1 /* 2 * Copyright 2011 Red Hat Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 * 22 * Authors: Ben Skeggs 23 */ 24 #include "disp.h" 25 #include "atom.h" 26 #include "core.h" 27 #include "head.h" 28 #include "wndw.h" 29 #include "handles.h" 30 31 #include <linux/backlight.h> 32 #include <linux/dma-mapping.h> 33 #include <linux/hdmi.h> 34 #include <linux/component.h> 35 #include <linux/iopoll.h> 36 37 #include <drm/display/drm_dp_helper.h> 38 #include <drm/display/drm_scdc_helper.h> 39 #include <drm/drm_atomic.h> 40 #include <drm/drm_atomic_helper.h> 41 #include <drm/drm_edid.h> 42 #include <drm/drm_eld.h> 43 #include <drm/drm_fb_helper.h> 44 #include <drm/drm_fixed.h> 45 #include <drm/drm_probe_helper.h> 46 #include <drm/drm_vblank.h> 47 48 #include <nvif/push507c.h> 49 50 #include <nvif/class.h> 51 #include <nvif/cl0002.h> 52 #include <nvif/event.h> 53 #include <nvif/if0012.h> 54 #include <nvif/if0014.h> 55 #include <nvif/timer.h> 56 57 #include <nvhw/class/cl507c.h> 58 #include <nvhw/class/cl507d.h> 59 #include <nvhw/class/cl837d.h> 60 #include <nvhw/class/cl887d.h> 61 #include <nvhw/class/cl907d.h> 62 #include <nvhw/class/cl917d.h> 63 64 #include "nouveau_drv.h" 65 #include "nouveau_dma.h" 66 #include "nouveau_gem.h" 67 #include "nouveau_connector.h" 68 #include "nouveau_encoder.h" 69 #include "nouveau_fence.h" 70 #include "nv50_display.h" 71 72 /****************************************************************************** 73 * EVO channel 74 *****************************************************************************/ 75 76 static int 77 nv50_chan_create(struct nvif_device *device, struct nvif_object *disp, 78 const s32 *oclass, u8 head, void *data, u32 size, 79 struct nv50_chan *chan) 80 { 81 struct nvif_sclass *sclass; 82 int ret, i, n; 83 84 chan->device = device; 85 86 ret = n = nvif_object_sclass_get(disp, &sclass); 87 if (ret < 0) 88 return ret; 89 90 while (oclass[0]) { 91 for (i = 0; i < n; i++) { 92 if (sclass[i].oclass == oclass[0]) { 93 ret = nvif_object_ctor(disp, "kmsChan", 0, 94 oclass[0], data, size, 95 &chan->user); 96 if (ret == 0) 97 nvif_object_map(&chan->user, NULL, 0); 98 nvif_object_sclass_put(&sclass); 99 return ret; 100 } 101 } 102 oclass++; 103 } 104 105 nvif_object_sclass_put(&sclass); 106 return -ENOSYS; 107 } 108 109 static void 110 nv50_chan_destroy(struct nv50_chan *chan) 111 { 112 nvif_object_dtor(&chan->user); 113 } 114 115 /****************************************************************************** 116 * DMA EVO channel 117 *****************************************************************************/ 118 119 void 120 nv50_dmac_destroy(struct nv50_dmac *dmac) 121 { 122 nvif_object_dtor(&dmac->vram); 123 nvif_object_dtor(&dmac->sync); 124 125 nv50_chan_destroy(&dmac->base); 126 127 nvif_mem_dtor(&dmac->_push.mem); 128 } 129 130 static void 131 nv50_dmac_kick(struct nvif_push *push) 132 { 133 struct nv50_dmac *dmac = container_of(push, typeof(*dmac), _push); 134 135 dmac->cur = push->cur - (u32 __iomem *)dmac->_push.mem.object.map.ptr; 136 if (dmac->put != dmac->cur) { 137 /* Push buffer fetches are not coherent with BAR1, we need to ensure 138 * writes have been flushed right through to VRAM before writing PUT. 139 */ 140 if (dmac->push->mem.type & NVIF_MEM_VRAM) { 141 struct nvif_device *device = dmac->base.device; 142 nvif_wr32(&device->object, 0x070000, 0x00000001); 143 nvif_msec(device, 2000, 144 if (!(nvif_rd32(&device->object, 0x070000) & 0x00000002)) 145 break; 146 ); 147 } 148 149 NVIF_WV32(&dmac->base.user, NV507C, PUT, PTR, dmac->cur); 150 dmac->put = dmac->cur; 151 } 152 153 push->bgn = push->cur; 154 } 155 156 static int 157 nv50_dmac_free(struct nv50_dmac *dmac) 158 { 159 u32 get = NVIF_RV32(&dmac->base.user, NV507C, GET, PTR); 160 if (get > dmac->cur) /* NVIDIA stay 5 away from GET, do the same. */ 161 return get - dmac->cur - 5; 162 return dmac->max - dmac->cur; 163 } 164 165 static int 166 nv50_dmac_wind(struct nv50_dmac *dmac) 167 { 168 /* Wait for GET to depart from the beginning of the push buffer to 169 * prevent writing PUT == GET, which would be ignored by HW. 170 */ 171 u32 get = NVIF_RV32(&dmac->base.user, NV507C, GET, PTR); 172 if (get == 0) { 173 /* Corner-case, HW idle, but non-committed work pending. */ 174 if (dmac->put == 0) 175 nv50_dmac_kick(dmac->push); 176 177 if (nvif_msec(dmac->base.device, 2000, 178 if (NVIF_TV32(&dmac->base.user, NV507C, GET, PTR, >, 0)) 179 break; 180 ) < 0) 181 return -ETIMEDOUT; 182 } 183 184 PUSH_RSVD(dmac->push, PUSH_JUMP(dmac->push, 0)); 185 dmac->cur = 0; 186 return 0; 187 } 188 189 static int 190 nv50_dmac_wait(struct nvif_push *push, u32 size) 191 { 192 struct nv50_dmac *dmac = container_of(push, typeof(*dmac), _push); 193 int free; 194 195 if (WARN_ON(size > dmac->max)) 196 return -EINVAL; 197 198 dmac->cur = push->cur - (u32 __iomem *)dmac->_push.mem.object.map.ptr; 199 if (dmac->cur + size >= dmac->max) { 200 int ret = nv50_dmac_wind(dmac); 201 if (ret) 202 return ret; 203 204 push->cur = dmac->_push.mem.object.map.ptr; 205 push->cur = push->cur + dmac->cur; 206 nv50_dmac_kick(push); 207 } 208 209 if (nvif_msec(dmac->base.device, 2000, 210 if ((free = nv50_dmac_free(dmac)) >= size) 211 break; 212 ) < 0) { 213 WARN_ON(1); 214 return -ETIMEDOUT; 215 } 216 217 push->bgn = dmac->_push.mem.object.map.ptr; 218 push->bgn = push->bgn + dmac->cur; 219 push->cur = push->bgn; 220 push->end = push->cur + free; 221 return 0; 222 } 223 224 MODULE_PARM_DESC(kms_vram_pushbuf, "Place EVO/NVD push buffers in VRAM (default: auto)"); 225 static int nv50_dmac_vram_pushbuf = -1; 226 module_param_named(kms_vram_pushbuf, nv50_dmac_vram_pushbuf, int, 0400); 227 228 int 229 nv50_dmac_create(struct nvif_device *device, struct nvif_object *disp, 230 const s32 *oclass, u8 head, void *data, u32 size, s64 syncbuf, 231 struct nv50_dmac *dmac) 232 { 233 struct nouveau_cli *cli = (void *)device->object.client; 234 struct nvif_disp_chan_v0 *args = data; 235 u8 type = NVIF_MEM_COHERENT; 236 int ret; 237 238 mutex_init(&dmac->lock); 239 240 /* Pascal added support for 47-bit physical addresses, but some 241 * parts of EVO still only accept 40-bit PAs. 242 * 243 * To avoid issues on systems with large amounts of RAM, and on 244 * systems where an IOMMU maps pages at a high address, we need 245 * to allocate push buffers in VRAM instead. 246 * 247 * This appears to match NVIDIA's behaviour on Pascal. 248 */ 249 if ((nv50_dmac_vram_pushbuf > 0) || 250 (nv50_dmac_vram_pushbuf < 0 && device->info.family == NV_DEVICE_INFO_V0_PASCAL)) 251 type |= NVIF_MEM_VRAM; 252 253 ret = nvif_mem_ctor_map(&cli->mmu, "kmsChanPush", type, 0x1000, 254 &dmac->_push.mem); 255 if (ret) 256 return ret; 257 258 dmac->ptr = dmac->_push.mem.object.map.ptr; 259 dmac->_push.wait = nv50_dmac_wait; 260 dmac->_push.kick = nv50_dmac_kick; 261 dmac->push = &dmac->_push; 262 dmac->push->bgn = dmac->_push.mem.object.map.ptr; 263 dmac->push->cur = dmac->push->bgn; 264 dmac->push->end = dmac->push->bgn; 265 dmac->max = 0x1000/4 - 1; 266 267 /* EVO channels are affected by a HW bug where the last 12 DWORDs 268 * of the push buffer aren't able to be used safely. 269 */ 270 if (disp->oclass < GV100_DISP) 271 dmac->max -= 12; 272 273 args->pushbuf = nvif_handle(&dmac->_push.mem.object); 274 275 ret = nv50_chan_create(device, disp, oclass, head, data, size, 276 &dmac->base); 277 if (ret) 278 return ret; 279 280 if (syncbuf < 0) 281 return 0; 282 283 ret = nvif_object_ctor(&dmac->base.user, "kmsSyncCtxDma", NV50_DISP_HANDLE_SYNCBUF, 284 NV_DMA_IN_MEMORY, 285 &(struct nv_dma_v0) { 286 .target = NV_DMA_V0_TARGET_VRAM, 287 .access = NV_DMA_V0_ACCESS_RDWR, 288 .start = syncbuf + 0x0000, 289 .limit = syncbuf + 0x0fff, 290 }, sizeof(struct nv_dma_v0), 291 &dmac->sync); 292 if (ret) 293 return ret; 294 295 ret = nvif_object_ctor(&dmac->base.user, "kmsVramCtxDma", NV50_DISP_HANDLE_VRAM, 296 NV_DMA_IN_MEMORY, 297 &(struct nv_dma_v0) { 298 .target = NV_DMA_V0_TARGET_VRAM, 299 .access = NV_DMA_V0_ACCESS_RDWR, 300 .start = 0, 301 .limit = device->info.ram_user - 1, 302 }, sizeof(struct nv_dma_v0), 303 &dmac->vram); 304 if (ret) 305 return ret; 306 307 return ret; 308 } 309 310 /****************************************************************************** 311 * Output path helpers 312 *****************************************************************************/ 313 static void 314 nv50_outp_dump_caps(struct nouveau_drm *drm, 315 struct nouveau_encoder *outp) 316 { 317 NV_DEBUG(drm, "%s caps: dp_interlace=%d\n", 318 outp->base.base.name, outp->caps.dp_interlace); 319 } 320 321 static int 322 nv50_outp_atomic_check_view(struct drm_encoder *encoder, 323 struct drm_crtc_state *crtc_state, 324 struct drm_connector_state *conn_state, 325 struct drm_display_mode *native_mode) 326 { 327 struct drm_display_mode *adjusted_mode = &crtc_state->adjusted_mode; 328 struct drm_display_mode *mode = &crtc_state->mode; 329 struct drm_connector *connector = conn_state->connector; 330 struct nouveau_conn_atom *asyc = nouveau_conn_atom(conn_state); 331 struct nouveau_drm *drm = nouveau_drm(encoder->dev); 332 333 NV_ATOMIC(drm, "%s atomic_check\n", encoder->name); 334 asyc->scaler.full = false; 335 if (!native_mode) 336 return 0; 337 338 if (asyc->scaler.mode == DRM_MODE_SCALE_NONE) { 339 switch (connector->connector_type) { 340 case DRM_MODE_CONNECTOR_LVDS: 341 case DRM_MODE_CONNECTOR_eDP: 342 /* Don't force scaler for EDID modes with 343 * same size as the native one (e.g. different 344 * refresh rate) 345 */ 346 if (mode->hdisplay == native_mode->hdisplay && 347 mode->vdisplay == native_mode->vdisplay && 348 mode->type & DRM_MODE_TYPE_DRIVER) 349 break; 350 mode = native_mode; 351 asyc->scaler.full = true; 352 break; 353 default: 354 break; 355 } 356 } else { 357 mode = native_mode; 358 } 359 360 if (!drm_mode_equal(adjusted_mode, mode)) { 361 drm_mode_copy(adjusted_mode, mode); 362 crtc_state->mode_changed = true; 363 } 364 365 return 0; 366 } 367 368 static void 369 nv50_outp_atomic_fix_depth(struct drm_encoder *encoder, struct drm_crtc_state *crtc_state) 370 { 371 struct nv50_head_atom *asyh = nv50_head_atom(crtc_state); 372 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 373 struct drm_display_mode *mode = &asyh->state.adjusted_mode; 374 unsigned int max_rate, mode_rate; 375 376 switch (nv_encoder->dcb->type) { 377 case DCB_OUTPUT_DP: 378 max_rate = nv_encoder->dp.link_nr * nv_encoder->dp.link_bw; 379 380 /* we don't support more than 10 anyway */ 381 asyh->or.bpc = min_t(u8, asyh->or.bpc, 10); 382 383 /* reduce the bpc until it works out */ 384 while (asyh->or.bpc > 6) { 385 mode_rate = DIV_ROUND_UP(mode->clock * asyh->or.bpc * 3, 8); 386 if (mode_rate <= max_rate) 387 break; 388 389 asyh->or.bpc -= 2; 390 } 391 break; 392 default: 393 break; 394 } 395 } 396 397 static int 398 nv50_outp_atomic_check(struct drm_encoder *encoder, 399 struct drm_crtc_state *crtc_state, 400 struct drm_connector_state *conn_state) 401 { 402 struct drm_connector *connector = conn_state->connector; 403 struct nouveau_connector *nv_connector = nouveau_connector(connector); 404 struct nv50_head_atom *asyh = nv50_head_atom(crtc_state); 405 int ret; 406 407 ret = nv50_outp_atomic_check_view(encoder, crtc_state, conn_state, 408 nv_connector->native_mode); 409 if (ret) 410 return ret; 411 412 if (crtc_state->mode_changed || crtc_state->connectors_changed) 413 asyh->or.bpc = connector->display_info.bpc; 414 415 /* We might have to reduce the bpc */ 416 nv50_outp_atomic_fix_depth(encoder, crtc_state); 417 418 return 0; 419 } 420 421 struct nouveau_connector * 422 nv50_outp_get_new_connector(struct drm_atomic_state *state, struct nouveau_encoder *outp) 423 { 424 struct drm_connector *connector; 425 struct drm_connector_state *connector_state; 426 struct drm_encoder *encoder = to_drm_encoder(outp); 427 int i; 428 429 for_each_new_connector_in_state(state, connector, connector_state, i) { 430 if (connector_state->best_encoder == encoder) 431 return nouveau_connector(connector); 432 } 433 434 return NULL; 435 } 436 437 struct nouveau_connector * 438 nv50_outp_get_old_connector(struct drm_atomic_state *state, struct nouveau_encoder *outp) 439 { 440 struct drm_connector *connector; 441 struct drm_connector_state *connector_state; 442 struct drm_encoder *encoder = to_drm_encoder(outp); 443 int i; 444 445 for_each_old_connector_in_state(state, connector, connector_state, i) { 446 if (connector_state->best_encoder == encoder) 447 return nouveau_connector(connector); 448 } 449 450 return NULL; 451 } 452 453 static struct nouveau_crtc * 454 nv50_outp_get_new_crtc(const struct drm_atomic_state *state, const struct nouveau_encoder *outp) 455 { 456 struct drm_crtc *crtc; 457 struct drm_crtc_state *crtc_state; 458 const u32 mask = drm_encoder_mask(&outp->base.base); 459 int i; 460 461 for_each_new_crtc_in_state(state, crtc, crtc_state, i) { 462 if (crtc_state->encoder_mask & mask) 463 return nouveau_crtc(crtc); 464 } 465 466 return NULL; 467 } 468 469 /****************************************************************************** 470 * DAC 471 *****************************************************************************/ 472 static void 473 nv50_dac_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state) 474 { 475 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 476 struct nv50_core *core = nv50_disp(encoder->dev)->core; 477 const u32 ctrl = NVDEF(NV507D, DAC_SET_CONTROL, OWNER, NONE); 478 479 core->func->dac->ctrl(core, nv_encoder->outp.or.id, ctrl, NULL); 480 nv_encoder->crtc = NULL; 481 } 482 483 static void 484 nv50_dac_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state) 485 { 486 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 487 struct nouveau_crtc *nv_crtc = nv50_outp_get_new_crtc(state, nv_encoder); 488 struct nv50_head_atom *asyh = 489 nv50_head_atom(drm_atomic_get_new_crtc_state(state, &nv_crtc->base)); 490 struct nv50_core *core = nv50_disp(encoder->dev)->core; 491 u32 ctrl = 0; 492 493 switch (nv_crtc->index) { 494 case 0: ctrl |= NVDEF(NV507D, DAC_SET_CONTROL, OWNER, HEAD0); break; 495 case 1: ctrl |= NVDEF(NV507D, DAC_SET_CONTROL, OWNER, HEAD1); break; 496 case 2: ctrl |= NVDEF(NV907D, DAC_SET_CONTROL, OWNER_MASK, HEAD2); break; 497 case 3: ctrl |= NVDEF(NV907D, DAC_SET_CONTROL, OWNER_MASK, HEAD3); break; 498 default: 499 WARN_ON(1); 500 break; 501 } 502 503 ctrl |= NVDEF(NV507D, DAC_SET_CONTROL, PROTOCOL, RGB_CRT); 504 505 if (!nvif_outp_acquired(&nv_encoder->outp)) 506 nvif_outp_acquire_dac(&nv_encoder->outp); 507 508 core->func->dac->ctrl(core, nv_encoder->outp.or.id, ctrl, asyh); 509 asyh->or.depth = 0; 510 511 nv_encoder->crtc = &nv_crtc->base; 512 } 513 514 static enum drm_connector_status 515 nv50_dac_detect(struct drm_encoder *encoder, struct drm_connector *connector) 516 { 517 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 518 u32 loadval; 519 int ret; 520 521 loadval = nouveau_drm(encoder->dev)->vbios.dactestval; 522 if (loadval == 0) 523 loadval = 340; 524 525 ret = nvif_outp_load_detect(&nv_encoder->outp, loadval); 526 if (ret <= 0) 527 return connector_status_disconnected; 528 529 return connector_status_connected; 530 } 531 532 static const struct drm_encoder_helper_funcs 533 nv50_dac_help = { 534 .atomic_check = nv50_outp_atomic_check, 535 .atomic_enable = nv50_dac_atomic_enable, 536 .atomic_disable = nv50_dac_atomic_disable, 537 .detect = nv50_dac_detect 538 }; 539 540 static void 541 nv50_dac_destroy(struct drm_encoder *encoder) 542 { 543 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 544 545 nvif_outp_dtor(&nv_encoder->outp); 546 547 drm_encoder_cleanup(encoder); 548 kfree(encoder); 549 } 550 551 static const struct drm_encoder_funcs 552 nv50_dac_func = { 553 .destroy = nv50_dac_destroy, 554 }; 555 556 static int 557 nv50_dac_create(struct nouveau_encoder *nv_encoder) 558 { 559 struct drm_connector *connector = &nv_encoder->conn->base; 560 struct nouveau_drm *drm = nouveau_drm(connector->dev); 561 struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device); 562 struct nvkm_i2c_bus *bus; 563 struct drm_encoder *encoder; 564 struct dcb_output *dcbe = nv_encoder->dcb; 565 int type = DRM_MODE_ENCODER_DAC; 566 567 bus = nvkm_i2c_bus_find(i2c, dcbe->i2c_index); 568 if (bus) 569 nv_encoder->i2c = &bus->i2c; 570 571 encoder = to_drm_encoder(nv_encoder); 572 drm_encoder_init(connector->dev, encoder, &nv50_dac_func, type, 573 "dac-%04x-%04x", dcbe->hasht, dcbe->hashm); 574 drm_encoder_helper_add(encoder, &nv50_dac_help); 575 576 drm_connector_attach_encoder(connector, encoder); 577 return 0; 578 } 579 580 /* 581 * audio component binding for ELD notification 582 */ 583 static void 584 nv50_audio_component_eld_notify(struct drm_audio_component *acomp, int port, 585 int dev_id) 586 { 587 if (acomp && acomp->audio_ops && acomp->audio_ops->pin_eld_notify) 588 acomp->audio_ops->pin_eld_notify(acomp->audio_ops->audio_ptr, 589 port, dev_id); 590 } 591 592 static int 593 nv50_audio_component_get_eld(struct device *kdev, int port, int dev_id, 594 bool *enabled, unsigned char *buf, int max_bytes) 595 { 596 struct drm_device *drm_dev = dev_get_drvdata(kdev); 597 struct nouveau_drm *drm = nouveau_drm(drm_dev); 598 struct drm_encoder *encoder; 599 struct nouveau_encoder *nv_encoder; 600 struct nouveau_crtc *nv_crtc; 601 int ret = 0; 602 603 *enabled = false; 604 605 mutex_lock(&drm->audio.lock); 606 607 drm_for_each_encoder(encoder, drm->dev) { 608 struct nouveau_connector *nv_connector = NULL; 609 610 if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) 611 continue; /* TODO */ 612 613 nv_encoder = nouveau_encoder(encoder); 614 nv_connector = nv_encoder->conn; 615 nv_crtc = nouveau_crtc(nv_encoder->crtc); 616 617 if (!nv_crtc || nv_encoder->outp.or.id != port || nv_crtc->index != dev_id) 618 continue; 619 620 *enabled = nv_encoder->audio.enabled; 621 if (*enabled) { 622 ret = drm_eld_size(nv_connector->base.eld); 623 memcpy(buf, nv_connector->base.eld, 624 min(max_bytes, ret)); 625 } 626 break; 627 } 628 629 mutex_unlock(&drm->audio.lock); 630 631 return ret; 632 } 633 634 static const struct drm_audio_component_ops nv50_audio_component_ops = { 635 .get_eld = nv50_audio_component_get_eld, 636 }; 637 638 static int 639 nv50_audio_component_bind(struct device *kdev, struct device *hda_kdev, 640 void *data) 641 { 642 struct drm_device *drm_dev = dev_get_drvdata(kdev); 643 struct nouveau_drm *drm = nouveau_drm(drm_dev); 644 struct drm_audio_component *acomp = data; 645 646 if (WARN_ON(!device_link_add(hda_kdev, kdev, DL_FLAG_STATELESS))) 647 return -ENOMEM; 648 649 drm_modeset_lock_all(drm_dev); 650 acomp->ops = &nv50_audio_component_ops; 651 acomp->dev = kdev; 652 drm->audio.component = acomp; 653 drm_modeset_unlock_all(drm_dev); 654 return 0; 655 } 656 657 static void 658 nv50_audio_component_unbind(struct device *kdev, struct device *hda_kdev, 659 void *data) 660 { 661 struct drm_device *drm_dev = dev_get_drvdata(kdev); 662 struct nouveau_drm *drm = nouveau_drm(drm_dev); 663 struct drm_audio_component *acomp = data; 664 665 drm_modeset_lock_all(drm_dev); 666 drm->audio.component = NULL; 667 acomp->ops = NULL; 668 acomp->dev = NULL; 669 drm_modeset_unlock_all(drm_dev); 670 } 671 672 static const struct component_ops nv50_audio_component_bind_ops = { 673 .bind = nv50_audio_component_bind, 674 .unbind = nv50_audio_component_unbind, 675 }; 676 677 static void 678 nv50_audio_component_init(struct nouveau_drm *drm) 679 { 680 if (component_add(drm->dev->dev, &nv50_audio_component_bind_ops)) 681 return; 682 683 drm->audio.component_registered = true; 684 mutex_init(&drm->audio.lock); 685 } 686 687 static void 688 nv50_audio_component_fini(struct nouveau_drm *drm) 689 { 690 if (!drm->audio.component_registered) 691 return; 692 693 component_del(drm->dev->dev, &nv50_audio_component_bind_ops); 694 drm->audio.component_registered = false; 695 mutex_destroy(&drm->audio.lock); 696 } 697 698 /****************************************************************************** 699 * Audio 700 *****************************************************************************/ 701 static bool 702 nv50_audio_supported(struct drm_encoder *encoder) 703 { 704 struct nv50_disp *disp = nv50_disp(encoder->dev); 705 706 if (disp->disp->object.oclass <= GT200_DISP || 707 disp->disp->object.oclass == GT206_DISP) 708 return false; 709 710 if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) { 711 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 712 713 switch (nv_encoder->dcb->type) { 714 case DCB_OUTPUT_TMDS: 715 case DCB_OUTPUT_DP: 716 break; 717 default: 718 return false; 719 } 720 } 721 722 return true; 723 } 724 725 static void 726 nv50_audio_disable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc) 727 { 728 struct nouveau_drm *drm = nouveau_drm(encoder->dev); 729 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 730 struct nvif_outp *outp = &nv_encoder->outp; 731 732 if (!nv50_audio_supported(encoder)) 733 return; 734 735 mutex_lock(&drm->audio.lock); 736 if (nv_encoder->audio.enabled) { 737 nv_encoder->audio.enabled = false; 738 nvif_outp_hda_eld(&nv_encoder->outp, nv_crtc->index, NULL, 0); 739 } 740 mutex_unlock(&drm->audio.lock); 741 742 nv50_audio_component_eld_notify(drm->audio.component, outp->or.id, nv_crtc->index); 743 } 744 745 static void 746 nv50_audio_enable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc, 747 struct nouveau_connector *nv_connector, struct drm_atomic_state *state, 748 struct drm_display_mode *mode) 749 { 750 struct nouveau_drm *drm = nouveau_drm(encoder->dev); 751 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 752 struct nvif_outp *outp = &nv_encoder->outp; 753 754 if (!nv50_audio_supported(encoder) || !drm_detect_monitor_audio(nv_connector->edid)) 755 return; 756 757 mutex_lock(&drm->audio.lock); 758 759 nvif_outp_hda_eld(&nv_encoder->outp, nv_crtc->index, nv_connector->base.eld, 760 drm_eld_size(nv_connector->base.eld)); 761 nv_encoder->audio.enabled = true; 762 763 mutex_unlock(&drm->audio.lock); 764 765 nv50_audio_component_eld_notify(drm->audio.component, outp->or.id, nv_crtc->index); 766 } 767 768 /****************************************************************************** 769 * HDMI 770 *****************************************************************************/ 771 static void 772 nv50_hdmi_enable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc, 773 struct nouveau_connector *nv_connector, struct drm_atomic_state *state, 774 struct drm_display_mode *mode, bool hda) 775 { 776 struct nouveau_drm *drm = nouveau_drm(encoder->dev); 777 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 778 struct drm_hdmi_info *hdmi = &nv_connector->base.display_info.hdmi; 779 union hdmi_infoframe infoframe = { 0 }; 780 const u8 rekey = 56; /* binary driver, and tegra, constant */ 781 u32 max_ac_packet; 782 struct { 783 struct nvif_outp_infoframe_v0 infoframe; 784 u8 data[17]; 785 } args = { 0 }; 786 int ret, size; 787 788 max_ac_packet = mode->htotal - mode->hdisplay; 789 max_ac_packet -= rekey; 790 max_ac_packet -= 18; /* constant from tegra */ 791 max_ac_packet /= 32; 792 793 if (nv_encoder->i2c && hdmi->scdc.scrambling.supported) { 794 const bool high_tmds_clock_ratio = mode->clock > 340000; 795 u8 scdc; 796 797 ret = drm_scdc_readb(nv_encoder->i2c, SCDC_TMDS_CONFIG, &scdc); 798 if (ret < 0) { 799 NV_ERROR(drm, "Failure to read SCDC_TMDS_CONFIG: %d\n", ret); 800 return; 801 } 802 803 scdc &= ~(SCDC_TMDS_BIT_CLOCK_RATIO_BY_40 | SCDC_SCRAMBLING_ENABLE); 804 if (high_tmds_clock_ratio || hdmi->scdc.scrambling.low_rates) 805 scdc |= SCDC_SCRAMBLING_ENABLE; 806 if (high_tmds_clock_ratio) 807 scdc |= SCDC_TMDS_BIT_CLOCK_RATIO_BY_40; 808 809 ret = drm_scdc_writeb(nv_encoder->i2c, SCDC_TMDS_CONFIG, scdc); 810 if (ret < 0) 811 NV_ERROR(drm, "Failure to write SCDC_TMDS_CONFIG = 0x%02x: %d\n", 812 scdc, ret); 813 } 814 815 ret = nvif_outp_hdmi(&nv_encoder->outp, nv_crtc->index, true, max_ac_packet, rekey, 816 mode->clock, hdmi->scdc.supported, hdmi->scdc.scrambling.supported, 817 hdmi->scdc.scrambling.low_rates); 818 if (ret) 819 return; 820 821 /* AVI InfoFrame. */ 822 args.infoframe.version = 0; 823 args.infoframe.head = nv_crtc->index; 824 825 if (!drm_hdmi_avi_infoframe_from_display_mode(&infoframe.avi, &nv_connector->base, mode)) { 826 drm_hdmi_avi_infoframe_quant_range(&infoframe.avi, &nv_connector->base, mode, 827 HDMI_QUANTIZATION_RANGE_FULL); 828 829 size = hdmi_infoframe_pack(&infoframe, args.data, ARRAY_SIZE(args.data)); 830 } else { 831 size = 0; 832 } 833 834 nvif_outp_infoframe(&nv_encoder->outp, NVIF_OUTP_INFOFRAME_V0_AVI, &args.infoframe, size); 835 836 /* Vendor InfoFrame. */ 837 memset(&args.data, 0, sizeof(args.data)); 838 if (!drm_hdmi_vendor_infoframe_from_display_mode(&infoframe.vendor.hdmi, 839 &nv_connector->base, mode)) 840 size = hdmi_infoframe_pack(&infoframe, args.data, ARRAY_SIZE(args.data)); 841 else 842 size = 0; 843 844 nvif_outp_infoframe(&nv_encoder->outp, NVIF_OUTP_INFOFRAME_V0_VSI, &args.infoframe, size); 845 846 nv_encoder->hdmi.enabled = true; 847 } 848 849 /****************************************************************************** 850 * MST 851 *****************************************************************************/ 852 #define nv50_mstm(p) container_of((p), struct nv50_mstm, mgr) 853 #define nv50_mstc(p) container_of((p), struct nv50_mstc, connector) 854 #define nv50_msto(p) container_of((p), struct nv50_msto, encoder) 855 856 struct nv50_mstc { 857 struct nv50_mstm *mstm; 858 struct drm_dp_mst_port *port; 859 struct drm_connector connector; 860 861 struct drm_display_mode *native; 862 struct edid *edid; 863 }; 864 865 struct nv50_msto { 866 struct drm_encoder encoder; 867 868 /* head is statically assigned on msto creation */ 869 struct nv50_head *head; 870 struct nv50_mstc *mstc; 871 bool disabled; 872 bool enabled; 873 874 u32 display_id; 875 }; 876 877 struct nouveau_encoder *nv50_real_outp(struct drm_encoder *encoder) 878 { 879 struct nv50_msto *msto; 880 881 if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) 882 return nouveau_encoder(encoder); 883 884 msto = nv50_msto(encoder); 885 if (!msto->mstc) 886 return NULL; 887 return msto->mstc->mstm->outp; 888 } 889 890 static void 891 nv50_msto_cleanup(struct drm_atomic_state *state, 892 struct drm_dp_mst_topology_state *new_mst_state, 893 struct drm_dp_mst_topology_mgr *mgr, 894 struct nv50_msto *msto) 895 { 896 struct nouveau_drm *drm = nouveau_drm(msto->encoder.dev); 897 struct drm_dp_mst_atomic_payload *new_payload = 898 drm_atomic_get_mst_payload_state(new_mst_state, msto->mstc->port); 899 struct drm_dp_mst_topology_state *old_mst_state = 900 drm_atomic_get_old_mst_topology_state(state, mgr); 901 const struct drm_dp_mst_atomic_payload *old_payload = 902 drm_atomic_get_mst_payload_state(old_mst_state, msto->mstc->port); 903 struct nv50_mstc *mstc = msto->mstc; 904 struct nv50_mstm *mstm = mstc->mstm; 905 906 NV_ATOMIC(drm, "%s: msto cleanup\n", msto->encoder.name); 907 908 if (msto->disabled) { 909 if (msto->head->func->display_id) { 910 nvif_outp_dp_mst_id_put(&mstm->outp->outp, msto->display_id); 911 msto->display_id = 0; 912 } 913 914 msto->mstc = NULL; 915 msto->disabled = false; 916 drm_dp_remove_payload_part2(mgr, new_mst_state, old_payload, new_payload); 917 } else if (msto->enabled) { 918 drm_dp_add_payload_part2(mgr, state, new_payload); 919 msto->enabled = false; 920 } 921 } 922 923 static void 924 nv50_msto_prepare(struct drm_atomic_state *state, 925 struct drm_dp_mst_topology_state *mst_state, 926 struct drm_dp_mst_topology_mgr *mgr, 927 struct nv50_msto *msto) 928 { 929 struct nouveau_drm *drm = nouveau_drm(msto->encoder.dev); 930 struct nv50_mstc *mstc = msto->mstc; 931 struct nv50_mstm *mstm = mstc->mstm; 932 struct drm_dp_mst_atomic_payload *payload; 933 int ret = 0; 934 935 NV_ATOMIC(drm, "%s: msto prepare\n", msto->encoder.name); 936 937 payload = drm_atomic_get_mst_payload_state(mst_state, mstc->port); 938 939 if (msto->disabled) { 940 drm_dp_remove_payload_part1(mgr, mst_state, payload); 941 nvif_outp_dp_mst_vcpi(&mstm->outp->outp, msto->head->base.index, 0, 0, 0, 0); 942 ret = 1; 943 } else { 944 if (msto->enabled) 945 ret = drm_dp_add_payload_part1(mgr, mst_state, payload); 946 } 947 948 if (ret == 0) { 949 nvif_outp_dp_mst_vcpi(&mstm->outp->outp, msto->head->base.index, 950 payload->vc_start_slot, payload->time_slots, 951 payload->pbn, 952 payload->time_slots * dfixed_trunc(mst_state->pbn_div)); 953 } else { 954 nvif_outp_dp_mst_vcpi(&mstm->outp->outp, msto->head->base.index, 0, 0, 0, 0); 955 } 956 } 957 958 static int 959 nv50_msto_atomic_check(struct drm_encoder *encoder, 960 struct drm_crtc_state *crtc_state, 961 struct drm_connector_state *conn_state) 962 { 963 struct drm_atomic_state *state = crtc_state->state; 964 struct drm_connector *connector = conn_state->connector; 965 struct drm_dp_mst_topology_state *mst_state; 966 struct nv50_mstc *mstc = nv50_mstc(connector); 967 struct nv50_mstm *mstm = mstc->mstm; 968 struct nv50_head_atom *asyh = nv50_head_atom(crtc_state); 969 int slots; 970 int ret; 971 972 ret = nv50_outp_atomic_check_view(encoder, crtc_state, conn_state, 973 mstc->native); 974 if (ret) 975 return ret; 976 977 if (!drm_atomic_crtc_needs_modeset(crtc_state)) 978 return 0; 979 980 /* 981 * When restoring duplicated states, we need to make sure that the bw 982 * remains the same and avoid recalculating it, as the connector's bpc 983 * may have changed after the state was duplicated 984 */ 985 if (!state->duplicated) { 986 const int clock = crtc_state->adjusted_mode.clock; 987 988 asyh->or.bpc = connector->display_info.bpc; 989 asyh->dp.pbn = drm_dp_calc_pbn_mode(clock, asyh->or.bpc * 3 << 4); 990 } 991 992 mst_state = drm_atomic_get_mst_topology_state(state, &mstm->mgr); 993 if (IS_ERR(mst_state)) 994 return PTR_ERR(mst_state); 995 996 if (!mst_state->pbn_div.full) { 997 struct nouveau_encoder *outp = mstc->mstm->outp; 998 999 mst_state->pbn_div = drm_dp_get_vc_payload_bw(&mstm->mgr, 1000 outp->dp.link_bw, outp->dp.link_nr); 1001 } 1002 1003 slots = drm_dp_atomic_find_time_slots(state, &mstm->mgr, mstc->port, asyh->dp.pbn); 1004 if (slots < 0) 1005 return slots; 1006 1007 asyh->dp.tu = slots; 1008 1009 return 0; 1010 } 1011 1012 static u8 1013 nv50_dp_bpc_to_depth(unsigned int bpc) 1014 { 1015 switch (bpc) { 1016 case 6: return NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_BPP_18_444; 1017 case 8: return NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_BPP_24_444; 1018 case 10: 1019 default: return NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_BPP_30_444; 1020 } 1021 } 1022 1023 static void 1024 nv50_msto_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state) 1025 { 1026 struct nv50_msto *msto = nv50_msto(encoder); 1027 struct nv50_head *head = msto->head; 1028 struct nv50_head_atom *asyh = 1029 nv50_head_atom(drm_atomic_get_new_crtc_state(state, &head->base.base)); 1030 struct nv50_mstc *mstc = NULL; 1031 struct nv50_mstm *mstm = NULL; 1032 struct drm_connector *connector; 1033 struct drm_connector_list_iter conn_iter; 1034 u8 proto; 1035 1036 drm_connector_list_iter_begin(encoder->dev, &conn_iter); 1037 drm_for_each_connector_iter(connector, &conn_iter) { 1038 if (connector->state->best_encoder == &msto->encoder) { 1039 mstc = nv50_mstc(connector); 1040 mstm = mstc->mstm; 1041 break; 1042 } 1043 } 1044 drm_connector_list_iter_end(&conn_iter); 1045 1046 if (WARN_ON(!mstc)) 1047 return; 1048 1049 if (!mstm->links++) { 1050 nvif_outp_acquire_sor(&mstm->outp->outp, false /*TODO: MST audio... */); 1051 nouveau_dp_train(mstm->outp, true, 0, 0); 1052 } 1053 1054 if (head->func->display_id) { 1055 if (!WARN_ON(nvif_outp_dp_mst_id_get(&mstm->outp->outp, &msto->display_id))) 1056 head->func->display_id(head, msto->display_id); 1057 } 1058 1059 if (mstm->outp->outp.or.link & 1) 1060 proto = NV917D_SOR_SET_CONTROL_PROTOCOL_DP_A; 1061 else 1062 proto = NV917D_SOR_SET_CONTROL_PROTOCOL_DP_B; 1063 1064 mstm->outp->update(mstm->outp, head->base.index, asyh, proto, 1065 nv50_dp_bpc_to_depth(asyh->or.bpc)); 1066 1067 msto->mstc = mstc; 1068 msto->enabled = true; 1069 mstm->modified = true; 1070 } 1071 1072 static void 1073 nv50_msto_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state) 1074 { 1075 struct nv50_msto *msto = nv50_msto(encoder); 1076 struct nv50_mstc *mstc = msto->mstc; 1077 struct nv50_mstm *mstm = mstc->mstm; 1078 1079 if (msto->head->func->display_id) 1080 msto->head->func->display_id(msto->head, 0); 1081 1082 mstm->outp->update(mstm->outp, msto->head->base.index, NULL, 0, 0); 1083 mstm->modified = true; 1084 if (!--mstm->links) 1085 mstm->disabled = true; 1086 msto->disabled = true; 1087 } 1088 1089 static const struct drm_encoder_helper_funcs 1090 nv50_msto_help = { 1091 .atomic_disable = nv50_msto_atomic_disable, 1092 .atomic_enable = nv50_msto_atomic_enable, 1093 .atomic_check = nv50_msto_atomic_check, 1094 }; 1095 1096 static void 1097 nv50_msto_destroy(struct drm_encoder *encoder) 1098 { 1099 struct nv50_msto *msto = nv50_msto(encoder); 1100 drm_encoder_cleanup(&msto->encoder); 1101 kfree(msto); 1102 } 1103 1104 static const struct drm_encoder_funcs 1105 nv50_msto = { 1106 .destroy = nv50_msto_destroy, 1107 }; 1108 1109 static struct nv50_msto * 1110 nv50_msto_new(struct drm_device *dev, struct nv50_head *head, int id) 1111 { 1112 struct nv50_msto *msto; 1113 int ret; 1114 1115 msto = kzalloc(sizeof(*msto), GFP_KERNEL); 1116 if (!msto) 1117 return ERR_PTR(-ENOMEM); 1118 1119 ret = drm_encoder_init(dev, &msto->encoder, &nv50_msto, 1120 DRM_MODE_ENCODER_DPMST, "mst-%d", id); 1121 if (ret) { 1122 kfree(msto); 1123 return ERR_PTR(ret); 1124 } 1125 1126 drm_encoder_helper_add(&msto->encoder, &nv50_msto_help); 1127 msto->encoder.possible_crtcs = drm_crtc_mask(&head->base.base); 1128 msto->head = head; 1129 return msto; 1130 } 1131 1132 static struct drm_encoder * 1133 nv50_mstc_atomic_best_encoder(struct drm_connector *connector, 1134 struct drm_atomic_state *state) 1135 { 1136 struct drm_connector_state *connector_state = drm_atomic_get_new_connector_state(state, 1137 connector); 1138 struct nv50_mstc *mstc = nv50_mstc(connector); 1139 struct drm_crtc *crtc = connector_state->crtc; 1140 1141 if (!(mstc->mstm->outp->dcb->heads & drm_crtc_mask(crtc))) 1142 return NULL; 1143 1144 return &nv50_head(crtc)->msto->encoder; 1145 } 1146 1147 static enum drm_mode_status 1148 nv50_mstc_mode_valid(struct drm_connector *connector, 1149 struct drm_display_mode *mode) 1150 { 1151 struct nv50_mstc *mstc = nv50_mstc(connector); 1152 struct nouveau_encoder *outp = mstc->mstm->outp; 1153 1154 /* TODO: calculate the PBN from the dotclock and validate against the 1155 * MSTB's max possible PBN 1156 */ 1157 1158 return nv50_dp_mode_valid(outp, mode, NULL); 1159 } 1160 1161 static int 1162 nv50_mstc_get_modes(struct drm_connector *connector) 1163 { 1164 struct nv50_mstc *mstc = nv50_mstc(connector); 1165 int ret = 0; 1166 1167 mstc->edid = drm_dp_mst_get_edid(&mstc->connector, mstc->port->mgr, mstc->port); 1168 drm_connector_update_edid_property(&mstc->connector, mstc->edid); 1169 if (mstc->edid) 1170 ret = drm_add_edid_modes(&mstc->connector, mstc->edid); 1171 1172 /* 1173 * XXX: Since we don't use HDR in userspace quite yet, limit the bpc 1174 * to 8 to save bandwidth on the topology. In the future, we'll want 1175 * to properly fix this by dynamically selecting the highest possible 1176 * bpc that would fit in the topology 1177 */ 1178 if (connector->display_info.bpc) 1179 connector->display_info.bpc = 1180 clamp(connector->display_info.bpc, 6U, 8U); 1181 else 1182 connector->display_info.bpc = 8; 1183 1184 if (mstc->native) 1185 drm_mode_destroy(mstc->connector.dev, mstc->native); 1186 mstc->native = nouveau_conn_native_mode(&mstc->connector); 1187 return ret; 1188 } 1189 1190 static int 1191 nv50_mstc_atomic_check(struct drm_connector *connector, 1192 struct drm_atomic_state *state) 1193 { 1194 struct nv50_mstc *mstc = nv50_mstc(connector); 1195 struct drm_dp_mst_topology_mgr *mgr = &mstc->mstm->mgr; 1196 1197 return drm_dp_atomic_release_time_slots(state, mgr, mstc->port); 1198 } 1199 1200 static int 1201 nv50_mstc_detect(struct drm_connector *connector, 1202 struct drm_modeset_acquire_ctx *ctx, bool force) 1203 { 1204 struct nv50_mstc *mstc = nv50_mstc(connector); 1205 int ret; 1206 1207 if (drm_connector_is_unregistered(connector)) 1208 return connector_status_disconnected; 1209 1210 ret = pm_runtime_get_sync(connector->dev->dev); 1211 if (ret < 0 && ret != -EACCES) { 1212 pm_runtime_put_autosuspend(connector->dev->dev); 1213 return connector_status_disconnected; 1214 } 1215 1216 ret = drm_dp_mst_detect_port(connector, ctx, mstc->port->mgr, 1217 mstc->port); 1218 if (ret != connector_status_connected) 1219 goto out; 1220 1221 out: 1222 pm_runtime_mark_last_busy(connector->dev->dev); 1223 pm_runtime_put_autosuspend(connector->dev->dev); 1224 return ret; 1225 } 1226 1227 static const struct drm_connector_helper_funcs 1228 nv50_mstc_help = { 1229 .get_modes = nv50_mstc_get_modes, 1230 .mode_valid = nv50_mstc_mode_valid, 1231 .atomic_best_encoder = nv50_mstc_atomic_best_encoder, 1232 .atomic_check = nv50_mstc_atomic_check, 1233 .detect_ctx = nv50_mstc_detect, 1234 }; 1235 1236 static void 1237 nv50_mstc_destroy(struct drm_connector *connector) 1238 { 1239 struct nv50_mstc *mstc = nv50_mstc(connector); 1240 1241 drm_connector_cleanup(&mstc->connector); 1242 drm_dp_mst_put_port_malloc(mstc->port); 1243 1244 kfree(mstc); 1245 } 1246 1247 static const struct drm_connector_funcs 1248 nv50_mstc = { 1249 .reset = nouveau_conn_reset, 1250 .fill_modes = drm_helper_probe_single_connector_modes, 1251 .destroy = nv50_mstc_destroy, 1252 .atomic_duplicate_state = nouveau_conn_atomic_duplicate_state, 1253 .atomic_destroy_state = nouveau_conn_atomic_destroy_state, 1254 .atomic_set_property = nouveau_conn_atomic_set_property, 1255 .atomic_get_property = nouveau_conn_atomic_get_property, 1256 }; 1257 1258 static int 1259 nv50_mstc_new(struct nv50_mstm *mstm, struct drm_dp_mst_port *port, 1260 const char *path, struct nv50_mstc **pmstc) 1261 { 1262 struct drm_device *dev = mstm->outp->base.base.dev; 1263 struct drm_crtc *crtc; 1264 struct nv50_mstc *mstc; 1265 int ret; 1266 1267 if (!(mstc = *pmstc = kzalloc(sizeof(*mstc), GFP_KERNEL))) 1268 return -ENOMEM; 1269 mstc->mstm = mstm; 1270 mstc->port = port; 1271 1272 ret = drm_connector_init(dev, &mstc->connector, &nv50_mstc, 1273 DRM_MODE_CONNECTOR_DisplayPort); 1274 if (ret) { 1275 kfree(*pmstc); 1276 *pmstc = NULL; 1277 return ret; 1278 } 1279 1280 drm_connector_helper_add(&mstc->connector, &nv50_mstc_help); 1281 1282 mstc->connector.funcs->reset(&mstc->connector); 1283 nouveau_conn_attach_properties(&mstc->connector); 1284 1285 drm_for_each_crtc(crtc, dev) { 1286 if (!(mstm->outp->dcb->heads & drm_crtc_mask(crtc))) 1287 continue; 1288 1289 drm_connector_attach_encoder(&mstc->connector, 1290 &nv50_head(crtc)->msto->encoder); 1291 } 1292 1293 drm_object_attach_property(&mstc->connector.base, dev->mode_config.path_property, 0); 1294 drm_object_attach_property(&mstc->connector.base, dev->mode_config.tile_property, 0); 1295 drm_connector_set_path_property(&mstc->connector, path); 1296 drm_dp_mst_get_port_malloc(port); 1297 return 0; 1298 } 1299 1300 static void 1301 nv50_mstm_cleanup(struct drm_atomic_state *state, 1302 struct drm_dp_mst_topology_state *mst_state, 1303 struct nv50_mstm *mstm) 1304 { 1305 struct nouveau_drm *drm = nouveau_drm(mstm->outp->base.base.dev); 1306 struct drm_encoder *encoder; 1307 1308 NV_ATOMIC(drm, "%s: mstm cleanup\n", mstm->outp->base.base.name); 1309 drm_dp_check_act_status(&mstm->mgr); 1310 1311 drm_for_each_encoder(encoder, mstm->outp->base.base.dev) { 1312 if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) { 1313 struct nv50_msto *msto = nv50_msto(encoder); 1314 struct nv50_mstc *mstc = msto->mstc; 1315 if (mstc && mstc->mstm == mstm) 1316 nv50_msto_cleanup(state, mst_state, &mstm->mgr, msto); 1317 } 1318 } 1319 1320 if (mstm->disabled) { 1321 nouveau_dp_power_down(mstm->outp); 1322 nvif_outp_release(&mstm->outp->outp); 1323 mstm->disabled = false; 1324 } 1325 1326 mstm->modified = false; 1327 } 1328 1329 static void 1330 nv50_mstm_prepare(struct drm_atomic_state *state, 1331 struct drm_dp_mst_topology_state *mst_state, 1332 struct nv50_mstm *mstm) 1333 { 1334 struct nouveau_drm *drm = nouveau_drm(mstm->outp->base.base.dev); 1335 struct drm_encoder *encoder; 1336 1337 NV_ATOMIC(drm, "%s: mstm prepare\n", mstm->outp->base.base.name); 1338 1339 /* Disable payloads first */ 1340 drm_for_each_encoder(encoder, mstm->outp->base.base.dev) { 1341 if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) { 1342 struct nv50_msto *msto = nv50_msto(encoder); 1343 struct nv50_mstc *mstc = msto->mstc; 1344 if (mstc && mstc->mstm == mstm && msto->disabled) 1345 nv50_msto_prepare(state, mst_state, &mstm->mgr, msto); 1346 } 1347 } 1348 1349 /* Add payloads for new heads, while also updating the start slots of any unmodified (but 1350 * active) heads that may have had their VC slots shifted left after the previous step 1351 */ 1352 drm_for_each_encoder(encoder, mstm->outp->base.base.dev) { 1353 if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) { 1354 struct nv50_msto *msto = nv50_msto(encoder); 1355 struct nv50_mstc *mstc = msto->mstc; 1356 if (mstc && mstc->mstm == mstm && !msto->disabled) 1357 nv50_msto_prepare(state, mst_state, &mstm->mgr, msto); 1358 } 1359 } 1360 } 1361 1362 static struct drm_connector * 1363 nv50_mstm_add_connector(struct drm_dp_mst_topology_mgr *mgr, 1364 struct drm_dp_mst_port *port, const char *path) 1365 { 1366 struct nv50_mstm *mstm = nv50_mstm(mgr); 1367 struct nv50_mstc *mstc; 1368 int ret; 1369 1370 ret = nv50_mstc_new(mstm, port, path, &mstc); 1371 if (ret) 1372 return NULL; 1373 1374 return &mstc->connector; 1375 } 1376 1377 static const struct drm_dp_mst_topology_cbs 1378 nv50_mstm = { 1379 .add_connector = nv50_mstm_add_connector, 1380 }; 1381 1382 bool 1383 nv50_mstm_service(struct nouveau_drm *drm, 1384 struct nouveau_connector *nv_connector, 1385 struct nv50_mstm *mstm) 1386 { 1387 struct drm_dp_aux *aux = &nv_connector->aux; 1388 bool handled = true, ret = true; 1389 int rc; 1390 u8 esi[8] = {}; 1391 1392 while (handled) { 1393 u8 ack[8] = {}; 1394 1395 rc = drm_dp_dpcd_read(aux, DP_SINK_COUNT_ESI, esi, 8); 1396 if (rc != 8) { 1397 ret = false; 1398 break; 1399 } 1400 1401 drm_dp_mst_hpd_irq_handle_event(&mstm->mgr, esi, ack, &handled); 1402 if (!handled) 1403 break; 1404 1405 rc = drm_dp_dpcd_writeb(aux, DP_SINK_COUNT_ESI + 1, ack[1]); 1406 1407 if (rc != 1) { 1408 ret = false; 1409 break; 1410 } 1411 1412 drm_dp_mst_hpd_irq_send_new_request(&mstm->mgr); 1413 } 1414 1415 if (!ret) 1416 NV_DEBUG(drm, "Failed to handle ESI on %s: %d\n", 1417 nv_connector->base.name, rc); 1418 1419 return ret; 1420 } 1421 1422 void 1423 nv50_mstm_remove(struct nv50_mstm *mstm) 1424 { 1425 mstm->is_mst = false; 1426 drm_dp_mst_topology_mgr_set_mst(&mstm->mgr, false); 1427 } 1428 1429 int 1430 nv50_mstm_detect(struct nouveau_encoder *outp) 1431 { 1432 struct nv50_mstm *mstm = outp->dp.mstm; 1433 struct drm_dp_aux *aux; 1434 int ret; 1435 1436 if (!mstm || !mstm->can_mst) 1437 return 0; 1438 1439 aux = mstm->mgr.aux; 1440 1441 /* Clear any leftover MST state we didn't set ourselves by first 1442 * disabling MST if it was already enabled 1443 */ 1444 ret = drm_dp_dpcd_writeb(aux, DP_MSTM_CTRL, 0); 1445 if (ret < 0) 1446 return ret; 1447 1448 /* And start enabling */ 1449 ret = drm_dp_mst_topology_mgr_set_mst(&mstm->mgr, true); 1450 if (ret) 1451 return ret; 1452 1453 mstm->is_mst = true; 1454 return 1; 1455 } 1456 1457 static void 1458 nv50_mstm_fini(struct nouveau_encoder *outp) 1459 { 1460 struct nv50_mstm *mstm = outp->dp.mstm; 1461 1462 if (!mstm) 1463 return; 1464 1465 /* Don't change the MST state of this connector until we've finished 1466 * resuming, since we can't safely grab hpd_irq_lock in our resume 1467 * path to protect mstm->is_mst without potentially deadlocking 1468 */ 1469 mutex_lock(&outp->dp.hpd_irq_lock); 1470 mstm->suspended = true; 1471 mutex_unlock(&outp->dp.hpd_irq_lock); 1472 1473 if (mstm->is_mst) 1474 drm_dp_mst_topology_mgr_suspend(&mstm->mgr); 1475 } 1476 1477 static void 1478 nv50_mstm_init(struct nouveau_encoder *outp, bool runtime) 1479 { 1480 struct nv50_mstm *mstm = outp->dp.mstm; 1481 int ret = 0; 1482 1483 if (!mstm) 1484 return; 1485 1486 if (mstm->is_mst) { 1487 ret = drm_dp_mst_topology_mgr_resume(&mstm->mgr, !runtime); 1488 if (ret == -1) 1489 nv50_mstm_remove(mstm); 1490 } 1491 1492 mutex_lock(&outp->dp.hpd_irq_lock); 1493 mstm->suspended = false; 1494 mutex_unlock(&outp->dp.hpd_irq_lock); 1495 1496 if (ret == -1) 1497 drm_kms_helper_hotplug_event(mstm->mgr.dev); 1498 } 1499 1500 static void 1501 nv50_mstm_del(struct nv50_mstm **pmstm) 1502 { 1503 struct nv50_mstm *mstm = *pmstm; 1504 if (mstm) { 1505 drm_dp_mst_topology_mgr_destroy(&mstm->mgr); 1506 kfree(*pmstm); 1507 *pmstm = NULL; 1508 } 1509 } 1510 1511 static int 1512 nv50_mstm_new(struct nouveau_encoder *outp, struct drm_dp_aux *aux, int aux_max, 1513 int conn_base_id, struct nv50_mstm **pmstm) 1514 { 1515 const int max_payloads = hweight8(outp->dcb->heads); 1516 struct drm_device *dev = outp->base.base.dev; 1517 struct nv50_mstm *mstm; 1518 int ret; 1519 1520 if (!(mstm = *pmstm = kzalloc(sizeof(*mstm), GFP_KERNEL))) 1521 return -ENOMEM; 1522 mstm->outp = outp; 1523 mstm->mgr.cbs = &nv50_mstm; 1524 1525 ret = drm_dp_mst_topology_mgr_init(&mstm->mgr, dev, aux, aux_max, 1526 max_payloads, conn_base_id); 1527 if (ret) 1528 return ret; 1529 1530 return 0; 1531 } 1532 1533 /****************************************************************************** 1534 * SOR 1535 *****************************************************************************/ 1536 static void 1537 nv50_sor_update(struct nouveau_encoder *nv_encoder, u8 head, 1538 struct nv50_head_atom *asyh, u8 proto, u8 depth) 1539 { 1540 struct nv50_disp *disp = nv50_disp(nv_encoder->base.base.dev); 1541 struct nv50_core *core = disp->core; 1542 1543 if (!asyh) { 1544 nv_encoder->ctrl &= ~BIT(head); 1545 if (NVDEF_TEST(nv_encoder->ctrl, NV507D, SOR_SET_CONTROL, OWNER, ==, NONE)) 1546 nv_encoder->ctrl = 0; 1547 } else { 1548 nv_encoder->ctrl |= NVVAL(NV507D, SOR_SET_CONTROL, PROTOCOL, proto); 1549 nv_encoder->ctrl |= BIT(head); 1550 asyh->or.depth = depth; 1551 } 1552 1553 core->func->sor->ctrl(core, nv_encoder->outp.or.id, nv_encoder->ctrl, asyh); 1554 } 1555 1556 /* TODO: Should we extend this to PWM-only backlights? 1557 * As well, should we add a DRM helper for waiting for the backlight to acknowledge 1558 * the panel backlight has been shut off? Intel doesn't seem to do this, and uses a 1559 * fixed time delay from the vbios… 1560 */ 1561 static void 1562 nv50_sor_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state) 1563 { 1564 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 1565 struct nv50_head *head = nv50_head(nv_encoder->crtc); 1566 #ifdef CONFIG_DRM_NOUVEAU_BACKLIGHT 1567 struct nouveau_connector *nv_connector = nv50_outp_get_old_connector(state, nv_encoder); 1568 struct nouveau_drm *drm = nouveau_drm(nv_encoder->base.base.dev); 1569 struct nouveau_backlight *backlight = nv_connector->backlight; 1570 struct drm_dp_aux *aux = &nv_connector->aux; 1571 int ret; 1572 1573 if (backlight && backlight->uses_dpcd) { 1574 ret = drm_edp_backlight_disable(aux, &backlight->edp_info); 1575 if (ret < 0) 1576 NV_ERROR(drm, "Failed to disable backlight on [CONNECTOR:%d:%s]: %d\n", 1577 nv_connector->base.base.id, nv_connector->base.name, ret); 1578 } 1579 #endif 1580 1581 if (nv_encoder->dcb->type == DCB_OUTPUT_TMDS && nv_encoder->hdmi.enabled) { 1582 nvif_outp_hdmi(&nv_encoder->outp, head->base.index, 1583 false, 0, 0, 0, false, false, false); 1584 nv_encoder->hdmi.enabled = false; 1585 } 1586 1587 if (nv_encoder->dcb->type == DCB_OUTPUT_DP) 1588 nouveau_dp_power_down(nv_encoder); 1589 1590 if (head->func->display_id) 1591 head->func->display_id(head, 0); 1592 1593 nv_encoder->update(nv_encoder, head->base.index, NULL, 0, 0); 1594 nv50_audio_disable(encoder, &head->base); 1595 nv_encoder->crtc = NULL; 1596 } 1597 1598 // common/inc/displayport/displayport.h 1599 #define DP_CONFIG_WATERMARK_ADJUST 2 1600 #define DP_CONFIG_WATERMARK_LIMIT 20 1601 #define DP_CONFIG_INCREASED_WATERMARK_ADJUST 8 1602 #define DP_CONFIG_INCREASED_WATERMARK_LIMIT 22 1603 1604 static bool 1605 nv50_sor_dp_watermark_sst(struct nouveau_encoder *outp, 1606 struct nv50_head *head, struct nv50_head_atom *asyh) 1607 { 1608 bool enhancedFraming = outp->dp.dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP; 1609 u64 minRate = outp->dp.link_bw * 1000; 1610 unsigned tuSize = 64; 1611 unsigned waterMark; 1612 unsigned hBlankSym; 1613 unsigned vBlankSym; 1614 unsigned watermarkAdjust = DP_CONFIG_WATERMARK_ADJUST; 1615 unsigned watermarkMinimum = DP_CONFIG_WATERMARK_LIMIT; 1616 // depth is multiplied by 16 in case of DSC enable 1617 s32 hblank_symbols; 1618 // number of link clocks per line. 1619 int vblank_symbols = 0; 1620 bool bEnableDsc = false; 1621 unsigned surfaceWidth = asyh->mode.h.blanks - asyh->mode.h.blanke; 1622 unsigned rasterWidth = asyh->mode.h.active; 1623 unsigned depth = asyh->or.bpc * 3; 1624 unsigned DSC_FACTOR = bEnableDsc ? 16 : 1; 1625 u64 pixelClockHz = asyh->mode.clock * 1000; 1626 u64 PrecisionFactor = 100000, ratioF, watermarkF; 1627 u32 numLanesPerLink = outp->dp.link_nr; 1628 u32 numSymbolsPerLine; 1629 u32 BlankingBits; 1630 u32 surfaceWidthPerLink; 1631 u32 PixelSteeringBits; 1632 u64 NumBlankingLinkClocks; 1633 u32 MinHBlank; 1634 1635 if (outp->outp.info.dp.increased_wm) { 1636 watermarkAdjust = DP_CONFIG_INCREASED_WATERMARK_ADJUST; 1637 watermarkMinimum = DP_CONFIG_INCREASED_WATERMARK_LIMIT; 1638 } 1639 1640 if ((pixelClockHz * depth) >= (8 * minRate * outp->dp.link_nr * DSC_FACTOR)) 1641 { 1642 return false; 1643 } 1644 1645 // 1646 // For DSC, if (pclk * bpp) < (1/64 * orclk * 8 * lanes) then some TU may end up with 1647 // 0 active symbols. This may cause HW hang. Bug 200379426 1648 // 1649 if ((bEnableDsc) && 1650 ((pixelClockHz * depth) < div_u64(8 * minRate * outp->dp.link_nr * DSC_FACTOR, 64))) 1651 { 1652 return false; 1653 } 1654 1655 // 1656 // Perform the SST calculation. 1657 // For auto mode the watermark calculation does not need to track accumulated error the 1658 // formulas for manual mode will not work. So below calculation was extracted from the DTB. 1659 // 1660 ratioF = div_u64((u64)pixelClockHz * depth * PrecisionFactor, DSC_FACTOR); 1661 1662 ratioF = div_u64(ratioF, 8 * (u64) minRate * outp->dp.link_nr); 1663 1664 if (PrecisionFactor < ratioF) // Assert if we will end up with a negative number in below 1665 return false; 1666 1667 watermarkF = div_u64(ratioF * tuSize * (PrecisionFactor - ratioF), PrecisionFactor); 1668 waterMark = (unsigned)(watermarkAdjust + (div_u64(2 * div_u64(depth * PrecisionFactor, 8 * numLanesPerLink * DSC_FACTOR) + watermarkF, PrecisionFactor))); 1669 1670 // 1671 // Bounds check the watermark 1672 // 1673 numSymbolsPerLine = div_u64(surfaceWidth * depth, 8 * outp->dp.link_nr * DSC_FACTOR); 1674 1675 if (WARN_ON(waterMark > 39 || waterMark > numSymbolsPerLine)) 1676 return false; 1677 1678 // 1679 // Clamp the low side 1680 // 1681 if (waterMark < watermarkMinimum) 1682 waterMark = watermarkMinimum; 1683 1684 //Bits to send BS/BE/Extra symbols due to pixel padding 1685 //Also accounts for enhanced framing. 1686 BlankingBits = 3*8*numLanesPerLink + (enhancedFraming ? 3*8*numLanesPerLink : 0); 1687 1688 //VBID/MVID/MAUD sent 4 times all the time 1689 BlankingBits += 3*8*4; 1690 1691 surfaceWidthPerLink = surfaceWidth; 1692 1693 //Extra bits sent due to pixel steering 1694 u32 remain; 1695 div_u64_rem(surfaceWidthPerLink, numLanesPerLink, &remain); 1696 PixelSteeringBits = remain ? div_u64((numLanesPerLink - remain) * depth, DSC_FACTOR) : 0; 1697 1698 BlankingBits += PixelSteeringBits; 1699 NumBlankingLinkClocks = div_u64((u64)BlankingBits * PrecisionFactor, (8 * numLanesPerLink)); 1700 MinHBlank = (u32)(div_u64(div_u64(NumBlankingLinkClocks * pixelClockHz, minRate), PrecisionFactor)); 1701 MinHBlank += 12; 1702 1703 if (WARN_ON(MinHBlank > rasterWidth - surfaceWidth)) 1704 return false; 1705 1706 // Bug 702290 - Active Width should be greater than 60 1707 if (WARN_ON(surfaceWidth <= 60)) 1708 return false; 1709 1710 1711 hblank_symbols = (s32)(div_u64((u64)(rasterWidth - surfaceWidth - MinHBlank) * minRate, pixelClockHz)); 1712 1713 //reduce HBlank Symbols to account for secondary data packet 1714 hblank_symbols -= 1; //Stuffer latency to send BS 1715 hblank_symbols -= 3; //SPKT latency to send data to stuffer 1716 1717 hblank_symbols -= numLanesPerLink == 1 ? 9 : numLanesPerLink == 2 ? 6 : 3; 1718 1719 hBlankSym = (hblank_symbols < 0) ? 0 : hblank_symbols; 1720 1721 // Refer to dev_disp.ref for more information. 1722 // # symbols/vblank = ((SetRasterBlankEnd.X + SetRasterSize.Width - SetRasterBlankStart.X - 40) * link_clk / pclk) - Y - 1; 1723 // where Y = (# lanes == 4) 12 : (# lanes == 2) ? 21 : 39 1724 if (surfaceWidth < 40) 1725 { 1726 vblank_symbols = 0; 1727 } 1728 else 1729 { 1730 vblank_symbols = (s32)((div_u64((u64)(surfaceWidth - 40) * minRate, pixelClockHz))) - 1; 1731 1732 vblank_symbols -= numLanesPerLink == 1 ? 39 : numLanesPerLink == 2 ? 21 : 12; 1733 } 1734 1735 vBlankSym = (vblank_symbols < 0) ? 0 : vblank_symbols; 1736 1737 return nvif_outp_dp_sst(&outp->outp, head->base.index, waterMark, hBlankSym, vBlankSym); 1738 } 1739 1740 static void 1741 nv50_sor_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state) 1742 { 1743 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 1744 struct nouveau_crtc *nv_crtc = nv50_outp_get_new_crtc(state, nv_encoder); 1745 struct nv50_head_atom *asyh = 1746 nv50_head_atom(drm_atomic_get_new_crtc_state(state, &nv_crtc->base)); 1747 struct drm_display_mode *mode = &asyh->state.adjusted_mode; 1748 struct nv50_disp *disp = nv50_disp(encoder->dev); 1749 struct nv50_head *head = nv50_head(&nv_crtc->base); 1750 struct nvif_outp *outp = &nv_encoder->outp; 1751 struct drm_device *dev = encoder->dev; 1752 struct nouveau_drm *drm = nouveau_drm(dev); 1753 struct nouveau_connector *nv_connector; 1754 #ifdef CONFIG_DRM_NOUVEAU_BACKLIGHT 1755 struct nouveau_backlight *backlight; 1756 #endif 1757 struct nvbios *bios = &drm->vbios; 1758 bool lvds_dual = false, lvds_8bpc = false, hda = false; 1759 u8 proto = NV507D_SOR_SET_CONTROL_PROTOCOL_CUSTOM; 1760 u8 depth = NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_DEFAULT; 1761 1762 nv_connector = nv50_outp_get_new_connector(state, nv_encoder); 1763 nv_encoder->crtc = &nv_crtc->base; 1764 1765 if ((disp->disp->object.oclass == GT214_DISP || 1766 disp->disp->object.oclass >= GF110_DISP) && 1767 nv_encoder->dcb->type != DCB_OUTPUT_LVDS && 1768 drm_detect_monitor_audio(nv_connector->edid)) 1769 hda = true; 1770 1771 if (!nvif_outp_acquired(outp)) 1772 nvif_outp_acquire_sor(outp, hda); 1773 1774 switch (nv_encoder->dcb->type) { 1775 case DCB_OUTPUT_TMDS: 1776 if (disp->disp->object.oclass != NV50_DISP && 1777 drm_detect_hdmi_monitor(nv_connector->edid)) 1778 nv50_hdmi_enable(encoder, nv_crtc, nv_connector, state, mode, hda); 1779 1780 if (nv_encoder->outp.or.link & 1) { 1781 proto = NV507D_SOR_SET_CONTROL_PROTOCOL_SINGLE_TMDS_A; 1782 /* Only enable dual-link if: 1783 * - Need to (i.e. rate > 165MHz) 1784 * - DCB says we can 1785 * - Not an HDMI monitor, since there's no dual-link 1786 * on HDMI. 1787 */ 1788 if (mode->clock >= 165000 && 1789 nv_encoder->dcb->duallink_possible && 1790 !drm_detect_hdmi_monitor(nv_connector->edid)) 1791 proto = NV507D_SOR_SET_CONTROL_PROTOCOL_DUAL_TMDS; 1792 } else { 1793 proto = NV507D_SOR_SET_CONTROL_PROTOCOL_SINGLE_TMDS_B; 1794 } 1795 break; 1796 case DCB_OUTPUT_LVDS: 1797 proto = NV507D_SOR_SET_CONTROL_PROTOCOL_LVDS_CUSTOM; 1798 1799 if (bios->fp_no_ddc) { 1800 lvds_dual = bios->fp.dual_link; 1801 lvds_8bpc = bios->fp.if_is_24bit; 1802 } else { 1803 if (nv_connector->type == DCB_CONNECTOR_LVDS_SPWG) { 1804 if (((u8 *)nv_connector->edid)[121] == 2) 1805 lvds_dual = true; 1806 } else 1807 if (mode->clock >= bios->fp.duallink_transition_clk) { 1808 lvds_dual = true; 1809 } 1810 1811 if (lvds_dual) { 1812 if (bios->fp.strapless_is_24bit & 2) 1813 lvds_8bpc = true; 1814 } else { 1815 if (bios->fp.strapless_is_24bit & 1) 1816 lvds_8bpc = true; 1817 } 1818 1819 if (asyh->or.bpc == 8) 1820 lvds_8bpc = true; 1821 } 1822 1823 nvif_outp_lvds(&nv_encoder->outp, lvds_dual, lvds_8bpc); 1824 break; 1825 case DCB_OUTPUT_DP: 1826 nouveau_dp_train(nv_encoder, false, mode->clock, asyh->or.bpc); 1827 nv50_sor_dp_watermark_sst(nv_encoder, head, asyh); 1828 depth = nv50_dp_bpc_to_depth(asyh->or.bpc); 1829 1830 if (nv_encoder->outp.or.link & 1) 1831 proto = NV887D_SOR_SET_CONTROL_PROTOCOL_DP_A; 1832 else 1833 proto = NV887D_SOR_SET_CONTROL_PROTOCOL_DP_B; 1834 1835 #ifdef CONFIG_DRM_NOUVEAU_BACKLIGHT 1836 backlight = nv_connector->backlight; 1837 if (backlight && backlight->uses_dpcd) 1838 drm_edp_backlight_enable(&nv_connector->aux, &backlight->edp_info, 1839 (u16)backlight->dev->props.brightness); 1840 #endif 1841 1842 break; 1843 default: 1844 BUG(); 1845 break; 1846 } 1847 1848 if (head->func->display_id) 1849 head->func->display_id(head, BIT(nv_encoder->outp.id)); 1850 1851 nv_encoder->update(nv_encoder, nv_crtc->index, asyh, proto, depth); 1852 } 1853 1854 static const struct drm_encoder_helper_funcs 1855 nv50_sor_help = { 1856 .atomic_check = nv50_outp_atomic_check, 1857 .atomic_enable = nv50_sor_atomic_enable, 1858 .atomic_disable = nv50_sor_atomic_disable, 1859 }; 1860 1861 static void 1862 nv50_sor_destroy(struct drm_encoder *encoder) 1863 { 1864 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 1865 1866 nv50_mstm_del(&nv_encoder->dp.mstm); 1867 drm_encoder_cleanup(encoder); 1868 1869 if (nv_encoder->dcb->type == DCB_OUTPUT_DP) 1870 mutex_destroy(&nv_encoder->dp.hpd_irq_lock); 1871 1872 nvif_outp_dtor(&nv_encoder->outp); 1873 kfree(encoder); 1874 } 1875 1876 static const struct drm_encoder_funcs 1877 nv50_sor_func = { 1878 .destroy = nv50_sor_destroy, 1879 }; 1880 1881 static int 1882 nv50_sor_create(struct nouveau_encoder *nv_encoder) 1883 { 1884 struct drm_connector *connector = &nv_encoder->conn->base; 1885 struct nouveau_connector *nv_connector = nouveau_connector(connector); 1886 struct nouveau_drm *drm = nouveau_drm(connector->dev); 1887 struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device); 1888 struct drm_encoder *encoder; 1889 struct dcb_output *dcbe = nv_encoder->dcb; 1890 struct nv50_disp *disp = nv50_disp(connector->dev); 1891 int type, ret; 1892 1893 switch (dcbe->type) { 1894 case DCB_OUTPUT_LVDS: type = DRM_MODE_ENCODER_LVDS; break; 1895 case DCB_OUTPUT_TMDS: 1896 case DCB_OUTPUT_DP: 1897 default: 1898 type = DRM_MODE_ENCODER_TMDS; 1899 break; 1900 } 1901 1902 nv_encoder->update = nv50_sor_update; 1903 1904 encoder = to_drm_encoder(nv_encoder); 1905 drm_encoder_init(connector->dev, encoder, &nv50_sor_func, type, 1906 "sor-%04x-%04x", dcbe->hasht, dcbe->hashm); 1907 drm_encoder_helper_add(encoder, &nv50_sor_help); 1908 1909 drm_connector_attach_encoder(connector, encoder); 1910 1911 disp->core->func->sor->get_caps(disp, nv_encoder, ffs(dcbe->or) - 1); 1912 nv50_outp_dump_caps(drm, nv_encoder); 1913 1914 if (dcbe->type == DCB_OUTPUT_DP) { 1915 mutex_init(&nv_encoder->dp.hpd_irq_lock); 1916 1917 if (disp->disp->object.oclass < GF110_DISP) { 1918 /* HW has no support for address-only 1919 * transactions, so we're required to 1920 * use custom I2C-over-AUX code. 1921 */ 1922 struct nvkm_i2c_aux *aux; 1923 1924 aux = nvkm_i2c_aux_find(i2c, dcbe->i2c_index); 1925 if (!aux) 1926 return -EINVAL; 1927 1928 nv_encoder->i2c = &aux->i2c; 1929 } else { 1930 nv_encoder->i2c = &nv_connector->aux.ddc; 1931 } 1932 1933 if (nv_connector->type != DCB_CONNECTOR_eDP && nv_encoder->outp.info.dp.mst) { 1934 ret = nv50_mstm_new(nv_encoder, &nv_connector->aux, 1935 16, nv_connector->base.base.id, 1936 &nv_encoder->dp.mstm); 1937 if (ret) 1938 return ret; 1939 } 1940 } else 1941 if (nv_encoder->outp.info.ddc != NVIF_OUTP_DDC_INVALID) { 1942 struct nvkm_i2c_bus *bus = 1943 nvkm_i2c_bus_find(i2c, dcbe->i2c_index); 1944 if (bus) 1945 nv_encoder->i2c = &bus->i2c; 1946 } 1947 1948 return 0; 1949 } 1950 1951 /****************************************************************************** 1952 * PIOR 1953 *****************************************************************************/ 1954 static int 1955 nv50_pior_atomic_check(struct drm_encoder *encoder, 1956 struct drm_crtc_state *crtc_state, 1957 struct drm_connector_state *conn_state) 1958 { 1959 int ret = nv50_outp_atomic_check(encoder, crtc_state, conn_state); 1960 if (ret) 1961 return ret; 1962 crtc_state->adjusted_mode.clock *= 2; 1963 return 0; 1964 } 1965 1966 static void 1967 nv50_pior_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state) 1968 { 1969 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 1970 struct nv50_core *core = nv50_disp(encoder->dev)->core; 1971 const u32 ctrl = NVDEF(NV507D, PIOR_SET_CONTROL, OWNER, NONE); 1972 1973 core->func->pior->ctrl(core, nv_encoder->outp.or.id, ctrl, NULL); 1974 nv_encoder->crtc = NULL; 1975 } 1976 1977 static void 1978 nv50_pior_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state) 1979 { 1980 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 1981 struct nouveau_crtc *nv_crtc = nv50_outp_get_new_crtc(state, nv_encoder); 1982 struct nv50_head_atom *asyh = 1983 nv50_head_atom(drm_atomic_get_new_crtc_state(state, &nv_crtc->base)); 1984 struct nv50_core *core = nv50_disp(encoder->dev)->core; 1985 u32 ctrl = 0; 1986 1987 switch (nv_crtc->index) { 1988 case 0: ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, OWNER, HEAD0); break; 1989 case 1: ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, OWNER, HEAD1); break; 1990 default: 1991 WARN_ON(1); 1992 break; 1993 } 1994 1995 switch (asyh->or.bpc) { 1996 case 10: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_BPP_30_444; break; 1997 case 8: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_BPP_24_444; break; 1998 case 6: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_BPP_18_444; break; 1999 default: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_DEFAULT; break; 2000 } 2001 2002 if (!nvif_outp_acquired(&nv_encoder->outp)) 2003 nvif_outp_acquire_pior(&nv_encoder->outp); 2004 2005 switch (nv_encoder->dcb->type) { 2006 case DCB_OUTPUT_TMDS: 2007 ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, PROTOCOL, EXT_TMDS_ENC); 2008 break; 2009 case DCB_OUTPUT_DP: 2010 ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, PROTOCOL, EXT_TMDS_ENC); 2011 nouveau_dp_train(nv_encoder, false, asyh->state.adjusted_mode.clock, 6); 2012 break; 2013 default: 2014 BUG(); 2015 break; 2016 } 2017 2018 core->func->pior->ctrl(core, nv_encoder->outp.or.id, ctrl, asyh); 2019 nv_encoder->crtc = &nv_crtc->base; 2020 } 2021 2022 static const struct drm_encoder_helper_funcs 2023 nv50_pior_help = { 2024 .atomic_check = nv50_pior_atomic_check, 2025 .atomic_enable = nv50_pior_atomic_enable, 2026 .atomic_disable = nv50_pior_atomic_disable, 2027 }; 2028 2029 static void 2030 nv50_pior_destroy(struct drm_encoder *encoder) 2031 { 2032 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 2033 2034 nvif_outp_dtor(&nv_encoder->outp); 2035 2036 drm_encoder_cleanup(encoder); 2037 2038 mutex_destroy(&nv_encoder->dp.hpd_irq_lock); 2039 kfree(encoder); 2040 } 2041 2042 static const struct drm_encoder_funcs 2043 nv50_pior_func = { 2044 .destroy = nv50_pior_destroy, 2045 }; 2046 2047 static int 2048 nv50_pior_create(struct nouveau_encoder *nv_encoder) 2049 { 2050 struct drm_connector *connector = &nv_encoder->conn->base; 2051 struct drm_device *dev = connector->dev; 2052 struct nouveau_drm *drm = nouveau_drm(dev); 2053 struct nv50_disp *disp = nv50_disp(dev); 2054 struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device); 2055 struct nvkm_i2c_bus *bus = NULL; 2056 struct nvkm_i2c_aux *aux = NULL; 2057 struct i2c_adapter *ddc; 2058 struct drm_encoder *encoder; 2059 struct dcb_output *dcbe = nv_encoder->dcb; 2060 int type; 2061 2062 switch (dcbe->type) { 2063 case DCB_OUTPUT_TMDS: 2064 bus = nvkm_i2c_bus_find(i2c, nv_encoder->outp.info.ddc); 2065 ddc = bus ? &bus->i2c : NULL; 2066 type = DRM_MODE_ENCODER_TMDS; 2067 break; 2068 case DCB_OUTPUT_DP: 2069 aux = nvkm_i2c_aux_find(i2c, nv_encoder->outp.info.dp.aux); 2070 ddc = aux ? &aux->i2c : NULL; 2071 type = DRM_MODE_ENCODER_TMDS; 2072 break; 2073 default: 2074 return -ENODEV; 2075 } 2076 2077 nv_encoder->i2c = ddc; 2078 2079 mutex_init(&nv_encoder->dp.hpd_irq_lock); 2080 2081 encoder = to_drm_encoder(nv_encoder); 2082 drm_encoder_init(connector->dev, encoder, &nv50_pior_func, type, 2083 "pior-%04x-%04x", dcbe->hasht, dcbe->hashm); 2084 drm_encoder_helper_add(encoder, &nv50_pior_help); 2085 2086 drm_connector_attach_encoder(connector, encoder); 2087 2088 disp->core->func->pior->get_caps(disp, nv_encoder, ffs(dcbe->or) - 1); 2089 nv50_outp_dump_caps(drm, nv_encoder); 2090 2091 return 0; 2092 } 2093 2094 /****************************************************************************** 2095 * Atomic 2096 *****************************************************************************/ 2097 2098 static void 2099 nv50_disp_atomic_commit_core(struct drm_atomic_state *state, u32 *interlock) 2100 { 2101 struct drm_dp_mst_topology_mgr *mgr; 2102 struct drm_dp_mst_topology_state *mst_state; 2103 struct nouveau_drm *drm = nouveau_drm(state->dev); 2104 struct nv50_disp *disp = nv50_disp(drm->dev); 2105 struct nv50_atom *atom = nv50_atom(state); 2106 struct nv50_core *core = disp->core; 2107 struct nv50_outp_atom *outp; 2108 struct nv50_mstm *mstm; 2109 int i; 2110 2111 NV_ATOMIC(drm, "commit core %08x\n", interlock[NV50_DISP_INTERLOCK_BASE]); 2112 2113 for_each_new_mst_mgr_in_state(state, mgr, mst_state, i) { 2114 mstm = nv50_mstm(mgr); 2115 if (mstm->modified) 2116 nv50_mstm_prepare(state, mst_state, mstm); 2117 } 2118 2119 core->func->ntfy_init(disp->sync, NV50_DISP_CORE_NTFY); 2120 core->func->update(core, interlock, true); 2121 if (core->func->ntfy_wait_done(disp->sync, NV50_DISP_CORE_NTFY, 2122 disp->core->chan.base.device)) 2123 NV_ERROR(drm, "core notifier timeout\n"); 2124 2125 for_each_new_mst_mgr_in_state(state, mgr, mst_state, i) { 2126 mstm = nv50_mstm(mgr); 2127 if (mstm->modified) 2128 nv50_mstm_cleanup(state, mst_state, mstm); 2129 } 2130 2131 list_for_each_entry(outp, &atom->outp, head) { 2132 if (outp->encoder->encoder_type != DRM_MODE_ENCODER_DPMST) { 2133 struct nouveau_encoder *nv_encoder = nouveau_encoder(outp->encoder); 2134 2135 if (outp->enabled) { 2136 nv50_audio_enable(outp->encoder, nouveau_crtc(nv_encoder->crtc), 2137 nv_encoder->conn, NULL, NULL); 2138 outp->enabled = outp->disabled = false; 2139 } else { 2140 if (outp->disabled) { 2141 nvif_outp_release(&nv_encoder->outp); 2142 outp->disabled = false; 2143 } 2144 } 2145 } 2146 } 2147 } 2148 2149 static void 2150 nv50_disp_atomic_commit_wndw(struct drm_atomic_state *state, u32 *interlock) 2151 { 2152 struct drm_plane_state *new_plane_state; 2153 struct drm_plane *plane; 2154 int i; 2155 2156 for_each_new_plane_in_state(state, plane, new_plane_state, i) { 2157 struct nv50_wndw *wndw = nv50_wndw(plane); 2158 if (interlock[wndw->interlock.type] & wndw->interlock.data) { 2159 if (wndw->func->update) 2160 wndw->func->update(wndw, interlock); 2161 } 2162 } 2163 } 2164 2165 static void 2166 nv50_disp_atomic_commit_tail(struct drm_atomic_state *state) 2167 { 2168 struct drm_device *dev = state->dev; 2169 struct drm_crtc_state *new_crtc_state, *old_crtc_state; 2170 struct drm_crtc *crtc; 2171 struct drm_plane_state *new_plane_state; 2172 struct drm_plane *plane; 2173 struct nouveau_drm *drm = nouveau_drm(dev); 2174 struct nv50_disp *disp = nv50_disp(dev); 2175 struct nv50_atom *atom = nv50_atom(state); 2176 struct nv50_core *core = disp->core; 2177 struct nv50_outp_atom *outp, *outt; 2178 u32 interlock[NV50_DISP_INTERLOCK__SIZE] = {}; 2179 int i; 2180 bool flushed = false; 2181 2182 NV_ATOMIC(drm, "commit %d %d\n", atom->lock_core, atom->flush_disable); 2183 nv50_crc_atomic_stop_reporting(state); 2184 drm_atomic_helper_wait_for_fences(dev, state, false); 2185 drm_atomic_helper_wait_for_dependencies(state); 2186 drm_dp_mst_atomic_wait_for_dependencies(state); 2187 drm_atomic_helper_update_legacy_modeset_state(dev, state); 2188 drm_atomic_helper_calc_timestamping_constants(state); 2189 2190 if (atom->lock_core) 2191 mutex_lock(&disp->mutex); 2192 2193 /* Disable head(s). */ 2194 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { 2195 struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state); 2196 struct nv50_head *head = nv50_head(crtc); 2197 2198 NV_ATOMIC(drm, "%s: clr %04x (set %04x)\n", crtc->name, 2199 asyh->clr.mask, asyh->set.mask); 2200 2201 if (old_crtc_state->active && !new_crtc_state->active) { 2202 pm_runtime_put_noidle(dev->dev); 2203 drm_crtc_vblank_off(crtc); 2204 } 2205 2206 if (asyh->clr.mask) { 2207 nv50_head_flush_clr(head, asyh, atom->flush_disable); 2208 interlock[NV50_DISP_INTERLOCK_CORE] |= 1; 2209 } 2210 } 2211 2212 /* Disable plane(s). */ 2213 for_each_new_plane_in_state(state, plane, new_plane_state, i) { 2214 struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state); 2215 struct nv50_wndw *wndw = nv50_wndw(plane); 2216 2217 NV_ATOMIC(drm, "%s: clr %02x (set %02x)\n", plane->name, 2218 asyw->clr.mask, asyw->set.mask); 2219 if (!asyw->clr.mask) 2220 continue; 2221 2222 nv50_wndw_flush_clr(wndw, interlock, atom->flush_disable, asyw); 2223 } 2224 2225 /* Disable output path(s). */ 2226 list_for_each_entry(outp, &atom->outp, head) { 2227 const struct drm_encoder_helper_funcs *help; 2228 struct drm_encoder *encoder; 2229 2230 encoder = outp->encoder; 2231 help = encoder->helper_private; 2232 2233 NV_ATOMIC(drm, "%s: clr %02x (set %02x)\n", encoder->name, 2234 outp->clr.mask, outp->set.mask); 2235 2236 if (outp->clr.mask) { 2237 help->atomic_disable(encoder, state); 2238 outp->disabled = true; 2239 interlock[NV50_DISP_INTERLOCK_CORE] |= 1; 2240 } 2241 } 2242 2243 /* Flush disable. */ 2244 if (interlock[NV50_DISP_INTERLOCK_CORE]) { 2245 if (atom->flush_disable) { 2246 nv50_disp_atomic_commit_wndw(state, interlock); 2247 nv50_disp_atomic_commit_core(state, interlock); 2248 memset(interlock, 0x00, sizeof(interlock)); 2249 2250 flushed = true; 2251 } 2252 } 2253 2254 if (flushed) 2255 nv50_crc_atomic_release_notifier_contexts(state); 2256 nv50_crc_atomic_init_notifier_contexts(state); 2257 2258 /* Update output path(s). */ 2259 list_for_each_entry(outp, &atom->outp, head) { 2260 const struct drm_encoder_helper_funcs *help; 2261 struct drm_encoder *encoder; 2262 2263 encoder = outp->encoder; 2264 help = encoder->helper_private; 2265 2266 NV_ATOMIC(drm, "%s: set %02x (clr %02x)\n", encoder->name, 2267 outp->set.mask, outp->clr.mask); 2268 2269 if (outp->set.mask) { 2270 help->atomic_enable(encoder, state); 2271 outp->enabled = true; 2272 interlock[NV50_DISP_INTERLOCK_CORE] = 1; 2273 } 2274 } 2275 2276 /* Update head(s). */ 2277 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { 2278 struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state); 2279 struct nv50_head *head = nv50_head(crtc); 2280 2281 NV_ATOMIC(drm, "%s: set %04x (clr %04x)\n", crtc->name, 2282 asyh->set.mask, asyh->clr.mask); 2283 2284 if (asyh->set.mask) { 2285 nv50_head_flush_set(head, asyh); 2286 interlock[NV50_DISP_INTERLOCK_CORE] = 1; 2287 } 2288 2289 if (new_crtc_state->active) { 2290 if (!old_crtc_state->active) { 2291 drm_crtc_vblank_on(crtc); 2292 pm_runtime_get_noresume(dev->dev); 2293 } 2294 if (new_crtc_state->event) 2295 drm_crtc_vblank_get(crtc); 2296 } 2297 } 2298 2299 /* Update window->head assignment. 2300 * 2301 * This has to happen in an update that's not interlocked with 2302 * any window channels to avoid hitting HW error checks. 2303 * 2304 *TODO: Proper handling of window ownership (Turing apparently 2305 * supports non-fixed mappings). 2306 */ 2307 if (core->assign_windows) { 2308 core->func->wndw.owner(core); 2309 nv50_disp_atomic_commit_core(state, interlock); 2310 core->assign_windows = false; 2311 interlock[NV50_DISP_INTERLOCK_CORE] = 0; 2312 } 2313 2314 /* Finish updating head(s)... 2315 * 2316 * NVD is rather picky about both where window assignments can change, 2317 * *and* about certain core and window channel states matching. 2318 * 2319 * The EFI GOP driver on newer GPUs configures window channels with a 2320 * different output format to what we do, and the core channel update 2321 * in the assign_windows case above would result in a state mismatch. 2322 * 2323 * Delay some of the head update until after that point to workaround 2324 * the issue. This only affects the initial modeset. 2325 * 2326 * TODO: handle this better when adding flexible window mapping 2327 */ 2328 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { 2329 struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state); 2330 struct nv50_head *head = nv50_head(crtc); 2331 2332 NV_ATOMIC(drm, "%s: set %04x (clr %04x)\n", crtc->name, 2333 asyh->set.mask, asyh->clr.mask); 2334 2335 if (asyh->set.mask) { 2336 nv50_head_flush_set_wndw(head, asyh); 2337 interlock[NV50_DISP_INTERLOCK_CORE] = 1; 2338 } 2339 } 2340 2341 /* Update plane(s). */ 2342 for_each_new_plane_in_state(state, plane, new_plane_state, i) { 2343 struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state); 2344 struct nv50_wndw *wndw = nv50_wndw(plane); 2345 2346 NV_ATOMIC(drm, "%s: set %02x (clr %02x)\n", plane->name, 2347 asyw->set.mask, asyw->clr.mask); 2348 if ( !asyw->set.mask && 2349 (!asyw->clr.mask || atom->flush_disable)) 2350 continue; 2351 2352 nv50_wndw_flush_set(wndw, interlock, asyw); 2353 } 2354 2355 /* Flush update. */ 2356 nv50_disp_atomic_commit_wndw(state, interlock); 2357 2358 if (interlock[NV50_DISP_INTERLOCK_CORE]) { 2359 if (interlock[NV50_DISP_INTERLOCK_BASE] || 2360 interlock[NV50_DISP_INTERLOCK_OVLY] || 2361 interlock[NV50_DISP_INTERLOCK_WNDW] || 2362 !atom->state.legacy_cursor_update) 2363 nv50_disp_atomic_commit_core(state, interlock); 2364 else 2365 disp->core->func->update(disp->core, interlock, false); 2366 } 2367 2368 if (atom->lock_core) 2369 mutex_unlock(&disp->mutex); 2370 2371 list_for_each_entry_safe(outp, outt, &atom->outp, head) { 2372 list_del(&outp->head); 2373 kfree(outp); 2374 } 2375 2376 /* Wait for HW to signal completion. */ 2377 for_each_new_plane_in_state(state, plane, new_plane_state, i) { 2378 struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state); 2379 struct nv50_wndw *wndw = nv50_wndw(plane); 2380 int ret = nv50_wndw_wait_armed(wndw, asyw); 2381 if (ret) 2382 NV_ERROR(drm, "%s: timeout\n", plane->name); 2383 } 2384 2385 for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) { 2386 if (new_crtc_state->event) { 2387 unsigned long flags; 2388 /* Get correct count/ts if racing with vblank irq */ 2389 if (new_crtc_state->active) 2390 drm_crtc_accurate_vblank_count(crtc); 2391 spin_lock_irqsave(&crtc->dev->event_lock, flags); 2392 drm_crtc_send_vblank_event(crtc, new_crtc_state->event); 2393 spin_unlock_irqrestore(&crtc->dev->event_lock, flags); 2394 2395 new_crtc_state->event = NULL; 2396 if (new_crtc_state->active) 2397 drm_crtc_vblank_put(crtc); 2398 } 2399 } 2400 2401 nv50_crc_atomic_start_reporting(state); 2402 if (!flushed) 2403 nv50_crc_atomic_release_notifier_contexts(state); 2404 2405 drm_atomic_helper_commit_hw_done(state); 2406 drm_atomic_helper_cleanup_planes(dev, state); 2407 drm_atomic_helper_commit_cleanup_done(state); 2408 drm_atomic_state_put(state); 2409 2410 /* Drop the RPM ref we got from nv50_disp_atomic_commit() */ 2411 pm_runtime_mark_last_busy(dev->dev); 2412 pm_runtime_put_autosuspend(dev->dev); 2413 } 2414 2415 static void 2416 nv50_disp_atomic_commit_work(struct work_struct *work) 2417 { 2418 struct drm_atomic_state *state = 2419 container_of(work, typeof(*state), commit_work); 2420 nv50_disp_atomic_commit_tail(state); 2421 } 2422 2423 static int 2424 nv50_disp_atomic_commit(struct drm_device *dev, 2425 struct drm_atomic_state *state, bool nonblock) 2426 { 2427 struct drm_plane_state *new_plane_state; 2428 struct drm_plane *plane; 2429 int ret, i; 2430 2431 ret = pm_runtime_get_sync(dev->dev); 2432 if (ret < 0 && ret != -EACCES) { 2433 pm_runtime_put_autosuspend(dev->dev); 2434 return ret; 2435 } 2436 2437 ret = drm_atomic_helper_setup_commit(state, nonblock); 2438 if (ret) 2439 goto done; 2440 2441 INIT_WORK(&state->commit_work, nv50_disp_atomic_commit_work); 2442 2443 ret = drm_atomic_helper_prepare_planes(dev, state); 2444 if (ret) 2445 goto done; 2446 2447 if (!nonblock) { 2448 ret = drm_atomic_helper_wait_for_fences(dev, state, true); 2449 if (ret) 2450 goto err_cleanup; 2451 } 2452 2453 ret = drm_atomic_helper_swap_state(state, true); 2454 if (ret) 2455 goto err_cleanup; 2456 2457 for_each_new_plane_in_state(state, plane, new_plane_state, i) { 2458 struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state); 2459 struct nv50_wndw *wndw = nv50_wndw(plane); 2460 2461 if (asyw->set.image) 2462 nv50_wndw_ntfy_enable(wndw, asyw); 2463 } 2464 2465 drm_atomic_state_get(state); 2466 2467 /* 2468 * Grab another RPM ref for the commit tail, which will release the 2469 * ref when it's finished 2470 */ 2471 pm_runtime_get_noresume(dev->dev); 2472 2473 if (nonblock) 2474 queue_work(system_unbound_wq, &state->commit_work); 2475 else 2476 nv50_disp_atomic_commit_tail(state); 2477 2478 err_cleanup: 2479 if (ret) 2480 drm_atomic_helper_unprepare_planes(dev, state); 2481 done: 2482 pm_runtime_put_autosuspend(dev->dev); 2483 return ret; 2484 } 2485 2486 static struct nv50_outp_atom * 2487 nv50_disp_outp_atomic_add(struct nv50_atom *atom, struct drm_encoder *encoder) 2488 { 2489 struct nv50_outp_atom *outp; 2490 2491 list_for_each_entry(outp, &atom->outp, head) { 2492 if (outp->encoder == encoder) 2493 return outp; 2494 } 2495 2496 outp = kzalloc(sizeof(*outp), GFP_KERNEL); 2497 if (!outp) 2498 return ERR_PTR(-ENOMEM); 2499 2500 list_add(&outp->head, &atom->outp); 2501 outp->encoder = encoder; 2502 return outp; 2503 } 2504 2505 static int 2506 nv50_disp_outp_atomic_check_clr(struct nv50_atom *atom, 2507 struct drm_connector_state *old_connector_state) 2508 { 2509 struct drm_encoder *encoder = old_connector_state->best_encoder; 2510 struct drm_crtc_state *old_crtc_state, *new_crtc_state; 2511 struct drm_crtc *crtc; 2512 struct nv50_outp_atom *outp; 2513 2514 if (!(crtc = old_connector_state->crtc)) 2515 return 0; 2516 2517 old_crtc_state = drm_atomic_get_old_crtc_state(&atom->state, crtc); 2518 new_crtc_state = drm_atomic_get_new_crtc_state(&atom->state, crtc); 2519 if (old_crtc_state->active && drm_atomic_crtc_needs_modeset(new_crtc_state)) { 2520 outp = nv50_disp_outp_atomic_add(atom, encoder); 2521 if (IS_ERR(outp)) 2522 return PTR_ERR(outp); 2523 2524 if (outp->encoder->encoder_type == DRM_MODE_ENCODER_DPMST || 2525 nouveau_encoder(outp->encoder)->dcb->type == DCB_OUTPUT_DP) 2526 atom->flush_disable = true; 2527 outp->clr.ctrl = true; 2528 atom->lock_core = true; 2529 } 2530 2531 return 0; 2532 } 2533 2534 static int 2535 nv50_disp_outp_atomic_check_set(struct nv50_atom *atom, 2536 struct drm_connector_state *connector_state) 2537 { 2538 struct drm_encoder *encoder = connector_state->best_encoder; 2539 struct drm_crtc_state *new_crtc_state; 2540 struct drm_crtc *crtc; 2541 struct nv50_outp_atom *outp; 2542 2543 if (!(crtc = connector_state->crtc)) 2544 return 0; 2545 2546 new_crtc_state = drm_atomic_get_new_crtc_state(&atom->state, crtc); 2547 if (new_crtc_state->active && drm_atomic_crtc_needs_modeset(new_crtc_state)) { 2548 outp = nv50_disp_outp_atomic_add(atom, encoder); 2549 if (IS_ERR(outp)) 2550 return PTR_ERR(outp); 2551 2552 outp->set.ctrl = true; 2553 atom->lock_core = true; 2554 } 2555 2556 return 0; 2557 } 2558 2559 static int 2560 nv50_disp_atomic_check(struct drm_device *dev, struct drm_atomic_state *state) 2561 { 2562 struct nv50_atom *atom = nv50_atom(state); 2563 struct nv50_core *core = nv50_disp(dev)->core; 2564 struct drm_connector_state *old_connector_state, *new_connector_state; 2565 struct drm_connector *connector; 2566 struct drm_crtc_state *new_crtc_state; 2567 struct drm_crtc *crtc; 2568 struct nv50_head *head; 2569 struct nv50_head_atom *asyh; 2570 int ret, i; 2571 2572 if (core->assign_windows && core->func->head->static_wndw_map) { 2573 drm_for_each_crtc(crtc, dev) { 2574 new_crtc_state = drm_atomic_get_crtc_state(state, 2575 crtc); 2576 if (IS_ERR(new_crtc_state)) 2577 return PTR_ERR(new_crtc_state); 2578 2579 head = nv50_head(crtc); 2580 asyh = nv50_head_atom(new_crtc_state); 2581 core->func->head->static_wndw_map(head, asyh); 2582 } 2583 } 2584 2585 /* We need to handle colour management on a per-plane basis. */ 2586 for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) { 2587 if (new_crtc_state->color_mgmt_changed) { 2588 ret = drm_atomic_add_affected_planes(state, crtc); 2589 if (ret) 2590 return ret; 2591 } 2592 } 2593 2594 ret = drm_atomic_helper_check(dev, state); 2595 if (ret) 2596 return ret; 2597 2598 for_each_oldnew_connector_in_state(state, connector, old_connector_state, new_connector_state, i) { 2599 ret = nv50_disp_outp_atomic_check_clr(atom, old_connector_state); 2600 if (ret) 2601 return ret; 2602 2603 ret = nv50_disp_outp_atomic_check_set(atom, new_connector_state); 2604 if (ret) 2605 return ret; 2606 } 2607 2608 ret = drm_dp_mst_atomic_check(state); 2609 if (ret) 2610 return ret; 2611 2612 nv50_crc_atomic_check_outp(atom); 2613 2614 return 0; 2615 } 2616 2617 static void 2618 nv50_disp_atomic_state_clear(struct drm_atomic_state *state) 2619 { 2620 struct nv50_atom *atom = nv50_atom(state); 2621 struct nv50_outp_atom *outp, *outt; 2622 2623 list_for_each_entry_safe(outp, outt, &atom->outp, head) { 2624 list_del(&outp->head); 2625 kfree(outp); 2626 } 2627 2628 drm_atomic_state_default_clear(state); 2629 } 2630 2631 static void 2632 nv50_disp_atomic_state_free(struct drm_atomic_state *state) 2633 { 2634 struct nv50_atom *atom = nv50_atom(state); 2635 drm_atomic_state_default_release(&atom->state); 2636 kfree(atom); 2637 } 2638 2639 static struct drm_atomic_state * 2640 nv50_disp_atomic_state_alloc(struct drm_device *dev) 2641 { 2642 struct nv50_atom *atom; 2643 if (!(atom = kzalloc(sizeof(*atom), GFP_KERNEL)) || 2644 drm_atomic_state_init(dev, &atom->state) < 0) { 2645 kfree(atom); 2646 return NULL; 2647 } 2648 INIT_LIST_HEAD(&atom->outp); 2649 return &atom->state; 2650 } 2651 2652 static const struct drm_mode_config_funcs 2653 nv50_disp_func = { 2654 .fb_create = nouveau_user_framebuffer_create, 2655 .output_poll_changed = drm_fb_helper_output_poll_changed, 2656 .atomic_check = nv50_disp_atomic_check, 2657 .atomic_commit = nv50_disp_atomic_commit, 2658 .atomic_state_alloc = nv50_disp_atomic_state_alloc, 2659 .atomic_state_clear = nv50_disp_atomic_state_clear, 2660 .atomic_state_free = nv50_disp_atomic_state_free, 2661 }; 2662 2663 static const struct drm_mode_config_helper_funcs 2664 nv50_disp_helper_func = { 2665 .atomic_commit_setup = drm_dp_mst_atomic_setup_commit, 2666 }; 2667 2668 /****************************************************************************** 2669 * Init 2670 *****************************************************************************/ 2671 2672 static void 2673 nv50_display_fini(struct drm_device *dev, bool runtime, bool suspend) 2674 { 2675 struct nouveau_drm *drm = nouveau_drm(dev); 2676 struct drm_encoder *encoder; 2677 2678 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) { 2679 if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) 2680 nv50_mstm_fini(nouveau_encoder(encoder)); 2681 } 2682 2683 if (!runtime) 2684 cancel_work_sync(&drm->hpd_work); 2685 } 2686 2687 static inline void 2688 nv50_display_read_hw_or_state(struct drm_device *dev, struct nv50_disp *disp, 2689 struct nouveau_encoder *outp) 2690 { 2691 struct drm_crtc *crtc; 2692 struct drm_connector_list_iter conn_iter; 2693 struct drm_connector *conn; 2694 struct nv50_head_atom *armh; 2695 const u32 encoder_mask = drm_encoder_mask(&outp->base.base); 2696 bool found_conn = false, found_head = false; 2697 u8 proto; 2698 int head_idx; 2699 int ret; 2700 2701 switch (outp->dcb->type) { 2702 case DCB_OUTPUT_TMDS: 2703 ret = nvif_outp_inherit_tmds(&outp->outp, &proto); 2704 break; 2705 case DCB_OUTPUT_DP: 2706 ret = nvif_outp_inherit_dp(&outp->outp, &proto); 2707 break; 2708 case DCB_OUTPUT_LVDS: 2709 ret = nvif_outp_inherit_lvds(&outp->outp, &proto); 2710 break; 2711 case DCB_OUTPUT_ANALOG: 2712 ret = nvif_outp_inherit_rgb_crt(&outp->outp, &proto); 2713 break; 2714 default: 2715 drm_dbg_kms(dev, "Readback for %s not implemented yet, skipping\n", 2716 outp->base.base.name); 2717 drm_WARN_ON(dev, true); 2718 return; 2719 } 2720 2721 if (ret < 0) 2722 return; 2723 2724 head_idx = ret; 2725 2726 drm_for_each_crtc(crtc, dev) { 2727 if (crtc->index != head_idx) 2728 continue; 2729 2730 armh = nv50_head_atom(crtc->state); 2731 found_head = true; 2732 break; 2733 } 2734 if (drm_WARN_ON(dev, !found_head)) 2735 return; 2736 2737 /* Figure out which connector is being used by this encoder */ 2738 drm_connector_list_iter_begin(dev, &conn_iter); 2739 nouveau_for_each_non_mst_connector_iter(conn, &conn_iter) { 2740 if (nouveau_connector(conn)->index == outp->dcb->connector) { 2741 found_conn = true; 2742 break; 2743 } 2744 } 2745 drm_connector_list_iter_end(&conn_iter); 2746 if (drm_WARN_ON(dev, !found_conn)) 2747 return; 2748 2749 armh->state.encoder_mask = encoder_mask; 2750 armh->state.connector_mask = drm_connector_mask(conn); 2751 armh->state.active = true; 2752 armh->state.enable = true; 2753 pm_runtime_get_noresume(dev->dev); 2754 2755 outp->crtc = crtc; 2756 outp->ctrl = NVVAL(NV507D, SOR_SET_CONTROL, PROTOCOL, proto) | BIT(crtc->index); 2757 2758 drm_connector_get(conn); 2759 conn->state->crtc = crtc; 2760 conn->state->best_encoder = &outp->base.base; 2761 } 2762 2763 /* Read back the currently programmed display state */ 2764 static void 2765 nv50_display_read_hw_state(struct nouveau_drm *drm) 2766 { 2767 struct drm_device *dev = drm->dev; 2768 struct drm_encoder *encoder; 2769 struct drm_modeset_acquire_ctx ctx; 2770 struct nv50_disp *disp = nv50_disp(dev); 2771 int ret; 2772 2773 DRM_MODESET_LOCK_ALL_BEGIN(dev, ctx, 0, ret); 2774 2775 drm_for_each_encoder(encoder, dev) { 2776 if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) 2777 continue; 2778 2779 nv50_display_read_hw_or_state(dev, disp, nouveau_encoder(encoder)); 2780 } 2781 2782 DRM_MODESET_LOCK_ALL_END(dev, ctx, ret); 2783 } 2784 2785 static int 2786 nv50_display_init(struct drm_device *dev, bool resume, bool runtime) 2787 { 2788 struct nv50_core *core = nv50_disp(dev)->core; 2789 struct drm_encoder *encoder; 2790 2791 if (resume || runtime) 2792 core->func->init(core); 2793 2794 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) { 2795 if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) { 2796 struct nouveau_encoder *nv_encoder = 2797 nouveau_encoder(encoder); 2798 nv50_mstm_init(nv_encoder, runtime); 2799 } 2800 } 2801 2802 if (!resume) 2803 nv50_display_read_hw_state(nouveau_drm(dev)); 2804 2805 return 0; 2806 } 2807 2808 static void 2809 nv50_display_destroy(struct drm_device *dev) 2810 { 2811 struct nv50_disp *disp = nv50_disp(dev); 2812 2813 nv50_audio_component_fini(nouveau_drm(dev)); 2814 2815 nvif_object_unmap(&disp->caps); 2816 nvif_object_dtor(&disp->caps); 2817 nv50_core_del(&disp->core); 2818 2819 nouveau_bo_unmap(disp->sync); 2820 if (disp->sync) 2821 nouveau_bo_unpin(disp->sync); 2822 nouveau_bo_ref(NULL, &disp->sync); 2823 2824 nouveau_display(dev)->priv = NULL; 2825 kfree(disp); 2826 } 2827 2828 int 2829 nv50_display_create(struct drm_device *dev) 2830 { 2831 struct nouveau_drm *drm = nouveau_drm(dev); 2832 struct drm_connector *connector, *tmp; 2833 struct nv50_disp *disp; 2834 int ret, i; 2835 bool has_mst = false; 2836 2837 disp = kzalloc(sizeof(*disp), GFP_KERNEL); 2838 if (!disp) 2839 return -ENOMEM; 2840 2841 mutex_init(&disp->mutex); 2842 2843 nouveau_display(dev)->priv = disp; 2844 nouveau_display(dev)->dtor = nv50_display_destroy; 2845 nouveau_display(dev)->init = nv50_display_init; 2846 nouveau_display(dev)->fini = nv50_display_fini; 2847 disp->disp = &nouveau_display(dev)->disp; 2848 dev->mode_config.funcs = &nv50_disp_func; 2849 dev->mode_config.helper_private = &nv50_disp_helper_func; 2850 dev->mode_config.quirk_addfb_prefer_xbgr_30bpp = true; 2851 dev->mode_config.normalize_zpos = true; 2852 2853 /* small shared memory area we use for notifiers and semaphores */ 2854 ret = nouveau_bo_new(&drm->client, 4096, 0x1000, 2855 NOUVEAU_GEM_DOMAIN_VRAM, 2856 0, 0x0000, NULL, NULL, &disp->sync); 2857 if (!ret) { 2858 ret = nouveau_bo_pin(disp->sync, NOUVEAU_GEM_DOMAIN_VRAM, true); 2859 if (!ret) { 2860 ret = nouveau_bo_map(disp->sync); 2861 if (ret) 2862 nouveau_bo_unpin(disp->sync); 2863 } 2864 if (ret) 2865 nouveau_bo_ref(NULL, &disp->sync); 2866 } 2867 2868 if (ret) 2869 goto out; 2870 2871 /* allocate master evo channel */ 2872 ret = nv50_core_new(drm, &disp->core); 2873 if (ret) 2874 goto out; 2875 2876 disp->core->func->init(disp->core); 2877 if (disp->core->func->caps_init) { 2878 ret = disp->core->func->caps_init(drm, disp); 2879 if (ret) 2880 goto out; 2881 } 2882 2883 /* Assign the correct format modifiers */ 2884 if (disp->disp->object.oclass >= TU102_DISP) 2885 nouveau_display(dev)->format_modifiers = wndwc57e_modifiers; 2886 else 2887 if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_FERMI) 2888 nouveau_display(dev)->format_modifiers = disp90xx_modifiers; 2889 else 2890 nouveau_display(dev)->format_modifiers = disp50xx_modifiers; 2891 2892 /* FIXME: 256x256 cursors are supported on Kepler, however unlike Maxwell and later 2893 * generations Kepler requires that we use small pages (4K) for cursor scanout surfaces. The 2894 * proper fix for this is to teach nouveau to migrate fbs being used for the cursor plane to 2895 * small page allocations in prepare_fb(). When this is implemented, we should also force 2896 * large pages (128K) for ovly fbs in order to fix Kepler ovlys. 2897 * But until then, just limit cursors to 128x128 - which is small enough to avoid ever using 2898 * large pages. 2899 */ 2900 if (disp->disp->object.oclass >= GM107_DISP) { 2901 dev->mode_config.cursor_width = 256; 2902 dev->mode_config.cursor_height = 256; 2903 } else if (disp->disp->object.oclass >= GK104_DISP) { 2904 dev->mode_config.cursor_width = 128; 2905 dev->mode_config.cursor_height = 128; 2906 } else { 2907 dev->mode_config.cursor_width = 64; 2908 dev->mode_config.cursor_height = 64; 2909 } 2910 2911 /* create encoder/connector objects based on VBIOS DCB table */ 2912 for_each_set_bit(i, &disp->disp->outp_mask, sizeof(disp->disp->outp_mask) * 8) { 2913 struct nouveau_encoder *outp; 2914 2915 outp = kzalloc(sizeof(*outp), GFP_KERNEL); 2916 if (!outp) 2917 break; 2918 2919 ret = nvif_outp_ctor(disp->disp, "kmsOutp", i, &outp->outp); 2920 if (ret) { 2921 kfree(outp); 2922 continue; 2923 } 2924 2925 connector = nouveau_connector_create(dev, outp->outp.info.conn); 2926 if (IS_ERR(connector)) { 2927 nvif_outp_dtor(&outp->outp); 2928 kfree(outp); 2929 continue; 2930 } 2931 2932 outp->base.base.possible_crtcs = outp->outp.info.heads; 2933 outp->base.base.possible_clones = 0; 2934 outp->conn = nouveau_connector(connector); 2935 2936 outp->dcb = kzalloc(sizeof(*outp->dcb), GFP_KERNEL); 2937 if (!outp->dcb) 2938 break; 2939 2940 switch (outp->outp.info.proto) { 2941 case NVIF_OUTP_RGB_CRT: 2942 outp->dcb->type = DCB_OUTPUT_ANALOG; 2943 outp->dcb->crtconf.maxfreq = outp->outp.info.rgb_crt.freq_max; 2944 break; 2945 case NVIF_OUTP_TMDS: 2946 outp->dcb->type = DCB_OUTPUT_TMDS; 2947 outp->dcb->duallink_possible = outp->outp.info.tmds.dual; 2948 break; 2949 case NVIF_OUTP_LVDS: 2950 outp->dcb->type = DCB_OUTPUT_LVDS; 2951 outp->dcb->lvdsconf.use_acpi_for_edid = outp->outp.info.lvds.acpi_edid; 2952 break; 2953 case NVIF_OUTP_DP: 2954 outp->dcb->type = DCB_OUTPUT_DP; 2955 outp->dcb->dpconf.link_nr = outp->outp.info.dp.link_nr; 2956 outp->dcb->dpconf.link_bw = outp->outp.info.dp.link_bw; 2957 if (outp->outp.info.dp.mst) 2958 has_mst = true; 2959 break; 2960 default: 2961 WARN_ON(1); 2962 continue; 2963 } 2964 2965 outp->dcb->heads = outp->outp.info.heads; 2966 outp->dcb->connector = outp->outp.info.conn; 2967 outp->dcb->i2c_index = outp->outp.info.ddc; 2968 2969 switch (outp->outp.info.type) { 2970 case NVIF_OUTP_DAC : ret = nv50_dac_create(outp); break; 2971 case NVIF_OUTP_SOR : ret = nv50_sor_create(outp); break; 2972 case NVIF_OUTP_PIOR: ret = nv50_pior_create(outp); break; 2973 default: 2974 WARN_ON(1); 2975 continue; 2976 } 2977 2978 if (ret) { 2979 NV_WARN(drm, "failed to create encoder %d/%d/%d: %d\n", 2980 i, outp->outp.info.type, outp->outp.info.proto, ret); 2981 } 2982 } 2983 2984 /* cull any connectors we created that don't have an encoder */ 2985 list_for_each_entry_safe(connector, tmp, &dev->mode_config.connector_list, head) { 2986 if (connector->possible_encoders) 2987 continue; 2988 2989 NV_WARN(drm, "%s has no encoders, removing\n", 2990 connector->name); 2991 connector->funcs->destroy(connector); 2992 } 2993 2994 /* create crtc objects to represent the hw heads */ 2995 for_each_set_bit(i, &disp->disp->head_mask, sizeof(disp->disp->head_mask) * 8) { 2996 struct nv50_head *head; 2997 2998 head = nv50_head_create(dev, i); 2999 if (IS_ERR(head)) { 3000 ret = PTR_ERR(head); 3001 goto out; 3002 } 3003 3004 if (has_mst) { 3005 head->msto = nv50_msto_new(dev, head, i); 3006 if (IS_ERR(head->msto)) { 3007 ret = PTR_ERR(head->msto); 3008 head->msto = NULL; 3009 goto out; 3010 } 3011 3012 /* 3013 * FIXME: This is a hack to workaround the following 3014 * issues: 3015 * 3016 * https://gitlab.gnome.org/GNOME/mutter/issues/759 3017 * https://gitlab.freedesktop.org/xorg/xserver/merge_requests/277 3018 * 3019 * Once these issues are closed, this should be 3020 * removed 3021 */ 3022 head->msto->encoder.possible_crtcs = disp->disp->head_mask; 3023 } 3024 } 3025 3026 /* Disable vblank irqs aggressively for power-saving, safe on nv50+ */ 3027 dev->vblank_disable_immediate = true; 3028 3029 nv50_audio_component_init(drm); 3030 3031 out: 3032 if (ret) 3033 nv50_display_destroy(dev); 3034 return ret; 3035 } 3036 3037 /****************************************************************************** 3038 * Format modifiers 3039 *****************************************************************************/ 3040 3041 /**************************************************************** 3042 * Log2(block height) ----------------------------+ * 3043 * Page Kind ----------------------------------+ | * 3044 * Gob Height/Page Kind Generation ------+ | | * 3045 * Sector layout -------+ | | | * 3046 * Compression ------+ | | | | */ 3047 const u64 disp50xx_modifiers[] = { /* | | | | | */ 3048 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 0), 3049 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 1), 3050 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 2), 3051 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 3), 3052 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 4), 3053 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 5), 3054 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 0), 3055 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 1), 3056 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 2), 3057 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 3), 3058 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 4), 3059 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 5), 3060 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 0), 3061 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 1), 3062 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 2), 3063 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 3), 3064 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 4), 3065 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 5), 3066 DRM_FORMAT_MOD_LINEAR, 3067 DRM_FORMAT_MOD_INVALID 3068 }; 3069 3070 /**************************************************************** 3071 * Log2(block height) ----------------------------+ * 3072 * Page Kind ----------------------------------+ | * 3073 * Gob Height/Page Kind Generation ------+ | | * 3074 * Sector layout -------+ | | | * 3075 * Compression ------+ | | | | */ 3076 const u64 disp90xx_modifiers[] = { /* | | | | | */ 3077 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 0), 3078 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 1), 3079 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 2), 3080 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 3), 3081 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 4), 3082 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 5), 3083 DRM_FORMAT_MOD_LINEAR, 3084 DRM_FORMAT_MOD_INVALID 3085 }; 3086