1578 if (ret < 0) 1579 NV_ERROR(drm, "Failed to disable backlight on [CONNECTOR:%d:%s]: %d\n", 1580 nv_connector->base.base.id, nv_connector->base.name, ret); 1581 } 1582 #endif 1583 1584 if (nv_encoder->dcb->type == DCB_OUTPUT_TMDS && nv_encoder->hdmi.enabled) { 1585 nvif_outp_hdmi(&nv_encoder->outp, head->base.index, 1586 false, 0, 0, 0, false, false, false); 1587 nv_encoder->hdmi.enabled = false; 1588 } 1589 1590 if (nv_encoder->dcb->type == DCB_OUTPUT_DP) 1591 nouveau_dp_power_down(nv_encoder); 1592 1593 if (head->func->display_id) 1594 head->func->display_id(head, 0); 1595 1596 nv_encoder->update(nv_encoder, head->base.index, NULL, 0, 0); 1597 nv50_audio_disable(encoder, &head->base); 1598 nv_encoder->crtc = NULL; 1599 } 1600 1601 // common/inc/displayport/displayport.h 1602 #define DP_CONFIG_WATERMARK_ADJUST 2 1603 #define DP_CONFIG_WATERMARK_LIMIT 20 1604 #define DP_CONFIG_INCREASED_WATERMARK_ADJUST 8 1605 #define DP_CONFIG_INCREASED_WATERMARK_LIMIT 22 1606 1607 static bool 1608 nv50_sor_dp_watermark_sst(struct nouveau_encoder *outp, 1609 struct nv50_head *head, struct nv50_head_atom *asyh) 1610 { 1611 bool enhancedFraming = outp->dp.dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP; 1612 u64 minRate = outp->dp.link_bw * 1000; 1613 unsigned tuSize = 64; 1614 unsigned waterMark; 1615 unsigned hBlankSym; 1616 unsigned vBlankSym; 1617 unsigned watermarkAdjust = DP_CONFIG_WATERMARK_ADJUST; 1618 unsigned watermarkMinimum = DP_CONFIG_WATERMARK_LIMIT; 1619 // depth is multiplied by 16 in case of DSC enable 1620 s32 hblank_symbols; 1621 // number of link clocks per line. 1622 int vblank_symbols = 0; 1623 bool bEnableDsc = false; 1624 unsigned surfaceWidth = asyh->mode.h.blanks - asyh->mode.h.blanke; 1625 unsigned rasterWidth = asyh->mode.h.active; 1626 unsigned depth = asyh->or.bpc * 3; 1627 unsigned DSC_FACTOR = bEnableDsc ? 16 : 1; 1628 u64 pixelClockHz = asyh->mode.clock * 1000; 1629 u64 PrecisionFactor = 100000, ratioF, watermarkF; 1630 u32 numLanesPerLink = outp->dp.link_nr; 1631 u32 numSymbolsPerLine; 1632 u32 BlankingBits; 1633 u32 surfaceWidthPerLink; 1634 u32 PixelSteeringBits; 1635 u64 NumBlankingLinkClocks; 1636 u32 MinHBlank; 1637 1638 if (outp->outp.info.dp.increased_wm) { 1639 watermarkAdjust = DP_CONFIG_INCREASED_WATERMARK_ADJUST; 1640 watermarkMinimum = DP_CONFIG_INCREASED_WATERMARK_LIMIT; 1641 } 1642 1643 if ((pixelClockHz * depth) >= (8 * minRate * outp->dp.link_nr * DSC_FACTOR)) 1644 { 1645 return false; 1646 } 1647 1648 // 1649 // For DSC, if (pclk * bpp) < (1/64 * orclk * 8 * lanes) then some TU may end up with 1650 // 0 active symbols. This may cause HW hang. Bug 200379426 1651 // 1652 if ((bEnableDsc) && 1653 ((pixelClockHz * depth) < div_u64(8 * minRate * outp->dp.link_nr * DSC_FACTOR, 64))) 1654 { 1655 return false; 1656 } 1657 1658 // 1659 // Perform the SST calculation. 1660 // For auto mode the watermark calculation does not need to track accumulated error the 1661 // formulas for manual mode will not work. So below calculation was extracted from the DTB. 1662 // 1663 ratioF = div_u64((u64)pixelClockHz * depth * PrecisionFactor, DSC_FACTOR); 1664 1665 ratioF = div_u64(ratioF, 8 * (u64) minRate * outp->dp.link_nr); 1666 1667 if (PrecisionFactor < ratioF) // Assert if we will end up with a negative number in below 1668 return false; 1669 1670 watermarkF = div_u64(ratioF * tuSize * (PrecisionFactor - ratioF), PrecisionFactor); 1671 waterMark = (unsigned)(watermarkAdjust + (div_u64(2 * div_u64(depth * PrecisionFactor, 8 * numLanesPerLink * DSC_FACTOR) + watermarkF, PrecisionFactor))); 1672 1673 // 1674 // Bounds check the watermark 1675 // 1676 numSymbolsPerLine = div_u64(surfaceWidth * depth, 8 * outp->dp.link_nr * DSC_FACTOR); 1677 1678 if (WARN_ON(waterMark > 39 || waterMark > numSymbolsPerLine)) 1679 return false; 1680 1681 // 1682 // Clamp the low side 1683 // 1684 if (waterMark < watermarkMinimum) 1685 waterMark = watermarkMinimum; 1686 1687 //Bits to send BS/BE/Extra symbols due to pixel padding 1688 //Also accounts for enhanced framing. 1689 BlankingBits = 3*8*numLanesPerLink + (enhancedFraming ? 3*8*numLanesPerLink : 0); 1690 1691 //VBID/MVID/MAUD sent 4 times all the time 1692 BlankingBits += 3*8*4; 1693 1694 surfaceWidthPerLink = surfaceWidth; 1695 1696 //Extra bits sent due to pixel steering 1697 u32 remain; 1698 div_u64_rem(surfaceWidthPerLink, numLanesPerLink, &remain); 1699 PixelSteeringBits = remain ? div_u64((numLanesPerLink - remain) * depth, DSC_FACTOR) : 0; 1700 1701 BlankingBits += PixelSteeringBits; 1702 NumBlankingLinkClocks = div_u64((u64)BlankingBits * PrecisionFactor, (8 * numLanesPerLink)); 1703 MinHBlank = (u32)(div_u64(div_u64(NumBlankingLinkClocks * pixelClockHz, minRate), PrecisionFactor)); 1704 MinHBlank += 12; 1705 1706 if (WARN_ON(MinHBlank > rasterWidth - surfaceWidth)) 1707 return false; 1708 1709 // Bug 702290 - Active Width should be greater than 60 1710 if (WARN_ON(surfaceWidth <= 60)) 1711 return false; 1712 1713 1714 hblank_symbols = (s32)(div_u64((u64)(rasterWidth - surfaceWidth - MinHBlank) * minRate, pixelClockHz)); 1715 1716 //reduce HBlank Symbols to account for secondary data packet 1717 hblank_symbols -= 1; //Stuffer latency to send BS 1718 hblank_symbols -= 3; //SPKT latency to send data to stuffer 1719 1720 hblank_symbols -= numLanesPerLink == 1 ? 9 : numLanesPerLink == 2 ? 6 : 3; 1721 1722 hBlankSym = (hblank_symbols < 0) ? 0 : hblank_symbols; 1723 1724 // Refer to dev_disp.ref for more information. 1725 // # symbols/vblank = ((SetRasterBlankEnd.X + SetRasterSize.Width - SetRasterBlankStart.X - 40) * link_clk / pclk) - Y - 1; 1726 // where Y = (# lanes == 4) 12 : (# lanes == 2) ? 21 : 39 1727 if (surfaceWidth < 40) 1728 { 1729 vblank_symbols = 0; 1730 } 1731 else 1732 { 1733 vblank_symbols = (s32)((div_u64((u64)(surfaceWidth - 40) * minRate, pixelClockHz))) - 1; 1734 1735 vblank_symbols -= numLanesPerLink == 1 ? 39 : numLanesPerLink == 2 ? 21 : 12; 1736 } 1737 1738 vBlankSym = (vblank_symbols < 0) ? 0 : vblank_symbols; 1739 1740 return nvif_outp_dp_sst(&outp->outp, head->base.index, waterMark, hBlankSym, vBlankSym); 1741 } 1742 1743 static void 1744 nv50_sor_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state) 1745 { 1746 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 1747 struct nouveau_crtc *nv_crtc = nv50_outp_get_new_crtc(state, nv_encoder); 1748 struct nv50_head_atom *asyh = 1749 nv50_head_atom(drm_atomic_get_new_crtc_state(state, &nv_crtc->base)); 1750 struct drm_display_mode *mode = &asyh->state.adjusted_mode; 1751 struct nv50_disp *disp = nv50_disp(encoder->dev); 1752 struct nv50_head *head = nv50_head(&nv_crtc->base); 1753 struct nvif_outp *outp = &nv_encoder->outp; 1754 struct drm_device *dev = encoder->dev; 1755 struct nouveau_drm *drm = nouveau_drm(dev); 1756 struct nouveau_connector *nv_connector; 1757 #ifdef CONFIG_DRM_NOUVEAU_BACKLIGHT 1758 struct nouveau_backlight *backlight; 1759 #endif 1760 struct nvbios *bios = &drm->vbios; 1761 bool lvds_dual = false, lvds_8bpc = false, hda = false; 1762 u8 proto = NV507D_SOR_SET_CONTROL_PROTOCOL_CUSTOM; 1763 u8 depth = NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_DEFAULT; 1764 1765 nv_connector = nv50_outp_get_new_connector(state, nv_encoder); 1766 nv_encoder->crtc = &nv_crtc->base; 1767 1768 if ((disp->disp->object.oclass == GT214_DISP || 1769 disp->disp->object.oclass >= GF110_DISP) && 1770 nv_encoder->dcb->type != DCB_OUTPUT_LVDS && 1771 nv_connector->base.display_info.has_audio) 1772 hda = true; 1773 1774 if (!nvif_outp_acquired(outp)) 1775 nvif_outp_acquire_sor(outp, hda); 1776 1777 switch (nv_encoder->dcb->type) { 1778 case DCB_OUTPUT_TMDS: 1779 if (disp->disp->object.oclass != NV50_DISP && 1780 nv_connector->base.display_info.is_hdmi) 1781 nv50_hdmi_enable(encoder, nv_crtc, nv_connector, state, mode, hda); 1782 1783 if (nv_encoder->outp.or.link & 1) { 1784 proto = NV507D_SOR_SET_CONTROL_PROTOCOL_SINGLE_TMDS_A; 1785 /* Only enable dual-link if: 1786 * - Need to (i.e. rate > 165MHz) 1787 * - DCB says we can 1788 * - Not an HDMI monitor, since there's no dual-link 1789 * on HDMI. 1790 */ 1791 if (mode->clock >= 165000 && 1792 nv_encoder->dcb->duallink_possible && 1793 !nv_connector->base.display_info.is_hdmi) 1794 proto = NV507D_SOR_SET_CONTROL_PROTOCOL_DUAL_TMDS; 1795 } else { 1796 proto = NV507D_SOR_SET_CONTROL_PROTOCOL_SINGLE_TMDS_B; 1797 } 1798 break; 1799 case DCB_OUTPUT_LVDS: 1800 proto = NV507D_SOR_SET_CONTROL_PROTOCOL_LVDS_CUSTOM; 1801 1802 if (bios->fp_no_ddc) { 1803 lvds_dual = bios->fp.dual_link; 1804 lvds_8bpc = bios->fp.if_is_24bit; 1805 } else { 1806 if (nv_connector->type == DCB_CONNECTOR_LVDS_SPWG) { 1807 if (((u8 *)nv_connector->edid)[121] == 2) 1808 lvds_dual = true; 1809 } else 1810 if (mode->clock >= bios->fp.duallink_transition_clk) { 1811 lvds_dual = true; 1812 } 1813 1814 if (lvds_dual) { 1815 if (bios->fp.strapless_is_24bit & 2) 1816 lvds_8bpc = true; 1817 } else { 1818 if (bios->fp.strapless_is_24bit & 1) 1819 lvds_8bpc = true; 1820 } 1821 1822 if (asyh->or.bpc == 8) 1823 lvds_8bpc = true; 1824 } 1825 1826 nvif_outp_lvds(&nv_encoder->outp, lvds_dual, lvds_8bpc); 1827 break; 1828 case DCB_OUTPUT_DP: 1829 nouveau_dp_train(nv_encoder, false, mode->clock, asyh->or.bpc); 1830 nv50_sor_dp_watermark_sst(nv_encoder, head, asyh); 1831 depth = nv50_dp_bpc_to_depth(asyh->or.bpc); 1832 1833 if (nv_encoder->outp.or.link & 1) 1834 proto = NV887D_SOR_SET_CONTROL_PROTOCOL_DP_A; 1835 else 1836 proto = NV887D_SOR_SET_CONTROL_PROTOCOL_DP_B; 1837 1838 #ifdef CONFIG_DRM_NOUVEAU_BACKLIGHT 1839 backlight = nv_connector->backlight; 1840 if (backlight && backlight->uses_dpcd) 1841 drm_edp_backlight_enable(&nv_connector->aux, &backlight->edp_info, 1842 backlight->dev->props.brightness); 1843 #endif 1844 1845 break; 1846 default: 1847 BUG(); 1848 break; 1849 } 1850 1851 if (head->func->display_id) 1852 head->func->display_id(head, BIT(nv_encoder->outp.id)); 1853 1854 nv_encoder->update(nv_encoder, nv_crtc->index, asyh, proto, depth); 1855 } 1856 1857 static const struct drm_encoder_helper_funcs 1858 nv50_sor_help = { 1859 .atomic_check = nv50_outp_atomic_check, 1860 .atomic_enable = nv50_sor_atomic_enable, 1861 .atomic_disable = nv50_sor_atomic_disable, 1862 }; 1863 1864 static void 1865 nv50_sor_destroy(struct drm_encoder *encoder) 1866 { 1867 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 1868 1869 nv50_mstm_del(&nv_encoder->dp.mstm); 1870 drm_encoder_cleanup(encoder); 1871 1872 if (nv_encoder->dcb->type == DCB_OUTPUT_DP) 1873 mutex_destroy(&nv_encoder->dp.hpd_irq_lock); 1874 1875 nvif_outp_dtor(&nv_encoder->outp); 1876 kfree(encoder); 1877 } 1878 1879 static const struct drm_encoder_funcs 1880 nv50_sor_func = { 1881 .destroy = nv50_sor_destroy, 1882 }; 1883 1884 static int 1885 nv50_sor_create(struct nouveau_encoder *nv_encoder) 1886 { 1887 struct drm_connector *connector = &nv_encoder->conn->base; 1888 struct nouveau_connector *nv_connector = nouveau_connector(connector); 1889 struct nouveau_drm *drm = nouveau_drm(connector->dev); 1890 struct nvkm_i2c *i2c = nvxx_i2c(drm); 1891 struct drm_encoder *encoder; 1892 struct dcb_output *dcbe = nv_encoder->dcb; 1893 struct nv50_disp *disp = nv50_disp(connector->dev); 1894 int type, ret; 1895 1896 switch (dcbe->type) { 1897 case DCB_OUTPUT_LVDS: type = DRM_MODE_ENCODER_LVDS; break; 1898 case DCB_OUTPUT_TMDS: 1899 case DCB_OUTPUT_DP: 1900 default: 1901 type = DRM_MODE_ENCODER_TMDS; 1902 break; 1903 } 1904 1905 nv_encoder->update = nv50_sor_update; 1906 1907 encoder = to_drm_encoder(nv_encoder); 1908 drm_encoder_init(connector->dev, encoder, &nv50_sor_func, type, 1909 "sor-%04x-%04x", dcbe->hasht, dcbe->hashm); 1910 drm_encoder_helper_add(encoder, &nv50_sor_help); 1911 1912 drm_connector_attach_encoder(connector, encoder); 1913 1914 disp->core->func->sor->get_caps(disp, nv_encoder, ffs(dcbe->or) - 1); 1915 nv50_outp_dump_caps(drm, nv_encoder); 1916 1917 if (dcbe->type == DCB_OUTPUT_DP) { 1918 mutex_init(&nv_encoder->dp.hpd_irq_lock); 1919 1920 if (disp->disp->object.oclass < GF110_DISP) { 1921 /* HW has no support for address-only 1922 * transactions, so we're required to 1923 * use custom I2C-over-AUX code. 1924 */ 1925 struct nvkm_i2c_aux *aux; 1926 1927 aux = nvkm_i2c_aux_find(i2c, dcbe->i2c_index); 1928 if (!aux) 1929 return -EINVAL; 1930 1931 nv_encoder->i2c = &aux->i2c; 1932 } else { 1933 nv_encoder->i2c = &nv_connector->aux.ddc; 1934 } 1935 1936 if (nv_connector->type != DCB_CONNECTOR_eDP && nv_encoder->outp.info.dp.mst) { 1937 ret = nv50_mstm_new(nv_encoder, &nv_connector->aux, 1938 16, nv_connector->base.base.id, 1939 &nv_encoder->dp.mstm); 1940 if (ret) 1941 return ret; 1942 } 1943 } else 1944 if (nv_encoder->outp.info.ddc != NVIF_OUTP_DDC_INVALID) { 1945 struct nvkm_i2c_bus *bus = 1946 nvkm_i2c_bus_find(i2c, dcbe->i2c_index); 1947 if (bus) 1948 nv_encoder->i2c = &bus->i2c; 1949 } 1950 1951 return 0; 1952 } 1953 1954 /****************************************************************************** 1955 * PIOR 1956 *****************************************************************************/ 1957 static int 1958 nv50_pior_atomic_check(struct drm_encoder *encoder, 1959 struct drm_crtc_state *crtc_state, 1960 struct drm_connector_state *conn_state) 1961 { 1962 int ret = nv50_outp_atomic_check(encoder, crtc_state, conn_state); 1963 if (ret) 1964 return ret; 1965 crtc_state->adjusted_mode.clock *= 2; 1966 return 0; 1967 } 1968 1969 static void 1970 nv50_pior_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state) 1971 { 1972 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 1973 struct nv50_core *core = nv50_disp(encoder->dev)->core; 1974 const u32 ctrl = NVDEF(NV507D, PIOR_SET_CONTROL, OWNER, NONE); 1975 1976 core->func->pior->ctrl(core, nv_encoder->outp.or.id, ctrl, NULL); 1977 nv_encoder->crtc = NULL; 1978 } 1979 1980 static void 1981 nv50_pior_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state) 1982 { 1983 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 1984 struct nouveau_crtc *nv_crtc = nv50_outp_get_new_crtc(state, nv_encoder); 1985 struct nv50_head_atom *asyh = 1986 nv50_head_atom(drm_atomic_get_new_crtc_state(state, &nv_crtc->base)); 1987 struct nv50_core *core = nv50_disp(encoder->dev)->core; 1988 u32 ctrl = 0; 1989 1990 switch (nv_crtc->index) { 1991 case 0: ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, OWNER, HEAD0); break; 1992 case 1: ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, OWNER, HEAD1); break; 1993 default: 1994 WARN_ON(1); 1995 break; 1996 } 1997 1998 switch (asyh->or.bpc) { 1999 case 10: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_BPP_30_444; break; 2000 case 8: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_BPP_24_444; break; 2001 case 6: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_BPP_18_444; break; 2002 default: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_DEFAULT; break; 2003 } 2004 2005 if (!nvif_outp_acquired(&nv_encoder->outp)) 2006 nvif_outp_acquire_pior(&nv_encoder->outp); 2007 2008 switch (nv_encoder->dcb->type) { 2009 case DCB_OUTPUT_TMDS: 2010 ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, PROTOCOL, EXT_TMDS_ENC); 2011 break; 2012 case DCB_OUTPUT_DP: 2013 ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, PROTOCOL, EXT_TMDS_ENC); 2014 nouveau_dp_train(nv_encoder, false, asyh->state.adjusted_mode.clock, 6); 2015 break; 2016 default: 2017 BUG(); 2018 break; 2019 } 2020 2021 core->func->pior->ctrl(core, nv_encoder->outp.or.id, ctrl, asyh); 2022 nv_encoder->crtc = &nv_crtc->base; 2023 } 2024 2025 static const struct drm_encoder_helper_funcs 2026 nv50_pior_help = { 2027 .atomic_check = nv50_pior_atomic_check, 2028 .atomic_enable = nv50_pior_atomic_enable, 2029 .atomic_disable = nv50_pior_atomic_disable, 2030 }; 2031 2032 static void 2033 nv50_pior_destroy(struct drm_encoder *encoder) 2034 { 2035 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 2036 2037 nvif_outp_dtor(&nv_encoder->outp); 2038 2039 drm_encoder_cleanup(encoder); 2040 2041 mutex_destroy(&nv_encoder->dp.hpd_irq_lock); 2042 kfree(encoder); 2043 } 2044 2045 static const struct drm_encoder_funcs 2046 nv50_pior_func = { 2047 .destroy = nv50_pior_destroy, 2048 }; 2049 2050 static int 2051 nv50_pior_create(struct nouveau_encoder *nv_encoder) 2052 { 2053 struct drm_connector *connector = &nv_encoder->conn->base; 2054 struct drm_device *dev = connector->dev; 2055 struct nouveau_drm *drm = nouveau_drm(dev); 2056 struct nv50_disp *disp = nv50_disp(dev); 2057 struct nvkm_i2c *i2c = nvxx_i2c(drm); 2058 struct nvkm_i2c_bus *bus = NULL; 2059 struct nvkm_i2c_aux *aux = NULL; 2060 struct i2c_adapter *ddc; 2061 struct drm_encoder *encoder; 2062 struct dcb_output *dcbe = nv_encoder->dcb; 2063 int type; 2064 2065 switch (dcbe->type) { 2066 case DCB_OUTPUT_TMDS: 2067 bus = nvkm_i2c_bus_find(i2c, nv_encoder->outp.info.ddc); 2068 ddc = bus ? &bus->i2c : NULL; 2069 type = DRM_MODE_ENCODER_TMDS; 2070 break; 2071 case DCB_OUTPUT_DP: 2072 aux = nvkm_i2c_aux_find(i2c, nv_encoder->outp.info.dp.aux); 2073 ddc = aux ? &aux->i2c : NULL; 2074 type = DRM_MODE_ENCODER_TMDS; 2075 break; 2076 default: 2077 return -ENODEV; 2078 } 2079 2080 nv_encoder->i2c = ddc; 2081 2082 mutex_init(&nv_encoder->dp.hpd_irq_lock); 2083 2084 encoder = to_drm_encoder(nv_encoder); 2085 drm_encoder_init(connector->dev, encoder, &nv50_pior_func, type, 2086 "pior-%04x-%04x", dcbe->hasht, dcbe->hashm); 2087 drm_encoder_helper_add(encoder, &nv50_pior_help); 2088 2089 drm_connector_attach_encoder(connector, encoder); 2090 2091 disp->core->func->pior->get_caps(disp, nv_encoder, ffs(dcbe->or) - 1); 2092 nv50_outp_dump_caps(drm, nv_encoder); 2093 2094 return 0; 2095 } 2096 2097 /****************************************************************************** 2098 * Atomic 2099 *****************************************************************************/ 2100 2101 static void 2102 nv50_disp_atomic_commit_core(struct drm_atomic_state *state, u32 *interlock) 2103 { 2104 struct drm_dp_mst_topology_mgr *mgr; 2105 struct drm_dp_mst_topology_state *mst_state; 2106 struct nouveau_drm *drm = nouveau_drm(state->dev); 2107 struct nv50_disp *disp = nv50_disp(drm->dev); 2108 struct nv50_atom *atom = nv50_atom(state); 2109 struct nv50_core *core = disp->core; 2110 struct nv50_outp_atom *outp; 2111 struct nv50_mstm *mstm; 2112 int i; 2113 2114 NV_ATOMIC(drm, "commit core %08x\n", interlock[NV50_DISP_INTERLOCK_BASE]); 2115 2116 for_each_new_mst_mgr_in_state(state, mgr, mst_state, i) { 2117 mstm = nv50_mstm(mgr); 2118 if (mstm->modified) 2119 nv50_mstm_prepare(state, mst_state, mstm); 2120 } 2121 2122 core->func->ntfy_init(disp->sync, NV50_DISP_CORE_NTFY); 2123 core->func->update(core, interlock, true); 2124 if (core->func->ntfy_wait_done(disp->sync, NV50_DISP_CORE_NTFY, 2125 disp->core->chan.base.device)) 2126 NV_ERROR(drm, "core notifier timeout\n"); 2127 2128 for_each_new_mst_mgr_in_state(state, mgr, mst_state, i) { 2129 mstm = nv50_mstm(mgr); 2130 if (mstm->modified) 2131 nv50_mstm_cleanup(state, mst_state, mstm); 2132 } 2133 2134 list_for_each_entry(outp, &atom->outp, head) { 2135 if (outp->encoder->encoder_type != DRM_MODE_ENCODER_DPMST) { 2136 struct nouveau_encoder *nv_encoder = nouveau_encoder(outp->encoder); 2137 2138 if (outp->enabled) { 2139 nv50_audio_enable(outp->encoder, nouveau_crtc(nv_encoder->crtc), 2140 nv_encoder->conn, NULL, NULL); 2141 outp->enabled = outp->disabled = false; 2142 } else { 2143 if (outp->disabled) { 2144 nvif_outp_release(&nv_encoder->outp); 2145 outp->disabled = false; 2146 } 2147 } 2148 } 2149 } 2150 } 2151 2152 static void 2153 nv50_disp_atomic_commit_wndw(struct drm_atomic_state *state, u32 *interlock) 2154 { 2155 struct drm_plane_state *new_plane_state; 2156 struct drm_plane *plane; 2157 int i; 2158 2159 for_each_new_plane_in_state(state, plane, new_plane_state, i) { 2160 struct nv50_wndw *wndw = nv50_wndw(plane); 2161 if (interlock[wndw->interlock.type] & wndw->interlock.data) { 2162 if (wndw->func->update) 2163 wndw->func->update(wndw, interlock); 2164 } 2165 } 2166 } 2167 2168 static void 2169 nv50_disp_atomic_commit_tail(struct drm_atomic_state *state) 2170 { 2171 struct drm_device *dev = state->dev; 2172 struct drm_crtc_state *new_crtc_state, *old_crtc_state; 2173 struct drm_crtc *crtc; 2174 struct drm_plane_state *new_plane_state; 2175 struct drm_plane *plane; 2176 struct nouveau_drm *drm = nouveau_drm(dev); 2177 struct nv50_disp *disp = nv50_disp(dev); 2178 struct nv50_atom *atom = nv50_atom(state); 2179 struct nv50_core *core = disp->core; 2180 struct nv50_outp_atom *outp, *outt; 2181 u32 interlock[NV50_DISP_INTERLOCK__SIZE] = {}; 2182 int i; 2183 bool flushed = false; 2184 2185 NV_ATOMIC(drm, "commit %d %d\n", atom->lock_core, atom->flush_disable); 2186 nv50_crc_atomic_stop_reporting(state); 2187 drm_atomic_helper_wait_for_fences(dev, state, false); 2188 drm_atomic_helper_wait_for_dependencies(state); 2189 drm_dp_mst_atomic_wait_for_dependencies(state); 2190 drm_atomic_helper_update_legacy_modeset_state(dev, state); 2191 drm_atomic_helper_calc_timestamping_constants(state); 2192 2193 if (atom->lock_core) 2194 mutex_lock(&disp->mutex); 2195 2196 /* Disable head(s). */ 2197 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { 2198 struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state); 2199 struct nv50_head *head = nv50_head(crtc); 2200 2201 NV_ATOMIC(drm, "%s: clr %04x (set %04x)\n", crtc->name, 2202 asyh->clr.mask, asyh->set.mask); 2203 2204 if (old_crtc_state->active && !new_crtc_state->active) { 2205 pm_runtime_put_noidle(dev->dev); 2206 drm_crtc_vblank_off(crtc); 2207 } 2208 2209 if (asyh->clr.mask) { 2210 nv50_head_flush_clr(head, asyh, atom->flush_disable); 2211 interlock[NV50_DISP_INTERLOCK_CORE] |= 1; 2212 } 2213 } 2214 2215 /* Disable plane(s). */ 2216 for_each_new_plane_in_state(state, plane, new_plane_state, i) { 2217 struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state); 2218 struct nv50_wndw *wndw = nv50_wndw(plane); 2219 2220 NV_ATOMIC(drm, "%s: clr %02x (set %02x)\n", plane->name, 2221 asyw->clr.mask, asyw->set.mask); 2222 if (!asyw->clr.mask) 2223 continue; 2224 2225 nv50_wndw_flush_clr(wndw, interlock, atom->flush_disable, asyw); 2226 } 2227 2228 /* Disable output path(s). */ 2229 list_for_each_entry(outp, &atom->outp, head) { 2230 const struct drm_encoder_helper_funcs *help; 2231 struct drm_encoder *encoder; 2232 2233 encoder = outp->encoder; 2234 help = encoder->helper_private; 2235 2236 NV_ATOMIC(drm, "%s: clr %02x (set %02x)\n", encoder->name, 2237 outp->clr.mask, outp->set.mask); 2238 2239 if (outp->clr.mask) { 2240 help->atomic_disable(encoder, state); 2241 outp->disabled = true; 2242 interlock[NV50_DISP_INTERLOCK_CORE] |= 1; 2243 } 2244 } 2245 2246 /* Flush disable. */ 2247 if (interlock[NV50_DISP_INTERLOCK_CORE]) { 2248 if (atom->flush_disable) { 2249 nv50_disp_atomic_commit_wndw(state, interlock); 2250 nv50_disp_atomic_commit_core(state, interlock); 2251 memset(interlock, 0x00, sizeof(interlock)); 2252 2253 flushed = true; 2254 } 2255 } 2256 2257 if (flushed) 2258 nv50_crc_atomic_release_notifier_contexts(state); 2259 nv50_crc_atomic_init_notifier_contexts(state); 2260 2261 /* Update output path(s). */ 2262 list_for_each_entry(outp, &atom->outp, head) { 2263 const struct drm_encoder_helper_funcs *help; 2264 struct drm_encoder *encoder; 2265 2266 encoder = outp->encoder; 2267 help = encoder->helper_private; 2268 2269 NV_ATOMIC(drm, "%s: set %02x (clr %02x)\n", encoder->name, 2270 outp->set.mask, outp->clr.mask); 2271 2272 if (outp->set.mask) { 2273 help->atomic_enable(encoder, state); 2274 outp->enabled = true; 2275 interlock[NV50_DISP_INTERLOCK_CORE] = 1; 2276 } 2277 } 2278 2279 /* Update head(s). */ 2280 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { 2281 struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state); 2282 struct nv50_head *head = nv50_head(crtc); 2283 2284 NV_ATOMIC(drm, "%s: set %04x (clr %04x)\n", crtc->name, 2285 asyh->set.mask, asyh->clr.mask); 2286 2287 if (asyh->set.mask) { 2288 nv50_head_flush_set(head, asyh); 2289 interlock[NV50_DISP_INTERLOCK_CORE] = 1; 2290 } 2291 2292 if (new_crtc_state->active) { 2293 if (!old_crtc_state->active) { 2294 drm_crtc_vblank_on(crtc); 2295 pm_runtime_get_noresume(dev->dev); 2296 } 2297 if (new_crtc_state->event) 2298 drm_crtc_vblank_get(crtc); 2299 } 2300 } 2301 2302 /* Update window->head assignment. 2303 * 2304 * This has to happen in an update that's not interlocked with 2305 * any window channels to avoid hitting HW error checks. 2306 * 2307 *TODO: Proper handling of window ownership (Turing apparently 2308 * supports non-fixed mappings). 2309 */ 2310 if (core->assign_windows) { 2311 core->func->wndw.owner(core); 2312 nv50_disp_atomic_commit_core(state, interlock); 2313 core->assign_windows = false; 2314 interlock[NV50_DISP_INTERLOCK_CORE] = 0; 2315 } 2316 2317 /* Finish updating head(s)... 2318 * 2319 * NVD is rather picky about both where window assignments can change, 2320 * *and* about certain core and window channel states matching. 2321 * 2322 * The EFI GOP driver on newer GPUs configures window channels with a 2323 * different output format to what we do, and the core channel update 2324 * in the assign_windows case above would result in a state mismatch. 2325 * 2326 * Delay some of the head update until after that point to workaround 2327 * the issue. This only affects the initial modeset. 2328 * 2329 * TODO: handle this better when adding flexible window mapping 2330 */ 2331 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { 2332 struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state); 2333 struct nv50_head *head = nv50_head(crtc); 2334 2335 NV_ATOMIC(drm, "%s: set %04x (clr %04x)\n", crtc->name, 2336 asyh->set.mask, asyh->clr.mask); 2337 2338 if (asyh->set.mask) { 2339 nv50_head_flush_set_wndw(head, asyh); 2340 interlock[NV50_DISP_INTERLOCK_CORE] = 1; 2341 } 2342 } 2343 2344 /* Update plane(s). */ 2345 for_each_new_plane_in_state(state, plane, new_plane_state, i) { 2346 struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state); 2347 struct nv50_wndw *wndw = nv50_wndw(plane); 2348 2349 NV_ATOMIC(drm, "%s: set %02x (clr %02x)\n", plane->name, 2350 asyw->set.mask, asyw->clr.mask); 2351 if ( !asyw->set.mask && 2352 (!asyw->clr.mask || atom->flush_disable)) 2353 continue; 2354 2355 nv50_wndw_flush_set(wndw, interlock, asyw); 2356 } 2357 2358 /* Flush update. */ 2359 nv50_disp_atomic_commit_wndw(state, interlock); 2360 2361 if (interlock[NV50_DISP_INTERLOCK_CORE]) { 2362 if (interlock[NV50_DISP_INTERLOCK_BASE] || 2363 interlock[NV50_DISP_INTERLOCK_OVLY] || 2364 interlock[NV50_DISP_INTERLOCK_WNDW] || 2365 !atom->state.legacy_cursor_update) 2366 nv50_disp_atomic_commit_core(state, interlock); 2367 else 2368 disp->core->func->update(disp->core, interlock, false); 2369 } 2370 2371 if (atom->lock_core) 2372 mutex_unlock(&disp->mutex); 2373 2374 list_for_each_entry_safe(outp, outt, &atom->outp, head) { 2375 list_del(&outp->head); 2376 kfree(outp); 2377 } 2378 2379 /* Wait for HW to signal completion. */ 2380 for_each_new_plane_in_state(state, plane, new_plane_state, i) { 2381 struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state); 2382 struct nv50_wndw *wndw = nv50_wndw(plane); 2383 int ret = nv50_wndw_wait_armed(wndw, asyw); 2384 if (ret) 2385 NV_ERROR(drm, "%s: timeout\n", plane->name); 2386 } 2387 2388 for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) { 2389 if (new_crtc_state->event) { 2390 unsigned long flags; 2391 /* Get correct count/ts if racing with vblank irq */ 2392 if (new_crtc_state->active) 2393 drm_crtc_accurate_vblank_count(crtc); 2394 spin_lock_irqsave(&crtc->dev->event_lock, flags); 2395 drm_crtc_send_vblank_event(crtc, new_crtc_state->event); 2396 spin_unlock_irqrestore(&crtc->dev->event_lock, flags); 2397 2398 new_crtc_state->event = NULL; 2399 if (new_crtc_state->active) 2400 drm_crtc_vblank_put(crtc); 2401 } 2402 } 2403 2404 nv50_crc_atomic_start_reporting(state); 2405 if (!flushed) 2406 nv50_crc_atomic_release_notifier_contexts(state); 2407 2408 drm_atomic_helper_commit_hw_done(state); 2409 drm_atomic_helper_cleanup_planes(dev, state); 2410 drm_atomic_helper_commit_cleanup_done(state); 2411 drm_atomic_state_put(state); 2412 2413 /* Drop the RPM ref we got from nv50_disp_atomic_commit() */ 2414 pm_runtime_mark_last_busy(dev->dev); 2415 pm_runtime_put_autosuspend(dev->dev); 2416 } 2417 2418 static void 2419 nv50_disp_atomic_commit_work(struct work_struct *work) 2420 { 2421 struct drm_atomic_state *state = 2422 container_of(work, typeof(*state), commit_work); 2423 nv50_disp_atomic_commit_tail(state); 2424 } 2425 2426 static int 2427 nv50_disp_atomic_commit(struct drm_device *dev, 2428 struct drm_atomic_state *state, bool nonblock) 2429 { 2430 struct drm_plane_state *new_plane_state; 2431 struct drm_plane *plane; 2432 int ret, i; 2433 2434 ret = pm_runtime_get_sync(dev->dev); 2435 if (ret < 0 && ret != -EACCES) { 2436 pm_runtime_put_autosuspend(dev->dev); 2437 return ret; 2438 } 2439 2440 ret = drm_atomic_helper_setup_commit(state, nonblock); 2441 if (ret) 2442 goto done; 2443 2444 INIT_WORK(&state->commit_work, nv50_disp_atomic_commit_work); 2445 2446 ret = drm_atomic_helper_prepare_planes(dev, state); 2447 if (ret) 2448 goto done; 2449 2450 if (!nonblock) { 2451 ret = drm_atomic_helper_wait_for_fences(dev, state, true); 2452 if (ret) 2453 goto err_cleanup; 2454 } 2455 2456 ret = drm_atomic_helper_swap_state(state, true); 2457 if (ret) 2458 goto err_cleanup; 2459 2460 for_each_new_plane_in_state(state, plane, new_plane_state, i) { 2461 struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state); 2462 struct nv50_wndw *wndw = nv50_wndw(plane); 2463 2464 if (asyw->set.image) 2465 nv50_wndw_ntfy_enable(wndw, asyw); 2466 } 2467 2468 drm_atomic_state_get(state); 2469 2470 /* 2471 * Grab another RPM ref for the commit tail, which will release the 2472 * ref when it's finished 2473 */ 2474 pm_runtime_get_noresume(dev->dev); 2475 2476 if (nonblock) 2477 queue_work(system_unbound_wq, &state->commit_work); 2478 else 2479 nv50_disp_atomic_commit_tail(state); 2480 2481 err_cleanup: 2482 if (ret) 2483 drm_atomic_helper_unprepare_planes(dev, state); 2484 done: 2485 pm_runtime_put_autosuspend(dev->dev); 2486 return ret; 2487 } 2488 2489 static struct nv50_outp_atom * 2490 nv50_disp_outp_atomic_add(struct nv50_atom *atom, struct drm_encoder *encoder) 2491 { 2492 struct nv50_outp_atom *outp; 2493 2494 list_for_each_entry(outp, &atom->outp, head) { 2495 if (outp->encoder == encoder) 2496 return outp; 2497 } 2498 2499 outp = kzalloc(sizeof(*outp), GFP_KERNEL); 2500 if (!outp) 2501 return ERR_PTR(-ENOMEM); 2502 2503 list_add(&outp->head, &atom->outp); 2504 outp->encoder = encoder; 2505 return outp; 2506 } 2507 2508 static int 2509 nv50_disp_outp_atomic_check_clr(struct nv50_atom *atom, 2510 struct drm_connector_state *old_connector_state) 2511 { 2512 struct drm_encoder *encoder = old_connector_state->best_encoder; 2513 struct drm_crtc_state *old_crtc_state, *new_crtc_state; 2514 struct drm_crtc *crtc; 2515 struct nv50_outp_atom *outp; 2516 2517 if (!(crtc = old_connector_state->crtc)) 2518 return 0; 2519 2520 old_crtc_state = drm_atomic_get_old_crtc_state(&atom->state, crtc); 2521 new_crtc_state = drm_atomic_get_new_crtc_state(&atom->state, crtc); 2522 if (old_crtc_state->active && drm_atomic_crtc_needs_modeset(new_crtc_state)) { 2523 outp = nv50_disp_outp_atomic_add(atom, encoder); 2524 if (IS_ERR(outp)) 2525 return PTR_ERR(outp); 2526 2527 if (outp->encoder->encoder_type == DRM_MODE_ENCODER_DPMST || 2528 nouveau_encoder(outp->encoder)->dcb->type == DCB_OUTPUT_DP) 2529 atom->flush_disable = true; 2530 outp->clr.ctrl = true; 2531 atom->lock_core = true; 2532 } 2533 2534 return 0; 2535 } 2536 2537 static int 2538 nv50_disp_outp_atomic_check_set(struct nv50_atom *atom, 2539 struct drm_connector_state *connector_state) 2540 { 2541 struct drm_encoder *encoder = connector_state->best_encoder; 2542 struct drm_crtc_state *new_crtc_state; 2543 struct drm_crtc *crtc; 2544 struct nv50_outp_atom *outp; 2545 2546 if (!(crtc = connector_state->crtc)) 2547 return 0; 2548 2549 new_crtc_state = drm_atomic_get_new_crtc_state(&atom->state, crtc); 2550 if (new_crtc_state->active && drm_atomic_crtc_needs_modeset(new_crtc_state)) { 2551 outp = nv50_disp_outp_atomic_add(atom, encoder); 2552 if (IS_ERR(outp)) 2553 return PTR_ERR(outp); 2554 2555 outp->set.ctrl = true; 2556 atom->lock_core = true; 2557 } 2558 2559 return 0; 2560 } 2561 2562 static int 2563 nv50_disp_atomic_check(struct drm_device *dev, struct drm_atomic_state *state) 2564 { 2565 struct nv50_atom *atom = nv50_atom(state); 2566 struct nv50_core *core = nv50_disp(dev)->core; 2567 struct drm_connector_state *old_connector_state, *new_connector_state; 2568 struct drm_connector *connector; 2569 struct drm_crtc_state *new_crtc_state; 2570 struct drm_crtc *crtc; 2571 struct nv50_head *head; 2572 struct nv50_head_atom *asyh; 2573 int ret, i; 2574 2575 if (core->assign_windows && core->func->head->static_wndw_map) { 2576 drm_for_each_crtc(crtc, dev) { 2577 new_crtc_state = drm_atomic_get_crtc_state(state, 2578 crtc); 2579 if (IS_ERR(new_crtc_state)) 2580 return PTR_ERR(new_crtc_state); 2581 2582 head = nv50_head(crtc); 2583 asyh = nv50_head_atom(new_crtc_state); 2584 core->func->head->static_wndw_map(head, asyh); 2585 } 2586 } 2587 2588 /* We need to handle colour management on a per-plane basis. */ 2589 for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) { 2590 if (new_crtc_state->color_mgmt_changed) { 2591 ret = drm_atomic_add_affected_planes(state, crtc); 2592 if (ret) 2593 return ret; 2594 } 2595 } 2596 2597 ret = drm_atomic_helper_check(dev, state); 2598 if (ret) 2599 return ret; 2600 2601 for_each_oldnew_connector_in_state(state, connector, old_connector_state, new_connector_state, i) { 2602 ret = nv50_disp_outp_atomic_check_clr(atom, old_connector_state); 2603 if (ret) 2604 return ret; 2605 2606 ret = nv50_disp_outp_atomic_check_set(atom, new_connector_state); 2607 if (ret) 2608 return ret; 2609 } 2610 2611 ret = drm_dp_mst_atomic_check(state); 2612 if (ret) 2613 return ret; 2614 2615 nv50_crc_atomic_check_outp(atom); 2616 2617 return 0; 2618 } 2619 2620 static void 2621 nv50_disp_atomic_state_clear(struct drm_atomic_state *state) 2622 { 2623 struct nv50_atom *atom = nv50_atom(state); 2624 struct nv50_outp_atom *outp, *outt; 2625 2626 list_for_each_entry_safe(outp, outt, &atom->outp, head) { 2627 list_del(&outp->head); 2628 kfree(outp); 2629 } 2630 2631 drm_atomic_state_default_clear(state); 2632 } 2633 2634 static void 2635 nv50_disp_atomic_state_free(struct drm_atomic_state *state) 2636 { 2637 struct nv50_atom *atom = nv50_atom(state); 2638 drm_atomic_state_default_release(&atom->state); 2639 kfree(atom); 2640 } 2641 2642 static struct drm_atomic_state * 2643 nv50_disp_atomic_state_alloc(struct drm_device *dev) 2644 { 2645 struct nv50_atom *atom; 2646 if (!(atom = kzalloc(sizeof(*atom), GFP_KERNEL)) || 2647 drm_atomic_state_init(dev, &atom->state) < 0) { 2648 kfree(atom); 2649 return NULL; 2650 } 2651 INIT_LIST_HEAD(&atom->outp); 2652 return &atom->state; 2653 } 2654 2655 static const struct drm_mode_config_funcs 2656 nv50_disp_func = { 2657 .fb_create = nouveau_user_framebuffer_create, 2658 .atomic_check = nv50_disp_atomic_check, 2659 .atomic_commit = nv50_disp_atomic_commit, 2660 .atomic_state_alloc = nv50_disp_atomic_state_alloc, 2661 .atomic_state_clear = nv50_disp_atomic_state_clear, 2662 .atomic_state_free = nv50_disp_atomic_state_free, 2663 }; 2664 2665 static const struct drm_mode_config_helper_funcs 2666 nv50_disp_helper_func = { 2667 .atomic_commit_setup = drm_dp_mst_atomic_setup_commit, 2668 }; 2669 2670 /****************************************************************************** 2671 * Init 2672 *****************************************************************************/ 2673 2674 static void 2675 nv50_display_fini(struct drm_device *dev, bool runtime, bool suspend) 2676 { 2677 struct nouveau_drm *drm = nouveau_drm(dev); 2678 struct drm_encoder *encoder; 2679 2680 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) { 2681 if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) 2682 nv50_mstm_fini(nouveau_encoder(encoder)); 2683 } 2684 2685 if (!runtime && !drm->headless) 2686 cancel_work_sync(&drm->hpd_work); 2687 } 2688 2689 static inline void 2690 nv50_display_read_hw_or_state(struct drm_device *dev, struct nv50_disp *disp, 2691 struct nouveau_encoder *outp) 2692 { 2693 struct drm_crtc *crtc; 2694 struct drm_connector_list_iter conn_iter; 2695 struct drm_connector *conn; 2696 struct nv50_head_atom *armh; 2697 const u32 encoder_mask = drm_encoder_mask(&outp->base.base); 2698 bool found_conn = false, found_head = false; 2699 u8 proto; 2700 int head_idx; 2701 int ret; 2702 2703 switch (outp->dcb->type) { 2704 case DCB_OUTPUT_TMDS: 2705 ret = nvif_outp_inherit_tmds(&outp->outp, &proto); 2706 break; 2707 case DCB_OUTPUT_DP: 2708 ret = nvif_outp_inherit_dp(&outp->outp, &proto); 2709 break; 2710 case DCB_OUTPUT_LVDS: 2711 ret = nvif_outp_inherit_lvds(&outp->outp, &proto); 2712 break; 2713 case DCB_OUTPUT_ANALOG: 2714 ret = nvif_outp_inherit_rgb_crt(&outp->outp, &proto); 2715 break; 2716 default: 2717 drm_dbg_kms(dev, "Readback for %s not implemented yet, skipping\n", 2718 outp->base.base.name); 2719 drm_WARN_ON(dev, true); 2720 return; 2721 } 2722 2723 if (ret < 0) 2724 return; 2725 2726 head_idx = ret; 2727 2728 drm_for_each_crtc(crtc, dev) { 2729 if (crtc->index != head_idx) 2730 continue; 2731 2732 armh = nv50_head_atom(crtc->state); 2733 found_head = true; 2734 break; 2735 } 2736 if (drm_WARN_ON(dev, !found_head)) 2737 return; 2738 2739 /* Figure out which connector is being used by this encoder */ 2740 drm_connector_list_iter_begin(dev, &conn_iter); 2741 nouveau_for_each_non_mst_connector_iter(conn, &conn_iter) { 2742 if (nouveau_connector(conn)->index == outp->dcb->connector) { 2743 found_conn = true; 2744 break; 2745 } 2746 } 2747 drm_connector_list_iter_end(&conn_iter); 2748 if (drm_WARN_ON(dev, !found_conn)) 2749 return; 2750 2751 armh->state.encoder_mask = encoder_mask; 2752 armh->state.connector_mask = drm_connector_mask(conn); 2753 armh->state.active = true; 2754 armh->state.enable = true; 2755 pm_runtime_get_noresume(dev->dev); 2756 2757 outp->crtc = crtc; 2758 outp->ctrl = NVVAL(NV507D, SOR_SET_CONTROL, PROTOCOL, proto) | BIT(crtc->index); 2759 2760 drm_connector_get(conn); 2761 conn->state->crtc = crtc; 2762 conn->state->best_encoder = &outp->base.base; 2763 } 2764 2765 /* Read back the currently programmed display state */ 2766 static void 2767 nv50_display_read_hw_state(struct nouveau_drm *drm) 2768 { 2769 struct drm_device *dev = drm->dev; 2770 struct drm_encoder *encoder; 2771 struct drm_modeset_acquire_ctx ctx; 2772 struct nv50_disp *disp = nv50_disp(dev); 2773 int ret; 2774 2775 DRM_MODESET_LOCK_ALL_BEGIN(dev, ctx, 0, ret); 2776 2777 drm_for_each_encoder(encoder, dev) { 2778 if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) 2779 continue; 2780 2781 nv50_display_read_hw_or_state(dev, disp, nouveau_encoder(encoder)); 2782 } 2783 2784 DRM_MODESET_LOCK_ALL_END(dev, ctx, ret); 2785 } 2786 2787 static int 2788 nv50_display_init(struct drm_device *dev, bool resume, bool runtime) 2789 { 2790 struct nv50_core *core = nv50_disp(dev)->core; 2791 struct drm_encoder *encoder; 2792 2793 if (resume || runtime) 2794 core->func->init(core); 2795 2796 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) { 2797 if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) { 2798 struct nouveau_encoder *nv_encoder = 2799 nouveau_encoder(encoder); 2800 nv50_mstm_init(nv_encoder, runtime); 2801 } 2802 } 2803 2804 if (!resume) 2805 nv50_display_read_hw_state(nouveau_drm(dev)); 2806 2807 return 0; 2808 } 2809 2810 static void 2811 nv50_display_destroy(struct drm_device *dev) 2812 { 2813 struct nv50_disp *disp = nv50_disp(dev); 2814 2815 nv50_audio_component_fini(nouveau_drm(dev)); 2816 2817 nvif_object_unmap(&disp->caps); 2818 nvif_object_dtor(&disp->caps); 2819 nv50_core_del(&disp->core); 2820 2821 nouveau_bo_unpin_del(&disp->sync); 2822 2823 nouveau_display(dev)->priv = NULL; 2824 kfree(disp); 2825 } 2826 2827 int 2828 nv50_display_create(struct drm_device *dev) 2829 { 2830 struct nouveau_drm *drm = nouveau_drm(dev); 2831 struct drm_connector *connector, *tmp; 2832 struct nv50_disp *disp; 2833 int ret, i; 2834 bool has_mst = false; 2835 2836 disp = kzalloc(sizeof(*disp), GFP_KERNEL); 2837 if (!disp) 2838 return -ENOMEM; 2839 2840 mutex_init(&disp->mutex); 2841 2842 nouveau_display(dev)->priv = disp; 2843 nouveau_display(dev)->dtor = nv50_display_destroy; 2844 nouveau_display(dev)->init = nv50_display_init; 2845 nouveau_display(dev)->fini = nv50_display_fini; 2846 disp->disp = &nouveau_display(dev)->disp; 2847 dev->mode_config.funcs = &nv50_disp_func; 2848 dev->mode_config.helper_private = &nv50_disp_helper_func; 2849 dev->mode_config.quirk_addfb_prefer_xbgr_30bpp = true; 2850 dev->mode_config.normalize_zpos = true; 2851 2852 /* small shared memory area we use for notifiers and semaphores */ 2853 ret = nouveau_bo_new_map(&drm->client, NOUVEAU_GEM_DOMAIN_VRAM, PAGE_SIZE, &disp->sync); 2854 if (ret) 2855 goto out; 2856 2857 /* allocate master evo channel */ 2858 ret = nv50_core_new(drm, &disp->core); 2859 if (ret) 2860 goto out; 2861 2862 disp->core->func->init(disp->core); 2863 if (disp->core->func->caps_init) { 2864 ret = disp->core->func->caps_init(drm, disp); 2865 if (ret) 2866 goto out; 2867 } 2868 2869 /* Assign the correct format modifiers */ 2870 if (disp->disp->object.oclass >= TU102_DISP) 2871 nouveau_display(dev)->format_modifiers = wndwc57e_modifiers; 2872 else 2873 if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_FERMI) 2874 nouveau_display(dev)->format_modifiers = disp90xx_modifiers; 2875 else 2876 nouveau_display(dev)->format_modifiers = disp50xx_modifiers; 2877 2878 /* FIXME: 256x256 cursors are supported on Kepler, however unlike Maxwell and later 2879 * generations Kepler requires that we use small pages (4K) for cursor scanout surfaces. The 2880 * proper fix for this is to teach nouveau to migrate fbs being used for the cursor plane to 2881 * small page allocations in prepare_fb(). When this is implemented, we should also force 2882 * large pages (128K) for ovly fbs in order to fix Kepler ovlys. 2883 * But until then, just limit cursors to 128x128 - which is small enough to avoid ever using 2884 * large pages. 2885 */ 2886 if (disp->disp->object.oclass >= GM107_DISP) { 2887 dev->mode_config.cursor_width = 256; 2888 dev->mode_config.cursor_height = 256; 2889 } else if (disp->disp->object.oclass >= GK104_DISP) { 2890 dev->mode_config.cursor_width = 128; 2891 dev->mode_config.cursor_height = 128; 2892 } else { 2893 dev->mode_config.cursor_width = 64; 2894 dev->mode_config.cursor_height = 64; 2895 } 2896 2897 /* create encoder/connector objects based on VBIOS DCB table */ 2898 for_each_set_bit(i, &disp->disp->outp_mask, sizeof(disp->disp->outp_mask) * 8) { 2899 struct nouveau_encoder *outp; 2900 2901 outp = kzalloc(sizeof(*outp), GFP_KERNEL); 2902 if (!outp) 2903 break; 2904 2905 ret = nvif_outp_ctor(disp->disp, "kmsOutp", i, &outp->outp); 2906 if (ret) { 2907 kfree(outp); 2908 continue; 2909 } 2910 2911 connector = nouveau_connector_create(dev, outp->outp.info.conn); 2912 if (IS_ERR(connector)) { 2913 nvif_outp_dtor(&outp->outp); 2914 kfree(outp); 2915 continue; 2916 } 2917 2918 outp->base.base.possible_crtcs = outp->outp.info.heads; 2919 outp->base.base.possible_clones = 0; 2920 outp->conn = nouveau_connector(connector); 2921 2922 outp->dcb = kzalloc(sizeof(*outp->dcb), GFP_KERNEL); 2923 if (!outp->dcb) 2924 break; 2925 2926 switch (outp->outp.info.proto) { 2927 case NVIF_OUTP_RGB_CRT: 2928 outp->dcb->type = DCB_OUTPUT_ANALOG; 2929 outp->dcb->crtconf.maxfreq = outp->outp.info.rgb_crt.freq_max; 2930 break; 2931 case NVIF_OUTP_TMDS: 2932 outp->dcb->type = DCB_OUTPUT_TMDS; 2933 outp->dcb->duallink_possible = outp->outp.info.tmds.dual; 2934 break; 2935 case NVIF_OUTP_LVDS: 2936 outp->dcb->type = DCB_OUTPUT_LVDS; 2937 outp->dcb->lvdsconf.use_acpi_for_edid = outp->outp.info.lvds.acpi_edid; 2938 break; 2939 case NVIF_OUTP_DP: 2940 outp->dcb->type = DCB_OUTPUT_DP; 2941 outp->dcb->dpconf.link_nr = outp->outp.info.dp.link_nr; 2942 outp->dcb->dpconf.link_bw = outp->outp.info.dp.link_bw; 2943 if (outp->outp.info.dp.mst) 2944 has_mst = true; 2945 break; 2946 default: 2947 WARN_ON(1); 2948 continue; 2949 } 2950 2951 outp->dcb->heads = outp->outp.info.heads; 2952 outp->dcb->connector = outp->outp.info.conn; 2953 outp->dcb->i2c_index = outp->outp.info.ddc; 2954 2955 switch (outp->outp.info.type) { 2956 case NVIF_OUTP_DAC : ret = nv50_dac_create(outp); break; 2957 case NVIF_OUTP_SOR : ret = nv50_sor_create(outp); break; 2958 case NVIF_OUTP_PIOR: ret = nv50_pior_create(outp); break; 2959 default: 2960 WARN_ON(1); 2961 continue; 2962 } 2963 2964 if (ret) { 2965 NV_WARN(drm, "failed to create encoder %d/%d/%d: %d\n", 2966 i, outp->outp.info.type, outp->outp.info.proto, ret); 2967 } 2968 } 2969 2970 /* cull any connectors we created that don't have an encoder */ 2971 list_for_each_entry_safe(connector, tmp, &dev->mode_config.connector_list, head) { 2972 if (connector->possible_encoders) 2973 continue; 2974 2975 NV_WARN(drm, "%s has no encoders, removing\n", 2976 connector->name); 2977 connector->funcs->destroy(connector); 2978 } 2979 2980 /* create crtc objects to represent the hw heads */ 2981 for_each_set_bit(i, &disp->disp->head_mask, sizeof(disp->disp->head_mask) * 8) { 2982 struct nv50_head *head; 2983 2984 head = nv50_head_create(dev, i); 2985 if (IS_ERR(head)) { 2986 ret = PTR_ERR(head); 2987 goto out; 2988 } 2989 2990 if (has_mst) { 2991 head->msto = nv50_msto_new(dev, head, i); 2992 if (IS_ERR(head->msto)) { 2993 ret = PTR_ERR(head->msto); 2994 head->msto = NULL; 2995 goto out; 2996 } 2997 2998 /* 2999 * FIXME: This is a hack to workaround the following 3000 * issues: 3001 * 3002 * https://gitlab.gnome.org/GNOME/mutter/issues/759 3003 * https://gitlab.freedesktop.org/xorg/xserver/merge_requests/277 3004 * 3005 * Once these issues are closed, this should be 3006 * removed 3007 */ 3008 head->msto->encoder.possible_crtcs = disp->disp->head_mask; 3009 } 3010 } 3011 3012 /* Disable vblank irqs aggressively for power-saving, safe on nv50+ */ 3013 dev->vblank_disable_immediate = true; 3014 3015 nv50_audio_component_init(drm); 3016 3017 out: 3018 if (ret) 3019 nv50_display_destroy(dev); 3020 return ret; 3021 } 3022 3023 /****************************************************************************** 3024 * Format modifiers 3025 *****************************************************************************/ 3026 3027 /**************************************************************** 3028 * Log2(block height) ----------------------------+ * 3029 * Page Kind ----------------------------------+ | * 3030 * Gob Height/Page Kind Generation ------+ | | * 3031 * Sector layout -------+ | | | * 3032 * Compression ------+ | | | | */ 3033 const u64 disp50xx_modifiers[] = { /* | | | | | */ 3034 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 0), 3035 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 1), 3036 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 2), 3037 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 3), 3038 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 4), 3039 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 5), 3040 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 0), 3041 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 1), 3042 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 2), 3043 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 3), 3044 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 4), 3045 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 5), 3046 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 0), 3047 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 1), 3048 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 2), 3049 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 3), 3050 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 4), 3051 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 5), 3052 DRM_FORMAT_MOD_LINEAR, 3053 DRM_FORMAT_MOD_INVALID 3054 }; 3055 3056 /**************************************************************** 3057 * Log2(block height) ----------------------------+ * 3058 * Page Kind ----------------------------------+ | * 3059 * Gob Height/Page Kind Generation ------+ | | * 3060 * Sector layout -------+ | | | * 3061 * Compression ------+ | | | | */ 3062 const u64 disp90xx_modifiers[] = { /* | | | | | */ 3063 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 0), 3064 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 1), 3065 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 2), 3066 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 3), 3067 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 4), 3068 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 5), 3069 DRM_FORMAT_MOD_LINEAR, 3070 DRM_FORMAT_MOD_INVALID 3071 }; 3072