1 /* 2 * Copyright 2011 Red Hat Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 * 22 * Authors: Ben Skeggs 23 */ 24 #include "disp.h" 25 #include "atom.h" 26 #include "core.h" 27 #include "head.h" 28 #include "wndw.h" 29 #include "handles.h" 30 31 #include <linux/dma-mapping.h> 32 #include <linux/hdmi.h> 33 #include <linux/component.h> 34 #include <linux/iopoll.h> 35 36 #include <drm/display/drm_dp_helper.h> 37 #include <drm/display/drm_scdc_helper.h> 38 #include <drm/drm_atomic.h> 39 #include <drm/drm_atomic_helper.h> 40 #include <drm/drm_edid.h> 41 #include <drm/drm_fb_helper.h> 42 #include <drm/drm_probe_helper.h> 43 #include <drm/drm_vblank.h> 44 45 #include <nvif/push507c.h> 46 47 #include <nvif/class.h> 48 #include <nvif/cl0002.h> 49 #include <nvif/event.h> 50 #include <nvif/if0012.h> 51 #include <nvif/if0014.h> 52 #include <nvif/timer.h> 53 54 #include <nvhw/class/cl507c.h> 55 #include <nvhw/class/cl507d.h> 56 #include <nvhw/class/cl837d.h> 57 #include <nvhw/class/cl887d.h> 58 #include <nvhw/class/cl907d.h> 59 #include <nvhw/class/cl917d.h> 60 61 #include "nouveau_drv.h" 62 #include "nouveau_dma.h" 63 #include "nouveau_gem.h" 64 #include "nouveau_connector.h" 65 #include "nouveau_encoder.h" 66 #include "nouveau_fence.h" 67 #include "nv50_display.h" 68 69 /****************************************************************************** 70 * EVO channel 71 *****************************************************************************/ 72 73 static int 74 nv50_chan_create(struct nvif_device *device, struct nvif_object *disp, 75 const s32 *oclass, u8 head, void *data, u32 size, 76 struct nv50_chan *chan) 77 { 78 struct nvif_sclass *sclass; 79 int ret, i, n; 80 81 chan->device = device; 82 83 ret = n = nvif_object_sclass_get(disp, &sclass); 84 if (ret < 0) 85 return ret; 86 87 while (oclass[0]) { 88 for (i = 0; i < n; i++) { 89 if (sclass[i].oclass == oclass[0]) { 90 ret = nvif_object_ctor(disp, "kmsChan", 0, 91 oclass[0], data, size, 92 &chan->user); 93 if (ret == 0) 94 nvif_object_map(&chan->user, NULL, 0); 95 nvif_object_sclass_put(&sclass); 96 return ret; 97 } 98 } 99 oclass++; 100 } 101 102 nvif_object_sclass_put(&sclass); 103 return -ENOSYS; 104 } 105 106 static void 107 nv50_chan_destroy(struct nv50_chan *chan) 108 { 109 nvif_object_dtor(&chan->user); 110 } 111 112 /****************************************************************************** 113 * DMA EVO channel 114 *****************************************************************************/ 115 116 void 117 nv50_dmac_destroy(struct nv50_dmac *dmac) 118 { 119 nvif_object_dtor(&dmac->vram); 120 nvif_object_dtor(&dmac->sync); 121 122 nv50_chan_destroy(&dmac->base); 123 124 nvif_mem_dtor(&dmac->_push.mem); 125 } 126 127 static void 128 nv50_dmac_kick(struct nvif_push *push) 129 { 130 struct nv50_dmac *dmac = container_of(push, typeof(*dmac), _push); 131 132 dmac->cur = push->cur - (u32 __iomem *)dmac->_push.mem.object.map.ptr; 133 if (dmac->put != dmac->cur) { 134 /* Push buffer fetches are not coherent with BAR1, we need to ensure 135 * writes have been flushed right through to VRAM before writing PUT. 136 */ 137 if (dmac->push->mem.type & NVIF_MEM_VRAM) { 138 struct nvif_device *device = dmac->base.device; 139 nvif_wr32(&device->object, 0x070000, 0x00000001); 140 nvif_msec(device, 2000, 141 if (!(nvif_rd32(&device->object, 0x070000) & 0x00000002)) 142 break; 143 ); 144 } 145 146 NVIF_WV32(&dmac->base.user, NV507C, PUT, PTR, dmac->cur); 147 dmac->put = dmac->cur; 148 } 149 150 push->bgn = push->cur; 151 } 152 153 static int 154 nv50_dmac_free(struct nv50_dmac *dmac) 155 { 156 u32 get = NVIF_RV32(&dmac->base.user, NV507C, GET, PTR); 157 if (get > dmac->cur) /* NVIDIA stay 5 away from GET, do the same. */ 158 return get - dmac->cur - 5; 159 return dmac->max - dmac->cur; 160 } 161 162 static int 163 nv50_dmac_wind(struct nv50_dmac *dmac) 164 { 165 /* Wait for GET to depart from the beginning of the push buffer to 166 * prevent writing PUT == GET, which would be ignored by HW. 167 */ 168 u32 get = NVIF_RV32(&dmac->base.user, NV507C, GET, PTR); 169 if (get == 0) { 170 /* Corner-case, HW idle, but non-committed work pending. */ 171 if (dmac->put == 0) 172 nv50_dmac_kick(dmac->push); 173 174 if (nvif_msec(dmac->base.device, 2000, 175 if (NVIF_TV32(&dmac->base.user, NV507C, GET, PTR, >, 0)) 176 break; 177 ) < 0) 178 return -ETIMEDOUT; 179 } 180 181 PUSH_RSVD(dmac->push, PUSH_JUMP(dmac->push, 0)); 182 dmac->cur = 0; 183 return 0; 184 } 185 186 static int 187 nv50_dmac_wait(struct nvif_push *push, u32 size) 188 { 189 struct nv50_dmac *dmac = container_of(push, typeof(*dmac), _push); 190 int free; 191 192 if (WARN_ON(size > dmac->max)) 193 return -EINVAL; 194 195 dmac->cur = push->cur - (u32 __iomem *)dmac->_push.mem.object.map.ptr; 196 if (dmac->cur + size >= dmac->max) { 197 int ret = nv50_dmac_wind(dmac); 198 if (ret) 199 return ret; 200 201 push->cur = dmac->_push.mem.object.map.ptr; 202 push->cur = push->cur + dmac->cur; 203 nv50_dmac_kick(push); 204 } 205 206 if (nvif_msec(dmac->base.device, 2000, 207 if ((free = nv50_dmac_free(dmac)) >= size) 208 break; 209 ) < 0) { 210 WARN_ON(1); 211 return -ETIMEDOUT; 212 } 213 214 push->bgn = dmac->_push.mem.object.map.ptr; 215 push->bgn = push->bgn + dmac->cur; 216 push->cur = push->bgn; 217 push->end = push->cur + free; 218 return 0; 219 } 220 221 MODULE_PARM_DESC(kms_vram_pushbuf, "Place EVO/NVD push buffers in VRAM (default: auto)"); 222 static int nv50_dmac_vram_pushbuf = -1; 223 module_param_named(kms_vram_pushbuf, nv50_dmac_vram_pushbuf, int, 0400); 224 225 int 226 nv50_dmac_create(struct nvif_device *device, struct nvif_object *disp, 227 const s32 *oclass, u8 head, void *data, u32 size, s64 syncbuf, 228 struct nv50_dmac *dmac) 229 { 230 struct nouveau_cli *cli = (void *)device->object.client; 231 struct nvif_disp_chan_v0 *args = data; 232 u8 type = NVIF_MEM_COHERENT; 233 int ret; 234 235 mutex_init(&dmac->lock); 236 237 /* Pascal added support for 47-bit physical addresses, but some 238 * parts of EVO still only accept 40-bit PAs. 239 * 240 * To avoid issues on systems with large amounts of RAM, and on 241 * systems where an IOMMU maps pages at a high address, we need 242 * to allocate push buffers in VRAM instead. 243 * 244 * This appears to match NVIDIA's behaviour on Pascal. 245 */ 246 if ((nv50_dmac_vram_pushbuf > 0) || 247 (nv50_dmac_vram_pushbuf < 0 && device->info.family == NV_DEVICE_INFO_V0_PASCAL)) 248 type |= NVIF_MEM_VRAM; 249 250 ret = nvif_mem_ctor_map(&cli->mmu, "kmsChanPush", type, 0x1000, 251 &dmac->_push.mem); 252 if (ret) 253 return ret; 254 255 dmac->ptr = dmac->_push.mem.object.map.ptr; 256 dmac->_push.wait = nv50_dmac_wait; 257 dmac->_push.kick = nv50_dmac_kick; 258 dmac->push = &dmac->_push; 259 dmac->push->bgn = dmac->_push.mem.object.map.ptr; 260 dmac->push->cur = dmac->push->bgn; 261 dmac->push->end = dmac->push->bgn; 262 dmac->max = 0x1000/4 - 1; 263 264 /* EVO channels are affected by a HW bug where the last 12 DWORDs 265 * of the push buffer aren't able to be used safely. 266 */ 267 if (disp->oclass < GV100_DISP) 268 dmac->max -= 12; 269 270 args->pushbuf = nvif_handle(&dmac->_push.mem.object); 271 272 ret = nv50_chan_create(device, disp, oclass, head, data, size, 273 &dmac->base); 274 if (ret) 275 return ret; 276 277 if (syncbuf < 0) 278 return 0; 279 280 ret = nvif_object_ctor(&dmac->base.user, "kmsSyncCtxDma", NV50_DISP_HANDLE_SYNCBUF, 281 NV_DMA_IN_MEMORY, 282 &(struct nv_dma_v0) { 283 .target = NV_DMA_V0_TARGET_VRAM, 284 .access = NV_DMA_V0_ACCESS_RDWR, 285 .start = syncbuf + 0x0000, 286 .limit = syncbuf + 0x0fff, 287 }, sizeof(struct nv_dma_v0), 288 &dmac->sync); 289 if (ret) 290 return ret; 291 292 ret = nvif_object_ctor(&dmac->base.user, "kmsVramCtxDma", NV50_DISP_HANDLE_VRAM, 293 NV_DMA_IN_MEMORY, 294 &(struct nv_dma_v0) { 295 .target = NV_DMA_V0_TARGET_VRAM, 296 .access = NV_DMA_V0_ACCESS_RDWR, 297 .start = 0, 298 .limit = device->info.ram_user - 1, 299 }, sizeof(struct nv_dma_v0), 300 &dmac->vram); 301 if (ret) 302 return ret; 303 304 return ret; 305 } 306 307 /****************************************************************************** 308 * Output path helpers 309 *****************************************************************************/ 310 static void 311 nv50_outp_dump_caps(struct nouveau_drm *drm, 312 struct nouveau_encoder *outp) 313 { 314 NV_DEBUG(drm, "%s caps: dp_interlace=%d\n", 315 outp->base.base.name, outp->caps.dp_interlace); 316 } 317 318 static int 319 nv50_outp_atomic_check_view(struct drm_encoder *encoder, 320 struct drm_crtc_state *crtc_state, 321 struct drm_connector_state *conn_state, 322 struct drm_display_mode *native_mode) 323 { 324 struct drm_display_mode *adjusted_mode = &crtc_state->adjusted_mode; 325 struct drm_display_mode *mode = &crtc_state->mode; 326 struct drm_connector *connector = conn_state->connector; 327 struct nouveau_conn_atom *asyc = nouveau_conn_atom(conn_state); 328 struct nouveau_drm *drm = nouveau_drm(encoder->dev); 329 330 NV_ATOMIC(drm, "%s atomic_check\n", encoder->name); 331 asyc->scaler.full = false; 332 if (!native_mode) 333 return 0; 334 335 if (asyc->scaler.mode == DRM_MODE_SCALE_NONE) { 336 switch (connector->connector_type) { 337 case DRM_MODE_CONNECTOR_LVDS: 338 case DRM_MODE_CONNECTOR_eDP: 339 /* Don't force scaler for EDID modes with 340 * same size as the native one (e.g. different 341 * refresh rate) 342 */ 343 if (mode->hdisplay == native_mode->hdisplay && 344 mode->vdisplay == native_mode->vdisplay && 345 mode->type & DRM_MODE_TYPE_DRIVER) 346 break; 347 mode = native_mode; 348 asyc->scaler.full = true; 349 break; 350 default: 351 break; 352 } 353 } else { 354 mode = native_mode; 355 } 356 357 if (!drm_mode_equal(adjusted_mode, mode)) { 358 drm_mode_copy(adjusted_mode, mode); 359 crtc_state->mode_changed = true; 360 } 361 362 return 0; 363 } 364 365 static void 366 nv50_outp_atomic_fix_depth(struct drm_encoder *encoder, struct drm_crtc_state *crtc_state) 367 { 368 struct nv50_head_atom *asyh = nv50_head_atom(crtc_state); 369 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 370 struct drm_display_mode *mode = &asyh->state.adjusted_mode; 371 unsigned int max_rate, mode_rate; 372 373 switch (nv_encoder->dcb->type) { 374 case DCB_OUTPUT_DP: 375 max_rate = nv_encoder->dp.link_nr * nv_encoder->dp.link_bw; 376 377 /* we don't support more than 10 anyway */ 378 asyh->or.bpc = min_t(u8, asyh->or.bpc, 10); 379 380 /* reduce the bpc until it works out */ 381 while (asyh->or.bpc > 6) { 382 mode_rate = DIV_ROUND_UP(mode->clock * asyh->or.bpc * 3, 8); 383 if (mode_rate <= max_rate) 384 break; 385 386 asyh->or.bpc -= 2; 387 } 388 break; 389 default: 390 break; 391 } 392 } 393 394 static int 395 nv50_outp_atomic_check(struct drm_encoder *encoder, 396 struct drm_crtc_state *crtc_state, 397 struct drm_connector_state *conn_state) 398 { 399 struct drm_connector *connector = conn_state->connector; 400 struct nouveau_connector *nv_connector = nouveau_connector(connector); 401 struct nv50_head_atom *asyh = nv50_head_atom(crtc_state); 402 int ret; 403 404 ret = nv50_outp_atomic_check_view(encoder, crtc_state, conn_state, 405 nv_connector->native_mode); 406 if (ret) 407 return ret; 408 409 if (crtc_state->mode_changed || crtc_state->connectors_changed) 410 asyh->or.bpc = connector->display_info.bpc; 411 412 /* We might have to reduce the bpc */ 413 nv50_outp_atomic_fix_depth(encoder, crtc_state); 414 415 return 0; 416 } 417 418 struct nouveau_connector * 419 nv50_outp_get_new_connector(struct drm_atomic_state *state, struct nouveau_encoder *outp) 420 { 421 struct drm_connector *connector; 422 struct drm_connector_state *connector_state; 423 struct drm_encoder *encoder = to_drm_encoder(outp); 424 int i; 425 426 for_each_new_connector_in_state(state, connector, connector_state, i) { 427 if (connector_state->best_encoder == encoder) 428 return nouveau_connector(connector); 429 } 430 431 return NULL; 432 } 433 434 struct nouveau_connector * 435 nv50_outp_get_old_connector(struct drm_atomic_state *state, struct nouveau_encoder *outp) 436 { 437 struct drm_connector *connector; 438 struct drm_connector_state *connector_state; 439 struct drm_encoder *encoder = to_drm_encoder(outp); 440 int i; 441 442 for_each_old_connector_in_state(state, connector, connector_state, i) { 443 if (connector_state->best_encoder == encoder) 444 return nouveau_connector(connector); 445 } 446 447 return NULL; 448 } 449 450 static struct nouveau_crtc * 451 nv50_outp_get_new_crtc(const struct drm_atomic_state *state, const struct nouveau_encoder *outp) 452 { 453 struct drm_crtc *crtc; 454 struct drm_crtc_state *crtc_state; 455 const u32 mask = drm_encoder_mask(&outp->base.base); 456 int i; 457 458 for_each_new_crtc_in_state(state, crtc, crtc_state, i) { 459 if (crtc_state->encoder_mask & mask) 460 return nouveau_crtc(crtc); 461 } 462 463 return NULL; 464 } 465 466 /****************************************************************************** 467 * DAC 468 *****************************************************************************/ 469 static void 470 nv50_dac_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state) 471 { 472 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 473 struct nv50_core *core = nv50_disp(encoder->dev)->core; 474 const u32 ctrl = NVDEF(NV507D, DAC_SET_CONTROL, OWNER, NONE); 475 476 core->func->dac->ctrl(core, nv_encoder->outp.or.id, ctrl, NULL); 477 nv_encoder->crtc = NULL; 478 } 479 480 static void 481 nv50_dac_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state) 482 { 483 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 484 struct nouveau_crtc *nv_crtc = nv50_outp_get_new_crtc(state, nv_encoder); 485 struct nv50_head_atom *asyh = 486 nv50_head_atom(drm_atomic_get_new_crtc_state(state, &nv_crtc->base)); 487 struct nv50_core *core = nv50_disp(encoder->dev)->core; 488 u32 ctrl = 0; 489 490 switch (nv_crtc->index) { 491 case 0: ctrl |= NVDEF(NV507D, DAC_SET_CONTROL, OWNER, HEAD0); break; 492 case 1: ctrl |= NVDEF(NV507D, DAC_SET_CONTROL, OWNER, HEAD1); break; 493 case 2: ctrl |= NVDEF(NV907D, DAC_SET_CONTROL, OWNER_MASK, HEAD2); break; 494 case 3: ctrl |= NVDEF(NV907D, DAC_SET_CONTROL, OWNER_MASK, HEAD3); break; 495 default: 496 WARN_ON(1); 497 break; 498 } 499 500 ctrl |= NVDEF(NV507D, DAC_SET_CONTROL, PROTOCOL, RGB_CRT); 501 502 if (!nvif_outp_acquired(&nv_encoder->outp)) 503 nvif_outp_acquire_dac(&nv_encoder->outp); 504 505 core->func->dac->ctrl(core, nv_encoder->outp.or.id, ctrl, asyh); 506 asyh->or.depth = 0; 507 508 nv_encoder->crtc = &nv_crtc->base; 509 } 510 511 static enum drm_connector_status 512 nv50_dac_detect(struct drm_encoder *encoder, struct drm_connector *connector) 513 { 514 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 515 u32 loadval; 516 int ret; 517 518 loadval = nouveau_drm(encoder->dev)->vbios.dactestval; 519 if (loadval == 0) 520 loadval = 340; 521 522 ret = nvif_outp_load_detect(&nv_encoder->outp, loadval); 523 if (ret <= 0) 524 return connector_status_disconnected; 525 526 return connector_status_connected; 527 } 528 529 static const struct drm_encoder_helper_funcs 530 nv50_dac_help = { 531 .atomic_check = nv50_outp_atomic_check, 532 .atomic_enable = nv50_dac_atomic_enable, 533 .atomic_disable = nv50_dac_atomic_disable, 534 .detect = nv50_dac_detect 535 }; 536 537 static void 538 nv50_dac_destroy(struct drm_encoder *encoder) 539 { 540 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 541 542 nvif_outp_dtor(&nv_encoder->outp); 543 544 drm_encoder_cleanup(encoder); 545 kfree(encoder); 546 } 547 548 static const struct drm_encoder_funcs 549 nv50_dac_func = { 550 .destroy = nv50_dac_destroy, 551 }; 552 553 static int 554 nv50_dac_create(struct nouveau_encoder *nv_encoder) 555 { 556 struct drm_connector *connector = &nv_encoder->conn->base; 557 struct nouveau_drm *drm = nouveau_drm(connector->dev); 558 struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device); 559 struct nvkm_i2c_bus *bus; 560 struct drm_encoder *encoder; 561 struct dcb_output *dcbe = nv_encoder->dcb; 562 int type = DRM_MODE_ENCODER_DAC; 563 564 bus = nvkm_i2c_bus_find(i2c, dcbe->i2c_index); 565 if (bus) 566 nv_encoder->i2c = &bus->i2c; 567 568 encoder = to_drm_encoder(nv_encoder); 569 drm_encoder_init(connector->dev, encoder, &nv50_dac_func, type, 570 "dac-%04x-%04x", dcbe->hasht, dcbe->hashm); 571 drm_encoder_helper_add(encoder, &nv50_dac_help); 572 573 drm_connector_attach_encoder(connector, encoder); 574 return 0; 575 } 576 577 /* 578 * audio component binding for ELD notification 579 */ 580 static void 581 nv50_audio_component_eld_notify(struct drm_audio_component *acomp, int port, 582 int dev_id) 583 { 584 if (acomp && acomp->audio_ops && acomp->audio_ops->pin_eld_notify) 585 acomp->audio_ops->pin_eld_notify(acomp->audio_ops->audio_ptr, 586 port, dev_id); 587 } 588 589 static int 590 nv50_audio_component_get_eld(struct device *kdev, int port, int dev_id, 591 bool *enabled, unsigned char *buf, int max_bytes) 592 { 593 struct drm_device *drm_dev = dev_get_drvdata(kdev); 594 struct nouveau_drm *drm = nouveau_drm(drm_dev); 595 struct drm_encoder *encoder; 596 struct nouveau_encoder *nv_encoder; 597 struct nouveau_crtc *nv_crtc; 598 int ret = 0; 599 600 *enabled = false; 601 602 mutex_lock(&drm->audio.lock); 603 604 drm_for_each_encoder(encoder, drm->dev) { 605 struct nouveau_connector *nv_connector = NULL; 606 607 if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) 608 continue; /* TODO */ 609 610 nv_encoder = nouveau_encoder(encoder); 611 nv_connector = nv_encoder->conn; 612 nv_crtc = nouveau_crtc(nv_encoder->crtc); 613 614 if (!nv_crtc || nv_encoder->outp.or.id != port || nv_crtc->index != dev_id) 615 continue; 616 617 *enabled = nv_encoder->audio.enabled; 618 if (*enabled) { 619 ret = drm_eld_size(nv_connector->base.eld); 620 memcpy(buf, nv_connector->base.eld, 621 min(max_bytes, ret)); 622 } 623 break; 624 } 625 626 mutex_unlock(&drm->audio.lock); 627 628 return ret; 629 } 630 631 static const struct drm_audio_component_ops nv50_audio_component_ops = { 632 .get_eld = nv50_audio_component_get_eld, 633 }; 634 635 static int 636 nv50_audio_component_bind(struct device *kdev, struct device *hda_kdev, 637 void *data) 638 { 639 struct drm_device *drm_dev = dev_get_drvdata(kdev); 640 struct nouveau_drm *drm = nouveau_drm(drm_dev); 641 struct drm_audio_component *acomp = data; 642 643 if (WARN_ON(!device_link_add(hda_kdev, kdev, DL_FLAG_STATELESS))) 644 return -ENOMEM; 645 646 drm_modeset_lock_all(drm_dev); 647 acomp->ops = &nv50_audio_component_ops; 648 acomp->dev = kdev; 649 drm->audio.component = acomp; 650 drm_modeset_unlock_all(drm_dev); 651 return 0; 652 } 653 654 static void 655 nv50_audio_component_unbind(struct device *kdev, struct device *hda_kdev, 656 void *data) 657 { 658 struct drm_device *drm_dev = dev_get_drvdata(kdev); 659 struct nouveau_drm *drm = nouveau_drm(drm_dev); 660 struct drm_audio_component *acomp = data; 661 662 drm_modeset_lock_all(drm_dev); 663 drm->audio.component = NULL; 664 acomp->ops = NULL; 665 acomp->dev = NULL; 666 drm_modeset_unlock_all(drm_dev); 667 } 668 669 static const struct component_ops nv50_audio_component_bind_ops = { 670 .bind = nv50_audio_component_bind, 671 .unbind = nv50_audio_component_unbind, 672 }; 673 674 static void 675 nv50_audio_component_init(struct nouveau_drm *drm) 676 { 677 if (component_add(drm->dev->dev, &nv50_audio_component_bind_ops)) 678 return; 679 680 drm->audio.component_registered = true; 681 mutex_init(&drm->audio.lock); 682 } 683 684 static void 685 nv50_audio_component_fini(struct nouveau_drm *drm) 686 { 687 if (!drm->audio.component_registered) 688 return; 689 690 component_del(drm->dev->dev, &nv50_audio_component_bind_ops); 691 drm->audio.component_registered = false; 692 mutex_destroy(&drm->audio.lock); 693 } 694 695 /****************************************************************************** 696 * Audio 697 *****************************************************************************/ 698 static bool 699 nv50_audio_supported(struct drm_encoder *encoder) 700 { 701 struct nv50_disp *disp = nv50_disp(encoder->dev); 702 703 if (disp->disp->object.oclass <= GT200_DISP || 704 disp->disp->object.oclass == GT206_DISP) 705 return false; 706 707 if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) { 708 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 709 710 switch (nv_encoder->dcb->type) { 711 case DCB_OUTPUT_TMDS: 712 case DCB_OUTPUT_DP: 713 break; 714 default: 715 return false; 716 } 717 } 718 719 return true; 720 } 721 722 static void 723 nv50_audio_disable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc) 724 { 725 struct nouveau_drm *drm = nouveau_drm(encoder->dev); 726 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 727 struct nvif_outp *outp = &nv_encoder->outp; 728 729 if (!nv50_audio_supported(encoder)) 730 return; 731 732 mutex_lock(&drm->audio.lock); 733 if (nv_encoder->audio.enabled) { 734 nv_encoder->audio.enabled = false; 735 nvif_outp_hda_eld(&nv_encoder->outp, nv_crtc->index, NULL, 0); 736 } 737 mutex_unlock(&drm->audio.lock); 738 739 nv50_audio_component_eld_notify(drm->audio.component, outp->or.id, nv_crtc->index); 740 } 741 742 static void 743 nv50_audio_enable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc, 744 struct nouveau_connector *nv_connector, struct drm_atomic_state *state, 745 struct drm_display_mode *mode) 746 { 747 struct nouveau_drm *drm = nouveau_drm(encoder->dev); 748 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 749 struct nvif_outp *outp = &nv_encoder->outp; 750 751 if (!nv50_audio_supported(encoder) || !drm_detect_monitor_audio(nv_connector->edid)) 752 return; 753 754 mutex_lock(&drm->audio.lock); 755 756 nvif_outp_hda_eld(&nv_encoder->outp, nv_crtc->index, nv_connector->base.eld, 757 drm_eld_size(nv_connector->base.eld)); 758 nv_encoder->audio.enabled = true; 759 760 mutex_unlock(&drm->audio.lock); 761 762 nv50_audio_component_eld_notify(drm->audio.component, outp->or.id, nv_crtc->index); 763 } 764 765 /****************************************************************************** 766 * HDMI 767 *****************************************************************************/ 768 static void 769 nv50_hdmi_enable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc, 770 struct nouveau_connector *nv_connector, struct drm_atomic_state *state, 771 struct drm_display_mode *mode, bool hda) 772 { 773 struct nouveau_drm *drm = nouveau_drm(encoder->dev); 774 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 775 struct drm_hdmi_info *hdmi = &nv_connector->base.display_info.hdmi; 776 union hdmi_infoframe infoframe = { 0 }; 777 const u8 rekey = 56; /* binary driver, and tegra, constant */ 778 u32 max_ac_packet; 779 struct { 780 struct nvif_outp_infoframe_v0 infoframe; 781 u8 data[17]; 782 } args = { 0 }; 783 int ret, size; 784 785 max_ac_packet = mode->htotal - mode->hdisplay; 786 max_ac_packet -= rekey; 787 max_ac_packet -= 18; /* constant from tegra */ 788 max_ac_packet /= 32; 789 790 if (nv_encoder->i2c && hdmi->scdc.scrambling.supported) { 791 const bool high_tmds_clock_ratio = mode->clock > 340000; 792 u8 scdc; 793 794 ret = drm_scdc_readb(nv_encoder->i2c, SCDC_TMDS_CONFIG, &scdc); 795 if (ret < 0) { 796 NV_ERROR(drm, "Failure to read SCDC_TMDS_CONFIG: %d\n", ret); 797 return; 798 } 799 800 scdc &= ~(SCDC_TMDS_BIT_CLOCK_RATIO_BY_40 | SCDC_SCRAMBLING_ENABLE); 801 if (high_tmds_clock_ratio || hdmi->scdc.scrambling.low_rates) 802 scdc |= SCDC_SCRAMBLING_ENABLE; 803 if (high_tmds_clock_ratio) 804 scdc |= SCDC_TMDS_BIT_CLOCK_RATIO_BY_40; 805 806 ret = drm_scdc_writeb(nv_encoder->i2c, SCDC_TMDS_CONFIG, scdc); 807 if (ret < 0) 808 NV_ERROR(drm, "Failure to write SCDC_TMDS_CONFIG = 0x%02x: %d\n", 809 scdc, ret); 810 } 811 812 ret = nvif_outp_hdmi(&nv_encoder->outp, nv_crtc->index, true, max_ac_packet, rekey, 813 mode->clock, hdmi->scdc.supported, hdmi->scdc.scrambling.supported, 814 hdmi->scdc.scrambling.low_rates); 815 if (ret) 816 return; 817 818 /* AVI InfoFrame. */ 819 args.infoframe.version = 0; 820 args.infoframe.head = nv_crtc->index; 821 822 if (!drm_hdmi_avi_infoframe_from_display_mode(&infoframe.avi, &nv_connector->base, mode)) { 823 drm_hdmi_avi_infoframe_quant_range(&infoframe.avi, &nv_connector->base, mode, 824 HDMI_QUANTIZATION_RANGE_FULL); 825 826 size = hdmi_infoframe_pack(&infoframe, args.data, ARRAY_SIZE(args.data)); 827 } else { 828 size = 0; 829 } 830 831 nvif_outp_infoframe(&nv_encoder->outp, NVIF_OUTP_INFOFRAME_V0_AVI, &args.infoframe, size); 832 833 /* Vendor InfoFrame. */ 834 memset(&args.data, 0, sizeof(args.data)); 835 if (!drm_hdmi_vendor_infoframe_from_display_mode(&infoframe.vendor.hdmi, 836 &nv_connector->base, mode)) 837 size = hdmi_infoframe_pack(&infoframe, args.data, ARRAY_SIZE(args.data)); 838 else 839 size = 0; 840 841 nvif_outp_infoframe(&nv_encoder->outp, NVIF_OUTP_INFOFRAME_V0_VSI, &args.infoframe, size); 842 843 nv_encoder->hdmi.enabled = true; 844 } 845 846 /****************************************************************************** 847 * MST 848 *****************************************************************************/ 849 #define nv50_mstm(p) container_of((p), struct nv50_mstm, mgr) 850 #define nv50_mstc(p) container_of((p), struct nv50_mstc, connector) 851 #define nv50_msto(p) container_of((p), struct nv50_msto, encoder) 852 853 struct nv50_mstc { 854 struct nv50_mstm *mstm; 855 struct drm_dp_mst_port *port; 856 struct drm_connector connector; 857 858 struct drm_display_mode *native; 859 struct edid *edid; 860 }; 861 862 struct nv50_msto { 863 struct drm_encoder encoder; 864 865 /* head is statically assigned on msto creation */ 866 struct nv50_head *head; 867 struct nv50_mstc *mstc; 868 bool disabled; 869 bool enabled; 870 871 u32 display_id; 872 }; 873 874 struct nouveau_encoder *nv50_real_outp(struct drm_encoder *encoder) 875 { 876 struct nv50_msto *msto; 877 878 if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) 879 return nouveau_encoder(encoder); 880 881 msto = nv50_msto(encoder); 882 if (!msto->mstc) 883 return NULL; 884 return msto->mstc->mstm->outp; 885 } 886 887 static void 888 nv50_msto_cleanup(struct drm_atomic_state *state, 889 struct drm_dp_mst_topology_state *new_mst_state, 890 struct drm_dp_mst_topology_mgr *mgr, 891 struct nv50_msto *msto) 892 { 893 struct nouveau_drm *drm = nouveau_drm(msto->encoder.dev); 894 struct drm_dp_mst_atomic_payload *new_payload = 895 drm_atomic_get_mst_payload_state(new_mst_state, msto->mstc->port); 896 struct drm_dp_mst_topology_state *old_mst_state = 897 drm_atomic_get_old_mst_topology_state(state, mgr); 898 const struct drm_dp_mst_atomic_payload *old_payload = 899 drm_atomic_get_mst_payload_state(old_mst_state, msto->mstc->port); 900 struct nv50_mstc *mstc = msto->mstc; 901 struct nv50_mstm *mstm = mstc->mstm; 902 903 NV_ATOMIC(drm, "%s: msto cleanup\n", msto->encoder.name); 904 905 if (msto->disabled) { 906 if (msto->head->func->display_id) { 907 nvif_outp_dp_mst_id_put(&mstm->outp->outp, msto->display_id); 908 msto->display_id = 0; 909 } 910 911 msto->mstc = NULL; 912 msto->disabled = false; 913 drm_dp_remove_payload_part2(mgr, new_mst_state, old_payload, new_payload); 914 } else if (msto->enabled) { 915 drm_dp_add_payload_part2(mgr, state, new_payload); 916 msto->enabled = false; 917 } 918 } 919 920 static void 921 nv50_msto_prepare(struct drm_atomic_state *state, 922 struct drm_dp_mst_topology_state *mst_state, 923 struct drm_dp_mst_topology_mgr *mgr, 924 struct nv50_msto *msto) 925 { 926 struct nouveau_drm *drm = nouveau_drm(msto->encoder.dev); 927 struct nv50_mstc *mstc = msto->mstc; 928 struct nv50_mstm *mstm = mstc->mstm; 929 struct drm_dp_mst_atomic_payload *payload; 930 int ret = 0; 931 932 NV_ATOMIC(drm, "%s: msto prepare\n", msto->encoder.name); 933 934 payload = drm_atomic_get_mst_payload_state(mst_state, mstc->port); 935 936 if (msto->disabled) { 937 drm_dp_remove_payload_part1(mgr, mst_state, payload); 938 nvif_outp_dp_mst_vcpi(&mstm->outp->outp, msto->head->base.index, 0, 0, 0, 0); 939 ret = 1; 940 } else { 941 if (msto->enabled) 942 ret = drm_dp_add_payload_part1(mgr, mst_state, payload); 943 } 944 945 if (ret == 0) { 946 nvif_outp_dp_mst_vcpi(&mstm->outp->outp, msto->head->base.index, 947 payload->vc_start_slot, payload->time_slots, 948 payload->pbn, payload->time_slots * mst_state->pbn_div); 949 } else { 950 nvif_outp_dp_mst_vcpi(&mstm->outp->outp, msto->head->base.index, 0, 0, 0, 0); 951 } 952 } 953 954 static int 955 nv50_msto_atomic_check(struct drm_encoder *encoder, 956 struct drm_crtc_state *crtc_state, 957 struct drm_connector_state *conn_state) 958 { 959 struct drm_atomic_state *state = crtc_state->state; 960 struct drm_connector *connector = conn_state->connector; 961 struct drm_dp_mst_topology_state *mst_state; 962 struct nv50_mstc *mstc = nv50_mstc(connector); 963 struct nv50_mstm *mstm = mstc->mstm; 964 struct nv50_head_atom *asyh = nv50_head_atom(crtc_state); 965 int slots; 966 int ret; 967 968 ret = nv50_outp_atomic_check_view(encoder, crtc_state, conn_state, 969 mstc->native); 970 if (ret) 971 return ret; 972 973 if (!drm_atomic_crtc_needs_modeset(crtc_state)) 974 return 0; 975 976 /* 977 * When restoring duplicated states, we need to make sure that the bw 978 * remains the same and avoid recalculating it, as the connector's bpc 979 * may have changed after the state was duplicated 980 */ 981 if (!state->duplicated) { 982 const int clock = crtc_state->adjusted_mode.clock; 983 984 asyh->or.bpc = connector->display_info.bpc; 985 asyh->dp.pbn = drm_dp_calc_pbn_mode(clock, asyh->or.bpc * 3, 986 false); 987 } 988 989 mst_state = drm_atomic_get_mst_topology_state(state, &mstm->mgr); 990 if (IS_ERR(mst_state)) 991 return PTR_ERR(mst_state); 992 993 if (!mst_state->pbn_div) { 994 struct nouveau_encoder *outp = mstc->mstm->outp; 995 996 mst_state->pbn_div = drm_dp_get_vc_payload_bw(&mstm->mgr, 997 outp->dp.link_bw, outp->dp.link_nr); 998 } 999 1000 slots = drm_dp_atomic_find_time_slots(state, &mstm->mgr, mstc->port, asyh->dp.pbn); 1001 if (slots < 0) 1002 return slots; 1003 1004 asyh->dp.tu = slots; 1005 1006 return 0; 1007 } 1008 1009 static u8 1010 nv50_dp_bpc_to_depth(unsigned int bpc) 1011 { 1012 switch (bpc) { 1013 case 6: return NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_BPP_18_444; 1014 case 8: return NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_BPP_24_444; 1015 case 10: 1016 default: return NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_BPP_30_444; 1017 } 1018 } 1019 1020 static void 1021 nv50_msto_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state) 1022 { 1023 struct nv50_msto *msto = nv50_msto(encoder); 1024 struct nv50_head *head = msto->head; 1025 struct nv50_head_atom *asyh = 1026 nv50_head_atom(drm_atomic_get_new_crtc_state(state, &head->base.base)); 1027 struct nv50_mstc *mstc = NULL; 1028 struct nv50_mstm *mstm = NULL; 1029 struct drm_connector *connector; 1030 struct drm_connector_list_iter conn_iter; 1031 u8 proto; 1032 1033 drm_connector_list_iter_begin(encoder->dev, &conn_iter); 1034 drm_for_each_connector_iter(connector, &conn_iter) { 1035 if (connector->state->best_encoder == &msto->encoder) { 1036 mstc = nv50_mstc(connector); 1037 mstm = mstc->mstm; 1038 break; 1039 } 1040 } 1041 drm_connector_list_iter_end(&conn_iter); 1042 1043 if (WARN_ON(!mstc)) 1044 return; 1045 1046 if (!mstm->links++) { 1047 nvif_outp_acquire_sor(&mstm->outp->outp, false /*TODO: MST audio... */); 1048 nouveau_dp_train(mstm->outp, true, 0, 0); 1049 } 1050 1051 if (head->func->display_id) { 1052 if (!WARN_ON(nvif_outp_dp_mst_id_get(&mstm->outp->outp, &msto->display_id))) 1053 head->func->display_id(head, msto->display_id); 1054 } 1055 1056 if (mstm->outp->outp.or.link & 1) 1057 proto = NV917D_SOR_SET_CONTROL_PROTOCOL_DP_A; 1058 else 1059 proto = NV917D_SOR_SET_CONTROL_PROTOCOL_DP_B; 1060 1061 mstm->outp->update(mstm->outp, head->base.index, asyh, proto, 1062 nv50_dp_bpc_to_depth(asyh->or.bpc)); 1063 1064 msto->mstc = mstc; 1065 msto->enabled = true; 1066 mstm->modified = true; 1067 } 1068 1069 static void 1070 nv50_msto_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state) 1071 { 1072 struct nv50_msto *msto = nv50_msto(encoder); 1073 struct nv50_mstc *mstc = msto->mstc; 1074 struct nv50_mstm *mstm = mstc->mstm; 1075 1076 if (msto->head->func->display_id) 1077 msto->head->func->display_id(msto->head, 0); 1078 1079 mstm->outp->update(mstm->outp, msto->head->base.index, NULL, 0, 0); 1080 mstm->modified = true; 1081 if (!--mstm->links) 1082 mstm->disabled = true; 1083 msto->disabled = true; 1084 } 1085 1086 static const struct drm_encoder_helper_funcs 1087 nv50_msto_help = { 1088 .atomic_disable = nv50_msto_atomic_disable, 1089 .atomic_enable = nv50_msto_atomic_enable, 1090 .atomic_check = nv50_msto_atomic_check, 1091 }; 1092 1093 static void 1094 nv50_msto_destroy(struct drm_encoder *encoder) 1095 { 1096 struct nv50_msto *msto = nv50_msto(encoder); 1097 drm_encoder_cleanup(&msto->encoder); 1098 kfree(msto); 1099 } 1100 1101 static const struct drm_encoder_funcs 1102 nv50_msto = { 1103 .destroy = nv50_msto_destroy, 1104 }; 1105 1106 static struct nv50_msto * 1107 nv50_msto_new(struct drm_device *dev, struct nv50_head *head, int id) 1108 { 1109 struct nv50_msto *msto; 1110 int ret; 1111 1112 msto = kzalloc(sizeof(*msto), GFP_KERNEL); 1113 if (!msto) 1114 return ERR_PTR(-ENOMEM); 1115 1116 ret = drm_encoder_init(dev, &msto->encoder, &nv50_msto, 1117 DRM_MODE_ENCODER_DPMST, "mst-%d", id); 1118 if (ret) { 1119 kfree(msto); 1120 return ERR_PTR(ret); 1121 } 1122 1123 drm_encoder_helper_add(&msto->encoder, &nv50_msto_help); 1124 msto->encoder.possible_crtcs = drm_crtc_mask(&head->base.base); 1125 msto->head = head; 1126 return msto; 1127 } 1128 1129 static struct drm_encoder * 1130 nv50_mstc_atomic_best_encoder(struct drm_connector *connector, 1131 struct drm_atomic_state *state) 1132 { 1133 struct drm_connector_state *connector_state = drm_atomic_get_new_connector_state(state, 1134 connector); 1135 struct nv50_mstc *mstc = nv50_mstc(connector); 1136 struct drm_crtc *crtc = connector_state->crtc; 1137 1138 if (!(mstc->mstm->outp->dcb->heads & drm_crtc_mask(crtc))) 1139 return NULL; 1140 1141 return &nv50_head(crtc)->msto->encoder; 1142 } 1143 1144 static enum drm_mode_status 1145 nv50_mstc_mode_valid(struct drm_connector *connector, 1146 struct drm_display_mode *mode) 1147 { 1148 struct nv50_mstc *mstc = nv50_mstc(connector); 1149 struct nouveau_encoder *outp = mstc->mstm->outp; 1150 1151 /* TODO: calculate the PBN from the dotclock and validate against the 1152 * MSTB's max possible PBN 1153 */ 1154 1155 return nv50_dp_mode_valid(outp, mode, NULL); 1156 } 1157 1158 static int 1159 nv50_mstc_get_modes(struct drm_connector *connector) 1160 { 1161 struct nv50_mstc *mstc = nv50_mstc(connector); 1162 int ret = 0; 1163 1164 mstc->edid = drm_dp_mst_get_edid(&mstc->connector, mstc->port->mgr, mstc->port); 1165 drm_connector_update_edid_property(&mstc->connector, mstc->edid); 1166 if (mstc->edid) 1167 ret = drm_add_edid_modes(&mstc->connector, mstc->edid); 1168 1169 /* 1170 * XXX: Since we don't use HDR in userspace quite yet, limit the bpc 1171 * to 8 to save bandwidth on the topology. In the future, we'll want 1172 * to properly fix this by dynamically selecting the highest possible 1173 * bpc that would fit in the topology 1174 */ 1175 if (connector->display_info.bpc) 1176 connector->display_info.bpc = 1177 clamp(connector->display_info.bpc, 6U, 8U); 1178 else 1179 connector->display_info.bpc = 8; 1180 1181 if (mstc->native) 1182 drm_mode_destroy(mstc->connector.dev, mstc->native); 1183 mstc->native = nouveau_conn_native_mode(&mstc->connector); 1184 return ret; 1185 } 1186 1187 static int 1188 nv50_mstc_atomic_check(struct drm_connector *connector, 1189 struct drm_atomic_state *state) 1190 { 1191 struct nv50_mstc *mstc = nv50_mstc(connector); 1192 struct drm_dp_mst_topology_mgr *mgr = &mstc->mstm->mgr; 1193 1194 return drm_dp_atomic_release_time_slots(state, mgr, mstc->port); 1195 } 1196 1197 static int 1198 nv50_mstc_detect(struct drm_connector *connector, 1199 struct drm_modeset_acquire_ctx *ctx, bool force) 1200 { 1201 struct nv50_mstc *mstc = nv50_mstc(connector); 1202 int ret; 1203 1204 if (drm_connector_is_unregistered(connector)) 1205 return connector_status_disconnected; 1206 1207 ret = pm_runtime_get_sync(connector->dev->dev); 1208 if (ret < 0 && ret != -EACCES) { 1209 pm_runtime_put_autosuspend(connector->dev->dev); 1210 return connector_status_disconnected; 1211 } 1212 1213 ret = drm_dp_mst_detect_port(connector, ctx, mstc->port->mgr, 1214 mstc->port); 1215 if (ret != connector_status_connected) 1216 goto out; 1217 1218 out: 1219 pm_runtime_mark_last_busy(connector->dev->dev); 1220 pm_runtime_put_autosuspend(connector->dev->dev); 1221 return ret; 1222 } 1223 1224 static const struct drm_connector_helper_funcs 1225 nv50_mstc_help = { 1226 .get_modes = nv50_mstc_get_modes, 1227 .mode_valid = nv50_mstc_mode_valid, 1228 .atomic_best_encoder = nv50_mstc_atomic_best_encoder, 1229 .atomic_check = nv50_mstc_atomic_check, 1230 .detect_ctx = nv50_mstc_detect, 1231 }; 1232 1233 static void 1234 nv50_mstc_destroy(struct drm_connector *connector) 1235 { 1236 struct nv50_mstc *mstc = nv50_mstc(connector); 1237 1238 drm_connector_cleanup(&mstc->connector); 1239 drm_dp_mst_put_port_malloc(mstc->port); 1240 1241 kfree(mstc); 1242 } 1243 1244 static const struct drm_connector_funcs 1245 nv50_mstc = { 1246 .reset = nouveau_conn_reset, 1247 .fill_modes = drm_helper_probe_single_connector_modes, 1248 .destroy = nv50_mstc_destroy, 1249 .atomic_duplicate_state = nouveau_conn_atomic_duplicate_state, 1250 .atomic_destroy_state = nouveau_conn_atomic_destroy_state, 1251 .atomic_set_property = nouveau_conn_atomic_set_property, 1252 .atomic_get_property = nouveau_conn_atomic_get_property, 1253 }; 1254 1255 static int 1256 nv50_mstc_new(struct nv50_mstm *mstm, struct drm_dp_mst_port *port, 1257 const char *path, struct nv50_mstc **pmstc) 1258 { 1259 struct drm_device *dev = mstm->outp->base.base.dev; 1260 struct drm_crtc *crtc; 1261 struct nv50_mstc *mstc; 1262 int ret; 1263 1264 if (!(mstc = *pmstc = kzalloc(sizeof(*mstc), GFP_KERNEL))) 1265 return -ENOMEM; 1266 mstc->mstm = mstm; 1267 mstc->port = port; 1268 1269 ret = drm_connector_init(dev, &mstc->connector, &nv50_mstc, 1270 DRM_MODE_CONNECTOR_DisplayPort); 1271 if (ret) { 1272 kfree(*pmstc); 1273 *pmstc = NULL; 1274 return ret; 1275 } 1276 1277 drm_connector_helper_add(&mstc->connector, &nv50_mstc_help); 1278 1279 mstc->connector.funcs->reset(&mstc->connector); 1280 nouveau_conn_attach_properties(&mstc->connector); 1281 1282 drm_for_each_crtc(crtc, dev) { 1283 if (!(mstm->outp->dcb->heads & drm_crtc_mask(crtc))) 1284 continue; 1285 1286 drm_connector_attach_encoder(&mstc->connector, 1287 &nv50_head(crtc)->msto->encoder); 1288 } 1289 1290 drm_object_attach_property(&mstc->connector.base, dev->mode_config.path_property, 0); 1291 drm_object_attach_property(&mstc->connector.base, dev->mode_config.tile_property, 0); 1292 drm_connector_set_path_property(&mstc->connector, path); 1293 drm_dp_mst_get_port_malloc(port); 1294 return 0; 1295 } 1296 1297 static void 1298 nv50_mstm_cleanup(struct drm_atomic_state *state, 1299 struct drm_dp_mst_topology_state *mst_state, 1300 struct nv50_mstm *mstm) 1301 { 1302 struct nouveau_drm *drm = nouveau_drm(mstm->outp->base.base.dev); 1303 struct drm_encoder *encoder; 1304 1305 NV_ATOMIC(drm, "%s: mstm cleanup\n", mstm->outp->base.base.name); 1306 drm_dp_check_act_status(&mstm->mgr); 1307 1308 drm_for_each_encoder(encoder, mstm->outp->base.base.dev) { 1309 if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) { 1310 struct nv50_msto *msto = nv50_msto(encoder); 1311 struct nv50_mstc *mstc = msto->mstc; 1312 if (mstc && mstc->mstm == mstm) 1313 nv50_msto_cleanup(state, mst_state, &mstm->mgr, msto); 1314 } 1315 } 1316 1317 if (mstm->disabled) { 1318 nouveau_dp_power_down(mstm->outp); 1319 nvif_outp_release(&mstm->outp->outp); 1320 mstm->disabled = false; 1321 } 1322 1323 mstm->modified = false; 1324 } 1325 1326 static void 1327 nv50_mstm_prepare(struct drm_atomic_state *state, 1328 struct drm_dp_mst_topology_state *mst_state, 1329 struct nv50_mstm *mstm) 1330 { 1331 struct nouveau_drm *drm = nouveau_drm(mstm->outp->base.base.dev); 1332 struct drm_encoder *encoder; 1333 1334 NV_ATOMIC(drm, "%s: mstm prepare\n", mstm->outp->base.base.name); 1335 1336 /* Disable payloads first */ 1337 drm_for_each_encoder(encoder, mstm->outp->base.base.dev) { 1338 if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) { 1339 struct nv50_msto *msto = nv50_msto(encoder); 1340 struct nv50_mstc *mstc = msto->mstc; 1341 if (mstc && mstc->mstm == mstm && msto->disabled) 1342 nv50_msto_prepare(state, mst_state, &mstm->mgr, msto); 1343 } 1344 } 1345 1346 /* Add payloads for new heads, while also updating the start slots of any unmodified (but 1347 * active) heads that may have had their VC slots shifted left after the previous step 1348 */ 1349 drm_for_each_encoder(encoder, mstm->outp->base.base.dev) { 1350 if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) { 1351 struct nv50_msto *msto = nv50_msto(encoder); 1352 struct nv50_mstc *mstc = msto->mstc; 1353 if (mstc && mstc->mstm == mstm && !msto->disabled) 1354 nv50_msto_prepare(state, mst_state, &mstm->mgr, msto); 1355 } 1356 } 1357 } 1358 1359 static struct drm_connector * 1360 nv50_mstm_add_connector(struct drm_dp_mst_topology_mgr *mgr, 1361 struct drm_dp_mst_port *port, const char *path) 1362 { 1363 struct nv50_mstm *mstm = nv50_mstm(mgr); 1364 struct nv50_mstc *mstc; 1365 int ret; 1366 1367 ret = nv50_mstc_new(mstm, port, path, &mstc); 1368 if (ret) 1369 return NULL; 1370 1371 return &mstc->connector; 1372 } 1373 1374 static const struct drm_dp_mst_topology_cbs 1375 nv50_mstm = { 1376 .add_connector = nv50_mstm_add_connector, 1377 }; 1378 1379 bool 1380 nv50_mstm_service(struct nouveau_drm *drm, 1381 struct nouveau_connector *nv_connector, 1382 struct nv50_mstm *mstm) 1383 { 1384 struct drm_dp_aux *aux = &nv_connector->aux; 1385 bool handled = true, ret = true; 1386 int rc; 1387 u8 esi[8] = {}; 1388 1389 while (handled) { 1390 u8 ack[8] = {}; 1391 1392 rc = drm_dp_dpcd_read(aux, DP_SINK_COUNT_ESI, esi, 8); 1393 if (rc != 8) { 1394 ret = false; 1395 break; 1396 } 1397 1398 drm_dp_mst_hpd_irq_handle_event(&mstm->mgr, esi, ack, &handled); 1399 if (!handled) 1400 break; 1401 1402 rc = drm_dp_dpcd_writeb(aux, DP_SINK_COUNT_ESI + 1, ack[1]); 1403 1404 if (rc != 1) { 1405 ret = false; 1406 break; 1407 } 1408 1409 drm_dp_mst_hpd_irq_send_new_request(&mstm->mgr); 1410 } 1411 1412 if (!ret) 1413 NV_DEBUG(drm, "Failed to handle ESI on %s: %d\n", 1414 nv_connector->base.name, rc); 1415 1416 return ret; 1417 } 1418 1419 void 1420 nv50_mstm_remove(struct nv50_mstm *mstm) 1421 { 1422 mstm->is_mst = false; 1423 drm_dp_mst_topology_mgr_set_mst(&mstm->mgr, false); 1424 } 1425 1426 int 1427 nv50_mstm_detect(struct nouveau_encoder *outp) 1428 { 1429 struct nv50_mstm *mstm = outp->dp.mstm; 1430 struct drm_dp_aux *aux; 1431 int ret; 1432 1433 if (!mstm || !mstm->can_mst) 1434 return 0; 1435 1436 aux = mstm->mgr.aux; 1437 1438 /* Clear any leftover MST state we didn't set ourselves by first 1439 * disabling MST if it was already enabled 1440 */ 1441 ret = drm_dp_dpcd_writeb(aux, DP_MSTM_CTRL, 0); 1442 if (ret < 0) 1443 return ret; 1444 1445 /* And start enabling */ 1446 ret = drm_dp_mst_topology_mgr_set_mst(&mstm->mgr, true); 1447 if (ret) 1448 return ret; 1449 1450 mstm->is_mst = true; 1451 return 1; 1452 } 1453 1454 static void 1455 nv50_mstm_fini(struct nouveau_encoder *outp) 1456 { 1457 struct nv50_mstm *mstm = outp->dp.mstm; 1458 1459 if (!mstm) 1460 return; 1461 1462 /* Don't change the MST state of this connector until we've finished 1463 * resuming, since we can't safely grab hpd_irq_lock in our resume 1464 * path to protect mstm->is_mst without potentially deadlocking 1465 */ 1466 mutex_lock(&outp->dp.hpd_irq_lock); 1467 mstm->suspended = true; 1468 mutex_unlock(&outp->dp.hpd_irq_lock); 1469 1470 if (mstm->is_mst) 1471 drm_dp_mst_topology_mgr_suspend(&mstm->mgr); 1472 } 1473 1474 static void 1475 nv50_mstm_init(struct nouveau_encoder *outp, bool runtime) 1476 { 1477 struct nv50_mstm *mstm = outp->dp.mstm; 1478 int ret = 0; 1479 1480 if (!mstm) 1481 return; 1482 1483 if (mstm->is_mst) { 1484 ret = drm_dp_mst_topology_mgr_resume(&mstm->mgr, !runtime); 1485 if (ret == -1) 1486 nv50_mstm_remove(mstm); 1487 } 1488 1489 mutex_lock(&outp->dp.hpd_irq_lock); 1490 mstm->suspended = false; 1491 mutex_unlock(&outp->dp.hpd_irq_lock); 1492 1493 if (ret == -1) 1494 drm_kms_helper_hotplug_event(mstm->mgr.dev); 1495 } 1496 1497 static void 1498 nv50_mstm_del(struct nv50_mstm **pmstm) 1499 { 1500 struct nv50_mstm *mstm = *pmstm; 1501 if (mstm) { 1502 drm_dp_mst_topology_mgr_destroy(&mstm->mgr); 1503 kfree(*pmstm); 1504 *pmstm = NULL; 1505 } 1506 } 1507 1508 static int 1509 nv50_mstm_new(struct nouveau_encoder *outp, struct drm_dp_aux *aux, int aux_max, 1510 int conn_base_id, struct nv50_mstm **pmstm) 1511 { 1512 const int max_payloads = hweight8(outp->dcb->heads); 1513 struct drm_device *dev = outp->base.base.dev; 1514 struct nv50_mstm *mstm; 1515 int ret; 1516 1517 if (!(mstm = *pmstm = kzalloc(sizeof(*mstm), GFP_KERNEL))) 1518 return -ENOMEM; 1519 mstm->outp = outp; 1520 mstm->mgr.cbs = &nv50_mstm; 1521 1522 ret = drm_dp_mst_topology_mgr_init(&mstm->mgr, dev, aux, aux_max, 1523 max_payloads, conn_base_id); 1524 if (ret) 1525 return ret; 1526 1527 return 0; 1528 } 1529 1530 /****************************************************************************** 1531 * SOR 1532 *****************************************************************************/ 1533 static void 1534 nv50_sor_update(struct nouveau_encoder *nv_encoder, u8 head, 1535 struct nv50_head_atom *asyh, u8 proto, u8 depth) 1536 { 1537 struct nv50_disp *disp = nv50_disp(nv_encoder->base.base.dev); 1538 struct nv50_core *core = disp->core; 1539 1540 if (!asyh) { 1541 nv_encoder->ctrl &= ~BIT(head); 1542 if (NVDEF_TEST(nv_encoder->ctrl, NV507D, SOR_SET_CONTROL, OWNER, ==, NONE)) 1543 nv_encoder->ctrl = 0; 1544 } else { 1545 nv_encoder->ctrl |= NVVAL(NV507D, SOR_SET_CONTROL, PROTOCOL, proto); 1546 nv_encoder->ctrl |= BIT(head); 1547 asyh->or.depth = depth; 1548 } 1549 1550 core->func->sor->ctrl(core, nv_encoder->outp.or.id, nv_encoder->ctrl, asyh); 1551 } 1552 1553 /* TODO: Should we extend this to PWM-only backlights? 1554 * As well, should we add a DRM helper for waiting for the backlight to acknowledge 1555 * the panel backlight has been shut off? Intel doesn't seem to do this, and uses a 1556 * fixed time delay from the vbios… 1557 */ 1558 static void 1559 nv50_sor_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state) 1560 { 1561 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 1562 struct nv50_head *head = nv50_head(nv_encoder->crtc); 1563 #ifdef CONFIG_DRM_NOUVEAU_BACKLIGHT 1564 struct nouveau_connector *nv_connector = nv50_outp_get_old_connector(state, nv_encoder); 1565 struct nouveau_drm *drm = nouveau_drm(nv_encoder->base.base.dev); 1566 struct nouveau_backlight *backlight = nv_connector->backlight; 1567 struct drm_dp_aux *aux = &nv_connector->aux; 1568 int ret; 1569 1570 if (backlight && backlight->uses_dpcd) { 1571 ret = drm_edp_backlight_disable(aux, &backlight->edp_info); 1572 if (ret < 0) 1573 NV_ERROR(drm, "Failed to disable backlight on [CONNECTOR:%d:%s]: %d\n", 1574 nv_connector->base.base.id, nv_connector->base.name, ret); 1575 } 1576 #endif 1577 1578 if (nv_encoder->dcb->type == DCB_OUTPUT_TMDS && nv_encoder->hdmi.enabled) { 1579 nvif_outp_hdmi(&nv_encoder->outp, head->base.index, 1580 false, 0, 0, 0, false, false, false); 1581 nv_encoder->hdmi.enabled = false; 1582 } 1583 1584 if (nv_encoder->dcb->type == DCB_OUTPUT_DP) 1585 nouveau_dp_power_down(nv_encoder); 1586 1587 if (head->func->display_id) 1588 head->func->display_id(head, 0); 1589 1590 nv_encoder->update(nv_encoder, head->base.index, NULL, 0, 0); 1591 nv50_audio_disable(encoder, &head->base); 1592 nv_encoder->crtc = NULL; 1593 } 1594 1595 static void 1596 nv50_sor_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state) 1597 { 1598 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 1599 struct nouveau_crtc *nv_crtc = nv50_outp_get_new_crtc(state, nv_encoder); 1600 struct nv50_head_atom *asyh = 1601 nv50_head_atom(drm_atomic_get_new_crtc_state(state, &nv_crtc->base)); 1602 struct drm_display_mode *mode = &asyh->state.adjusted_mode; 1603 struct nv50_disp *disp = nv50_disp(encoder->dev); 1604 struct nv50_head *head = nv50_head(&nv_crtc->base); 1605 struct nvif_outp *outp = &nv_encoder->outp; 1606 struct drm_device *dev = encoder->dev; 1607 struct nouveau_drm *drm = nouveau_drm(dev); 1608 struct nouveau_connector *nv_connector; 1609 #ifdef CONFIG_DRM_NOUVEAU_BACKLIGHT 1610 struct nouveau_backlight *backlight; 1611 #endif 1612 struct nvbios *bios = &drm->vbios; 1613 bool lvds_dual = false, lvds_8bpc = false, hda = false; 1614 u8 proto = NV507D_SOR_SET_CONTROL_PROTOCOL_CUSTOM; 1615 u8 depth = NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_DEFAULT; 1616 1617 nv_connector = nv50_outp_get_new_connector(state, nv_encoder); 1618 nv_encoder->crtc = &nv_crtc->base; 1619 1620 if ((disp->disp->object.oclass == GT214_DISP || 1621 disp->disp->object.oclass >= GF110_DISP) && 1622 nv_encoder->dcb->type != DCB_OUTPUT_LVDS && 1623 drm_detect_monitor_audio(nv_connector->edid)) 1624 hda = true; 1625 1626 if (!nvif_outp_acquired(outp)) 1627 nvif_outp_acquire_sor(outp, hda); 1628 1629 switch (nv_encoder->dcb->type) { 1630 case DCB_OUTPUT_TMDS: 1631 if (disp->disp->object.oclass != NV50_DISP && 1632 drm_detect_hdmi_monitor(nv_connector->edid)) 1633 nv50_hdmi_enable(encoder, nv_crtc, nv_connector, state, mode, hda); 1634 1635 if (nv_encoder->outp.or.link & 1) { 1636 proto = NV507D_SOR_SET_CONTROL_PROTOCOL_SINGLE_TMDS_A; 1637 /* Only enable dual-link if: 1638 * - Need to (i.e. rate > 165MHz) 1639 * - DCB says we can 1640 * - Not an HDMI monitor, since there's no dual-link 1641 * on HDMI. 1642 */ 1643 if (mode->clock >= 165000 && 1644 nv_encoder->dcb->duallink_possible && 1645 !drm_detect_hdmi_monitor(nv_connector->edid)) 1646 proto = NV507D_SOR_SET_CONTROL_PROTOCOL_DUAL_TMDS; 1647 } else { 1648 proto = NV507D_SOR_SET_CONTROL_PROTOCOL_SINGLE_TMDS_B; 1649 } 1650 break; 1651 case DCB_OUTPUT_LVDS: 1652 proto = NV507D_SOR_SET_CONTROL_PROTOCOL_LVDS_CUSTOM; 1653 1654 if (bios->fp_no_ddc) { 1655 lvds_dual = bios->fp.dual_link; 1656 lvds_8bpc = bios->fp.if_is_24bit; 1657 } else { 1658 if (nv_connector->type == DCB_CONNECTOR_LVDS_SPWG) { 1659 if (((u8 *)nv_connector->edid)[121] == 2) 1660 lvds_dual = true; 1661 } else 1662 if (mode->clock >= bios->fp.duallink_transition_clk) { 1663 lvds_dual = true; 1664 } 1665 1666 if (lvds_dual) { 1667 if (bios->fp.strapless_is_24bit & 2) 1668 lvds_8bpc = true; 1669 } else { 1670 if (bios->fp.strapless_is_24bit & 1) 1671 lvds_8bpc = true; 1672 } 1673 1674 if (asyh->or.bpc == 8) 1675 lvds_8bpc = true; 1676 } 1677 1678 nvif_outp_lvds(&nv_encoder->outp, lvds_dual, lvds_8bpc); 1679 break; 1680 case DCB_OUTPUT_DP: 1681 nouveau_dp_train(nv_encoder, false, mode->clock, asyh->or.bpc); 1682 depth = nv50_dp_bpc_to_depth(asyh->or.bpc); 1683 1684 if (nv_encoder->outp.or.link & 1) 1685 proto = NV887D_SOR_SET_CONTROL_PROTOCOL_DP_A; 1686 else 1687 proto = NV887D_SOR_SET_CONTROL_PROTOCOL_DP_B; 1688 1689 #ifdef CONFIG_DRM_NOUVEAU_BACKLIGHT 1690 backlight = nv_connector->backlight; 1691 if (backlight && backlight->uses_dpcd) 1692 drm_edp_backlight_enable(&nv_connector->aux, &backlight->edp_info, 1693 (u16)backlight->dev->props.brightness); 1694 #endif 1695 1696 break; 1697 default: 1698 BUG(); 1699 break; 1700 } 1701 1702 if (head->func->display_id) 1703 head->func->display_id(head, BIT(nv_encoder->outp.id)); 1704 1705 nv_encoder->update(nv_encoder, nv_crtc->index, asyh, proto, depth); 1706 } 1707 1708 static const struct drm_encoder_helper_funcs 1709 nv50_sor_help = { 1710 .atomic_check = nv50_outp_atomic_check, 1711 .atomic_enable = nv50_sor_atomic_enable, 1712 .atomic_disable = nv50_sor_atomic_disable, 1713 }; 1714 1715 static void 1716 nv50_sor_destroy(struct drm_encoder *encoder) 1717 { 1718 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 1719 1720 nv50_mstm_del(&nv_encoder->dp.mstm); 1721 drm_encoder_cleanup(encoder); 1722 1723 if (nv_encoder->dcb->type == DCB_OUTPUT_DP) 1724 mutex_destroy(&nv_encoder->dp.hpd_irq_lock); 1725 1726 nvif_outp_dtor(&nv_encoder->outp); 1727 kfree(encoder); 1728 } 1729 1730 static const struct drm_encoder_funcs 1731 nv50_sor_func = { 1732 .destroy = nv50_sor_destroy, 1733 }; 1734 1735 static int 1736 nv50_sor_create(struct nouveau_encoder *nv_encoder) 1737 { 1738 struct drm_connector *connector = &nv_encoder->conn->base; 1739 struct nouveau_connector *nv_connector = nouveau_connector(connector); 1740 struct nouveau_drm *drm = nouveau_drm(connector->dev); 1741 struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device); 1742 struct drm_encoder *encoder; 1743 struct dcb_output *dcbe = nv_encoder->dcb; 1744 struct nv50_disp *disp = nv50_disp(connector->dev); 1745 int type, ret; 1746 1747 switch (dcbe->type) { 1748 case DCB_OUTPUT_LVDS: type = DRM_MODE_ENCODER_LVDS; break; 1749 case DCB_OUTPUT_TMDS: 1750 case DCB_OUTPUT_DP: 1751 default: 1752 type = DRM_MODE_ENCODER_TMDS; 1753 break; 1754 } 1755 1756 nv_encoder->update = nv50_sor_update; 1757 1758 encoder = to_drm_encoder(nv_encoder); 1759 drm_encoder_init(connector->dev, encoder, &nv50_sor_func, type, 1760 "sor-%04x-%04x", dcbe->hasht, dcbe->hashm); 1761 drm_encoder_helper_add(encoder, &nv50_sor_help); 1762 1763 drm_connector_attach_encoder(connector, encoder); 1764 1765 disp->core->func->sor->get_caps(disp, nv_encoder, ffs(dcbe->or) - 1); 1766 nv50_outp_dump_caps(drm, nv_encoder); 1767 1768 if (dcbe->type == DCB_OUTPUT_DP) { 1769 mutex_init(&nv_encoder->dp.hpd_irq_lock); 1770 1771 if (disp->disp->object.oclass < GF110_DISP) { 1772 /* HW has no support for address-only 1773 * transactions, so we're required to 1774 * use custom I2C-over-AUX code. 1775 */ 1776 struct nvkm_i2c_aux *aux; 1777 1778 aux = nvkm_i2c_aux_find(i2c, dcbe->i2c_index); 1779 if (!aux) 1780 return -EINVAL; 1781 1782 nv_encoder->i2c = &aux->i2c; 1783 } else { 1784 nv_encoder->i2c = &nv_connector->aux.ddc; 1785 } 1786 1787 if (nv_connector->type != DCB_CONNECTOR_eDP && nv_encoder->outp.info.dp.mst) { 1788 ret = nv50_mstm_new(nv_encoder, &nv_connector->aux, 1789 16, nv_connector->base.base.id, 1790 &nv_encoder->dp.mstm); 1791 if (ret) 1792 return ret; 1793 } 1794 } else 1795 if (nv_encoder->outp.info.ddc != NVIF_OUTP_DDC_INVALID) { 1796 struct nvkm_i2c_bus *bus = 1797 nvkm_i2c_bus_find(i2c, dcbe->i2c_index); 1798 if (bus) 1799 nv_encoder->i2c = &bus->i2c; 1800 } 1801 1802 return 0; 1803 } 1804 1805 /****************************************************************************** 1806 * PIOR 1807 *****************************************************************************/ 1808 static int 1809 nv50_pior_atomic_check(struct drm_encoder *encoder, 1810 struct drm_crtc_state *crtc_state, 1811 struct drm_connector_state *conn_state) 1812 { 1813 int ret = nv50_outp_atomic_check(encoder, crtc_state, conn_state); 1814 if (ret) 1815 return ret; 1816 crtc_state->adjusted_mode.clock *= 2; 1817 return 0; 1818 } 1819 1820 static void 1821 nv50_pior_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state) 1822 { 1823 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 1824 struct nv50_core *core = nv50_disp(encoder->dev)->core; 1825 const u32 ctrl = NVDEF(NV507D, PIOR_SET_CONTROL, OWNER, NONE); 1826 1827 core->func->pior->ctrl(core, nv_encoder->outp.or.id, ctrl, NULL); 1828 nv_encoder->crtc = NULL; 1829 } 1830 1831 static void 1832 nv50_pior_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state) 1833 { 1834 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 1835 struct nouveau_crtc *nv_crtc = nv50_outp_get_new_crtc(state, nv_encoder); 1836 struct nv50_head_atom *asyh = 1837 nv50_head_atom(drm_atomic_get_new_crtc_state(state, &nv_crtc->base)); 1838 struct nv50_core *core = nv50_disp(encoder->dev)->core; 1839 u32 ctrl = 0; 1840 1841 switch (nv_crtc->index) { 1842 case 0: ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, OWNER, HEAD0); break; 1843 case 1: ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, OWNER, HEAD1); break; 1844 default: 1845 WARN_ON(1); 1846 break; 1847 } 1848 1849 switch (asyh->or.bpc) { 1850 case 10: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_BPP_30_444; break; 1851 case 8: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_BPP_24_444; break; 1852 case 6: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_BPP_18_444; break; 1853 default: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_DEFAULT; break; 1854 } 1855 1856 if (!nvif_outp_acquired(&nv_encoder->outp)) 1857 nvif_outp_acquire_pior(&nv_encoder->outp); 1858 1859 switch (nv_encoder->dcb->type) { 1860 case DCB_OUTPUT_TMDS: 1861 ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, PROTOCOL, EXT_TMDS_ENC); 1862 break; 1863 case DCB_OUTPUT_DP: 1864 ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, PROTOCOL, EXT_TMDS_ENC); 1865 nouveau_dp_train(nv_encoder, false, asyh->state.adjusted_mode.clock, 6); 1866 break; 1867 default: 1868 BUG(); 1869 break; 1870 } 1871 1872 core->func->pior->ctrl(core, nv_encoder->outp.or.id, ctrl, asyh); 1873 nv_encoder->crtc = &nv_crtc->base; 1874 } 1875 1876 static const struct drm_encoder_helper_funcs 1877 nv50_pior_help = { 1878 .atomic_check = nv50_pior_atomic_check, 1879 .atomic_enable = nv50_pior_atomic_enable, 1880 .atomic_disable = nv50_pior_atomic_disable, 1881 }; 1882 1883 static void 1884 nv50_pior_destroy(struct drm_encoder *encoder) 1885 { 1886 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 1887 1888 nvif_outp_dtor(&nv_encoder->outp); 1889 1890 drm_encoder_cleanup(encoder); 1891 1892 mutex_destroy(&nv_encoder->dp.hpd_irq_lock); 1893 kfree(encoder); 1894 } 1895 1896 static const struct drm_encoder_funcs 1897 nv50_pior_func = { 1898 .destroy = nv50_pior_destroy, 1899 }; 1900 1901 static int 1902 nv50_pior_create(struct nouveau_encoder *nv_encoder) 1903 { 1904 struct drm_connector *connector = &nv_encoder->conn->base; 1905 struct drm_device *dev = connector->dev; 1906 struct nouveau_drm *drm = nouveau_drm(dev); 1907 struct nv50_disp *disp = nv50_disp(dev); 1908 struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device); 1909 struct nvkm_i2c_bus *bus = NULL; 1910 struct nvkm_i2c_aux *aux = NULL; 1911 struct i2c_adapter *ddc; 1912 struct drm_encoder *encoder; 1913 struct dcb_output *dcbe = nv_encoder->dcb; 1914 int type; 1915 1916 switch (dcbe->type) { 1917 case DCB_OUTPUT_TMDS: 1918 bus = nvkm_i2c_bus_find(i2c, nv_encoder->outp.info.ddc); 1919 ddc = bus ? &bus->i2c : NULL; 1920 type = DRM_MODE_ENCODER_TMDS; 1921 break; 1922 case DCB_OUTPUT_DP: 1923 aux = nvkm_i2c_aux_find(i2c, nv_encoder->outp.info.dp.aux); 1924 ddc = aux ? &aux->i2c : NULL; 1925 type = DRM_MODE_ENCODER_TMDS; 1926 break; 1927 default: 1928 return -ENODEV; 1929 } 1930 1931 nv_encoder->i2c = ddc; 1932 1933 mutex_init(&nv_encoder->dp.hpd_irq_lock); 1934 1935 encoder = to_drm_encoder(nv_encoder); 1936 drm_encoder_init(connector->dev, encoder, &nv50_pior_func, type, 1937 "pior-%04x-%04x", dcbe->hasht, dcbe->hashm); 1938 drm_encoder_helper_add(encoder, &nv50_pior_help); 1939 1940 drm_connector_attach_encoder(connector, encoder); 1941 1942 disp->core->func->pior->get_caps(disp, nv_encoder, ffs(dcbe->or) - 1); 1943 nv50_outp_dump_caps(drm, nv_encoder); 1944 1945 return 0; 1946 } 1947 1948 /****************************************************************************** 1949 * Atomic 1950 *****************************************************************************/ 1951 1952 static void 1953 nv50_disp_atomic_commit_core(struct drm_atomic_state *state, u32 *interlock) 1954 { 1955 struct drm_dp_mst_topology_mgr *mgr; 1956 struct drm_dp_mst_topology_state *mst_state; 1957 struct nouveau_drm *drm = nouveau_drm(state->dev); 1958 struct nv50_disp *disp = nv50_disp(drm->dev); 1959 struct nv50_atom *atom = nv50_atom(state); 1960 struct nv50_core *core = disp->core; 1961 struct nv50_outp_atom *outp; 1962 struct nv50_mstm *mstm; 1963 int i; 1964 1965 NV_ATOMIC(drm, "commit core %08x\n", interlock[NV50_DISP_INTERLOCK_BASE]); 1966 1967 for_each_new_mst_mgr_in_state(state, mgr, mst_state, i) { 1968 mstm = nv50_mstm(mgr); 1969 if (mstm->modified) 1970 nv50_mstm_prepare(state, mst_state, mstm); 1971 } 1972 1973 core->func->ntfy_init(disp->sync, NV50_DISP_CORE_NTFY); 1974 core->func->update(core, interlock, true); 1975 if (core->func->ntfy_wait_done(disp->sync, NV50_DISP_CORE_NTFY, 1976 disp->core->chan.base.device)) 1977 NV_ERROR(drm, "core notifier timeout\n"); 1978 1979 for_each_new_mst_mgr_in_state(state, mgr, mst_state, i) { 1980 mstm = nv50_mstm(mgr); 1981 if (mstm->modified) 1982 nv50_mstm_cleanup(state, mst_state, mstm); 1983 } 1984 1985 list_for_each_entry(outp, &atom->outp, head) { 1986 if (outp->encoder->encoder_type != DRM_MODE_ENCODER_DPMST) { 1987 struct nouveau_encoder *nv_encoder = nouveau_encoder(outp->encoder); 1988 1989 if (outp->enabled) { 1990 nv50_audio_enable(outp->encoder, nouveau_crtc(nv_encoder->crtc), 1991 nv_encoder->conn, NULL, NULL); 1992 outp->enabled = outp->disabled = false; 1993 } else { 1994 if (outp->disabled) { 1995 nvif_outp_release(&nv_encoder->outp); 1996 outp->disabled = false; 1997 } 1998 } 1999 } 2000 } 2001 } 2002 2003 static void 2004 nv50_disp_atomic_commit_wndw(struct drm_atomic_state *state, u32 *interlock) 2005 { 2006 struct drm_plane_state *new_plane_state; 2007 struct drm_plane *plane; 2008 int i; 2009 2010 for_each_new_plane_in_state(state, plane, new_plane_state, i) { 2011 struct nv50_wndw *wndw = nv50_wndw(plane); 2012 if (interlock[wndw->interlock.type] & wndw->interlock.data) { 2013 if (wndw->func->update) 2014 wndw->func->update(wndw, interlock); 2015 } 2016 } 2017 } 2018 2019 static void 2020 nv50_disp_atomic_commit_tail(struct drm_atomic_state *state) 2021 { 2022 struct drm_device *dev = state->dev; 2023 struct drm_crtc_state *new_crtc_state, *old_crtc_state; 2024 struct drm_crtc *crtc; 2025 struct drm_plane_state *new_plane_state; 2026 struct drm_plane *plane; 2027 struct nouveau_drm *drm = nouveau_drm(dev); 2028 struct nv50_disp *disp = nv50_disp(dev); 2029 struct nv50_atom *atom = nv50_atom(state); 2030 struct nv50_core *core = disp->core; 2031 struct nv50_outp_atom *outp, *outt; 2032 u32 interlock[NV50_DISP_INTERLOCK__SIZE] = {}; 2033 int i; 2034 bool flushed = false; 2035 2036 NV_ATOMIC(drm, "commit %d %d\n", atom->lock_core, atom->flush_disable); 2037 nv50_crc_atomic_stop_reporting(state); 2038 drm_atomic_helper_wait_for_fences(dev, state, false); 2039 drm_atomic_helper_wait_for_dependencies(state); 2040 drm_dp_mst_atomic_wait_for_dependencies(state); 2041 drm_atomic_helper_update_legacy_modeset_state(dev, state); 2042 drm_atomic_helper_calc_timestamping_constants(state); 2043 2044 if (atom->lock_core) 2045 mutex_lock(&disp->mutex); 2046 2047 /* Disable head(s). */ 2048 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { 2049 struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state); 2050 struct nv50_head *head = nv50_head(crtc); 2051 2052 NV_ATOMIC(drm, "%s: clr %04x (set %04x)\n", crtc->name, 2053 asyh->clr.mask, asyh->set.mask); 2054 2055 if (old_crtc_state->active && !new_crtc_state->active) { 2056 pm_runtime_put_noidle(dev->dev); 2057 drm_crtc_vblank_off(crtc); 2058 } 2059 2060 if (asyh->clr.mask) { 2061 nv50_head_flush_clr(head, asyh, atom->flush_disable); 2062 interlock[NV50_DISP_INTERLOCK_CORE] |= 1; 2063 } 2064 } 2065 2066 /* Disable plane(s). */ 2067 for_each_new_plane_in_state(state, plane, new_plane_state, i) { 2068 struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state); 2069 struct nv50_wndw *wndw = nv50_wndw(plane); 2070 2071 NV_ATOMIC(drm, "%s: clr %02x (set %02x)\n", plane->name, 2072 asyw->clr.mask, asyw->set.mask); 2073 if (!asyw->clr.mask) 2074 continue; 2075 2076 nv50_wndw_flush_clr(wndw, interlock, atom->flush_disable, asyw); 2077 } 2078 2079 /* Disable output path(s). */ 2080 list_for_each_entry(outp, &atom->outp, head) { 2081 const struct drm_encoder_helper_funcs *help; 2082 struct drm_encoder *encoder; 2083 2084 encoder = outp->encoder; 2085 help = encoder->helper_private; 2086 2087 NV_ATOMIC(drm, "%s: clr %02x (set %02x)\n", encoder->name, 2088 outp->clr.mask, outp->set.mask); 2089 2090 if (outp->clr.mask) { 2091 help->atomic_disable(encoder, state); 2092 outp->disabled = true; 2093 interlock[NV50_DISP_INTERLOCK_CORE] |= 1; 2094 } 2095 } 2096 2097 /* Flush disable. */ 2098 if (interlock[NV50_DISP_INTERLOCK_CORE]) { 2099 if (atom->flush_disable) { 2100 nv50_disp_atomic_commit_wndw(state, interlock); 2101 nv50_disp_atomic_commit_core(state, interlock); 2102 memset(interlock, 0x00, sizeof(interlock)); 2103 2104 flushed = true; 2105 } 2106 } 2107 2108 if (flushed) 2109 nv50_crc_atomic_release_notifier_contexts(state); 2110 nv50_crc_atomic_init_notifier_contexts(state); 2111 2112 /* Update output path(s). */ 2113 list_for_each_entry(outp, &atom->outp, head) { 2114 const struct drm_encoder_helper_funcs *help; 2115 struct drm_encoder *encoder; 2116 2117 encoder = outp->encoder; 2118 help = encoder->helper_private; 2119 2120 NV_ATOMIC(drm, "%s: set %02x (clr %02x)\n", encoder->name, 2121 outp->set.mask, outp->clr.mask); 2122 2123 if (outp->set.mask) { 2124 help->atomic_enable(encoder, state); 2125 outp->enabled = true; 2126 interlock[NV50_DISP_INTERLOCK_CORE] = 1; 2127 } 2128 } 2129 2130 /* Update head(s). */ 2131 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { 2132 struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state); 2133 struct nv50_head *head = nv50_head(crtc); 2134 2135 NV_ATOMIC(drm, "%s: set %04x (clr %04x)\n", crtc->name, 2136 asyh->set.mask, asyh->clr.mask); 2137 2138 if (asyh->set.mask) { 2139 nv50_head_flush_set(head, asyh); 2140 interlock[NV50_DISP_INTERLOCK_CORE] = 1; 2141 } 2142 2143 if (new_crtc_state->active) { 2144 if (!old_crtc_state->active) { 2145 drm_crtc_vblank_on(crtc); 2146 pm_runtime_get_noresume(dev->dev); 2147 } 2148 if (new_crtc_state->event) 2149 drm_crtc_vblank_get(crtc); 2150 } 2151 } 2152 2153 /* Update window->head assignment. 2154 * 2155 * This has to happen in an update that's not interlocked with 2156 * any window channels to avoid hitting HW error checks. 2157 * 2158 *TODO: Proper handling of window ownership (Turing apparently 2159 * supports non-fixed mappings). 2160 */ 2161 if (core->assign_windows) { 2162 core->func->wndw.owner(core); 2163 nv50_disp_atomic_commit_core(state, interlock); 2164 core->assign_windows = false; 2165 interlock[NV50_DISP_INTERLOCK_CORE] = 0; 2166 } 2167 2168 /* Finish updating head(s)... 2169 * 2170 * NVD is rather picky about both where window assignments can change, 2171 * *and* about certain core and window channel states matching. 2172 * 2173 * The EFI GOP driver on newer GPUs configures window channels with a 2174 * different output format to what we do, and the core channel update 2175 * in the assign_windows case above would result in a state mismatch. 2176 * 2177 * Delay some of the head update until after that point to workaround 2178 * the issue. This only affects the initial modeset. 2179 * 2180 * TODO: handle this better when adding flexible window mapping 2181 */ 2182 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { 2183 struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state); 2184 struct nv50_head *head = nv50_head(crtc); 2185 2186 NV_ATOMIC(drm, "%s: set %04x (clr %04x)\n", crtc->name, 2187 asyh->set.mask, asyh->clr.mask); 2188 2189 if (asyh->set.mask) { 2190 nv50_head_flush_set_wndw(head, asyh); 2191 interlock[NV50_DISP_INTERLOCK_CORE] = 1; 2192 } 2193 } 2194 2195 /* Update plane(s). */ 2196 for_each_new_plane_in_state(state, plane, new_plane_state, i) { 2197 struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state); 2198 struct nv50_wndw *wndw = nv50_wndw(plane); 2199 2200 NV_ATOMIC(drm, "%s: set %02x (clr %02x)\n", plane->name, 2201 asyw->set.mask, asyw->clr.mask); 2202 if ( !asyw->set.mask && 2203 (!asyw->clr.mask || atom->flush_disable)) 2204 continue; 2205 2206 nv50_wndw_flush_set(wndw, interlock, asyw); 2207 } 2208 2209 /* Flush update. */ 2210 nv50_disp_atomic_commit_wndw(state, interlock); 2211 2212 if (interlock[NV50_DISP_INTERLOCK_CORE]) { 2213 if (interlock[NV50_DISP_INTERLOCK_BASE] || 2214 interlock[NV50_DISP_INTERLOCK_OVLY] || 2215 interlock[NV50_DISP_INTERLOCK_WNDW] || 2216 !atom->state.legacy_cursor_update) 2217 nv50_disp_atomic_commit_core(state, interlock); 2218 else 2219 disp->core->func->update(disp->core, interlock, false); 2220 } 2221 2222 if (atom->lock_core) 2223 mutex_unlock(&disp->mutex); 2224 2225 list_for_each_entry_safe(outp, outt, &atom->outp, head) { 2226 list_del(&outp->head); 2227 kfree(outp); 2228 } 2229 2230 /* Wait for HW to signal completion. */ 2231 for_each_new_plane_in_state(state, plane, new_plane_state, i) { 2232 struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state); 2233 struct nv50_wndw *wndw = nv50_wndw(plane); 2234 int ret = nv50_wndw_wait_armed(wndw, asyw); 2235 if (ret) 2236 NV_ERROR(drm, "%s: timeout\n", plane->name); 2237 } 2238 2239 for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) { 2240 if (new_crtc_state->event) { 2241 unsigned long flags; 2242 /* Get correct count/ts if racing with vblank irq */ 2243 if (new_crtc_state->active) 2244 drm_crtc_accurate_vblank_count(crtc); 2245 spin_lock_irqsave(&crtc->dev->event_lock, flags); 2246 drm_crtc_send_vblank_event(crtc, new_crtc_state->event); 2247 spin_unlock_irqrestore(&crtc->dev->event_lock, flags); 2248 2249 new_crtc_state->event = NULL; 2250 if (new_crtc_state->active) 2251 drm_crtc_vblank_put(crtc); 2252 } 2253 } 2254 2255 nv50_crc_atomic_start_reporting(state); 2256 if (!flushed) 2257 nv50_crc_atomic_release_notifier_contexts(state); 2258 2259 drm_atomic_helper_commit_hw_done(state); 2260 drm_atomic_helper_cleanup_planes(dev, state); 2261 drm_atomic_helper_commit_cleanup_done(state); 2262 drm_atomic_state_put(state); 2263 2264 /* Drop the RPM ref we got from nv50_disp_atomic_commit() */ 2265 pm_runtime_mark_last_busy(dev->dev); 2266 pm_runtime_put_autosuspend(dev->dev); 2267 } 2268 2269 static void 2270 nv50_disp_atomic_commit_work(struct work_struct *work) 2271 { 2272 struct drm_atomic_state *state = 2273 container_of(work, typeof(*state), commit_work); 2274 nv50_disp_atomic_commit_tail(state); 2275 } 2276 2277 static int 2278 nv50_disp_atomic_commit(struct drm_device *dev, 2279 struct drm_atomic_state *state, bool nonblock) 2280 { 2281 struct drm_plane_state *new_plane_state; 2282 struct drm_plane *plane; 2283 int ret, i; 2284 2285 ret = pm_runtime_get_sync(dev->dev); 2286 if (ret < 0 && ret != -EACCES) { 2287 pm_runtime_put_autosuspend(dev->dev); 2288 return ret; 2289 } 2290 2291 ret = drm_atomic_helper_setup_commit(state, nonblock); 2292 if (ret) 2293 goto done; 2294 2295 INIT_WORK(&state->commit_work, nv50_disp_atomic_commit_work); 2296 2297 ret = drm_atomic_helper_prepare_planes(dev, state); 2298 if (ret) 2299 goto done; 2300 2301 if (!nonblock) { 2302 ret = drm_atomic_helper_wait_for_fences(dev, state, true); 2303 if (ret) 2304 goto err_cleanup; 2305 } 2306 2307 ret = drm_atomic_helper_swap_state(state, true); 2308 if (ret) 2309 goto err_cleanup; 2310 2311 for_each_new_plane_in_state(state, plane, new_plane_state, i) { 2312 struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state); 2313 struct nv50_wndw *wndw = nv50_wndw(plane); 2314 2315 if (asyw->set.image) 2316 nv50_wndw_ntfy_enable(wndw, asyw); 2317 } 2318 2319 drm_atomic_state_get(state); 2320 2321 /* 2322 * Grab another RPM ref for the commit tail, which will release the 2323 * ref when it's finished 2324 */ 2325 pm_runtime_get_noresume(dev->dev); 2326 2327 if (nonblock) 2328 queue_work(system_unbound_wq, &state->commit_work); 2329 else 2330 nv50_disp_atomic_commit_tail(state); 2331 2332 err_cleanup: 2333 if (ret) 2334 drm_atomic_helper_cleanup_planes(dev, state); 2335 done: 2336 pm_runtime_put_autosuspend(dev->dev); 2337 return ret; 2338 } 2339 2340 static struct nv50_outp_atom * 2341 nv50_disp_outp_atomic_add(struct nv50_atom *atom, struct drm_encoder *encoder) 2342 { 2343 struct nv50_outp_atom *outp; 2344 2345 list_for_each_entry(outp, &atom->outp, head) { 2346 if (outp->encoder == encoder) 2347 return outp; 2348 } 2349 2350 outp = kzalloc(sizeof(*outp), GFP_KERNEL); 2351 if (!outp) 2352 return ERR_PTR(-ENOMEM); 2353 2354 list_add(&outp->head, &atom->outp); 2355 outp->encoder = encoder; 2356 return outp; 2357 } 2358 2359 static int 2360 nv50_disp_outp_atomic_check_clr(struct nv50_atom *atom, 2361 struct drm_connector_state *old_connector_state) 2362 { 2363 struct drm_encoder *encoder = old_connector_state->best_encoder; 2364 struct drm_crtc_state *old_crtc_state, *new_crtc_state; 2365 struct drm_crtc *crtc; 2366 struct nv50_outp_atom *outp; 2367 2368 if (!(crtc = old_connector_state->crtc)) 2369 return 0; 2370 2371 old_crtc_state = drm_atomic_get_old_crtc_state(&atom->state, crtc); 2372 new_crtc_state = drm_atomic_get_new_crtc_state(&atom->state, crtc); 2373 if (old_crtc_state->active && drm_atomic_crtc_needs_modeset(new_crtc_state)) { 2374 outp = nv50_disp_outp_atomic_add(atom, encoder); 2375 if (IS_ERR(outp)) 2376 return PTR_ERR(outp); 2377 2378 if (outp->encoder->encoder_type == DRM_MODE_ENCODER_DPMST || 2379 nouveau_encoder(outp->encoder)->dcb->type == DCB_OUTPUT_DP) 2380 atom->flush_disable = true; 2381 outp->clr.ctrl = true; 2382 atom->lock_core = true; 2383 } 2384 2385 return 0; 2386 } 2387 2388 static int 2389 nv50_disp_outp_atomic_check_set(struct nv50_atom *atom, 2390 struct drm_connector_state *connector_state) 2391 { 2392 struct drm_encoder *encoder = connector_state->best_encoder; 2393 struct drm_crtc_state *new_crtc_state; 2394 struct drm_crtc *crtc; 2395 struct nv50_outp_atom *outp; 2396 2397 if (!(crtc = connector_state->crtc)) 2398 return 0; 2399 2400 new_crtc_state = drm_atomic_get_new_crtc_state(&atom->state, crtc); 2401 if (new_crtc_state->active && drm_atomic_crtc_needs_modeset(new_crtc_state)) { 2402 outp = nv50_disp_outp_atomic_add(atom, encoder); 2403 if (IS_ERR(outp)) 2404 return PTR_ERR(outp); 2405 2406 outp->set.ctrl = true; 2407 atom->lock_core = true; 2408 } 2409 2410 return 0; 2411 } 2412 2413 static int 2414 nv50_disp_atomic_check(struct drm_device *dev, struct drm_atomic_state *state) 2415 { 2416 struct nv50_atom *atom = nv50_atom(state); 2417 struct nv50_core *core = nv50_disp(dev)->core; 2418 struct drm_connector_state *old_connector_state, *new_connector_state; 2419 struct drm_connector *connector; 2420 struct drm_crtc_state *new_crtc_state; 2421 struct drm_crtc *crtc; 2422 struct nv50_head *head; 2423 struct nv50_head_atom *asyh; 2424 int ret, i; 2425 2426 if (core->assign_windows && core->func->head->static_wndw_map) { 2427 drm_for_each_crtc(crtc, dev) { 2428 new_crtc_state = drm_atomic_get_crtc_state(state, 2429 crtc); 2430 if (IS_ERR(new_crtc_state)) 2431 return PTR_ERR(new_crtc_state); 2432 2433 head = nv50_head(crtc); 2434 asyh = nv50_head_atom(new_crtc_state); 2435 core->func->head->static_wndw_map(head, asyh); 2436 } 2437 } 2438 2439 /* We need to handle colour management on a per-plane basis. */ 2440 for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) { 2441 if (new_crtc_state->color_mgmt_changed) { 2442 ret = drm_atomic_add_affected_planes(state, crtc); 2443 if (ret) 2444 return ret; 2445 } 2446 } 2447 2448 ret = drm_atomic_helper_check(dev, state); 2449 if (ret) 2450 return ret; 2451 2452 for_each_oldnew_connector_in_state(state, connector, old_connector_state, new_connector_state, i) { 2453 ret = nv50_disp_outp_atomic_check_clr(atom, old_connector_state); 2454 if (ret) 2455 return ret; 2456 2457 ret = nv50_disp_outp_atomic_check_set(atom, new_connector_state); 2458 if (ret) 2459 return ret; 2460 } 2461 2462 ret = drm_dp_mst_atomic_check(state); 2463 if (ret) 2464 return ret; 2465 2466 nv50_crc_atomic_check_outp(atom); 2467 2468 return 0; 2469 } 2470 2471 static void 2472 nv50_disp_atomic_state_clear(struct drm_atomic_state *state) 2473 { 2474 struct nv50_atom *atom = nv50_atom(state); 2475 struct nv50_outp_atom *outp, *outt; 2476 2477 list_for_each_entry_safe(outp, outt, &atom->outp, head) { 2478 list_del(&outp->head); 2479 kfree(outp); 2480 } 2481 2482 drm_atomic_state_default_clear(state); 2483 } 2484 2485 static void 2486 nv50_disp_atomic_state_free(struct drm_atomic_state *state) 2487 { 2488 struct nv50_atom *atom = nv50_atom(state); 2489 drm_atomic_state_default_release(&atom->state); 2490 kfree(atom); 2491 } 2492 2493 static struct drm_atomic_state * 2494 nv50_disp_atomic_state_alloc(struct drm_device *dev) 2495 { 2496 struct nv50_atom *atom; 2497 if (!(atom = kzalloc(sizeof(*atom), GFP_KERNEL)) || 2498 drm_atomic_state_init(dev, &atom->state) < 0) { 2499 kfree(atom); 2500 return NULL; 2501 } 2502 INIT_LIST_HEAD(&atom->outp); 2503 return &atom->state; 2504 } 2505 2506 static const struct drm_mode_config_funcs 2507 nv50_disp_func = { 2508 .fb_create = nouveau_user_framebuffer_create, 2509 .output_poll_changed = drm_fb_helper_output_poll_changed, 2510 .atomic_check = nv50_disp_atomic_check, 2511 .atomic_commit = nv50_disp_atomic_commit, 2512 .atomic_state_alloc = nv50_disp_atomic_state_alloc, 2513 .atomic_state_clear = nv50_disp_atomic_state_clear, 2514 .atomic_state_free = nv50_disp_atomic_state_free, 2515 }; 2516 2517 static const struct drm_mode_config_helper_funcs 2518 nv50_disp_helper_func = { 2519 .atomic_commit_setup = drm_dp_mst_atomic_setup_commit, 2520 }; 2521 2522 /****************************************************************************** 2523 * Init 2524 *****************************************************************************/ 2525 2526 static void 2527 nv50_display_fini(struct drm_device *dev, bool runtime, bool suspend) 2528 { 2529 struct nouveau_drm *drm = nouveau_drm(dev); 2530 struct drm_encoder *encoder; 2531 2532 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) { 2533 if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) 2534 nv50_mstm_fini(nouveau_encoder(encoder)); 2535 } 2536 2537 if (!runtime) 2538 cancel_work_sync(&drm->hpd_work); 2539 } 2540 2541 static inline void 2542 nv50_display_read_hw_or_state(struct drm_device *dev, struct nv50_disp *disp, 2543 struct nouveau_encoder *outp) 2544 { 2545 struct drm_crtc *crtc; 2546 struct drm_connector_list_iter conn_iter; 2547 struct drm_connector *conn; 2548 struct nv50_head_atom *armh; 2549 const u32 encoder_mask = drm_encoder_mask(&outp->base.base); 2550 bool found_conn = false, found_head = false; 2551 u8 proto; 2552 int head_idx; 2553 int ret; 2554 2555 switch (outp->dcb->type) { 2556 case DCB_OUTPUT_TMDS: 2557 ret = nvif_outp_inherit_tmds(&outp->outp, &proto); 2558 break; 2559 case DCB_OUTPUT_DP: 2560 ret = nvif_outp_inherit_dp(&outp->outp, &proto); 2561 break; 2562 case DCB_OUTPUT_LVDS: 2563 ret = nvif_outp_inherit_lvds(&outp->outp, &proto); 2564 break; 2565 case DCB_OUTPUT_ANALOG: 2566 ret = nvif_outp_inherit_rgb_crt(&outp->outp, &proto); 2567 break; 2568 default: 2569 drm_dbg_kms(dev, "Readback for %s not implemented yet, skipping\n", 2570 outp->base.base.name); 2571 drm_WARN_ON(dev, true); 2572 return; 2573 } 2574 2575 if (ret < 0) 2576 return; 2577 2578 head_idx = ret; 2579 2580 drm_for_each_crtc(crtc, dev) { 2581 if (crtc->index != head_idx) 2582 continue; 2583 2584 armh = nv50_head_atom(crtc->state); 2585 found_head = true; 2586 break; 2587 } 2588 if (drm_WARN_ON(dev, !found_head)) 2589 return; 2590 2591 /* Figure out which connector is being used by this encoder */ 2592 drm_connector_list_iter_begin(dev, &conn_iter); 2593 nouveau_for_each_non_mst_connector_iter(conn, &conn_iter) { 2594 if (nouveau_connector(conn)->index == outp->dcb->connector) { 2595 found_conn = true; 2596 break; 2597 } 2598 } 2599 drm_connector_list_iter_end(&conn_iter); 2600 if (drm_WARN_ON(dev, !found_conn)) 2601 return; 2602 2603 armh->state.encoder_mask = encoder_mask; 2604 armh->state.connector_mask = drm_connector_mask(conn); 2605 armh->state.active = true; 2606 armh->state.enable = true; 2607 pm_runtime_get_noresume(dev->dev); 2608 2609 outp->crtc = crtc; 2610 outp->ctrl = NVVAL(NV507D, SOR_SET_CONTROL, PROTOCOL, proto) | BIT(crtc->index); 2611 2612 drm_connector_get(conn); 2613 conn->state->crtc = crtc; 2614 conn->state->best_encoder = &outp->base.base; 2615 } 2616 2617 /* Read back the currently programmed display state */ 2618 static void 2619 nv50_display_read_hw_state(struct nouveau_drm *drm) 2620 { 2621 struct drm_device *dev = drm->dev; 2622 struct drm_encoder *encoder; 2623 struct drm_modeset_acquire_ctx ctx; 2624 struct nv50_disp *disp = nv50_disp(dev); 2625 int ret; 2626 2627 DRM_MODESET_LOCK_ALL_BEGIN(dev, ctx, 0, ret); 2628 2629 drm_for_each_encoder(encoder, dev) { 2630 if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) 2631 continue; 2632 2633 nv50_display_read_hw_or_state(dev, disp, nouveau_encoder(encoder)); 2634 } 2635 2636 DRM_MODESET_LOCK_ALL_END(dev, ctx, ret); 2637 } 2638 2639 static int 2640 nv50_display_init(struct drm_device *dev, bool resume, bool runtime) 2641 { 2642 struct nv50_core *core = nv50_disp(dev)->core; 2643 struct drm_encoder *encoder; 2644 2645 if (resume || runtime) 2646 core->func->init(core); 2647 2648 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) { 2649 if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) { 2650 struct nouveau_encoder *nv_encoder = 2651 nouveau_encoder(encoder); 2652 nv50_mstm_init(nv_encoder, runtime); 2653 } 2654 } 2655 2656 if (!resume) 2657 nv50_display_read_hw_state(nouveau_drm(dev)); 2658 2659 return 0; 2660 } 2661 2662 static void 2663 nv50_display_destroy(struct drm_device *dev) 2664 { 2665 struct nv50_disp *disp = nv50_disp(dev); 2666 2667 nv50_audio_component_fini(nouveau_drm(dev)); 2668 2669 nvif_object_unmap(&disp->caps); 2670 nvif_object_dtor(&disp->caps); 2671 nv50_core_del(&disp->core); 2672 2673 nouveau_bo_unmap(disp->sync); 2674 if (disp->sync) 2675 nouveau_bo_unpin(disp->sync); 2676 nouveau_bo_ref(NULL, &disp->sync); 2677 2678 nouveau_display(dev)->priv = NULL; 2679 kfree(disp); 2680 } 2681 2682 int 2683 nv50_display_create(struct drm_device *dev) 2684 { 2685 struct nouveau_drm *drm = nouveau_drm(dev); 2686 struct drm_connector *connector, *tmp; 2687 struct nv50_disp *disp; 2688 int ret, i; 2689 bool has_mst = false; 2690 2691 disp = kzalloc(sizeof(*disp), GFP_KERNEL); 2692 if (!disp) 2693 return -ENOMEM; 2694 2695 mutex_init(&disp->mutex); 2696 2697 nouveau_display(dev)->priv = disp; 2698 nouveau_display(dev)->dtor = nv50_display_destroy; 2699 nouveau_display(dev)->init = nv50_display_init; 2700 nouveau_display(dev)->fini = nv50_display_fini; 2701 disp->disp = &nouveau_display(dev)->disp; 2702 dev->mode_config.funcs = &nv50_disp_func; 2703 dev->mode_config.helper_private = &nv50_disp_helper_func; 2704 dev->mode_config.quirk_addfb_prefer_xbgr_30bpp = true; 2705 dev->mode_config.normalize_zpos = true; 2706 2707 /* small shared memory area we use for notifiers and semaphores */ 2708 ret = nouveau_bo_new(&drm->client, 4096, 0x1000, 2709 NOUVEAU_GEM_DOMAIN_VRAM, 2710 0, 0x0000, NULL, NULL, &disp->sync); 2711 if (!ret) { 2712 ret = nouveau_bo_pin(disp->sync, NOUVEAU_GEM_DOMAIN_VRAM, true); 2713 if (!ret) { 2714 ret = nouveau_bo_map(disp->sync); 2715 if (ret) 2716 nouveau_bo_unpin(disp->sync); 2717 } 2718 if (ret) 2719 nouveau_bo_ref(NULL, &disp->sync); 2720 } 2721 2722 if (ret) 2723 goto out; 2724 2725 /* allocate master evo channel */ 2726 ret = nv50_core_new(drm, &disp->core); 2727 if (ret) 2728 goto out; 2729 2730 disp->core->func->init(disp->core); 2731 if (disp->core->func->caps_init) { 2732 ret = disp->core->func->caps_init(drm, disp); 2733 if (ret) 2734 goto out; 2735 } 2736 2737 /* Assign the correct format modifiers */ 2738 if (disp->disp->object.oclass >= TU102_DISP) 2739 nouveau_display(dev)->format_modifiers = wndwc57e_modifiers; 2740 else 2741 if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_FERMI) 2742 nouveau_display(dev)->format_modifiers = disp90xx_modifiers; 2743 else 2744 nouveau_display(dev)->format_modifiers = disp50xx_modifiers; 2745 2746 /* FIXME: 256x256 cursors are supported on Kepler, however unlike Maxwell and later 2747 * generations Kepler requires that we use small pages (4K) for cursor scanout surfaces. The 2748 * proper fix for this is to teach nouveau to migrate fbs being used for the cursor plane to 2749 * small page allocations in prepare_fb(). When this is implemented, we should also force 2750 * large pages (128K) for ovly fbs in order to fix Kepler ovlys. 2751 * But until then, just limit cursors to 128x128 - which is small enough to avoid ever using 2752 * large pages. 2753 */ 2754 if (disp->disp->object.oclass >= GM107_DISP) { 2755 dev->mode_config.cursor_width = 256; 2756 dev->mode_config.cursor_height = 256; 2757 } else if (disp->disp->object.oclass >= GK104_DISP) { 2758 dev->mode_config.cursor_width = 128; 2759 dev->mode_config.cursor_height = 128; 2760 } else { 2761 dev->mode_config.cursor_width = 64; 2762 dev->mode_config.cursor_height = 64; 2763 } 2764 2765 /* create encoder/connector objects based on VBIOS DCB table */ 2766 for_each_set_bit(i, &disp->disp->outp_mask, sizeof(disp->disp->outp_mask) * 8) { 2767 struct nouveau_encoder *outp; 2768 2769 outp = kzalloc(sizeof(*outp), GFP_KERNEL); 2770 if (!outp) 2771 break; 2772 2773 ret = nvif_outp_ctor(disp->disp, "kmsOutp", i, &outp->outp); 2774 if (ret) { 2775 kfree(outp); 2776 continue; 2777 } 2778 2779 connector = nouveau_connector_create(dev, outp->outp.info.conn); 2780 if (IS_ERR(connector)) { 2781 nvif_outp_dtor(&outp->outp); 2782 kfree(outp); 2783 continue; 2784 } 2785 2786 outp->base.base.possible_crtcs = outp->outp.info.heads; 2787 outp->base.base.possible_clones = 0; 2788 outp->conn = nouveau_connector(connector); 2789 2790 outp->dcb = kzalloc(sizeof(*outp->dcb), GFP_KERNEL); 2791 if (!outp->dcb) 2792 break; 2793 2794 switch (outp->outp.info.proto) { 2795 case NVIF_OUTP_RGB_CRT: 2796 outp->dcb->type = DCB_OUTPUT_ANALOG; 2797 outp->dcb->crtconf.maxfreq = outp->outp.info.rgb_crt.freq_max; 2798 break; 2799 case NVIF_OUTP_TMDS: 2800 outp->dcb->type = DCB_OUTPUT_TMDS; 2801 outp->dcb->duallink_possible = outp->outp.info.tmds.dual; 2802 break; 2803 case NVIF_OUTP_LVDS: 2804 outp->dcb->type = DCB_OUTPUT_LVDS; 2805 outp->dcb->lvdsconf.use_acpi_for_edid = outp->outp.info.lvds.acpi_edid; 2806 break; 2807 case NVIF_OUTP_DP: 2808 outp->dcb->type = DCB_OUTPUT_DP; 2809 outp->dcb->dpconf.link_nr = outp->outp.info.dp.link_nr; 2810 outp->dcb->dpconf.link_bw = outp->outp.info.dp.link_bw; 2811 if (outp->outp.info.dp.mst) 2812 has_mst = true; 2813 break; 2814 default: 2815 WARN_ON(1); 2816 continue; 2817 } 2818 2819 outp->dcb->heads = outp->outp.info.heads; 2820 outp->dcb->connector = outp->outp.info.conn; 2821 outp->dcb->i2c_index = outp->outp.info.ddc; 2822 2823 switch (outp->outp.info.type) { 2824 case NVIF_OUTP_DAC : ret = nv50_dac_create(outp); break; 2825 case NVIF_OUTP_SOR : ret = nv50_sor_create(outp); break; 2826 case NVIF_OUTP_PIOR: ret = nv50_pior_create(outp); break; 2827 default: 2828 WARN_ON(1); 2829 continue; 2830 } 2831 2832 if (ret) { 2833 NV_WARN(drm, "failed to create encoder %d/%d/%d: %d\n", 2834 i, outp->outp.info.type, outp->outp.info.proto, ret); 2835 } 2836 } 2837 2838 /* cull any connectors we created that don't have an encoder */ 2839 list_for_each_entry_safe(connector, tmp, &dev->mode_config.connector_list, head) { 2840 if (connector->possible_encoders) 2841 continue; 2842 2843 NV_WARN(drm, "%s has no encoders, removing\n", 2844 connector->name); 2845 connector->funcs->destroy(connector); 2846 } 2847 2848 /* create crtc objects to represent the hw heads */ 2849 for_each_set_bit(i, &disp->disp->head_mask, sizeof(disp->disp->head_mask) * 8) { 2850 struct nv50_head *head; 2851 2852 head = nv50_head_create(dev, i); 2853 if (IS_ERR(head)) { 2854 ret = PTR_ERR(head); 2855 goto out; 2856 } 2857 2858 if (has_mst) { 2859 head->msto = nv50_msto_new(dev, head, i); 2860 if (IS_ERR(head->msto)) { 2861 ret = PTR_ERR(head->msto); 2862 head->msto = NULL; 2863 goto out; 2864 } 2865 2866 /* 2867 * FIXME: This is a hack to workaround the following 2868 * issues: 2869 * 2870 * https://gitlab.gnome.org/GNOME/mutter/issues/759 2871 * https://gitlab.freedesktop.org/xorg/xserver/merge_requests/277 2872 * 2873 * Once these issues are closed, this should be 2874 * removed 2875 */ 2876 head->msto->encoder.possible_crtcs = disp->disp->head_mask; 2877 } 2878 } 2879 2880 /* Disable vblank irqs aggressively for power-saving, safe on nv50+ */ 2881 dev->vblank_disable_immediate = true; 2882 2883 nv50_audio_component_init(drm); 2884 2885 out: 2886 if (ret) 2887 nv50_display_destroy(dev); 2888 return ret; 2889 } 2890 2891 /****************************************************************************** 2892 * Format modifiers 2893 *****************************************************************************/ 2894 2895 /**************************************************************** 2896 * Log2(block height) ----------------------------+ * 2897 * Page Kind ----------------------------------+ | * 2898 * Gob Height/Page Kind Generation ------+ | | * 2899 * Sector layout -------+ | | | * 2900 * Compression ------+ | | | | */ 2901 const u64 disp50xx_modifiers[] = { /* | | | | | */ 2902 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 0), 2903 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 1), 2904 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 2), 2905 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 3), 2906 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 4), 2907 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 5), 2908 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 0), 2909 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 1), 2910 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 2), 2911 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 3), 2912 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 4), 2913 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 5), 2914 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 0), 2915 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 1), 2916 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 2), 2917 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 3), 2918 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 4), 2919 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 5), 2920 DRM_FORMAT_MOD_LINEAR, 2921 DRM_FORMAT_MOD_INVALID 2922 }; 2923 2924 /**************************************************************** 2925 * Log2(block height) ----------------------------+ * 2926 * Page Kind ----------------------------------+ | * 2927 * Gob Height/Page Kind Generation ------+ | | * 2928 * Sector layout -------+ | | | * 2929 * Compression ------+ | | | | */ 2930 const u64 disp90xx_modifiers[] = { /* | | | | | */ 2931 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 0), 2932 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 1), 2933 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 2), 2934 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 3), 2935 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 4), 2936 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 5), 2937 DRM_FORMAT_MOD_LINEAR, 2938 DRM_FORMAT_MOD_INVALID 2939 }; 2940