xref: /linux/drivers/gpu/drm/nouveau/dispnv50/disp.c (revision 32d7e03d26fd93187c87ed0fbf59ec7023a61404)
1 /*
2  * Copyright 2011 Red Hat Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: Ben Skeggs
23  */
24 #include "disp.h"
25 #include "atom.h"
26 #include "core.h"
27 #include "head.h"
28 #include "wndw.h"
29 #include "handles.h"
30 
31 #include <linux/dma-mapping.h>
32 #include <linux/hdmi.h>
33 #include <linux/component.h>
34 #include <linux/iopoll.h>
35 
36 #include <drm/drm_atomic.h>
37 #include <drm/drm_atomic_helper.h>
38 #include <drm/drm_dp_helper.h>
39 #include <drm/drm_edid.h>
40 #include <drm/drm_fb_helper.h>
41 #include <drm/drm_plane_helper.h>
42 #include <drm/drm_probe_helper.h>
43 #include <drm/drm_scdc_helper.h>
44 #include <drm/drm_vblank.h>
45 
46 #include <nvif/push507c.h>
47 
48 #include <nvif/class.h>
49 #include <nvif/cl0002.h>
50 #include <nvif/cl5070.h>
51 #include <nvif/cl507d.h>
52 #include <nvif/event.h>
53 #include <nvif/timer.h>
54 
55 #include <nvhw/class/cl507c.h>
56 #include <nvhw/class/cl507d.h>
57 #include <nvhw/class/cl837d.h>
58 #include <nvhw/class/cl887d.h>
59 #include <nvhw/class/cl907d.h>
60 #include <nvhw/class/cl917d.h>
61 
62 #include "nouveau_drv.h"
63 #include "nouveau_dma.h"
64 #include "nouveau_gem.h"
65 #include "nouveau_connector.h"
66 #include "nouveau_encoder.h"
67 #include "nouveau_fence.h"
68 #include "nouveau_fbcon.h"
69 
70 #include <subdev/bios/dp.h>
71 
72 /******************************************************************************
73  * EVO channel
74  *****************************************************************************/
75 
76 static int
77 nv50_chan_create(struct nvif_device *device, struct nvif_object *disp,
78 		 const s32 *oclass, u8 head, void *data, u32 size,
79 		 struct nv50_chan *chan)
80 {
81 	struct nvif_sclass *sclass;
82 	int ret, i, n;
83 
84 	chan->device = device;
85 
86 	ret = n = nvif_object_sclass_get(disp, &sclass);
87 	if (ret < 0)
88 		return ret;
89 
90 	while (oclass[0]) {
91 		for (i = 0; i < n; i++) {
92 			if (sclass[i].oclass == oclass[0]) {
93 				ret = nvif_object_ctor(disp, "kmsChan", 0,
94 						       oclass[0], data, size,
95 						       &chan->user);
96 				if (ret == 0)
97 					nvif_object_map(&chan->user, NULL, 0);
98 				nvif_object_sclass_put(&sclass);
99 				return ret;
100 			}
101 		}
102 		oclass++;
103 	}
104 
105 	nvif_object_sclass_put(&sclass);
106 	return -ENOSYS;
107 }
108 
109 static void
110 nv50_chan_destroy(struct nv50_chan *chan)
111 {
112 	nvif_object_dtor(&chan->user);
113 }
114 
115 /******************************************************************************
116  * DMA EVO channel
117  *****************************************************************************/
118 
119 void
120 nv50_dmac_destroy(struct nv50_dmac *dmac)
121 {
122 	nvif_object_dtor(&dmac->vram);
123 	nvif_object_dtor(&dmac->sync);
124 
125 	nv50_chan_destroy(&dmac->base);
126 
127 	nvif_mem_dtor(&dmac->_push.mem);
128 }
129 
130 static void
131 nv50_dmac_kick(struct nvif_push *push)
132 {
133 	struct nv50_dmac *dmac = container_of(push, typeof(*dmac), _push);
134 
135 	dmac->cur = push->cur - (u32 *)dmac->_push.mem.object.map.ptr;
136 	if (dmac->put != dmac->cur) {
137 		/* Push buffer fetches are not coherent with BAR1, we need to ensure
138 		 * writes have been flushed right through to VRAM before writing PUT.
139 		 */
140 		if (dmac->push->mem.type & NVIF_MEM_VRAM) {
141 			struct nvif_device *device = dmac->base.device;
142 			nvif_wr32(&device->object, 0x070000, 0x00000001);
143 			nvif_msec(device, 2000,
144 				if (!(nvif_rd32(&device->object, 0x070000) & 0x00000002))
145 					break;
146 			);
147 		}
148 
149 		NVIF_WV32(&dmac->base.user, NV507C, PUT, PTR, dmac->cur);
150 		dmac->put = dmac->cur;
151 	}
152 
153 	push->bgn = push->cur;
154 }
155 
156 static int
157 nv50_dmac_free(struct nv50_dmac *dmac)
158 {
159 	u32 get = NVIF_RV32(&dmac->base.user, NV507C, GET, PTR);
160 	if (get > dmac->cur) /* NVIDIA stay 5 away from GET, do the same. */
161 		return get - dmac->cur - 5;
162 	return dmac->max - dmac->cur;
163 }
164 
165 static int
166 nv50_dmac_wind(struct nv50_dmac *dmac)
167 {
168 	/* Wait for GET to depart from the beginning of the push buffer to
169 	 * prevent writing PUT == GET, which would be ignored by HW.
170 	 */
171 	u32 get = NVIF_RV32(&dmac->base.user, NV507C, GET, PTR);
172 	if (get == 0) {
173 		/* Corner-case, HW idle, but non-committed work pending. */
174 		if (dmac->put == 0)
175 			nv50_dmac_kick(dmac->push);
176 
177 		if (nvif_msec(dmac->base.device, 2000,
178 			if (NVIF_TV32(&dmac->base.user, NV507C, GET, PTR, >, 0))
179 				break;
180 		) < 0)
181 			return -ETIMEDOUT;
182 	}
183 
184 	PUSH_RSVD(dmac->push, PUSH_JUMP(dmac->push, 0));
185 	dmac->cur = 0;
186 	return 0;
187 }
188 
189 static int
190 nv50_dmac_wait(struct nvif_push *push, u32 size)
191 {
192 	struct nv50_dmac *dmac = container_of(push, typeof(*dmac), _push);
193 	int free;
194 
195 	if (WARN_ON(size > dmac->max))
196 		return -EINVAL;
197 
198 	dmac->cur = push->cur - (u32 *)dmac->_push.mem.object.map.ptr;
199 	if (dmac->cur + size >= dmac->max) {
200 		int ret = nv50_dmac_wind(dmac);
201 		if (ret)
202 			return ret;
203 
204 		push->cur = dmac->_push.mem.object.map.ptr;
205 		push->cur = push->cur + dmac->cur;
206 		nv50_dmac_kick(push);
207 	}
208 
209 	if (nvif_msec(dmac->base.device, 2000,
210 		if ((free = nv50_dmac_free(dmac)) >= size)
211 			break;
212 	) < 0) {
213 		WARN_ON(1);
214 		return -ETIMEDOUT;
215 	}
216 
217 	push->bgn = dmac->_push.mem.object.map.ptr;
218 	push->bgn = push->bgn + dmac->cur;
219 	push->cur = push->bgn;
220 	push->end = push->cur + free;
221 	return 0;
222 }
223 
224 MODULE_PARM_DESC(kms_vram_pushbuf, "Place EVO/NVD push buffers in VRAM (default: auto)");
225 static int nv50_dmac_vram_pushbuf = -1;
226 module_param_named(kms_vram_pushbuf, nv50_dmac_vram_pushbuf, int, 0400);
227 
228 int
229 nv50_dmac_create(struct nvif_device *device, struct nvif_object *disp,
230 		 const s32 *oclass, u8 head, void *data, u32 size, s64 syncbuf,
231 		 struct nv50_dmac *dmac)
232 {
233 	struct nouveau_cli *cli = (void *)device->object.client;
234 	struct nv50_disp_core_channel_dma_v0 *args = data;
235 	u8 type = NVIF_MEM_COHERENT;
236 	int ret;
237 
238 	mutex_init(&dmac->lock);
239 
240 	/* Pascal added support for 47-bit physical addresses, but some
241 	 * parts of EVO still only accept 40-bit PAs.
242 	 *
243 	 * To avoid issues on systems with large amounts of RAM, and on
244 	 * systems where an IOMMU maps pages at a high address, we need
245 	 * to allocate push buffers in VRAM instead.
246 	 *
247 	 * This appears to match NVIDIA's behaviour on Pascal.
248 	 */
249 	if ((nv50_dmac_vram_pushbuf > 0) ||
250 	    (nv50_dmac_vram_pushbuf < 0 && device->info.family == NV_DEVICE_INFO_V0_PASCAL))
251 		type |= NVIF_MEM_VRAM;
252 
253 	ret = nvif_mem_ctor_map(&cli->mmu, "kmsChanPush", type, 0x1000,
254 				&dmac->_push.mem);
255 	if (ret)
256 		return ret;
257 
258 	dmac->ptr = dmac->_push.mem.object.map.ptr;
259 	dmac->_push.wait = nv50_dmac_wait;
260 	dmac->_push.kick = nv50_dmac_kick;
261 	dmac->push = &dmac->_push;
262 	dmac->push->bgn = dmac->_push.mem.object.map.ptr;
263 	dmac->push->cur = dmac->push->bgn;
264 	dmac->push->end = dmac->push->bgn;
265 	dmac->max = 0x1000/4 - 1;
266 
267 	/* EVO channels are affected by a HW bug where the last 12 DWORDs
268 	 * of the push buffer aren't able to be used safely.
269 	 */
270 	if (disp->oclass < GV100_DISP)
271 		dmac->max -= 12;
272 
273 	args->pushbuf = nvif_handle(&dmac->_push.mem.object);
274 
275 	ret = nv50_chan_create(device, disp, oclass, head, data, size,
276 			       &dmac->base);
277 	if (ret)
278 		return ret;
279 
280 	if (syncbuf < 0)
281 		return 0;
282 
283 	ret = nvif_object_ctor(&dmac->base.user, "kmsSyncCtxDma", NV50_DISP_HANDLE_SYNCBUF,
284 			       NV_DMA_IN_MEMORY,
285 			       &(struct nv_dma_v0) {
286 					.target = NV_DMA_V0_TARGET_VRAM,
287 					.access = NV_DMA_V0_ACCESS_RDWR,
288 					.start = syncbuf + 0x0000,
289 					.limit = syncbuf + 0x0fff,
290 			       }, sizeof(struct nv_dma_v0),
291 			       &dmac->sync);
292 	if (ret)
293 		return ret;
294 
295 	ret = nvif_object_ctor(&dmac->base.user, "kmsVramCtxDma", NV50_DISP_HANDLE_VRAM,
296 			       NV_DMA_IN_MEMORY,
297 			       &(struct nv_dma_v0) {
298 					.target = NV_DMA_V0_TARGET_VRAM,
299 					.access = NV_DMA_V0_ACCESS_RDWR,
300 					.start = 0,
301 					.limit = device->info.ram_user - 1,
302 			       }, sizeof(struct nv_dma_v0),
303 			       &dmac->vram);
304 	if (ret)
305 		return ret;
306 
307 	return ret;
308 }
309 
310 /******************************************************************************
311  * Output path helpers
312  *****************************************************************************/
313 static void
314 nv50_outp_dump_caps(struct nouveau_drm *drm,
315 		    struct nouveau_encoder *outp)
316 {
317 	NV_DEBUG(drm, "%s caps: dp_interlace=%d\n",
318 		 outp->base.base.name, outp->caps.dp_interlace);
319 }
320 
321 static void
322 nv50_outp_release(struct nouveau_encoder *nv_encoder)
323 {
324 	struct nv50_disp *disp = nv50_disp(nv_encoder->base.base.dev);
325 	struct {
326 		struct nv50_disp_mthd_v1 base;
327 	} args = {
328 		.base.version = 1,
329 		.base.method = NV50_DISP_MTHD_V1_RELEASE,
330 		.base.hasht  = nv_encoder->dcb->hasht,
331 		.base.hashm  = nv_encoder->dcb->hashm,
332 	};
333 
334 	nvif_mthd(&disp->disp->object, 0, &args, sizeof(args));
335 	nv_encoder->or = -1;
336 	nv_encoder->link = 0;
337 }
338 
339 static int
340 nv50_outp_acquire(struct nouveau_encoder *nv_encoder, bool hda)
341 {
342 	struct nouveau_drm *drm = nouveau_drm(nv_encoder->base.base.dev);
343 	struct nv50_disp *disp = nv50_disp(drm->dev);
344 	struct {
345 		struct nv50_disp_mthd_v1 base;
346 		struct nv50_disp_acquire_v0 info;
347 	} args = {
348 		.base.version = 1,
349 		.base.method = NV50_DISP_MTHD_V1_ACQUIRE,
350 		.base.hasht  = nv_encoder->dcb->hasht,
351 		.base.hashm  = nv_encoder->dcb->hashm,
352 		.info.hda = hda,
353 	};
354 	int ret;
355 
356 	ret = nvif_mthd(&disp->disp->object, 0, &args, sizeof(args));
357 	if (ret) {
358 		NV_ERROR(drm, "error acquiring output path: %d\n", ret);
359 		return ret;
360 	}
361 
362 	nv_encoder->or = args.info.or;
363 	nv_encoder->link = args.info.link;
364 	return 0;
365 }
366 
367 static int
368 nv50_outp_atomic_check_view(struct drm_encoder *encoder,
369 			    struct drm_crtc_state *crtc_state,
370 			    struct drm_connector_state *conn_state,
371 			    struct drm_display_mode *native_mode)
372 {
373 	struct drm_display_mode *adjusted_mode = &crtc_state->adjusted_mode;
374 	struct drm_display_mode *mode = &crtc_state->mode;
375 	struct drm_connector *connector = conn_state->connector;
376 	struct nouveau_conn_atom *asyc = nouveau_conn_atom(conn_state);
377 	struct nouveau_drm *drm = nouveau_drm(encoder->dev);
378 
379 	NV_ATOMIC(drm, "%s atomic_check\n", encoder->name);
380 	asyc->scaler.full = false;
381 	if (!native_mode)
382 		return 0;
383 
384 	if (asyc->scaler.mode == DRM_MODE_SCALE_NONE) {
385 		switch (connector->connector_type) {
386 		case DRM_MODE_CONNECTOR_LVDS:
387 		case DRM_MODE_CONNECTOR_eDP:
388 			/* Don't force scaler for EDID modes with
389 			 * same size as the native one (e.g. different
390 			 * refresh rate)
391 			 */
392 			if (mode->hdisplay == native_mode->hdisplay &&
393 			    mode->vdisplay == native_mode->vdisplay &&
394 			    mode->type & DRM_MODE_TYPE_DRIVER)
395 				break;
396 			mode = native_mode;
397 			asyc->scaler.full = true;
398 			break;
399 		default:
400 			break;
401 		}
402 	} else {
403 		mode = native_mode;
404 	}
405 
406 	if (!drm_mode_equal(adjusted_mode, mode)) {
407 		drm_mode_copy(adjusted_mode, mode);
408 		crtc_state->mode_changed = true;
409 	}
410 
411 	return 0;
412 }
413 
414 static int
415 nv50_outp_atomic_check(struct drm_encoder *encoder,
416 		       struct drm_crtc_state *crtc_state,
417 		       struct drm_connector_state *conn_state)
418 {
419 	struct drm_connector *connector = conn_state->connector;
420 	struct nouveau_connector *nv_connector = nouveau_connector(connector);
421 	struct nv50_head_atom *asyh = nv50_head_atom(crtc_state);
422 	int ret;
423 
424 	ret = nv50_outp_atomic_check_view(encoder, crtc_state, conn_state,
425 					  nv_connector->native_mode);
426 	if (ret)
427 		return ret;
428 
429 	if (crtc_state->mode_changed || crtc_state->connectors_changed)
430 		asyh->or.bpc = connector->display_info.bpc;
431 
432 	return 0;
433 }
434 
435 struct nouveau_connector *
436 nv50_outp_get_new_connector(struct drm_atomic_state *state, struct nouveau_encoder *outp)
437 {
438 	struct drm_connector *connector;
439 	struct drm_connector_state *connector_state;
440 	struct drm_encoder *encoder = to_drm_encoder(outp);
441 	int i;
442 
443 	for_each_new_connector_in_state(state, connector, connector_state, i) {
444 		if (connector_state->best_encoder == encoder)
445 			return nouveau_connector(connector);
446 	}
447 
448 	return NULL;
449 }
450 
451 struct nouveau_connector *
452 nv50_outp_get_old_connector(struct drm_atomic_state *state, struct nouveau_encoder *outp)
453 {
454 	struct drm_connector *connector;
455 	struct drm_connector_state *connector_state;
456 	struct drm_encoder *encoder = to_drm_encoder(outp);
457 	int i;
458 
459 	for_each_old_connector_in_state(state, connector, connector_state, i) {
460 		if (connector_state->best_encoder == encoder)
461 			return nouveau_connector(connector);
462 	}
463 
464 	return NULL;
465 }
466 
467 static struct nouveau_crtc *
468 nv50_outp_get_new_crtc(const struct drm_atomic_state *state, const struct nouveau_encoder *outp)
469 {
470 	struct drm_crtc *crtc;
471 	struct drm_crtc_state *crtc_state;
472 	const u32 mask = drm_encoder_mask(&outp->base.base);
473 	int i;
474 
475 	for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
476 		if (crtc_state->encoder_mask & mask)
477 			return nouveau_crtc(crtc);
478 	}
479 
480 	return NULL;
481 }
482 
483 /******************************************************************************
484  * DAC
485  *****************************************************************************/
486 static void
487 nv50_dac_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state)
488 {
489 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
490 	struct nv50_core *core = nv50_disp(encoder->dev)->core;
491 	const u32 ctrl = NVDEF(NV507D, DAC_SET_CONTROL, OWNER, NONE);
492 
493 	core->func->dac->ctrl(core, nv_encoder->or, ctrl, NULL);
494 	nv_encoder->crtc = NULL;
495 	nv50_outp_release(nv_encoder);
496 }
497 
498 static void
499 nv50_dac_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state)
500 {
501 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
502 	struct nouveau_crtc *nv_crtc = nv50_outp_get_new_crtc(state, nv_encoder);
503 	struct nv50_head_atom *asyh =
504 		nv50_head_atom(drm_atomic_get_new_crtc_state(state, &nv_crtc->base));
505 	struct nv50_core *core = nv50_disp(encoder->dev)->core;
506 	u32 ctrl = 0;
507 
508 	switch (nv_crtc->index) {
509 	case 0: ctrl |= NVDEF(NV507D, DAC_SET_CONTROL, OWNER, HEAD0); break;
510 	case 1: ctrl |= NVDEF(NV507D, DAC_SET_CONTROL, OWNER, HEAD1); break;
511 	case 2: ctrl |= NVDEF(NV907D, DAC_SET_CONTROL, OWNER_MASK, HEAD2); break;
512 	case 3: ctrl |= NVDEF(NV907D, DAC_SET_CONTROL, OWNER_MASK, HEAD3); break;
513 	default:
514 		WARN_ON(1);
515 		break;
516 	}
517 
518 	ctrl |= NVDEF(NV507D, DAC_SET_CONTROL, PROTOCOL, RGB_CRT);
519 
520 	nv50_outp_acquire(nv_encoder, false);
521 
522 	core->func->dac->ctrl(core, nv_encoder->or, ctrl, asyh);
523 	asyh->or.depth = 0;
524 
525 	nv_encoder->crtc = &nv_crtc->base;
526 }
527 
528 static enum drm_connector_status
529 nv50_dac_detect(struct drm_encoder *encoder, struct drm_connector *connector)
530 {
531 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
532 	struct nv50_disp *disp = nv50_disp(encoder->dev);
533 	struct {
534 		struct nv50_disp_mthd_v1 base;
535 		struct nv50_disp_dac_load_v0 load;
536 	} args = {
537 		.base.version = 1,
538 		.base.method = NV50_DISP_MTHD_V1_DAC_LOAD,
539 		.base.hasht  = nv_encoder->dcb->hasht,
540 		.base.hashm  = nv_encoder->dcb->hashm,
541 	};
542 	int ret;
543 
544 	args.load.data = nouveau_drm(encoder->dev)->vbios.dactestval;
545 	if (args.load.data == 0)
546 		args.load.data = 340;
547 
548 	ret = nvif_mthd(&disp->disp->object, 0, &args, sizeof(args));
549 	if (ret || !args.load.load)
550 		return connector_status_disconnected;
551 
552 	return connector_status_connected;
553 }
554 
555 static const struct drm_encoder_helper_funcs
556 nv50_dac_help = {
557 	.atomic_check = nv50_outp_atomic_check,
558 	.atomic_enable = nv50_dac_atomic_enable,
559 	.atomic_disable = nv50_dac_atomic_disable,
560 	.detect = nv50_dac_detect
561 };
562 
563 static void
564 nv50_dac_destroy(struct drm_encoder *encoder)
565 {
566 	drm_encoder_cleanup(encoder);
567 	kfree(encoder);
568 }
569 
570 static const struct drm_encoder_funcs
571 nv50_dac_func = {
572 	.destroy = nv50_dac_destroy,
573 };
574 
575 static int
576 nv50_dac_create(struct drm_connector *connector, struct dcb_output *dcbe)
577 {
578 	struct nouveau_drm *drm = nouveau_drm(connector->dev);
579 	struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device);
580 	struct nvkm_i2c_bus *bus;
581 	struct nouveau_encoder *nv_encoder;
582 	struct drm_encoder *encoder;
583 	int type = DRM_MODE_ENCODER_DAC;
584 
585 	nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
586 	if (!nv_encoder)
587 		return -ENOMEM;
588 	nv_encoder->dcb = dcbe;
589 
590 	bus = nvkm_i2c_bus_find(i2c, dcbe->i2c_index);
591 	if (bus)
592 		nv_encoder->i2c = &bus->i2c;
593 
594 	encoder = to_drm_encoder(nv_encoder);
595 	encoder->possible_crtcs = dcbe->heads;
596 	encoder->possible_clones = 0;
597 	drm_encoder_init(connector->dev, encoder, &nv50_dac_func, type,
598 			 "dac-%04x-%04x", dcbe->hasht, dcbe->hashm);
599 	drm_encoder_helper_add(encoder, &nv50_dac_help);
600 
601 	drm_connector_attach_encoder(connector, encoder);
602 	return 0;
603 }
604 
605 /*
606  * audio component binding for ELD notification
607  */
608 static void
609 nv50_audio_component_eld_notify(struct drm_audio_component *acomp, int port,
610 				int dev_id)
611 {
612 	if (acomp && acomp->audio_ops && acomp->audio_ops->pin_eld_notify)
613 		acomp->audio_ops->pin_eld_notify(acomp->audio_ops->audio_ptr,
614 						 port, dev_id);
615 }
616 
617 static int
618 nv50_audio_component_get_eld(struct device *kdev, int port, int dev_id,
619 			     bool *enabled, unsigned char *buf, int max_bytes)
620 {
621 	struct drm_device *drm_dev = dev_get_drvdata(kdev);
622 	struct nouveau_drm *drm = nouveau_drm(drm_dev);
623 	struct drm_encoder *encoder;
624 	struct nouveau_encoder *nv_encoder;
625 	struct nouveau_crtc *nv_crtc;
626 	int ret = 0;
627 
628 	*enabled = false;
629 
630 	mutex_lock(&drm->audio.lock);
631 
632 	drm_for_each_encoder(encoder, drm->dev) {
633 		struct nouveau_connector *nv_connector = NULL;
634 
635 		if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST)
636 			continue; /* TODO */
637 
638 		nv_encoder = nouveau_encoder(encoder);
639 		nv_connector = nouveau_connector(nv_encoder->audio.connector);
640 		nv_crtc = nouveau_crtc(nv_encoder->crtc);
641 
642 		if (!nv_crtc || nv_encoder->or != port || nv_crtc->index != dev_id)
643 			continue;
644 
645 		*enabled = nv_encoder->audio.enabled;
646 		if (*enabled) {
647 			ret = drm_eld_size(nv_connector->base.eld);
648 			memcpy(buf, nv_connector->base.eld,
649 			       min(max_bytes, ret));
650 		}
651 		break;
652 	}
653 
654 	mutex_unlock(&drm->audio.lock);
655 
656 	return ret;
657 }
658 
659 static const struct drm_audio_component_ops nv50_audio_component_ops = {
660 	.get_eld = nv50_audio_component_get_eld,
661 };
662 
663 static int
664 nv50_audio_component_bind(struct device *kdev, struct device *hda_kdev,
665 			  void *data)
666 {
667 	struct drm_device *drm_dev = dev_get_drvdata(kdev);
668 	struct nouveau_drm *drm = nouveau_drm(drm_dev);
669 	struct drm_audio_component *acomp = data;
670 
671 	if (WARN_ON(!device_link_add(hda_kdev, kdev, DL_FLAG_STATELESS)))
672 		return -ENOMEM;
673 
674 	drm_modeset_lock_all(drm_dev);
675 	acomp->ops = &nv50_audio_component_ops;
676 	acomp->dev = kdev;
677 	drm->audio.component = acomp;
678 	drm_modeset_unlock_all(drm_dev);
679 	return 0;
680 }
681 
682 static void
683 nv50_audio_component_unbind(struct device *kdev, struct device *hda_kdev,
684 			    void *data)
685 {
686 	struct drm_device *drm_dev = dev_get_drvdata(kdev);
687 	struct nouveau_drm *drm = nouveau_drm(drm_dev);
688 	struct drm_audio_component *acomp = data;
689 
690 	drm_modeset_lock_all(drm_dev);
691 	drm->audio.component = NULL;
692 	acomp->ops = NULL;
693 	acomp->dev = NULL;
694 	drm_modeset_unlock_all(drm_dev);
695 }
696 
697 static const struct component_ops nv50_audio_component_bind_ops = {
698 	.bind   = nv50_audio_component_bind,
699 	.unbind = nv50_audio_component_unbind,
700 };
701 
702 static void
703 nv50_audio_component_init(struct nouveau_drm *drm)
704 {
705 	if (component_add(drm->dev->dev, &nv50_audio_component_bind_ops))
706 		return;
707 
708 	drm->audio.component_registered = true;
709 	mutex_init(&drm->audio.lock);
710 }
711 
712 static void
713 nv50_audio_component_fini(struct nouveau_drm *drm)
714 {
715 	if (!drm->audio.component_registered)
716 		return;
717 
718 	component_del(drm->dev->dev, &nv50_audio_component_bind_ops);
719 	drm->audio.component_registered = false;
720 	mutex_destroy(&drm->audio.lock);
721 }
722 
723 /******************************************************************************
724  * Audio
725  *****************************************************************************/
726 static void
727 nv50_audio_disable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc)
728 {
729 	struct nouveau_drm *drm = nouveau_drm(encoder->dev);
730 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
731 	struct nv50_disp *disp = nv50_disp(encoder->dev);
732 	struct {
733 		struct nv50_disp_mthd_v1 base;
734 		struct nv50_disp_sor_hda_eld_v0 eld;
735 	} args = {
736 		.base.version = 1,
737 		.base.method  = NV50_DISP_MTHD_V1_SOR_HDA_ELD,
738 		.base.hasht   = nv_encoder->dcb->hasht,
739 		.base.hashm   = (0xf0ff & nv_encoder->dcb->hashm) |
740 				(0x0100 << nv_crtc->index),
741 	};
742 
743 	mutex_lock(&drm->audio.lock);
744 	if (nv_encoder->audio.enabled) {
745 		nv_encoder->audio.enabled = false;
746 		nv_encoder->audio.connector = NULL;
747 		nvif_mthd(&disp->disp->object, 0, &args, sizeof(args));
748 	}
749 	mutex_unlock(&drm->audio.lock);
750 
751 	nv50_audio_component_eld_notify(drm->audio.component, nv_encoder->or,
752 					nv_crtc->index);
753 }
754 
755 static void
756 nv50_audio_enable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc,
757 		  struct nouveau_connector *nv_connector, struct drm_atomic_state *state,
758 		  struct drm_display_mode *mode)
759 {
760 	struct nouveau_drm *drm = nouveau_drm(encoder->dev);
761 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
762 	struct nv50_disp *disp = nv50_disp(encoder->dev);
763 	struct __packed {
764 		struct {
765 			struct nv50_disp_mthd_v1 mthd;
766 			struct nv50_disp_sor_hda_eld_v0 eld;
767 		} base;
768 		u8 data[sizeof(nv_connector->base.eld)];
769 	} args = {
770 		.base.mthd.version = 1,
771 		.base.mthd.method  = NV50_DISP_MTHD_V1_SOR_HDA_ELD,
772 		.base.mthd.hasht   = nv_encoder->dcb->hasht,
773 		.base.mthd.hashm   = (0xf0ff & nv_encoder->dcb->hashm) |
774 				     (0x0100 << nv_crtc->index),
775 	};
776 
777 	if (!drm_detect_monitor_audio(nv_connector->edid))
778 		return;
779 
780 	mutex_lock(&drm->audio.lock);
781 
782 	memcpy(args.data, nv_connector->base.eld, sizeof(args.data));
783 
784 	nvif_mthd(&disp->disp->object, 0, &args,
785 		  sizeof(args.base) + drm_eld_size(args.data));
786 	nv_encoder->audio.enabled = true;
787 	nv_encoder->audio.connector = &nv_connector->base;
788 
789 	mutex_unlock(&drm->audio.lock);
790 
791 	nv50_audio_component_eld_notify(drm->audio.component, nv_encoder->or,
792 					nv_crtc->index);
793 }
794 
795 /******************************************************************************
796  * HDMI
797  *****************************************************************************/
798 static void
799 nv50_hdmi_disable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc)
800 {
801 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
802 	struct nv50_disp *disp = nv50_disp(encoder->dev);
803 	struct {
804 		struct nv50_disp_mthd_v1 base;
805 		struct nv50_disp_sor_hdmi_pwr_v0 pwr;
806 	} args = {
807 		.base.version = 1,
808 		.base.method = NV50_DISP_MTHD_V1_SOR_HDMI_PWR,
809 		.base.hasht  = nv_encoder->dcb->hasht,
810 		.base.hashm  = (0xf0ff & nv_encoder->dcb->hashm) |
811 			       (0x0100 << nv_crtc->index),
812 	};
813 
814 	nvif_mthd(&disp->disp->object, 0, &args, sizeof(args));
815 }
816 
817 static void
818 nv50_hdmi_enable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc,
819 		 struct nouveau_connector *nv_connector, struct drm_atomic_state *state,
820 		 struct drm_display_mode *mode)
821 {
822 	struct nouveau_drm *drm = nouveau_drm(encoder->dev);
823 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
824 	struct nv50_disp *disp = nv50_disp(encoder->dev);
825 	struct {
826 		struct nv50_disp_mthd_v1 base;
827 		struct nv50_disp_sor_hdmi_pwr_v0 pwr;
828 		u8 infoframes[2 * 17]; /* two frames, up to 17 bytes each */
829 	} args = {
830 		.base.version = 1,
831 		.base.method = NV50_DISP_MTHD_V1_SOR_HDMI_PWR,
832 		.base.hasht  = nv_encoder->dcb->hasht,
833 		.base.hashm  = (0xf0ff & nv_encoder->dcb->hashm) |
834 			       (0x0100 << nv_crtc->index),
835 		.pwr.state = 1,
836 		.pwr.rekey = 56, /* binary driver, and tegra, constant */
837 	};
838 	struct drm_hdmi_info *hdmi;
839 	u32 max_ac_packet;
840 	union hdmi_infoframe avi_frame;
841 	union hdmi_infoframe vendor_frame;
842 	bool high_tmds_clock_ratio = false, scrambling = false;
843 	u8 config;
844 	int ret;
845 	int size;
846 
847 	if (!drm_detect_hdmi_monitor(nv_connector->edid))
848 		return;
849 
850 	hdmi = &nv_connector->base.display_info.hdmi;
851 
852 	ret = drm_hdmi_avi_infoframe_from_display_mode(&avi_frame.avi,
853 						       &nv_connector->base, mode);
854 	if (!ret) {
855 		/* We have an AVI InfoFrame, populate it to the display */
856 		args.pwr.avi_infoframe_length
857 			= hdmi_infoframe_pack(&avi_frame, args.infoframes, 17);
858 	}
859 
860 	ret = drm_hdmi_vendor_infoframe_from_display_mode(&vendor_frame.vendor.hdmi,
861 							  &nv_connector->base, mode);
862 	if (!ret) {
863 		/* We have a Vendor InfoFrame, populate it to the display */
864 		args.pwr.vendor_infoframe_length
865 			= hdmi_infoframe_pack(&vendor_frame,
866 					      args.infoframes
867 					      + args.pwr.avi_infoframe_length,
868 					      17);
869 	}
870 
871 	max_ac_packet  = mode->htotal - mode->hdisplay;
872 	max_ac_packet -= args.pwr.rekey;
873 	max_ac_packet -= 18; /* constant from tegra */
874 	args.pwr.max_ac_packet = max_ac_packet / 32;
875 
876 	if (hdmi->scdc.scrambling.supported) {
877 		high_tmds_clock_ratio = mode->clock > 340000;
878 		scrambling = high_tmds_clock_ratio ||
879 			hdmi->scdc.scrambling.low_rates;
880 	}
881 
882 	args.pwr.scdc =
883 		NV50_DISP_SOR_HDMI_PWR_V0_SCDC_SCRAMBLE * scrambling |
884 		NV50_DISP_SOR_HDMI_PWR_V0_SCDC_DIV_BY_4 * high_tmds_clock_ratio;
885 
886 	size = sizeof(args.base)
887 		+ sizeof(args.pwr)
888 		+ args.pwr.avi_infoframe_length
889 		+ args.pwr.vendor_infoframe_length;
890 	nvif_mthd(&disp->disp->object, 0, &args, size);
891 
892 	nv50_audio_enable(encoder, nv_crtc, nv_connector, state, mode);
893 
894 	/* If SCDC is supported by the downstream monitor, update
895 	 * divider / scrambling settings to what we programmed above.
896 	 */
897 	if (!hdmi->scdc.scrambling.supported)
898 		return;
899 
900 	ret = drm_scdc_readb(nv_encoder->i2c, SCDC_TMDS_CONFIG, &config);
901 	if (ret < 0) {
902 		NV_ERROR(drm, "Failure to read SCDC_TMDS_CONFIG: %d\n", ret);
903 		return;
904 	}
905 	config &= ~(SCDC_TMDS_BIT_CLOCK_RATIO_BY_40 | SCDC_SCRAMBLING_ENABLE);
906 	config |= SCDC_TMDS_BIT_CLOCK_RATIO_BY_40 * high_tmds_clock_ratio;
907 	config |= SCDC_SCRAMBLING_ENABLE * scrambling;
908 	ret = drm_scdc_writeb(nv_encoder->i2c, SCDC_TMDS_CONFIG, config);
909 	if (ret < 0)
910 		NV_ERROR(drm, "Failure to write SCDC_TMDS_CONFIG = 0x%02x: %d\n",
911 			 config, ret);
912 }
913 
914 /******************************************************************************
915  * MST
916  *****************************************************************************/
917 #define nv50_mstm(p) container_of((p), struct nv50_mstm, mgr)
918 #define nv50_mstc(p) container_of((p), struct nv50_mstc, connector)
919 #define nv50_msto(p) container_of((p), struct nv50_msto, encoder)
920 
921 struct nv50_mstc {
922 	struct nv50_mstm *mstm;
923 	struct drm_dp_mst_port *port;
924 	struct drm_connector connector;
925 
926 	struct drm_display_mode *native;
927 	struct edid *edid;
928 };
929 
930 struct nv50_msto {
931 	struct drm_encoder encoder;
932 
933 	/* head is statically assigned on msto creation */
934 	struct nv50_head *head;
935 	struct nv50_mstc *mstc;
936 	bool disabled;
937 };
938 
939 struct nouveau_encoder *nv50_real_outp(struct drm_encoder *encoder)
940 {
941 	struct nv50_msto *msto;
942 
943 	if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST)
944 		return nouveau_encoder(encoder);
945 
946 	msto = nv50_msto(encoder);
947 	if (!msto->mstc)
948 		return NULL;
949 	return msto->mstc->mstm->outp;
950 }
951 
952 static struct drm_dp_payload *
953 nv50_msto_payload(struct nv50_msto *msto)
954 {
955 	struct nouveau_drm *drm = nouveau_drm(msto->encoder.dev);
956 	struct nv50_mstc *mstc = msto->mstc;
957 	struct nv50_mstm *mstm = mstc->mstm;
958 	int vcpi = mstc->port->vcpi.vcpi, i;
959 
960 	WARN_ON(!mutex_is_locked(&mstm->mgr.payload_lock));
961 
962 	NV_ATOMIC(drm, "%s: vcpi %d\n", msto->encoder.name, vcpi);
963 	for (i = 0; i < mstm->mgr.max_payloads; i++) {
964 		struct drm_dp_payload *payload = &mstm->mgr.payloads[i];
965 		NV_ATOMIC(drm, "%s: %d: vcpi %d start 0x%02x slots 0x%02x\n",
966 			  mstm->outp->base.base.name, i, payload->vcpi,
967 			  payload->start_slot, payload->num_slots);
968 	}
969 
970 	for (i = 0; i < mstm->mgr.max_payloads; i++) {
971 		struct drm_dp_payload *payload = &mstm->mgr.payloads[i];
972 		if (payload->vcpi == vcpi)
973 			return payload;
974 	}
975 
976 	return NULL;
977 }
978 
979 static void
980 nv50_msto_cleanup(struct nv50_msto *msto)
981 {
982 	struct nouveau_drm *drm = nouveau_drm(msto->encoder.dev);
983 	struct nv50_mstc *mstc = msto->mstc;
984 	struct nv50_mstm *mstm = mstc->mstm;
985 
986 	if (!msto->disabled)
987 		return;
988 
989 	NV_ATOMIC(drm, "%s: msto cleanup\n", msto->encoder.name);
990 
991 	drm_dp_mst_deallocate_vcpi(&mstm->mgr, mstc->port);
992 
993 	msto->mstc = NULL;
994 	msto->disabled = false;
995 }
996 
997 static void
998 nv50_msto_prepare(struct nv50_msto *msto)
999 {
1000 	struct nouveau_drm *drm = nouveau_drm(msto->encoder.dev);
1001 	struct nv50_mstc *mstc = msto->mstc;
1002 	struct nv50_mstm *mstm = mstc->mstm;
1003 	struct {
1004 		struct nv50_disp_mthd_v1 base;
1005 		struct nv50_disp_sor_dp_mst_vcpi_v0 vcpi;
1006 	} args = {
1007 		.base.version = 1,
1008 		.base.method = NV50_DISP_MTHD_V1_SOR_DP_MST_VCPI,
1009 		.base.hasht  = mstm->outp->dcb->hasht,
1010 		.base.hashm  = (0xf0ff & mstm->outp->dcb->hashm) |
1011 			       (0x0100 << msto->head->base.index),
1012 	};
1013 
1014 	mutex_lock(&mstm->mgr.payload_lock);
1015 
1016 	NV_ATOMIC(drm, "%s: msto prepare\n", msto->encoder.name);
1017 	if (mstc->port->vcpi.vcpi > 0) {
1018 		struct drm_dp_payload *payload = nv50_msto_payload(msto);
1019 		if (payload) {
1020 			args.vcpi.start_slot = payload->start_slot;
1021 			args.vcpi.num_slots = payload->num_slots;
1022 			args.vcpi.pbn = mstc->port->vcpi.pbn;
1023 			args.vcpi.aligned_pbn = mstc->port->vcpi.aligned_pbn;
1024 		}
1025 	}
1026 
1027 	NV_ATOMIC(drm, "%s: %s: %02x %02x %04x %04x\n",
1028 		  msto->encoder.name, msto->head->base.base.name,
1029 		  args.vcpi.start_slot, args.vcpi.num_slots,
1030 		  args.vcpi.pbn, args.vcpi.aligned_pbn);
1031 
1032 	nvif_mthd(&drm->display->disp.object, 0, &args, sizeof(args));
1033 	mutex_unlock(&mstm->mgr.payload_lock);
1034 }
1035 
1036 static int
1037 nv50_msto_atomic_check(struct drm_encoder *encoder,
1038 		       struct drm_crtc_state *crtc_state,
1039 		       struct drm_connector_state *conn_state)
1040 {
1041 	struct drm_atomic_state *state = crtc_state->state;
1042 	struct drm_connector *connector = conn_state->connector;
1043 	struct nv50_mstc *mstc = nv50_mstc(connector);
1044 	struct nv50_mstm *mstm = mstc->mstm;
1045 	struct nv50_head_atom *asyh = nv50_head_atom(crtc_state);
1046 	int slots;
1047 	int ret;
1048 
1049 	ret = nv50_outp_atomic_check_view(encoder, crtc_state, conn_state,
1050 					  mstc->native);
1051 	if (ret)
1052 		return ret;
1053 
1054 	if (!crtc_state->mode_changed && !crtc_state->connectors_changed)
1055 		return 0;
1056 
1057 	/*
1058 	 * When restoring duplicated states, we need to make sure that the bw
1059 	 * remains the same and avoid recalculating it, as the connector's bpc
1060 	 * may have changed after the state was duplicated
1061 	 */
1062 	if (!state->duplicated) {
1063 		const int clock = crtc_state->adjusted_mode.clock;
1064 
1065 		asyh->or.bpc = connector->display_info.bpc;
1066 		asyh->dp.pbn = drm_dp_calc_pbn_mode(clock, asyh->or.bpc * 3,
1067 						    false);
1068 	}
1069 
1070 	slots = drm_dp_atomic_find_vcpi_slots(state, &mstm->mgr, mstc->port,
1071 					      asyh->dp.pbn, 0);
1072 	if (slots < 0)
1073 		return slots;
1074 
1075 	asyh->dp.tu = slots;
1076 
1077 	return 0;
1078 }
1079 
1080 static u8
1081 nv50_dp_bpc_to_depth(unsigned int bpc)
1082 {
1083 	switch (bpc) {
1084 	case  6: return NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_BPP_18_444;
1085 	case  8: return NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_BPP_24_444;
1086 	case 10:
1087 	default: return NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_BPP_30_444;
1088 	}
1089 }
1090 
1091 static void
1092 nv50_msto_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state)
1093 {
1094 	struct nv50_msto *msto = nv50_msto(encoder);
1095 	struct nv50_head *head = msto->head;
1096 	struct nv50_head_atom *asyh =
1097 		nv50_head_atom(drm_atomic_get_new_crtc_state(state, &head->base.base));
1098 	struct nv50_mstc *mstc = NULL;
1099 	struct nv50_mstm *mstm = NULL;
1100 	struct drm_connector *connector;
1101 	struct drm_connector_list_iter conn_iter;
1102 	u8 proto;
1103 	bool r;
1104 
1105 	drm_connector_list_iter_begin(encoder->dev, &conn_iter);
1106 	drm_for_each_connector_iter(connector, &conn_iter) {
1107 		if (connector->state->best_encoder == &msto->encoder) {
1108 			mstc = nv50_mstc(connector);
1109 			mstm = mstc->mstm;
1110 			break;
1111 		}
1112 	}
1113 	drm_connector_list_iter_end(&conn_iter);
1114 
1115 	if (WARN_ON(!mstc))
1116 		return;
1117 
1118 	r = drm_dp_mst_allocate_vcpi(&mstm->mgr, mstc->port, asyh->dp.pbn, asyh->dp.tu);
1119 	if (!r)
1120 		DRM_DEBUG_KMS("Failed to allocate VCPI\n");
1121 
1122 	if (!mstm->links++)
1123 		nv50_outp_acquire(mstm->outp, false /*XXX: MST audio.*/);
1124 
1125 	if (mstm->outp->link & 1)
1126 		proto = NV917D_SOR_SET_CONTROL_PROTOCOL_DP_A;
1127 	else
1128 		proto = NV917D_SOR_SET_CONTROL_PROTOCOL_DP_B;
1129 
1130 	mstm->outp->update(mstm->outp, head->base.index, asyh, proto,
1131 			   nv50_dp_bpc_to_depth(asyh->or.bpc));
1132 
1133 	msto->mstc = mstc;
1134 	mstm->modified = true;
1135 }
1136 
1137 static void
1138 nv50_msto_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state)
1139 {
1140 	struct nv50_msto *msto = nv50_msto(encoder);
1141 	struct nv50_mstc *mstc = msto->mstc;
1142 	struct nv50_mstm *mstm = mstc->mstm;
1143 
1144 	drm_dp_mst_reset_vcpi_slots(&mstm->mgr, mstc->port);
1145 
1146 	mstm->outp->update(mstm->outp, msto->head->base.index, NULL, 0, 0);
1147 	mstm->modified = true;
1148 	if (!--mstm->links)
1149 		mstm->disabled = true;
1150 	msto->disabled = true;
1151 }
1152 
1153 static const struct drm_encoder_helper_funcs
1154 nv50_msto_help = {
1155 	.atomic_disable = nv50_msto_atomic_disable,
1156 	.atomic_enable = nv50_msto_atomic_enable,
1157 	.atomic_check = nv50_msto_atomic_check,
1158 };
1159 
1160 static void
1161 nv50_msto_destroy(struct drm_encoder *encoder)
1162 {
1163 	struct nv50_msto *msto = nv50_msto(encoder);
1164 	drm_encoder_cleanup(&msto->encoder);
1165 	kfree(msto);
1166 }
1167 
1168 static const struct drm_encoder_funcs
1169 nv50_msto = {
1170 	.destroy = nv50_msto_destroy,
1171 };
1172 
1173 static struct nv50_msto *
1174 nv50_msto_new(struct drm_device *dev, struct nv50_head *head, int id)
1175 {
1176 	struct nv50_msto *msto;
1177 	int ret;
1178 
1179 	msto = kzalloc(sizeof(*msto), GFP_KERNEL);
1180 	if (!msto)
1181 		return ERR_PTR(-ENOMEM);
1182 
1183 	ret = drm_encoder_init(dev, &msto->encoder, &nv50_msto,
1184 			       DRM_MODE_ENCODER_DPMST, "mst-%d", id);
1185 	if (ret) {
1186 		kfree(msto);
1187 		return ERR_PTR(ret);
1188 	}
1189 
1190 	drm_encoder_helper_add(&msto->encoder, &nv50_msto_help);
1191 	msto->encoder.possible_crtcs = drm_crtc_mask(&head->base.base);
1192 	msto->head = head;
1193 	return msto;
1194 }
1195 
1196 static struct drm_encoder *
1197 nv50_mstc_atomic_best_encoder(struct drm_connector *connector,
1198 			      struct drm_atomic_state *state)
1199 {
1200 	struct drm_connector_state *connector_state = drm_atomic_get_new_connector_state(state,
1201 											 connector);
1202 	struct nv50_mstc *mstc = nv50_mstc(connector);
1203 	struct drm_crtc *crtc = connector_state->crtc;
1204 
1205 	if (!(mstc->mstm->outp->dcb->heads & drm_crtc_mask(crtc)))
1206 		return NULL;
1207 
1208 	return &nv50_head(crtc)->msto->encoder;
1209 }
1210 
1211 static enum drm_mode_status
1212 nv50_mstc_mode_valid(struct drm_connector *connector,
1213 		     struct drm_display_mode *mode)
1214 {
1215 	struct nv50_mstc *mstc = nv50_mstc(connector);
1216 	struct nouveau_encoder *outp = mstc->mstm->outp;
1217 
1218 	/* TODO: calculate the PBN from the dotclock and validate against the
1219 	 * MSTB's max possible PBN
1220 	 */
1221 
1222 	return nv50_dp_mode_valid(connector, outp, mode, NULL);
1223 }
1224 
1225 static int
1226 nv50_mstc_get_modes(struct drm_connector *connector)
1227 {
1228 	struct nv50_mstc *mstc = nv50_mstc(connector);
1229 	int ret = 0;
1230 
1231 	mstc->edid = drm_dp_mst_get_edid(&mstc->connector, mstc->port->mgr, mstc->port);
1232 	drm_connector_update_edid_property(&mstc->connector, mstc->edid);
1233 	if (mstc->edid)
1234 		ret = drm_add_edid_modes(&mstc->connector, mstc->edid);
1235 
1236 	/*
1237 	 * XXX: Since we don't use HDR in userspace quite yet, limit the bpc
1238 	 * to 8 to save bandwidth on the topology. In the future, we'll want
1239 	 * to properly fix this by dynamically selecting the highest possible
1240 	 * bpc that would fit in the topology
1241 	 */
1242 	if (connector->display_info.bpc)
1243 		connector->display_info.bpc =
1244 			clamp(connector->display_info.bpc, 6U, 8U);
1245 	else
1246 		connector->display_info.bpc = 8;
1247 
1248 	if (mstc->native)
1249 		drm_mode_destroy(mstc->connector.dev, mstc->native);
1250 	mstc->native = nouveau_conn_native_mode(&mstc->connector);
1251 	return ret;
1252 }
1253 
1254 static int
1255 nv50_mstc_atomic_check(struct drm_connector *connector,
1256 		       struct drm_atomic_state *state)
1257 {
1258 	struct nv50_mstc *mstc = nv50_mstc(connector);
1259 	struct drm_dp_mst_topology_mgr *mgr = &mstc->mstm->mgr;
1260 	struct drm_connector_state *new_conn_state =
1261 		drm_atomic_get_new_connector_state(state, connector);
1262 	struct drm_connector_state *old_conn_state =
1263 		drm_atomic_get_old_connector_state(state, connector);
1264 	struct drm_crtc_state *crtc_state;
1265 	struct drm_crtc *new_crtc = new_conn_state->crtc;
1266 
1267 	if (!old_conn_state->crtc)
1268 		return 0;
1269 
1270 	/* We only want to free VCPI if this state disables the CRTC on this
1271 	 * connector
1272 	 */
1273 	if (new_crtc) {
1274 		crtc_state = drm_atomic_get_new_crtc_state(state, new_crtc);
1275 
1276 		if (!crtc_state ||
1277 		    !drm_atomic_crtc_needs_modeset(crtc_state) ||
1278 		    crtc_state->enable)
1279 			return 0;
1280 	}
1281 
1282 	return drm_dp_atomic_release_vcpi_slots(state, mgr, mstc->port);
1283 }
1284 
1285 static int
1286 nv50_mstc_detect(struct drm_connector *connector,
1287 		 struct drm_modeset_acquire_ctx *ctx, bool force)
1288 {
1289 	struct nv50_mstc *mstc = nv50_mstc(connector);
1290 	int ret;
1291 
1292 	if (drm_connector_is_unregistered(connector))
1293 		return connector_status_disconnected;
1294 
1295 	ret = pm_runtime_get_sync(connector->dev->dev);
1296 	if (ret < 0 && ret != -EACCES) {
1297 		pm_runtime_put_autosuspend(connector->dev->dev);
1298 		return connector_status_disconnected;
1299 	}
1300 
1301 	ret = drm_dp_mst_detect_port(connector, ctx, mstc->port->mgr,
1302 				     mstc->port);
1303 	if (ret != connector_status_connected)
1304 		goto out;
1305 
1306 out:
1307 	pm_runtime_mark_last_busy(connector->dev->dev);
1308 	pm_runtime_put_autosuspend(connector->dev->dev);
1309 	return ret;
1310 }
1311 
1312 static const struct drm_connector_helper_funcs
1313 nv50_mstc_help = {
1314 	.get_modes = nv50_mstc_get_modes,
1315 	.mode_valid = nv50_mstc_mode_valid,
1316 	.atomic_best_encoder = nv50_mstc_atomic_best_encoder,
1317 	.atomic_check = nv50_mstc_atomic_check,
1318 	.detect_ctx = nv50_mstc_detect,
1319 };
1320 
1321 static void
1322 nv50_mstc_destroy(struct drm_connector *connector)
1323 {
1324 	struct nv50_mstc *mstc = nv50_mstc(connector);
1325 
1326 	drm_connector_cleanup(&mstc->connector);
1327 	drm_dp_mst_put_port_malloc(mstc->port);
1328 
1329 	kfree(mstc);
1330 }
1331 
1332 static const struct drm_connector_funcs
1333 nv50_mstc = {
1334 	.reset = nouveau_conn_reset,
1335 	.fill_modes = drm_helper_probe_single_connector_modes,
1336 	.destroy = nv50_mstc_destroy,
1337 	.atomic_duplicate_state = nouveau_conn_atomic_duplicate_state,
1338 	.atomic_destroy_state = nouveau_conn_atomic_destroy_state,
1339 	.atomic_set_property = nouveau_conn_atomic_set_property,
1340 	.atomic_get_property = nouveau_conn_atomic_get_property,
1341 };
1342 
1343 static int
1344 nv50_mstc_new(struct nv50_mstm *mstm, struct drm_dp_mst_port *port,
1345 	      const char *path, struct nv50_mstc **pmstc)
1346 {
1347 	struct drm_device *dev = mstm->outp->base.base.dev;
1348 	struct drm_crtc *crtc;
1349 	struct nv50_mstc *mstc;
1350 	int ret;
1351 
1352 	if (!(mstc = *pmstc = kzalloc(sizeof(*mstc), GFP_KERNEL)))
1353 		return -ENOMEM;
1354 	mstc->mstm = mstm;
1355 	mstc->port = port;
1356 
1357 	ret = drm_connector_init(dev, &mstc->connector, &nv50_mstc,
1358 				 DRM_MODE_CONNECTOR_DisplayPort);
1359 	if (ret) {
1360 		kfree(*pmstc);
1361 		*pmstc = NULL;
1362 		return ret;
1363 	}
1364 
1365 	drm_connector_helper_add(&mstc->connector, &nv50_mstc_help);
1366 
1367 	mstc->connector.funcs->reset(&mstc->connector);
1368 	nouveau_conn_attach_properties(&mstc->connector);
1369 
1370 	drm_for_each_crtc(crtc, dev) {
1371 		if (!(mstm->outp->dcb->heads & drm_crtc_mask(crtc)))
1372 			continue;
1373 
1374 		drm_connector_attach_encoder(&mstc->connector,
1375 					     &nv50_head(crtc)->msto->encoder);
1376 	}
1377 
1378 	drm_object_attach_property(&mstc->connector.base, dev->mode_config.path_property, 0);
1379 	drm_object_attach_property(&mstc->connector.base, dev->mode_config.tile_property, 0);
1380 	drm_connector_set_path_property(&mstc->connector, path);
1381 	drm_dp_mst_get_port_malloc(port);
1382 	return 0;
1383 }
1384 
1385 static void
1386 nv50_mstm_cleanup(struct nv50_mstm *mstm)
1387 {
1388 	struct nouveau_drm *drm = nouveau_drm(mstm->outp->base.base.dev);
1389 	struct drm_encoder *encoder;
1390 	int ret;
1391 
1392 	NV_ATOMIC(drm, "%s: mstm cleanup\n", mstm->outp->base.base.name);
1393 	ret = drm_dp_check_act_status(&mstm->mgr);
1394 
1395 	ret = drm_dp_update_payload_part2(&mstm->mgr);
1396 
1397 	drm_for_each_encoder(encoder, mstm->outp->base.base.dev) {
1398 		if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) {
1399 			struct nv50_msto *msto = nv50_msto(encoder);
1400 			struct nv50_mstc *mstc = msto->mstc;
1401 			if (mstc && mstc->mstm == mstm)
1402 				nv50_msto_cleanup(msto);
1403 		}
1404 	}
1405 
1406 	mstm->modified = false;
1407 }
1408 
1409 static void
1410 nv50_mstm_prepare(struct nv50_mstm *mstm)
1411 {
1412 	struct nouveau_drm *drm = nouveau_drm(mstm->outp->base.base.dev);
1413 	struct drm_encoder *encoder;
1414 	int ret;
1415 
1416 	NV_ATOMIC(drm, "%s: mstm prepare\n", mstm->outp->base.base.name);
1417 	ret = drm_dp_update_payload_part1(&mstm->mgr, 1);
1418 
1419 	drm_for_each_encoder(encoder, mstm->outp->base.base.dev) {
1420 		if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) {
1421 			struct nv50_msto *msto = nv50_msto(encoder);
1422 			struct nv50_mstc *mstc = msto->mstc;
1423 			if (mstc && mstc->mstm == mstm)
1424 				nv50_msto_prepare(msto);
1425 		}
1426 	}
1427 
1428 	if (mstm->disabled) {
1429 		if (!mstm->links)
1430 			nv50_outp_release(mstm->outp);
1431 		mstm->disabled = false;
1432 	}
1433 }
1434 
1435 static struct drm_connector *
1436 nv50_mstm_add_connector(struct drm_dp_mst_topology_mgr *mgr,
1437 			struct drm_dp_mst_port *port, const char *path)
1438 {
1439 	struct nv50_mstm *mstm = nv50_mstm(mgr);
1440 	struct nv50_mstc *mstc;
1441 	int ret;
1442 
1443 	ret = nv50_mstc_new(mstm, port, path, &mstc);
1444 	if (ret)
1445 		return NULL;
1446 
1447 	return &mstc->connector;
1448 }
1449 
1450 static const struct drm_dp_mst_topology_cbs
1451 nv50_mstm = {
1452 	.add_connector = nv50_mstm_add_connector,
1453 };
1454 
1455 bool
1456 nv50_mstm_service(struct nouveau_drm *drm,
1457 		  struct nouveau_connector *nv_connector,
1458 		  struct nv50_mstm *mstm)
1459 {
1460 	struct drm_dp_aux *aux = &nv_connector->aux;
1461 	bool handled = true, ret = true;
1462 	int rc;
1463 	u8 esi[8] = {};
1464 
1465 	while (handled) {
1466 		rc = drm_dp_dpcd_read(aux, DP_SINK_COUNT_ESI, esi, 8);
1467 		if (rc != 8) {
1468 			ret = false;
1469 			break;
1470 		}
1471 
1472 		drm_dp_mst_hpd_irq(&mstm->mgr, esi, &handled);
1473 		if (!handled)
1474 			break;
1475 
1476 		rc = drm_dp_dpcd_write(aux, DP_SINK_COUNT_ESI + 1, &esi[1],
1477 				       3);
1478 		if (rc != 3) {
1479 			ret = false;
1480 			break;
1481 		}
1482 	}
1483 
1484 	if (!ret)
1485 		NV_DEBUG(drm, "Failed to handle ESI on %s: %d\n",
1486 			 nv_connector->base.name, rc);
1487 
1488 	return ret;
1489 }
1490 
1491 void
1492 nv50_mstm_remove(struct nv50_mstm *mstm)
1493 {
1494 	mstm->is_mst = false;
1495 	drm_dp_mst_topology_mgr_set_mst(&mstm->mgr, false);
1496 }
1497 
1498 static int
1499 nv50_mstm_enable(struct nv50_mstm *mstm, int state)
1500 {
1501 	struct nouveau_encoder *outp = mstm->outp;
1502 	struct {
1503 		struct nv50_disp_mthd_v1 base;
1504 		struct nv50_disp_sor_dp_mst_link_v0 mst;
1505 	} args = {
1506 		.base.version = 1,
1507 		.base.method = NV50_DISP_MTHD_V1_SOR_DP_MST_LINK,
1508 		.base.hasht = outp->dcb->hasht,
1509 		.base.hashm = outp->dcb->hashm,
1510 		.mst.state = state,
1511 	};
1512 	struct nouveau_drm *drm = nouveau_drm(outp->base.base.dev);
1513 	struct nvif_object *disp = &drm->display->disp.object;
1514 
1515 	return nvif_mthd(disp, 0, &args, sizeof(args));
1516 }
1517 
1518 int
1519 nv50_mstm_detect(struct nouveau_encoder *outp)
1520 {
1521 	struct nv50_mstm *mstm = outp->dp.mstm;
1522 	struct drm_dp_aux *aux;
1523 	int ret;
1524 
1525 	if (!mstm || !mstm->can_mst)
1526 		return 0;
1527 
1528 	aux = mstm->mgr.aux;
1529 
1530 	/* Clear any leftover MST state we didn't set ourselves by first
1531 	 * disabling MST if it was already enabled
1532 	 */
1533 	ret = drm_dp_dpcd_writeb(aux, DP_MSTM_CTRL, 0);
1534 	if (ret < 0)
1535 		return ret;
1536 
1537 	/* And start enabling */
1538 	ret = nv50_mstm_enable(mstm, true);
1539 	if (ret)
1540 		return ret;
1541 
1542 	ret = drm_dp_mst_topology_mgr_set_mst(&mstm->mgr, true);
1543 	if (ret) {
1544 		nv50_mstm_enable(mstm, false);
1545 		return ret;
1546 	}
1547 
1548 	mstm->is_mst = true;
1549 	return 1;
1550 }
1551 
1552 static void
1553 nv50_mstm_fini(struct nouveau_encoder *outp)
1554 {
1555 	struct nv50_mstm *mstm = outp->dp.mstm;
1556 
1557 	if (!mstm)
1558 		return;
1559 
1560 	/* Don't change the MST state of this connector until we've finished
1561 	 * resuming, since we can't safely grab hpd_irq_lock in our resume
1562 	 * path to protect mstm->is_mst without potentially deadlocking
1563 	 */
1564 	mutex_lock(&outp->dp.hpd_irq_lock);
1565 	mstm->suspended = true;
1566 	mutex_unlock(&outp->dp.hpd_irq_lock);
1567 
1568 	if (mstm->is_mst)
1569 		drm_dp_mst_topology_mgr_suspend(&mstm->mgr);
1570 }
1571 
1572 static void
1573 nv50_mstm_init(struct nouveau_encoder *outp, bool runtime)
1574 {
1575 	struct nv50_mstm *mstm = outp->dp.mstm;
1576 	int ret = 0;
1577 
1578 	if (!mstm)
1579 		return;
1580 
1581 	if (mstm->is_mst) {
1582 		ret = drm_dp_mst_topology_mgr_resume(&mstm->mgr, !runtime);
1583 		if (ret == -1)
1584 			nv50_mstm_remove(mstm);
1585 	}
1586 
1587 	mutex_lock(&outp->dp.hpd_irq_lock);
1588 	mstm->suspended = false;
1589 	mutex_unlock(&outp->dp.hpd_irq_lock);
1590 
1591 	if (ret == -1)
1592 		drm_kms_helper_hotplug_event(mstm->mgr.dev);
1593 }
1594 
1595 static void
1596 nv50_mstm_del(struct nv50_mstm **pmstm)
1597 {
1598 	struct nv50_mstm *mstm = *pmstm;
1599 	if (mstm) {
1600 		drm_dp_mst_topology_mgr_destroy(&mstm->mgr);
1601 		kfree(*pmstm);
1602 		*pmstm = NULL;
1603 	}
1604 }
1605 
1606 static int
1607 nv50_mstm_new(struct nouveau_encoder *outp, struct drm_dp_aux *aux, int aux_max,
1608 	      int conn_base_id, struct nv50_mstm **pmstm)
1609 {
1610 	const int max_payloads = hweight8(outp->dcb->heads);
1611 	struct drm_device *dev = outp->base.base.dev;
1612 	struct nv50_mstm *mstm;
1613 	int ret;
1614 
1615 	if (!(mstm = *pmstm = kzalloc(sizeof(*mstm), GFP_KERNEL)))
1616 		return -ENOMEM;
1617 	mstm->outp = outp;
1618 	mstm->mgr.cbs = &nv50_mstm;
1619 
1620 	ret = drm_dp_mst_topology_mgr_init(&mstm->mgr, dev, aux, aux_max,
1621 					   max_payloads, outp->dcb->dpconf.link_nr,
1622 					   drm_dp_bw_code_to_link_rate(outp->dcb->dpconf.link_bw),
1623 					   conn_base_id);
1624 	if (ret)
1625 		return ret;
1626 
1627 	return 0;
1628 }
1629 
1630 /******************************************************************************
1631  * SOR
1632  *****************************************************************************/
1633 static void
1634 nv50_sor_update(struct nouveau_encoder *nv_encoder, u8 head,
1635 		struct nv50_head_atom *asyh, u8 proto, u8 depth)
1636 {
1637 	struct nv50_disp *disp = nv50_disp(nv_encoder->base.base.dev);
1638 	struct nv50_core *core = disp->core;
1639 
1640 	if (!asyh) {
1641 		nv_encoder->ctrl &= ~BIT(head);
1642 		if (NVDEF_TEST(nv_encoder->ctrl, NV507D, SOR_SET_CONTROL, OWNER, ==, NONE))
1643 			nv_encoder->ctrl = 0;
1644 	} else {
1645 		nv_encoder->ctrl |= NVVAL(NV507D, SOR_SET_CONTROL, PROTOCOL, proto);
1646 		nv_encoder->ctrl |= BIT(head);
1647 		asyh->or.depth = depth;
1648 	}
1649 
1650 	core->func->sor->ctrl(core, nv_encoder->or, nv_encoder->ctrl, asyh);
1651 }
1652 
1653 /* TODO: Should we extend this to PWM-only backlights?
1654  * As well, should we add a DRM helper for waiting for the backlight to acknowledge
1655  * the panel backlight has been shut off? Intel doesn't seem to do this, and uses a
1656  * fixed time delay from the vbios…
1657  */
1658 static void
1659 nv50_sor_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state)
1660 {
1661 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1662 	struct nouveau_crtc *nv_crtc = nouveau_crtc(nv_encoder->crtc);
1663 	struct nouveau_connector *nv_connector = nv50_outp_get_old_connector(state, nv_encoder);
1664 #ifdef CONFIG_DRM_NOUVEAU_BACKLIGHT
1665 	struct nouveau_drm *drm = nouveau_drm(nv_encoder->base.base.dev);
1666 	struct nouveau_backlight *backlight = nv_connector->backlight;
1667 #endif
1668 	struct drm_dp_aux *aux = &nv_connector->aux;
1669 	int ret;
1670 	u8 pwr;
1671 
1672 #ifdef CONFIG_DRM_NOUVEAU_BACKLIGHT
1673 	if (backlight && backlight->uses_dpcd) {
1674 		ret = drm_edp_backlight_disable(aux, &backlight->edp_info);
1675 		if (ret < 0)
1676 			NV_ERROR(drm, "Failed to disable backlight on [CONNECTOR:%d:%s]: %d\n",
1677 				 nv_connector->base.base.id, nv_connector->base.name, ret);
1678 	}
1679 #endif
1680 
1681 	if (nv_encoder->dcb->type == DCB_OUTPUT_DP) {
1682 		ret = drm_dp_dpcd_readb(aux, DP_SET_POWER, &pwr);
1683 
1684 		if (ret == 0) {
1685 			pwr &= ~DP_SET_POWER_MASK;
1686 			pwr |=  DP_SET_POWER_D3;
1687 			drm_dp_dpcd_writeb(aux, DP_SET_POWER, pwr);
1688 		}
1689 	}
1690 
1691 	nv_encoder->update(nv_encoder, nv_crtc->index, NULL, 0, 0);
1692 	nv50_audio_disable(encoder, nv_crtc);
1693 	nv50_hdmi_disable(&nv_encoder->base.base, nv_crtc);
1694 	nv50_outp_release(nv_encoder);
1695 	nv_encoder->crtc = NULL;
1696 }
1697 
1698 static void
1699 nv50_sor_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state)
1700 {
1701 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1702 	struct nouveau_crtc *nv_crtc = nv50_outp_get_new_crtc(state, nv_encoder);
1703 	struct nv50_head_atom *asyh =
1704 		nv50_head_atom(drm_atomic_get_new_crtc_state(state, &nv_crtc->base));
1705 	struct drm_display_mode *mode = &asyh->state.adjusted_mode;
1706 	struct {
1707 		struct nv50_disp_mthd_v1 base;
1708 		struct nv50_disp_sor_lvds_script_v0 lvds;
1709 	} lvds = {
1710 		.base.version = 1,
1711 		.base.method  = NV50_DISP_MTHD_V1_SOR_LVDS_SCRIPT,
1712 		.base.hasht   = nv_encoder->dcb->hasht,
1713 		.base.hashm   = nv_encoder->dcb->hashm,
1714 	};
1715 	struct nv50_disp *disp = nv50_disp(encoder->dev);
1716 	struct drm_device *dev = encoder->dev;
1717 	struct nouveau_drm *drm = nouveau_drm(dev);
1718 	struct nouveau_connector *nv_connector;
1719 #ifdef CONFIG_DRM_NOUVEAU_BACKLIGHT
1720 	struct nouveau_backlight *backlight;
1721 #endif
1722 	struct nvbios *bios = &drm->vbios;
1723 	bool hda = false;
1724 	u8 proto = NV507D_SOR_SET_CONTROL_PROTOCOL_CUSTOM;
1725 	u8 depth = NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_DEFAULT;
1726 
1727 	nv_connector = nv50_outp_get_new_connector(state, nv_encoder);
1728 	nv_encoder->crtc = &nv_crtc->base;
1729 
1730 	if ((disp->disp->object.oclass == GT214_DISP ||
1731 	     disp->disp->object.oclass >= GF110_DISP) &&
1732 	    drm_detect_monitor_audio(nv_connector->edid))
1733 		hda = true;
1734 	nv50_outp_acquire(nv_encoder, hda);
1735 
1736 	switch (nv_encoder->dcb->type) {
1737 	case DCB_OUTPUT_TMDS:
1738 		if (nv_encoder->link & 1) {
1739 			proto = NV507D_SOR_SET_CONTROL_PROTOCOL_SINGLE_TMDS_A;
1740 			/* Only enable dual-link if:
1741 			 *  - Need to (i.e. rate > 165MHz)
1742 			 *  - DCB says we can
1743 			 *  - Not an HDMI monitor, since there's no dual-link
1744 			 *    on HDMI.
1745 			 */
1746 			if (mode->clock >= 165000 &&
1747 			    nv_encoder->dcb->duallink_possible &&
1748 			    !drm_detect_hdmi_monitor(nv_connector->edid))
1749 				proto = NV507D_SOR_SET_CONTROL_PROTOCOL_DUAL_TMDS;
1750 		} else {
1751 			proto = NV507D_SOR_SET_CONTROL_PROTOCOL_SINGLE_TMDS_B;
1752 		}
1753 
1754 		nv50_hdmi_enable(&nv_encoder->base.base, nv_crtc, nv_connector, state, mode);
1755 		break;
1756 	case DCB_OUTPUT_LVDS:
1757 		proto = NV507D_SOR_SET_CONTROL_PROTOCOL_LVDS_CUSTOM;
1758 
1759 		if (bios->fp_no_ddc) {
1760 			if (bios->fp.dual_link)
1761 				lvds.lvds.script |= 0x0100;
1762 			if (bios->fp.if_is_24bit)
1763 				lvds.lvds.script |= 0x0200;
1764 		} else {
1765 			if (nv_connector->type == DCB_CONNECTOR_LVDS_SPWG) {
1766 				if (((u8 *)nv_connector->edid)[121] == 2)
1767 					lvds.lvds.script |= 0x0100;
1768 			} else
1769 			if (mode->clock >= bios->fp.duallink_transition_clk) {
1770 				lvds.lvds.script |= 0x0100;
1771 			}
1772 
1773 			if (lvds.lvds.script & 0x0100) {
1774 				if (bios->fp.strapless_is_24bit & 2)
1775 					lvds.lvds.script |= 0x0200;
1776 			} else {
1777 				if (bios->fp.strapless_is_24bit & 1)
1778 					lvds.lvds.script |= 0x0200;
1779 			}
1780 
1781 			if (asyh->or.bpc == 8)
1782 				lvds.lvds.script |= 0x0200;
1783 		}
1784 
1785 		nvif_mthd(&disp->disp->object, 0, &lvds, sizeof(lvds));
1786 		break;
1787 	case DCB_OUTPUT_DP:
1788 		depth = nv50_dp_bpc_to_depth(asyh->or.bpc);
1789 
1790 		if (nv_encoder->link & 1)
1791 			proto = NV887D_SOR_SET_CONTROL_PROTOCOL_DP_A;
1792 		else
1793 			proto = NV887D_SOR_SET_CONTROL_PROTOCOL_DP_B;
1794 
1795 		nv50_audio_enable(encoder, nv_crtc, nv_connector, state, mode);
1796 
1797 #ifdef CONFIG_DRM_NOUVEAU_BACKLIGHT
1798 		backlight = nv_connector->backlight;
1799 		if (backlight && backlight->uses_dpcd)
1800 			drm_edp_backlight_enable(&nv_connector->aux, &backlight->edp_info,
1801 						 (u16)backlight->dev->props.brightness);
1802 #endif
1803 
1804 		break;
1805 	default:
1806 		BUG();
1807 		break;
1808 	}
1809 
1810 	nv_encoder->update(nv_encoder, nv_crtc->index, asyh, proto, depth);
1811 }
1812 
1813 static const struct drm_encoder_helper_funcs
1814 nv50_sor_help = {
1815 	.atomic_check = nv50_outp_atomic_check,
1816 	.atomic_enable = nv50_sor_atomic_enable,
1817 	.atomic_disable = nv50_sor_atomic_disable,
1818 };
1819 
1820 static void
1821 nv50_sor_destroy(struct drm_encoder *encoder)
1822 {
1823 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1824 	nv50_mstm_del(&nv_encoder->dp.mstm);
1825 	drm_encoder_cleanup(encoder);
1826 
1827 	if (nv_encoder->dcb->type == DCB_OUTPUT_DP)
1828 		mutex_destroy(&nv_encoder->dp.hpd_irq_lock);
1829 
1830 	kfree(encoder);
1831 }
1832 
1833 static const struct drm_encoder_funcs
1834 nv50_sor_func = {
1835 	.destroy = nv50_sor_destroy,
1836 };
1837 
1838 static bool nv50_has_mst(struct nouveau_drm *drm)
1839 {
1840 	struct nvkm_bios *bios = nvxx_bios(&drm->client.device);
1841 	u32 data;
1842 	u8 ver, hdr, cnt, len;
1843 
1844 	data = nvbios_dp_table(bios, &ver, &hdr, &cnt, &len);
1845 	return data && ver >= 0x40 && (nvbios_rd08(bios, data + 0x08) & 0x04);
1846 }
1847 
1848 static int
1849 nv50_sor_create(struct drm_connector *connector, struct dcb_output *dcbe)
1850 {
1851 	struct nouveau_connector *nv_connector = nouveau_connector(connector);
1852 	struct nouveau_drm *drm = nouveau_drm(connector->dev);
1853 	struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device);
1854 	struct nouveau_encoder *nv_encoder;
1855 	struct drm_encoder *encoder;
1856 	struct nv50_disp *disp = nv50_disp(connector->dev);
1857 	int type, ret;
1858 
1859 	switch (dcbe->type) {
1860 	case DCB_OUTPUT_LVDS: type = DRM_MODE_ENCODER_LVDS; break;
1861 	case DCB_OUTPUT_TMDS:
1862 	case DCB_OUTPUT_DP:
1863 	default:
1864 		type = DRM_MODE_ENCODER_TMDS;
1865 		break;
1866 	}
1867 
1868 	nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
1869 	if (!nv_encoder)
1870 		return -ENOMEM;
1871 	nv_encoder->dcb = dcbe;
1872 	nv_encoder->update = nv50_sor_update;
1873 
1874 	encoder = to_drm_encoder(nv_encoder);
1875 	encoder->possible_crtcs = dcbe->heads;
1876 	encoder->possible_clones = 0;
1877 	drm_encoder_init(connector->dev, encoder, &nv50_sor_func, type,
1878 			 "sor-%04x-%04x", dcbe->hasht, dcbe->hashm);
1879 	drm_encoder_helper_add(encoder, &nv50_sor_help);
1880 
1881 	drm_connector_attach_encoder(connector, encoder);
1882 
1883 	disp->core->func->sor->get_caps(disp, nv_encoder, ffs(dcbe->or) - 1);
1884 	nv50_outp_dump_caps(drm, nv_encoder);
1885 
1886 	if (dcbe->type == DCB_OUTPUT_DP) {
1887 		struct nvkm_i2c_aux *aux =
1888 			nvkm_i2c_aux_find(i2c, dcbe->i2c_index);
1889 
1890 		mutex_init(&nv_encoder->dp.hpd_irq_lock);
1891 
1892 		if (aux) {
1893 			if (disp->disp->object.oclass < GF110_DISP) {
1894 				/* HW has no support for address-only
1895 				 * transactions, so we're required to
1896 				 * use custom I2C-over-AUX code.
1897 				 */
1898 				nv_encoder->i2c = &aux->i2c;
1899 			} else {
1900 				nv_encoder->i2c = &nv_connector->aux.ddc;
1901 			}
1902 			nv_encoder->aux = aux;
1903 		}
1904 
1905 		if (nv_connector->type != DCB_CONNECTOR_eDP &&
1906 		    nv50_has_mst(drm)) {
1907 			ret = nv50_mstm_new(nv_encoder, &nv_connector->aux,
1908 					    16, nv_connector->base.base.id,
1909 					    &nv_encoder->dp.mstm);
1910 			if (ret)
1911 				return ret;
1912 		}
1913 	} else {
1914 		struct nvkm_i2c_bus *bus =
1915 			nvkm_i2c_bus_find(i2c, dcbe->i2c_index);
1916 		if (bus)
1917 			nv_encoder->i2c = &bus->i2c;
1918 	}
1919 
1920 	return 0;
1921 }
1922 
1923 /******************************************************************************
1924  * PIOR
1925  *****************************************************************************/
1926 static int
1927 nv50_pior_atomic_check(struct drm_encoder *encoder,
1928 		       struct drm_crtc_state *crtc_state,
1929 		       struct drm_connector_state *conn_state)
1930 {
1931 	int ret = nv50_outp_atomic_check(encoder, crtc_state, conn_state);
1932 	if (ret)
1933 		return ret;
1934 	crtc_state->adjusted_mode.clock *= 2;
1935 	return 0;
1936 }
1937 
1938 static void
1939 nv50_pior_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state)
1940 {
1941 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1942 	struct nv50_core *core = nv50_disp(encoder->dev)->core;
1943 	const u32 ctrl = NVDEF(NV507D, PIOR_SET_CONTROL, OWNER, NONE);
1944 
1945 	core->func->pior->ctrl(core, nv_encoder->or, ctrl, NULL);
1946 	nv_encoder->crtc = NULL;
1947 	nv50_outp_release(nv_encoder);
1948 }
1949 
1950 static void
1951 nv50_pior_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state)
1952 {
1953 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1954 	struct nouveau_crtc *nv_crtc = nv50_outp_get_new_crtc(state, nv_encoder);
1955 	struct nv50_head_atom *asyh =
1956 		nv50_head_atom(drm_atomic_get_new_crtc_state(state, &nv_crtc->base));
1957 	struct nv50_core *core = nv50_disp(encoder->dev)->core;
1958 	u32 ctrl = 0;
1959 
1960 	switch (nv_crtc->index) {
1961 	case 0: ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, OWNER, HEAD0); break;
1962 	case 1: ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, OWNER, HEAD1); break;
1963 	default:
1964 		WARN_ON(1);
1965 		break;
1966 	}
1967 
1968 	nv50_outp_acquire(nv_encoder, false);
1969 
1970 	switch (asyh->or.bpc) {
1971 	case 10: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_BPP_30_444; break;
1972 	case  8: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_BPP_24_444; break;
1973 	case  6: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_BPP_18_444; break;
1974 	default: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_DEFAULT; break;
1975 	}
1976 
1977 	switch (nv_encoder->dcb->type) {
1978 	case DCB_OUTPUT_TMDS:
1979 	case DCB_OUTPUT_DP:
1980 		ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, PROTOCOL, EXT_TMDS_ENC);
1981 		break;
1982 	default:
1983 		BUG();
1984 		break;
1985 	}
1986 
1987 	core->func->pior->ctrl(core, nv_encoder->or, ctrl, asyh);
1988 	nv_encoder->crtc = &nv_crtc->base;
1989 }
1990 
1991 static const struct drm_encoder_helper_funcs
1992 nv50_pior_help = {
1993 	.atomic_check = nv50_pior_atomic_check,
1994 	.atomic_enable = nv50_pior_atomic_enable,
1995 	.atomic_disable = nv50_pior_atomic_disable,
1996 };
1997 
1998 static void
1999 nv50_pior_destroy(struct drm_encoder *encoder)
2000 {
2001 	drm_encoder_cleanup(encoder);
2002 	kfree(encoder);
2003 }
2004 
2005 static const struct drm_encoder_funcs
2006 nv50_pior_func = {
2007 	.destroy = nv50_pior_destroy,
2008 };
2009 
2010 static int
2011 nv50_pior_create(struct drm_connector *connector, struct dcb_output *dcbe)
2012 {
2013 	struct drm_device *dev = connector->dev;
2014 	struct nouveau_drm *drm = nouveau_drm(dev);
2015 	struct nv50_disp *disp = nv50_disp(dev);
2016 	struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device);
2017 	struct nvkm_i2c_bus *bus = NULL;
2018 	struct nvkm_i2c_aux *aux = NULL;
2019 	struct i2c_adapter *ddc;
2020 	struct nouveau_encoder *nv_encoder;
2021 	struct drm_encoder *encoder;
2022 	int type;
2023 
2024 	switch (dcbe->type) {
2025 	case DCB_OUTPUT_TMDS:
2026 		bus  = nvkm_i2c_bus_find(i2c, NVKM_I2C_BUS_EXT(dcbe->extdev));
2027 		ddc  = bus ? &bus->i2c : NULL;
2028 		type = DRM_MODE_ENCODER_TMDS;
2029 		break;
2030 	case DCB_OUTPUT_DP:
2031 		aux  = nvkm_i2c_aux_find(i2c, NVKM_I2C_AUX_EXT(dcbe->extdev));
2032 		ddc  = aux ? &aux->i2c : NULL;
2033 		type = DRM_MODE_ENCODER_TMDS;
2034 		break;
2035 	default:
2036 		return -ENODEV;
2037 	}
2038 
2039 	nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
2040 	if (!nv_encoder)
2041 		return -ENOMEM;
2042 	nv_encoder->dcb = dcbe;
2043 	nv_encoder->i2c = ddc;
2044 	nv_encoder->aux = aux;
2045 
2046 	encoder = to_drm_encoder(nv_encoder);
2047 	encoder->possible_crtcs = dcbe->heads;
2048 	encoder->possible_clones = 0;
2049 	drm_encoder_init(connector->dev, encoder, &nv50_pior_func, type,
2050 			 "pior-%04x-%04x", dcbe->hasht, dcbe->hashm);
2051 	drm_encoder_helper_add(encoder, &nv50_pior_help);
2052 
2053 	drm_connector_attach_encoder(connector, encoder);
2054 
2055 	disp->core->func->pior->get_caps(disp, nv_encoder, ffs(dcbe->or) - 1);
2056 	nv50_outp_dump_caps(drm, nv_encoder);
2057 
2058 	return 0;
2059 }
2060 
2061 /******************************************************************************
2062  * Atomic
2063  *****************************************************************************/
2064 
2065 static void
2066 nv50_disp_atomic_commit_core(struct drm_atomic_state *state, u32 *interlock)
2067 {
2068 	struct nouveau_drm *drm = nouveau_drm(state->dev);
2069 	struct nv50_disp *disp = nv50_disp(drm->dev);
2070 	struct nv50_core *core = disp->core;
2071 	struct nv50_mstm *mstm;
2072 	struct drm_encoder *encoder;
2073 
2074 	NV_ATOMIC(drm, "commit core %08x\n", interlock[NV50_DISP_INTERLOCK_BASE]);
2075 
2076 	drm_for_each_encoder(encoder, drm->dev) {
2077 		if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) {
2078 			mstm = nouveau_encoder(encoder)->dp.mstm;
2079 			if (mstm && mstm->modified)
2080 				nv50_mstm_prepare(mstm);
2081 		}
2082 	}
2083 
2084 	core->func->ntfy_init(disp->sync, NV50_DISP_CORE_NTFY);
2085 	core->func->update(core, interlock, true);
2086 	if (core->func->ntfy_wait_done(disp->sync, NV50_DISP_CORE_NTFY,
2087 				       disp->core->chan.base.device))
2088 		NV_ERROR(drm, "core notifier timeout\n");
2089 
2090 	drm_for_each_encoder(encoder, drm->dev) {
2091 		if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) {
2092 			mstm = nouveau_encoder(encoder)->dp.mstm;
2093 			if (mstm && mstm->modified)
2094 				nv50_mstm_cleanup(mstm);
2095 		}
2096 	}
2097 }
2098 
2099 static void
2100 nv50_disp_atomic_commit_wndw(struct drm_atomic_state *state, u32 *interlock)
2101 {
2102 	struct drm_plane_state *new_plane_state;
2103 	struct drm_plane *plane;
2104 	int i;
2105 
2106 	for_each_new_plane_in_state(state, plane, new_plane_state, i) {
2107 		struct nv50_wndw *wndw = nv50_wndw(plane);
2108 		if (interlock[wndw->interlock.type] & wndw->interlock.data) {
2109 			if (wndw->func->update)
2110 				wndw->func->update(wndw, interlock);
2111 		}
2112 	}
2113 }
2114 
2115 static void
2116 nv50_disp_atomic_commit_tail(struct drm_atomic_state *state)
2117 {
2118 	struct drm_device *dev = state->dev;
2119 	struct drm_crtc_state *new_crtc_state, *old_crtc_state;
2120 	struct drm_crtc *crtc;
2121 	struct drm_plane_state *new_plane_state;
2122 	struct drm_plane *plane;
2123 	struct nouveau_drm *drm = nouveau_drm(dev);
2124 	struct nv50_disp *disp = nv50_disp(dev);
2125 	struct nv50_atom *atom = nv50_atom(state);
2126 	struct nv50_core *core = disp->core;
2127 	struct nv50_outp_atom *outp, *outt;
2128 	u32 interlock[NV50_DISP_INTERLOCK__SIZE] = {};
2129 	int i;
2130 	bool flushed = false;
2131 
2132 	NV_ATOMIC(drm, "commit %d %d\n", atom->lock_core, atom->flush_disable);
2133 	nv50_crc_atomic_stop_reporting(state);
2134 	drm_atomic_helper_wait_for_fences(dev, state, false);
2135 	drm_atomic_helper_wait_for_dependencies(state);
2136 	drm_atomic_helper_update_legacy_modeset_state(dev, state);
2137 	drm_atomic_helper_calc_timestamping_constants(state);
2138 
2139 	if (atom->lock_core)
2140 		mutex_lock(&disp->mutex);
2141 
2142 	/* Disable head(s). */
2143 	for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
2144 		struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state);
2145 		struct nv50_head *head = nv50_head(crtc);
2146 
2147 		NV_ATOMIC(drm, "%s: clr %04x (set %04x)\n", crtc->name,
2148 			  asyh->clr.mask, asyh->set.mask);
2149 
2150 		if (old_crtc_state->active && !new_crtc_state->active) {
2151 			pm_runtime_put_noidle(dev->dev);
2152 			drm_crtc_vblank_off(crtc);
2153 		}
2154 
2155 		if (asyh->clr.mask) {
2156 			nv50_head_flush_clr(head, asyh, atom->flush_disable);
2157 			interlock[NV50_DISP_INTERLOCK_CORE] |= 1;
2158 		}
2159 	}
2160 
2161 	/* Disable plane(s). */
2162 	for_each_new_plane_in_state(state, plane, new_plane_state, i) {
2163 		struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state);
2164 		struct nv50_wndw *wndw = nv50_wndw(plane);
2165 
2166 		NV_ATOMIC(drm, "%s: clr %02x (set %02x)\n", plane->name,
2167 			  asyw->clr.mask, asyw->set.mask);
2168 		if (!asyw->clr.mask)
2169 			continue;
2170 
2171 		nv50_wndw_flush_clr(wndw, interlock, atom->flush_disable, asyw);
2172 	}
2173 
2174 	/* Disable output path(s). */
2175 	list_for_each_entry(outp, &atom->outp, head) {
2176 		const struct drm_encoder_helper_funcs *help;
2177 		struct drm_encoder *encoder;
2178 
2179 		encoder = outp->encoder;
2180 		help = encoder->helper_private;
2181 
2182 		NV_ATOMIC(drm, "%s: clr %02x (set %02x)\n", encoder->name,
2183 			  outp->clr.mask, outp->set.mask);
2184 
2185 		if (outp->clr.mask) {
2186 			help->atomic_disable(encoder, state);
2187 			interlock[NV50_DISP_INTERLOCK_CORE] |= 1;
2188 			if (outp->flush_disable) {
2189 				nv50_disp_atomic_commit_wndw(state, interlock);
2190 				nv50_disp_atomic_commit_core(state, interlock);
2191 				memset(interlock, 0x00, sizeof(interlock));
2192 
2193 				flushed = true;
2194 			}
2195 		}
2196 	}
2197 
2198 	/* Flush disable. */
2199 	if (interlock[NV50_DISP_INTERLOCK_CORE]) {
2200 		if (atom->flush_disable) {
2201 			nv50_disp_atomic_commit_wndw(state, interlock);
2202 			nv50_disp_atomic_commit_core(state, interlock);
2203 			memset(interlock, 0x00, sizeof(interlock));
2204 
2205 			flushed = true;
2206 		}
2207 	}
2208 
2209 	if (flushed)
2210 		nv50_crc_atomic_release_notifier_contexts(state);
2211 	nv50_crc_atomic_init_notifier_contexts(state);
2212 
2213 	/* Update output path(s). */
2214 	list_for_each_entry_safe(outp, outt, &atom->outp, head) {
2215 		const struct drm_encoder_helper_funcs *help;
2216 		struct drm_encoder *encoder;
2217 
2218 		encoder = outp->encoder;
2219 		help = encoder->helper_private;
2220 
2221 		NV_ATOMIC(drm, "%s: set %02x (clr %02x)\n", encoder->name,
2222 			  outp->set.mask, outp->clr.mask);
2223 
2224 		if (outp->set.mask) {
2225 			help->atomic_enable(encoder, state);
2226 			interlock[NV50_DISP_INTERLOCK_CORE] = 1;
2227 		}
2228 
2229 		list_del(&outp->head);
2230 		kfree(outp);
2231 	}
2232 
2233 	/* Update head(s). */
2234 	for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
2235 		struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state);
2236 		struct nv50_head *head = nv50_head(crtc);
2237 
2238 		NV_ATOMIC(drm, "%s: set %04x (clr %04x)\n", crtc->name,
2239 			  asyh->set.mask, asyh->clr.mask);
2240 
2241 		if (asyh->set.mask) {
2242 			nv50_head_flush_set(head, asyh);
2243 			interlock[NV50_DISP_INTERLOCK_CORE] = 1;
2244 		}
2245 
2246 		if (new_crtc_state->active) {
2247 			if (!old_crtc_state->active) {
2248 				drm_crtc_vblank_on(crtc);
2249 				pm_runtime_get_noresume(dev->dev);
2250 			}
2251 			if (new_crtc_state->event)
2252 				drm_crtc_vblank_get(crtc);
2253 		}
2254 	}
2255 
2256 	/* Update window->head assignment.
2257 	 *
2258 	 * This has to happen in an update that's not interlocked with
2259 	 * any window channels to avoid hitting HW error checks.
2260 	 *
2261 	 *TODO: Proper handling of window ownership (Turing apparently
2262 	 *      supports non-fixed mappings).
2263 	 */
2264 	if (core->assign_windows) {
2265 		core->func->wndw.owner(core);
2266 		nv50_disp_atomic_commit_core(state, interlock);
2267 		core->assign_windows = false;
2268 		interlock[NV50_DISP_INTERLOCK_CORE] = 0;
2269 	}
2270 
2271 	/* Finish updating head(s)...
2272 	 *
2273 	 * NVD is rather picky about both where window assignments can change,
2274 	 * *and* about certain core and window channel states matching.
2275 	 *
2276 	 * The EFI GOP driver on newer GPUs configures window channels with a
2277 	 * different output format to what we do, and the core channel update
2278 	 * in the assign_windows case above would result in a state mismatch.
2279 	 *
2280 	 * Delay some of the head update until after that point to workaround
2281 	 * the issue.  This only affects the initial modeset.
2282 	 *
2283 	 * TODO: handle this better when adding flexible window mapping
2284 	 */
2285 	for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
2286 		struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state);
2287 		struct nv50_head *head = nv50_head(crtc);
2288 
2289 		NV_ATOMIC(drm, "%s: set %04x (clr %04x)\n", crtc->name,
2290 			  asyh->set.mask, asyh->clr.mask);
2291 
2292 		if (asyh->set.mask) {
2293 			nv50_head_flush_set_wndw(head, asyh);
2294 			interlock[NV50_DISP_INTERLOCK_CORE] = 1;
2295 		}
2296 	}
2297 
2298 	/* Update plane(s). */
2299 	for_each_new_plane_in_state(state, plane, new_plane_state, i) {
2300 		struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state);
2301 		struct nv50_wndw *wndw = nv50_wndw(plane);
2302 
2303 		NV_ATOMIC(drm, "%s: set %02x (clr %02x)\n", plane->name,
2304 			  asyw->set.mask, asyw->clr.mask);
2305 		if ( !asyw->set.mask &&
2306 		    (!asyw->clr.mask || atom->flush_disable))
2307 			continue;
2308 
2309 		nv50_wndw_flush_set(wndw, interlock, asyw);
2310 	}
2311 
2312 	/* Flush update. */
2313 	nv50_disp_atomic_commit_wndw(state, interlock);
2314 
2315 	if (interlock[NV50_DISP_INTERLOCK_CORE]) {
2316 		if (interlock[NV50_DISP_INTERLOCK_BASE] ||
2317 		    interlock[NV50_DISP_INTERLOCK_OVLY] ||
2318 		    interlock[NV50_DISP_INTERLOCK_WNDW] ||
2319 		    !atom->state.legacy_cursor_update)
2320 			nv50_disp_atomic_commit_core(state, interlock);
2321 		else
2322 			disp->core->func->update(disp->core, interlock, false);
2323 	}
2324 
2325 	if (atom->lock_core)
2326 		mutex_unlock(&disp->mutex);
2327 
2328 	/* Wait for HW to signal completion. */
2329 	for_each_new_plane_in_state(state, plane, new_plane_state, i) {
2330 		struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state);
2331 		struct nv50_wndw *wndw = nv50_wndw(plane);
2332 		int ret = nv50_wndw_wait_armed(wndw, asyw);
2333 		if (ret)
2334 			NV_ERROR(drm, "%s: timeout\n", plane->name);
2335 	}
2336 
2337 	for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
2338 		if (new_crtc_state->event) {
2339 			unsigned long flags;
2340 			/* Get correct count/ts if racing with vblank irq */
2341 			if (new_crtc_state->active)
2342 				drm_crtc_accurate_vblank_count(crtc);
2343 			spin_lock_irqsave(&crtc->dev->event_lock, flags);
2344 			drm_crtc_send_vblank_event(crtc, new_crtc_state->event);
2345 			spin_unlock_irqrestore(&crtc->dev->event_lock, flags);
2346 
2347 			new_crtc_state->event = NULL;
2348 			if (new_crtc_state->active)
2349 				drm_crtc_vblank_put(crtc);
2350 		}
2351 	}
2352 
2353 	nv50_crc_atomic_start_reporting(state);
2354 	if (!flushed)
2355 		nv50_crc_atomic_release_notifier_contexts(state);
2356 
2357 	drm_atomic_helper_commit_hw_done(state);
2358 	drm_atomic_helper_cleanup_planes(dev, state);
2359 	drm_atomic_helper_commit_cleanup_done(state);
2360 	drm_atomic_state_put(state);
2361 
2362 	/* Drop the RPM ref we got from nv50_disp_atomic_commit() */
2363 	pm_runtime_mark_last_busy(dev->dev);
2364 	pm_runtime_put_autosuspend(dev->dev);
2365 }
2366 
2367 static void
2368 nv50_disp_atomic_commit_work(struct work_struct *work)
2369 {
2370 	struct drm_atomic_state *state =
2371 		container_of(work, typeof(*state), commit_work);
2372 	nv50_disp_atomic_commit_tail(state);
2373 }
2374 
2375 static int
2376 nv50_disp_atomic_commit(struct drm_device *dev,
2377 			struct drm_atomic_state *state, bool nonblock)
2378 {
2379 	struct drm_plane_state *new_plane_state;
2380 	struct drm_plane *plane;
2381 	int ret, i;
2382 
2383 	ret = pm_runtime_get_sync(dev->dev);
2384 	if (ret < 0 && ret != -EACCES) {
2385 		pm_runtime_put_autosuspend(dev->dev);
2386 		return ret;
2387 	}
2388 
2389 	ret = drm_atomic_helper_setup_commit(state, nonblock);
2390 	if (ret)
2391 		goto done;
2392 
2393 	INIT_WORK(&state->commit_work, nv50_disp_atomic_commit_work);
2394 
2395 	ret = drm_atomic_helper_prepare_planes(dev, state);
2396 	if (ret)
2397 		goto done;
2398 
2399 	if (!nonblock) {
2400 		ret = drm_atomic_helper_wait_for_fences(dev, state, true);
2401 		if (ret)
2402 			goto err_cleanup;
2403 	}
2404 
2405 	ret = drm_atomic_helper_swap_state(state, true);
2406 	if (ret)
2407 		goto err_cleanup;
2408 
2409 	for_each_new_plane_in_state(state, plane, new_plane_state, i) {
2410 		struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state);
2411 		struct nv50_wndw *wndw = nv50_wndw(plane);
2412 
2413 		if (asyw->set.image)
2414 			nv50_wndw_ntfy_enable(wndw, asyw);
2415 	}
2416 
2417 	drm_atomic_state_get(state);
2418 
2419 	/*
2420 	 * Grab another RPM ref for the commit tail, which will release the
2421 	 * ref when it's finished
2422 	 */
2423 	pm_runtime_get_noresume(dev->dev);
2424 
2425 	if (nonblock)
2426 		queue_work(system_unbound_wq, &state->commit_work);
2427 	else
2428 		nv50_disp_atomic_commit_tail(state);
2429 
2430 err_cleanup:
2431 	if (ret)
2432 		drm_atomic_helper_cleanup_planes(dev, state);
2433 done:
2434 	pm_runtime_put_autosuspend(dev->dev);
2435 	return ret;
2436 }
2437 
2438 static struct nv50_outp_atom *
2439 nv50_disp_outp_atomic_add(struct nv50_atom *atom, struct drm_encoder *encoder)
2440 {
2441 	struct nv50_outp_atom *outp;
2442 
2443 	list_for_each_entry(outp, &atom->outp, head) {
2444 		if (outp->encoder == encoder)
2445 			return outp;
2446 	}
2447 
2448 	outp = kzalloc(sizeof(*outp), GFP_KERNEL);
2449 	if (!outp)
2450 		return ERR_PTR(-ENOMEM);
2451 
2452 	list_add(&outp->head, &atom->outp);
2453 	outp->encoder = encoder;
2454 	return outp;
2455 }
2456 
2457 static int
2458 nv50_disp_outp_atomic_check_clr(struct nv50_atom *atom,
2459 				struct drm_connector_state *old_connector_state)
2460 {
2461 	struct drm_encoder *encoder = old_connector_state->best_encoder;
2462 	struct drm_crtc_state *old_crtc_state, *new_crtc_state;
2463 	struct drm_crtc *crtc;
2464 	struct nv50_outp_atom *outp;
2465 
2466 	if (!(crtc = old_connector_state->crtc))
2467 		return 0;
2468 
2469 	old_crtc_state = drm_atomic_get_old_crtc_state(&atom->state, crtc);
2470 	new_crtc_state = drm_atomic_get_new_crtc_state(&atom->state, crtc);
2471 	if (old_crtc_state->active && drm_atomic_crtc_needs_modeset(new_crtc_state)) {
2472 		outp = nv50_disp_outp_atomic_add(atom, encoder);
2473 		if (IS_ERR(outp))
2474 			return PTR_ERR(outp);
2475 
2476 		if (outp->encoder->encoder_type == DRM_MODE_ENCODER_DPMST) {
2477 			outp->flush_disable = true;
2478 			atom->flush_disable = true;
2479 		}
2480 		outp->clr.ctrl = true;
2481 		atom->lock_core = true;
2482 	}
2483 
2484 	return 0;
2485 }
2486 
2487 static int
2488 nv50_disp_outp_atomic_check_set(struct nv50_atom *atom,
2489 				struct drm_connector_state *connector_state)
2490 {
2491 	struct drm_encoder *encoder = connector_state->best_encoder;
2492 	struct drm_crtc_state *new_crtc_state;
2493 	struct drm_crtc *crtc;
2494 	struct nv50_outp_atom *outp;
2495 
2496 	if (!(crtc = connector_state->crtc))
2497 		return 0;
2498 
2499 	new_crtc_state = drm_atomic_get_new_crtc_state(&atom->state, crtc);
2500 	if (new_crtc_state->active && drm_atomic_crtc_needs_modeset(new_crtc_state)) {
2501 		outp = nv50_disp_outp_atomic_add(atom, encoder);
2502 		if (IS_ERR(outp))
2503 			return PTR_ERR(outp);
2504 
2505 		outp->set.ctrl = true;
2506 		atom->lock_core = true;
2507 	}
2508 
2509 	return 0;
2510 }
2511 
2512 static int
2513 nv50_disp_atomic_check(struct drm_device *dev, struct drm_atomic_state *state)
2514 {
2515 	struct nv50_atom *atom = nv50_atom(state);
2516 	struct nv50_core *core = nv50_disp(dev)->core;
2517 	struct drm_connector_state *old_connector_state, *new_connector_state;
2518 	struct drm_connector *connector;
2519 	struct drm_crtc_state *new_crtc_state;
2520 	struct drm_crtc *crtc;
2521 	struct nv50_head *head;
2522 	struct nv50_head_atom *asyh;
2523 	int ret, i;
2524 
2525 	if (core->assign_windows && core->func->head->static_wndw_map) {
2526 		drm_for_each_crtc(crtc, dev) {
2527 			new_crtc_state = drm_atomic_get_crtc_state(state,
2528 								   crtc);
2529 			if (IS_ERR(new_crtc_state))
2530 				return PTR_ERR(new_crtc_state);
2531 
2532 			head = nv50_head(crtc);
2533 			asyh = nv50_head_atom(new_crtc_state);
2534 			core->func->head->static_wndw_map(head, asyh);
2535 		}
2536 	}
2537 
2538 	/* We need to handle colour management on a per-plane basis. */
2539 	for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
2540 		if (new_crtc_state->color_mgmt_changed) {
2541 			ret = drm_atomic_add_affected_planes(state, crtc);
2542 			if (ret)
2543 				return ret;
2544 		}
2545 	}
2546 
2547 	ret = drm_atomic_helper_check(dev, state);
2548 	if (ret)
2549 		return ret;
2550 
2551 	for_each_oldnew_connector_in_state(state, connector, old_connector_state, new_connector_state, i) {
2552 		ret = nv50_disp_outp_atomic_check_clr(atom, old_connector_state);
2553 		if (ret)
2554 			return ret;
2555 
2556 		ret = nv50_disp_outp_atomic_check_set(atom, new_connector_state);
2557 		if (ret)
2558 			return ret;
2559 	}
2560 
2561 	ret = drm_dp_mst_atomic_check(state);
2562 	if (ret)
2563 		return ret;
2564 
2565 	nv50_crc_atomic_check_outp(atom);
2566 
2567 	return 0;
2568 }
2569 
2570 static void
2571 nv50_disp_atomic_state_clear(struct drm_atomic_state *state)
2572 {
2573 	struct nv50_atom *atom = nv50_atom(state);
2574 	struct nv50_outp_atom *outp, *outt;
2575 
2576 	list_for_each_entry_safe(outp, outt, &atom->outp, head) {
2577 		list_del(&outp->head);
2578 		kfree(outp);
2579 	}
2580 
2581 	drm_atomic_state_default_clear(state);
2582 }
2583 
2584 static void
2585 nv50_disp_atomic_state_free(struct drm_atomic_state *state)
2586 {
2587 	struct nv50_atom *atom = nv50_atom(state);
2588 	drm_atomic_state_default_release(&atom->state);
2589 	kfree(atom);
2590 }
2591 
2592 static struct drm_atomic_state *
2593 nv50_disp_atomic_state_alloc(struct drm_device *dev)
2594 {
2595 	struct nv50_atom *atom;
2596 	if (!(atom = kzalloc(sizeof(*atom), GFP_KERNEL)) ||
2597 	    drm_atomic_state_init(dev, &atom->state) < 0) {
2598 		kfree(atom);
2599 		return NULL;
2600 	}
2601 	INIT_LIST_HEAD(&atom->outp);
2602 	return &atom->state;
2603 }
2604 
2605 static const struct drm_mode_config_funcs
2606 nv50_disp_func = {
2607 	.fb_create = nouveau_user_framebuffer_create,
2608 	.output_poll_changed = nouveau_fbcon_output_poll_changed,
2609 	.atomic_check = nv50_disp_atomic_check,
2610 	.atomic_commit = nv50_disp_atomic_commit,
2611 	.atomic_state_alloc = nv50_disp_atomic_state_alloc,
2612 	.atomic_state_clear = nv50_disp_atomic_state_clear,
2613 	.atomic_state_free = nv50_disp_atomic_state_free,
2614 };
2615 
2616 /******************************************************************************
2617  * Init
2618  *****************************************************************************/
2619 
2620 static void
2621 nv50_display_fini(struct drm_device *dev, bool runtime, bool suspend)
2622 {
2623 	struct nouveau_drm *drm = nouveau_drm(dev);
2624 	struct drm_encoder *encoder;
2625 	struct drm_plane *plane;
2626 
2627 	drm_for_each_plane(plane, dev) {
2628 		struct nv50_wndw *wndw = nv50_wndw(plane);
2629 		if (plane->funcs != &nv50_wndw)
2630 			continue;
2631 		nv50_wndw_fini(wndw);
2632 	}
2633 
2634 	list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
2635 		if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST)
2636 			nv50_mstm_fini(nouveau_encoder(encoder));
2637 	}
2638 
2639 	if (!runtime)
2640 		cancel_work_sync(&drm->hpd_work);
2641 }
2642 
2643 static int
2644 nv50_display_init(struct drm_device *dev, bool resume, bool runtime)
2645 {
2646 	struct nv50_core *core = nv50_disp(dev)->core;
2647 	struct drm_encoder *encoder;
2648 	struct drm_plane *plane;
2649 
2650 	if (resume || runtime)
2651 		core->func->init(core);
2652 
2653 	list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
2654 		if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) {
2655 			struct nouveau_encoder *nv_encoder =
2656 				nouveau_encoder(encoder);
2657 			nv50_mstm_init(nv_encoder, runtime);
2658 		}
2659 	}
2660 
2661 	drm_for_each_plane(plane, dev) {
2662 		struct nv50_wndw *wndw = nv50_wndw(plane);
2663 		if (plane->funcs != &nv50_wndw)
2664 			continue;
2665 		nv50_wndw_init(wndw);
2666 	}
2667 
2668 	return 0;
2669 }
2670 
2671 static void
2672 nv50_display_destroy(struct drm_device *dev)
2673 {
2674 	struct nv50_disp *disp = nv50_disp(dev);
2675 
2676 	nv50_audio_component_fini(nouveau_drm(dev));
2677 
2678 	nvif_object_unmap(&disp->caps);
2679 	nvif_object_dtor(&disp->caps);
2680 	nv50_core_del(&disp->core);
2681 
2682 	nouveau_bo_unmap(disp->sync);
2683 	if (disp->sync)
2684 		nouveau_bo_unpin(disp->sync);
2685 	nouveau_bo_ref(NULL, &disp->sync);
2686 
2687 	nouveau_display(dev)->priv = NULL;
2688 	kfree(disp);
2689 }
2690 
2691 int
2692 nv50_display_create(struct drm_device *dev)
2693 {
2694 	struct nvif_device *device = &nouveau_drm(dev)->client.device;
2695 	struct nouveau_drm *drm = nouveau_drm(dev);
2696 	struct dcb_table *dcb = &drm->vbios.dcb;
2697 	struct drm_connector *connector, *tmp;
2698 	struct nv50_disp *disp;
2699 	struct dcb_output *dcbe;
2700 	int crtcs, ret, i;
2701 	bool has_mst = nv50_has_mst(drm);
2702 
2703 	disp = kzalloc(sizeof(*disp), GFP_KERNEL);
2704 	if (!disp)
2705 		return -ENOMEM;
2706 
2707 	mutex_init(&disp->mutex);
2708 
2709 	nouveau_display(dev)->priv = disp;
2710 	nouveau_display(dev)->dtor = nv50_display_destroy;
2711 	nouveau_display(dev)->init = nv50_display_init;
2712 	nouveau_display(dev)->fini = nv50_display_fini;
2713 	disp->disp = &nouveau_display(dev)->disp;
2714 	dev->mode_config.funcs = &nv50_disp_func;
2715 	dev->mode_config.quirk_addfb_prefer_xbgr_30bpp = true;
2716 	dev->mode_config.normalize_zpos = true;
2717 
2718 	/* small shared memory area we use for notifiers and semaphores */
2719 	ret = nouveau_bo_new(&drm->client, 4096, 0x1000,
2720 			     NOUVEAU_GEM_DOMAIN_VRAM,
2721 			     0, 0x0000, NULL, NULL, &disp->sync);
2722 	if (!ret) {
2723 		ret = nouveau_bo_pin(disp->sync, NOUVEAU_GEM_DOMAIN_VRAM, true);
2724 		if (!ret) {
2725 			ret = nouveau_bo_map(disp->sync);
2726 			if (ret)
2727 				nouveau_bo_unpin(disp->sync);
2728 		}
2729 		if (ret)
2730 			nouveau_bo_ref(NULL, &disp->sync);
2731 	}
2732 
2733 	if (ret)
2734 		goto out;
2735 
2736 	/* allocate master evo channel */
2737 	ret = nv50_core_new(drm, &disp->core);
2738 	if (ret)
2739 		goto out;
2740 
2741 	disp->core->func->init(disp->core);
2742 	if (disp->core->func->caps_init) {
2743 		ret = disp->core->func->caps_init(drm, disp);
2744 		if (ret)
2745 			goto out;
2746 	}
2747 
2748 	/* Assign the correct format modifiers */
2749 	if (disp->disp->object.oclass >= TU102_DISP)
2750 		nouveau_display(dev)->format_modifiers = wndwc57e_modifiers;
2751 	else
2752 	if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_FERMI)
2753 		nouveau_display(dev)->format_modifiers = disp90xx_modifiers;
2754 	else
2755 		nouveau_display(dev)->format_modifiers = disp50xx_modifiers;
2756 
2757 	/* FIXME: 256x256 cursors are supported on Kepler, however unlike Maxwell and later
2758 	 * generations Kepler requires that we use small pages (4K) for cursor scanout surfaces. The
2759 	 * proper fix for this is to teach nouveau to migrate fbs being used for the cursor plane to
2760 	 * small page allocations in prepare_fb(). When this is implemented, we should also force
2761 	 * large pages (128K) for ovly fbs in order to fix Kepler ovlys.
2762 	 * But until then, just limit cursors to 128x128 - which is small enough to avoid ever using
2763 	 * large pages.
2764 	 */
2765 	if (disp->disp->object.oclass >= GM107_DISP) {
2766 		dev->mode_config.cursor_width = 256;
2767 		dev->mode_config.cursor_height = 256;
2768 	} else if (disp->disp->object.oclass >= GK104_DISP) {
2769 		dev->mode_config.cursor_width = 128;
2770 		dev->mode_config.cursor_height = 128;
2771 	} else {
2772 		dev->mode_config.cursor_width = 64;
2773 		dev->mode_config.cursor_height = 64;
2774 	}
2775 
2776 	/* create crtc objects to represent the hw heads */
2777 	if (disp->disp->object.oclass >= GV100_DISP)
2778 		crtcs = nvif_rd32(&device->object, 0x610060) & 0xff;
2779 	else
2780 	if (disp->disp->object.oclass >= GF110_DISP)
2781 		crtcs = nvif_rd32(&device->object, 0x612004) & 0xf;
2782 	else
2783 		crtcs = 0x3;
2784 
2785 	for (i = 0; i < fls(crtcs); i++) {
2786 		struct nv50_head *head;
2787 
2788 		if (!(crtcs & (1 << i)))
2789 			continue;
2790 
2791 		head = nv50_head_create(dev, i);
2792 		if (IS_ERR(head)) {
2793 			ret = PTR_ERR(head);
2794 			goto out;
2795 		}
2796 
2797 		if (has_mst) {
2798 			head->msto = nv50_msto_new(dev, head, i);
2799 			if (IS_ERR(head->msto)) {
2800 				ret = PTR_ERR(head->msto);
2801 				head->msto = NULL;
2802 				goto out;
2803 			}
2804 
2805 			/*
2806 			 * FIXME: This is a hack to workaround the following
2807 			 * issues:
2808 			 *
2809 			 * https://gitlab.gnome.org/GNOME/mutter/issues/759
2810 			 * https://gitlab.freedesktop.org/xorg/xserver/merge_requests/277
2811 			 *
2812 			 * Once these issues are closed, this should be
2813 			 * removed
2814 			 */
2815 			head->msto->encoder.possible_crtcs = crtcs;
2816 		}
2817 	}
2818 
2819 	/* create encoder/connector objects based on VBIOS DCB table */
2820 	for (i = 0, dcbe = &dcb->entry[0]; i < dcb->entries; i++, dcbe++) {
2821 		connector = nouveau_connector_create(dev, dcbe);
2822 		if (IS_ERR(connector))
2823 			continue;
2824 
2825 		if (dcbe->location == DCB_LOC_ON_CHIP) {
2826 			switch (dcbe->type) {
2827 			case DCB_OUTPUT_TMDS:
2828 			case DCB_OUTPUT_LVDS:
2829 			case DCB_OUTPUT_DP:
2830 				ret = nv50_sor_create(connector, dcbe);
2831 				break;
2832 			case DCB_OUTPUT_ANALOG:
2833 				ret = nv50_dac_create(connector, dcbe);
2834 				break;
2835 			default:
2836 				ret = -ENODEV;
2837 				break;
2838 			}
2839 		} else {
2840 			ret = nv50_pior_create(connector, dcbe);
2841 		}
2842 
2843 		if (ret) {
2844 			NV_WARN(drm, "failed to create encoder %d/%d/%d: %d\n",
2845 				     dcbe->location, dcbe->type,
2846 				     ffs(dcbe->or) - 1, ret);
2847 			ret = 0;
2848 		}
2849 	}
2850 
2851 	/* cull any connectors we created that don't have an encoder */
2852 	list_for_each_entry_safe(connector, tmp, &dev->mode_config.connector_list, head) {
2853 		if (connector->possible_encoders)
2854 			continue;
2855 
2856 		NV_WARN(drm, "%s has no encoders, removing\n",
2857 			connector->name);
2858 		connector->funcs->destroy(connector);
2859 	}
2860 
2861 	/* Disable vblank irqs aggressively for power-saving, safe on nv50+ */
2862 	dev->vblank_disable_immediate = true;
2863 
2864 	nv50_audio_component_init(drm);
2865 
2866 out:
2867 	if (ret)
2868 		nv50_display_destroy(dev);
2869 	return ret;
2870 }
2871 
2872 /******************************************************************************
2873  * Format modifiers
2874  *****************************************************************************/
2875 
2876 /****************************************************************
2877  *            Log2(block height) ----------------------------+  *
2878  *            Page Kind ----------------------------------+  |  *
2879  *            Gob Height/Page Kind Generation ------+     |  |  *
2880  *                          Sector layout -------+  |     |  |  *
2881  *                          Compression ------+  |  |     |  |  */
2882 const u64 disp50xx_modifiers[] = { /*         |  |  |     |  |  */
2883 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 0),
2884 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 1),
2885 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 2),
2886 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 3),
2887 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 4),
2888 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 5),
2889 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 0),
2890 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 1),
2891 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 2),
2892 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 3),
2893 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 4),
2894 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 5),
2895 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 0),
2896 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 1),
2897 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 2),
2898 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 3),
2899 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 4),
2900 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 5),
2901 	DRM_FORMAT_MOD_LINEAR,
2902 	DRM_FORMAT_MOD_INVALID
2903 };
2904 
2905 /****************************************************************
2906  *            Log2(block height) ----------------------------+  *
2907  *            Page Kind ----------------------------------+  |  *
2908  *            Gob Height/Page Kind Generation ------+     |  |  *
2909  *                          Sector layout -------+  |     |  |  *
2910  *                          Compression ------+  |  |     |  |  */
2911 const u64 disp90xx_modifiers[] = { /*         |  |  |     |  |  */
2912 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 0),
2913 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 1),
2914 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 2),
2915 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 3),
2916 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 4),
2917 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 5),
2918 	DRM_FORMAT_MOD_LINEAR,
2919 	DRM_FORMAT_MOD_INVALID
2920 };
2921