xref: /linux/drivers/gpu/drm/nouveau/dispnv50/disp.c (revision 031fba65fc202abf1f193e321be7a2c274fd88ba)
1 /*
2  * Copyright 2011 Red Hat Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: Ben Skeggs
23  */
24 #include "disp.h"
25 #include "atom.h"
26 #include "core.h"
27 #include "head.h"
28 #include "wndw.h"
29 #include "handles.h"
30 
31 #include <linux/dma-mapping.h>
32 #include <linux/hdmi.h>
33 #include <linux/component.h>
34 #include <linux/iopoll.h>
35 
36 #include <drm/display/drm_dp_helper.h>
37 #include <drm/display/drm_scdc_helper.h>
38 #include <drm/drm_atomic.h>
39 #include <drm/drm_atomic_helper.h>
40 #include <drm/drm_edid.h>
41 #include <drm/drm_fb_helper.h>
42 #include <drm/drm_probe_helper.h>
43 #include <drm/drm_vblank.h>
44 
45 #include <nvif/push507c.h>
46 
47 #include <nvif/class.h>
48 #include <nvif/cl0002.h>
49 #include <nvif/event.h>
50 #include <nvif/if0012.h>
51 #include <nvif/if0014.h>
52 #include <nvif/timer.h>
53 
54 #include <nvhw/class/cl507c.h>
55 #include <nvhw/class/cl507d.h>
56 #include <nvhw/class/cl837d.h>
57 #include <nvhw/class/cl887d.h>
58 #include <nvhw/class/cl907d.h>
59 #include <nvhw/class/cl917d.h>
60 
61 #include "nouveau_drv.h"
62 #include "nouveau_dma.h"
63 #include "nouveau_gem.h"
64 #include "nouveau_connector.h"
65 #include "nouveau_encoder.h"
66 #include "nouveau_fence.h"
67 #include "nv50_display.h"
68 
69 /******************************************************************************
70  * EVO channel
71  *****************************************************************************/
72 
73 static int
74 nv50_chan_create(struct nvif_device *device, struct nvif_object *disp,
75 		 const s32 *oclass, u8 head, void *data, u32 size,
76 		 struct nv50_chan *chan)
77 {
78 	struct nvif_sclass *sclass;
79 	int ret, i, n;
80 
81 	chan->device = device;
82 
83 	ret = n = nvif_object_sclass_get(disp, &sclass);
84 	if (ret < 0)
85 		return ret;
86 
87 	while (oclass[0]) {
88 		for (i = 0; i < n; i++) {
89 			if (sclass[i].oclass == oclass[0]) {
90 				ret = nvif_object_ctor(disp, "kmsChan", 0,
91 						       oclass[0], data, size,
92 						       &chan->user);
93 				if (ret == 0)
94 					nvif_object_map(&chan->user, NULL, 0);
95 				nvif_object_sclass_put(&sclass);
96 				return ret;
97 			}
98 		}
99 		oclass++;
100 	}
101 
102 	nvif_object_sclass_put(&sclass);
103 	return -ENOSYS;
104 }
105 
106 static void
107 nv50_chan_destroy(struct nv50_chan *chan)
108 {
109 	nvif_object_dtor(&chan->user);
110 }
111 
112 /******************************************************************************
113  * DMA EVO channel
114  *****************************************************************************/
115 
116 void
117 nv50_dmac_destroy(struct nv50_dmac *dmac)
118 {
119 	nvif_object_dtor(&dmac->vram);
120 	nvif_object_dtor(&dmac->sync);
121 
122 	nv50_chan_destroy(&dmac->base);
123 
124 	nvif_mem_dtor(&dmac->_push.mem);
125 }
126 
127 static void
128 nv50_dmac_kick(struct nvif_push *push)
129 {
130 	struct nv50_dmac *dmac = container_of(push, typeof(*dmac), _push);
131 
132 	dmac->cur = push->cur - (u32 __iomem *)dmac->_push.mem.object.map.ptr;
133 	if (dmac->put != dmac->cur) {
134 		/* Push buffer fetches are not coherent with BAR1, we need to ensure
135 		 * writes have been flushed right through to VRAM before writing PUT.
136 		 */
137 		if (dmac->push->mem.type & NVIF_MEM_VRAM) {
138 			struct nvif_device *device = dmac->base.device;
139 			nvif_wr32(&device->object, 0x070000, 0x00000001);
140 			nvif_msec(device, 2000,
141 				if (!(nvif_rd32(&device->object, 0x070000) & 0x00000002))
142 					break;
143 			);
144 		}
145 
146 		NVIF_WV32(&dmac->base.user, NV507C, PUT, PTR, dmac->cur);
147 		dmac->put = dmac->cur;
148 	}
149 
150 	push->bgn = push->cur;
151 }
152 
153 static int
154 nv50_dmac_free(struct nv50_dmac *dmac)
155 {
156 	u32 get = NVIF_RV32(&dmac->base.user, NV507C, GET, PTR);
157 	if (get > dmac->cur) /* NVIDIA stay 5 away from GET, do the same. */
158 		return get - dmac->cur - 5;
159 	return dmac->max - dmac->cur;
160 }
161 
162 static int
163 nv50_dmac_wind(struct nv50_dmac *dmac)
164 {
165 	/* Wait for GET to depart from the beginning of the push buffer to
166 	 * prevent writing PUT == GET, which would be ignored by HW.
167 	 */
168 	u32 get = NVIF_RV32(&dmac->base.user, NV507C, GET, PTR);
169 	if (get == 0) {
170 		/* Corner-case, HW idle, but non-committed work pending. */
171 		if (dmac->put == 0)
172 			nv50_dmac_kick(dmac->push);
173 
174 		if (nvif_msec(dmac->base.device, 2000,
175 			if (NVIF_TV32(&dmac->base.user, NV507C, GET, PTR, >, 0))
176 				break;
177 		) < 0)
178 			return -ETIMEDOUT;
179 	}
180 
181 	PUSH_RSVD(dmac->push, PUSH_JUMP(dmac->push, 0));
182 	dmac->cur = 0;
183 	return 0;
184 }
185 
186 static int
187 nv50_dmac_wait(struct nvif_push *push, u32 size)
188 {
189 	struct nv50_dmac *dmac = container_of(push, typeof(*dmac), _push);
190 	int free;
191 
192 	if (WARN_ON(size > dmac->max))
193 		return -EINVAL;
194 
195 	dmac->cur = push->cur - (u32 __iomem *)dmac->_push.mem.object.map.ptr;
196 	if (dmac->cur + size >= dmac->max) {
197 		int ret = nv50_dmac_wind(dmac);
198 		if (ret)
199 			return ret;
200 
201 		push->cur = dmac->_push.mem.object.map.ptr;
202 		push->cur = push->cur + dmac->cur;
203 		nv50_dmac_kick(push);
204 	}
205 
206 	if (nvif_msec(dmac->base.device, 2000,
207 		if ((free = nv50_dmac_free(dmac)) >= size)
208 			break;
209 	) < 0) {
210 		WARN_ON(1);
211 		return -ETIMEDOUT;
212 	}
213 
214 	push->bgn = dmac->_push.mem.object.map.ptr;
215 	push->bgn = push->bgn + dmac->cur;
216 	push->cur = push->bgn;
217 	push->end = push->cur + free;
218 	return 0;
219 }
220 
221 MODULE_PARM_DESC(kms_vram_pushbuf, "Place EVO/NVD push buffers in VRAM (default: auto)");
222 static int nv50_dmac_vram_pushbuf = -1;
223 module_param_named(kms_vram_pushbuf, nv50_dmac_vram_pushbuf, int, 0400);
224 
225 int
226 nv50_dmac_create(struct nvif_device *device, struct nvif_object *disp,
227 		 const s32 *oclass, u8 head, void *data, u32 size, s64 syncbuf,
228 		 struct nv50_dmac *dmac)
229 {
230 	struct nouveau_cli *cli = (void *)device->object.client;
231 	struct nvif_disp_chan_v0 *args = data;
232 	u8 type = NVIF_MEM_COHERENT;
233 	int ret;
234 
235 	mutex_init(&dmac->lock);
236 
237 	/* Pascal added support for 47-bit physical addresses, but some
238 	 * parts of EVO still only accept 40-bit PAs.
239 	 *
240 	 * To avoid issues on systems with large amounts of RAM, and on
241 	 * systems where an IOMMU maps pages at a high address, we need
242 	 * to allocate push buffers in VRAM instead.
243 	 *
244 	 * This appears to match NVIDIA's behaviour on Pascal.
245 	 */
246 	if ((nv50_dmac_vram_pushbuf > 0) ||
247 	    (nv50_dmac_vram_pushbuf < 0 && device->info.family == NV_DEVICE_INFO_V0_PASCAL))
248 		type |= NVIF_MEM_VRAM;
249 
250 	ret = nvif_mem_ctor_map(&cli->mmu, "kmsChanPush", type, 0x1000,
251 				&dmac->_push.mem);
252 	if (ret)
253 		return ret;
254 
255 	dmac->ptr = dmac->_push.mem.object.map.ptr;
256 	dmac->_push.wait = nv50_dmac_wait;
257 	dmac->_push.kick = nv50_dmac_kick;
258 	dmac->push = &dmac->_push;
259 	dmac->push->bgn = dmac->_push.mem.object.map.ptr;
260 	dmac->push->cur = dmac->push->bgn;
261 	dmac->push->end = dmac->push->bgn;
262 	dmac->max = 0x1000/4 - 1;
263 
264 	/* EVO channels are affected by a HW bug where the last 12 DWORDs
265 	 * of the push buffer aren't able to be used safely.
266 	 */
267 	if (disp->oclass < GV100_DISP)
268 		dmac->max -= 12;
269 
270 	args->pushbuf = nvif_handle(&dmac->_push.mem.object);
271 
272 	ret = nv50_chan_create(device, disp, oclass, head, data, size,
273 			       &dmac->base);
274 	if (ret)
275 		return ret;
276 
277 	if (syncbuf < 0)
278 		return 0;
279 
280 	ret = nvif_object_ctor(&dmac->base.user, "kmsSyncCtxDma", NV50_DISP_HANDLE_SYNCBUF,
281 			       NV_DMA_IN_MEMORY,
282 			       &(struct nv_dma_v0) {
283 					.target = NV_DMA_V0_TARGET_VRAM,
284 					.access = NV_DMA_V0_ACCESS_RDWR,
285 					.start = syncbuf + 0x0000,
286 					.limit = syncbuf + 0x0fff,
287 			       }, sizeof(struct nv_dma_v0),
288 			       &dmac->sync);
289 	if (ret)
290 		return ret;
291 
292 	ret = nvif_object_ctor(&dmac->base.user, "kmsVramCtxDma", NV50_DISP_HANDLE_VRAM,
293 			       NV_DMA_IN_MEMORY,
294 			       &(struct nv_dma_v0) {
295 					.target = NV_DMA_V0_TARGET_VRAM,
296 					.access = NV_DMA_V0_ACCESS_RDWR,
297 					.start = 0,
298 					.limit = device->info.ram_user - 1,
299 			       }, sizeof(struct nv_dma_v0),
300 			       &dmac->vram);
301 	if (ret)
302 		return ret;
303 
304 	return ret;
305 }
306 
307 /******************************************************************************
308  * Output path helpers
309  *****************************************************************************/
310 static void
311 nv50_outp_dump_caps(struct nouveau_drm *drm,
312 		    struct nouveau_encoder *outp)
313 {
314 	NV_DEBUG(drm, "%s caps: dp_interlace=%d\n",
315 		 outp->base.base.name, outp->caps.dp_interlace);
316 }
317 
318 static int
319 nv50_outp_atomic_check_view(struct drm_encoder *encoder,
320 			    struct drm_crtc_state *crtc_state,
321 			    struct drm_connector_state *conn_state,
322 			    struct drm_display_mode *native_mode)
323 {
324 	struct drm_display_mode *adjusted_mode = &crtc_state->adjusted_mode;
325 	struct drm_display_mode *mode = &crtc_state->mode;
326 	struct drm_connector *connector = conn_state->connector;
327 	struct nouveau_conn_atom *asyc = nouveau_conn_atom(conn_state);
328 	struct nouveau_drm *drm = nouveau_drm(encoder->dev);
329 
330 	NV_ATOMIC(drm, "%s atomic_check\n", encoder->name);
331 	asyc->scaler.full = false;
332 	if (!native_mode)
333 		return 0;
334 
335 	if (asyc->scaler.mode == DRM_MODE_SCALE_NONE) {
336 		switch (connector->connector_type) {
337 		case DRM_MODE_CONNECTOR_LVDS:
338 		case DRM_MODE_CONNECTOR_eDP:
339 			/* Don't force scaler for EDID modes with
340 			 * same size as the native one (e.g. different
341 			 * refresh rate)
342 			 */
343 			if (mode->hdisplay == native_mode->hdisplay &&
344 			    mode->vdisplay == native_mode->vdisplay &&
345 			    mode->type & DRM_MODE_TYPE_DRIVER)
346 				break;
347 			mode = native_mode;
348 			asyc->scaler.full = true;
349 			break;
350 		default:
351 			break;
352 		}
353 	} else {
354 		mode = native_mode;
355 	}
356 
357 	if (!drm_mode_equal(adjusted_mode, mode)) {
358 		drm_mode_copy(adjusted_mode, mode);
359 		crtc_state->mode_changed = true;
360 	}
361 
362 	return 0;
363 }
364 
365 static void
366 nv50_outp_atomic_fix_depth(struct drm_encoder *encoder, struct drm_crtc_state *crtc_state)
367 {
368 	struct nv50_head_atom *asyh = nv50_head_atom(crtc_state);
369 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
370 	struct drm_display_mode *mode = &asyh->state.adjusted_mode;
371 	unsigned int max_rate, mode_rate;
372 
373 	switch (nv_encoder->dcb->type) {
374 	case DCB_OUTPUT_DP:
375 		max_rate = nv_encoder->dp.link_nr * nv_encoder->dp.link_bw;
376 
377 		/* we don't support more than 10 anyway */
378 		asyh->or.bpc = min_t(u8, asyh->or.bpc, 10);
379 
380 		/* reduce the bpc until it works out */
381 		while (asyh->or.bpc > 6) {
382 			mode_rate = DIV_ROUND_UP(mode->clock * asyh->or.bpc * 3, 8);
383 			if (mode_rate <= max_rate)
384 				break;
385 
386 			asyh->or.bpc -= 2;
387 		}
388 		break;
389 	default:
390 		break;
391 	}
392 }
393 
394 static int
395 nv50_outp_atomic_check(struct drm_encoder *encoder,
396 		       struct drm_crtc_state *crtc_state,
397 		       struct drm_connector_state *conn_state)
398 {
399 	struct drm_connector *connector = conn_state->connector;
400 	struct nouveau_connector *nv_connector = nouveau_connector(connector);
401 	struct nv50_head_atom *asyh = nv50_head_atom(crtc_state);
402 	int ret;
403 
404 	ret = nv50_outp_atomic_check_view(encoder, crtc_state, conn_state,
405 					  nv_connector->native_mode);
406 	if (ret)
407 		return ret;
408 
409 	if (crtc_state->mode_changed || crtc_state->connectors_changed)
410 		asyh->or.bpc = connector->display_info.bpc;
411 
412 	/* We might have to reduce the bpc */
413 	nv50_outp_atomic_fix_depth(encoder, crtc_state);
414 
415 	return 0;
416 }
417 
418 struct nouveau_connector *
419 nv50_outp_get_new_connector(struct drm_atomic_state *state, struct nouveau_encoder *outp)
420 {
421 	struct drm_connector *connector;
422 	struct drm_connector_state *connector_state;
423 	struct drm_encoder *encoder = to_drm_encoder(outp);
424 	int i;
425 
426 	for_each_new_connector_in_state(state, connector, connector_state, i) {
427 		if (connector_state->best_encoder == encoder)
428 			return nouveau_connector(connector);
429 	}
430 
431 	return NULL;
432 }
433 
434 struct nouveau_connector *
435 nv50_outp_get_old_connector(struct drm_atomic_state *state, struct nouveau_encoder *outp)
436 {
437 	struct drm_connector *connector;
438 	struct drm_connector_state *connector_state;
439 	struct drm_encoder *encoder = to_drm_encoder(outp);
440 	int i;
441 
442 	for_each_old_connector_in_state(state, connector, connector_state, i) {
443 		if (connector_state->best_encoder == encoder)
444 			return nouveau_connector(connector);
445 	}
446 
447 	return NULL;
448 }
449 
450 static struct nouveau_crtc *
451 nv50_outp_get_new_crtc(const struct drm_atomic_state *state, const struct nouveau_encoder *outp)
452 {
453 	struct drm_crtc *crtc;
454 	struct drm_crtc_state *crtc_state;
455 	const u32 mask = drm_encoder_mask(&outp->base.base);
456 	int i;
457 
458 	for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
459 		if (crtc_state->encoder_mask & mask)
460 			return nouveau_crtc(crtc);
461 	}
462 
463 	return NULL;
464 }
465 
466 /******************************************************************************
467  * DAC
468  *****************************************************************************/
469 static void
470 nv50_dac_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state)
471 {
472 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
473 	struct nv50_core *core = nv50_disp(encoder->dev)->core;
474 	const u32 ctrl = NVDEF(NV507D, DAC_SET_CONTROL, OWNER, NONE);
475 
476 	core->func->dac->ctrl(core, nv_encoder->outp.or.id, ctrl, NULL);
477 	nv_encoder->crtc = NULL;
478 }
479 
480 static void
481 nv50_dac_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state)
482 {
483 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
484 	struct nouveau_crtc *nv_crtc = nv50_outp_get_new_crtc(state, nv_encoder);
485 	struct nv50_head_atom *asyh =
486 		nv50_head_atom(drm_atomic_get_new_crtc_state(state, &nv_crtc->base));
487 	struct nv50_core *core = nv50_disp(encoder->dev)->core;
488 	u32 ctrl = 0;
489 
490 	switch (nv_crtc->index) {
491 	case 0: ctrl |= NVDEF(NV507D, DAC_SET_CONTROL, OWNER, HEAD0); break;
492 	case 1: ctrl |= NVDEF(NV507D, DAC_SET_CONTROL, OWNER, HEAD1); break;
493 	case 2: ctrl |= NVDEF(NV907D, DAC_SET_CONTROL, OWNER_MASK, HEAD2); break;
494 	case 3: ctrl |= NVDEF(NV907D, DAC_SET_CONTROL, OWNER_MASK, HEAD3); break;
495 	default:
496 		WARN_ON(1);
497 		break;
498 	}
499 
500 	ctrl |= NVDEF(NV507D, DAC_SET_CONTROL, PROTOCOL, RGB_CRT);
501 
502 	if (!nvif_outp_acquired(&nv_encoder->outp))
503 		nvif_outp_acquire_dac(&nv_encoder->outp);
504 
505 	core->func->dac->ctrl(core, nv_encoder->outp.or.id, ctrl, asyh);
506 	asyh->or.depth = 0;
507 
508 	nv_encoder->crtc = &nv_crtc->base;
509 }
510 
511 static enum drm_connector_status
512 nv50_dac_detect(struct drm_encoder *encoder, struct drm_connector *connector)
513 {
514 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
515 	u32 loadval;
516 	int ret;
517 
518 	loadval = nouveau_drm(encoder->dev)->vbios.dactestval;
519 	if (loadval == 0)
520 		loadval = 340;
521 
522 	ret = nvif_outp_load_detect(&nv_encoder->outp, loadval);
523 	if (ret <= 0)
524 		return connector_status_disconnected;
525 
526 	return connector_status_connected;
527 }
528 
529 static const struct drm_encoder_helper_funcs
530 nv50_dac_help = {
531 	.atomic_check = nv50_outp_atomic_check,
532 	.atomic_enable = nv50_dac_atomic_enable,
533 	.atomic_disable = nv50_dac_atomic_disable,
534 	.detect = nv50_dac_detect
535 };
536 
537 static void
538 nv50_dac_destroy(struct drm_encoder *encoder)
539 {
540 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
541 
542 	nvif_outp_dtor(&nv_encoder->outp);
543 
544 	drm_encoder_cleanup(encoder);
545 	kfree(encoder);
546 }
547 
548 static const struct drm_encoder_funcs
549 nv50_dac_func = {
550 	.destroy = nv50_dac_destroy,
551 };
552 
553 static int
554 nv50_dac_create(struct nouveau_encoder *nv_encoder)
555 {
556 	struct drm_connector *connector = &nv_encoder->conn->base;
557 	struct nouveau_drm *drm = nouveau_drm(connector->dev);
558 	struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device);
559 	struct nvkm_i2c_bus *bus;
560 	struct drm_encoder *encoder;
561 	struct dcb_output *dcbe = nv_encoder->dcb;
562 	int type = DRM_MODE_ENCODER_DAC;
563 
564 	bus = nvkm_i2c_bus_find(i2c, dcbe->i2c_index);
565 	if (bus)
566 		nv_encoder->i2c = &bus->i2c;
567 
568 	encoder = to_drm_encoder(nv_encoder);
569 	drm_encoder_init(connector->dev, encoder, &nv50_dac_func, type,
570 			 "dac-%04x-%04x", dcbe->hasht, dcbe->hashm);
571 	drm_encoder_helper_add(encoder, &nv50_dac_help);
572 
573 	drm_connector_attach_encoder(connector, encoder);
574 	return 0;
575 }
576 
577 /*
578  * audio component binding for ELD notification
579  */
580 static void
581 nv50_audio_component_eld_notify(struct drm_audio_component *acomp, int port,
582 				int dev_id)
583 {
584 	if (acomp && acomp->audio_ops && acomp->audio_ops->pin_eld_notify)
585 		acomp->audio_ops->pin_eld_notify(acomp->audio_ops->audio_ptr,
586 						 port, dev_id);
587 }
588 
589 static int
590 nv50_audio_component_get_eld(struct device *kdev, int port, int dev_id,
591 			     bool *enabled, unsigned char *buf, int max_bytes)
592 {
593 	struct drm_device *drm_dev = dev_get_drvdata(kdev);
594 	struct nouveau_drm *drm = nouveau_drm(drm_dev);
595 	struct drm_encoder *encoder;
596 	struct nouveau_encoder *nv_encoder;
597 	struct nouveau_crtc *nv_crtc;
598 	int ret = 0;
599 
600 	*enabled = false;
601 
602 	mutex_lock(&drm->audio.lock);
603 
604 	drm_for_each_encoder(encoder, drm->dev) {
605 		struct nouveau_connector *nv_connector = NULL;
606 
607 		if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST)
608 			continue; /* TODO */
609 
610 		nv_encoder = nouveau_encoder(encoder);
611 		nv_connector = nv_encoder->conn;
612 		nv_crtc = nouveau_crtc(nv_encoder->crtc);
613 
614 		if (!nv_crtc || nv_encoder->outp.or.id != port || nv_crtc->index != dev_id)
615 			continue;
616 
617 		*enabled = nv_encoder->audio.enabled;
618 		if (*enabled) {
619 			ret = drm_eld_size(nv_connector->base.eld);
620 			memcpy(buf, nv_connector->base.eld,
621 			       min(max_bytes, ret));
622 		}
623 		break;
624 	}
625 
626 	mutex_unlock(&drm->audio.lock);
627 
628 	return ret;
629 }
630 
631 static const struct drm_audio_component_ops nv50_audio_component_ops = {
632 	.get_eld = nv50_audio_component_get_eld,
633 };
634 
635 static int
636 nv50_audio_component_bind(struct device *kdev, struct device *hda_kdev,
637 			  void *data)
638 {
639 	struct drm_device *drm_dev = dev_get_drvdata(kdev);
640 	struct nouveau_drm *drm = nouveau_drm(drm_dev);
641 	struct drm_audio_component *acomp = data;
642 
643 	if (WARN_ON(!device_link_add(hda_kdev, kdev, DL_FLAG_STATELESS)))
644 		return -ENOMEM;
645 
646 	drm_modeset_lock_all(drm_dev);
647 	acomp->ops = &nv50_audio_component_ops;
648 	acomp->dev = kdev;
649 	drm->audio.component = acomp;
650 	drm_modeset_unlock_all(drm_dev);
651 	return 0;
652 }
653 
654 static void
655 nv50_audio_component_unbind(struct device *kdev, struct device *hda_kdev,
656 			    void *data)
657 {
658 	struct drm_device *drm_dev = dev_get_drvdata(kdev);
659 	struct nouveau_drm *drm = nouveau_drm(drm_dev);
660 	struct drm_audio_component *acomp = data;
661 
662 	drm_modeset_lock_all(drm_dev);
663 	drm->audio.component = NULL;
664 	acomp->ops = NULL;
665 	acomp->dev = NULL;
666 	drm_modeset_unlock_all(drm_dev);
667 }
668 
669 static const struct component_ops nv50_audio_component_bind_ops = {
670 	.bind   = nv50_audio_component_bind,
671 	.unbind = nv50_audio_component_unbind,
672 };
673 
674 static void
675 nv50_audio_component_init(struct nouveau_drm *drm)
676 {
677 	if (component_add(drm->dev->dev, &nv50_audio_component_bind_ops))
678 		return;
679 
680 	drm->audio.component_registered = true;
681 	mutex_init(&drm->audio.lock);
682 }
683 
684 static void
685 nv50_audio_component_fini(struct nouveau_drm *drm)
686 {
687 	if (!drm->audio.component_registered)
688 		return;
689 
690 	component_del(drm->dev->dev, &nv50_audio_component_bind_ops);
691 	drm->audio.component_registered = false;
692 	mutex_destroy(&drm->audio.lock);
693 }
694 
695 /******************************************************************************
696  * Audio
697  *****************************************************************************/
698 static bool
699 nv50_audio_supported(struct drm_encoder *encoder)
700 {
701 	struct nv50_disp *disp = nv50_disp(encoder->dev);
702 
703 	if (disp->disp->object.oclass <= GT200_DISP ||
704 	    disp->disp->object.oclass == GT206_DISP)
705 		return false;
706 
707 	if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) {
708 		struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
709 
710 		switch (nv_encoder->dcb->type) {
711 		case DCB_OUTPUT_TMDS:
712 		case DCB_OUTPUT_DP:
713 			break;
714 		default:
715 			return false;
716 		}
717 	}
718 
719 	return true;
720 }
721 
722 static void
723 nv50_audio_disable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc)
724 {
725 	struct nouveau_drm *drm = nouveau_drm(encoder->dev);
726 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
727 	struct nvif_outp *outp = &nv_encoder->outp;
728 
729 	if (!nv50_audio_supported(encoder))
730 		return;
731 
732 	mutex_lock(&drm->audio.lock);
733 	if (nv_encoder->audio.enabled) {
734 		nv_encoder->audio.enabled = false;
735 		nvif_outp_hda_eld(&nv_encoder->outp, nv_crtc->index, NULL, 0);
736 	}
737 	mutex_unlock(&drm->audio.lock);
738 
739 	nv50_audio_component_eld_notify(drm->audio.component, outp->or.id, nv_crtc->index);
740 }
741 
742 static void
743 nv50_audio_enable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc,
744 		  struct nouveau_connector *nv_connector, struct drm_atomic_state *state,
745 		  struct drm_display_mode *mode)
746 {
747 	struct nouveau_drm *drm = nouveau_drm(encoder->dev);
748 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
749 	struct nvif_outp *outp = &nv_encoder->outp;
750 
751 	if (!nv50_audio_supported(encoder) || !drm_detect_monitor_audio(nv_connector->edid))
752 		return;
753 
754 	mutex_lock(&drm->audio.lock);
755 
756 	nvif_outp_hda_eld(&nv_encoder->outp, nv_crtc->index, nv_connector->base.eld,
757 			  drm_eld_size(nv_connector->base.eld));
758 	nv_encoder->audio.enabled = true;
759 
760 	mutex_unlock(&drm->audio.lock);
761 
762 	nv50_audio_component_eld_notify(drm->audio.component, outp->or.id, nv_crtc->index);
763 }
764 
765 /******************************************************************************
766  * HDMI
767  *****************************************************************************/
768 static void
769 nv50_hdmi_enable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc,
770 		 struct nouveau_connector *nv_connector, struct drm_atomic_state *state,
771 		 struct drm_display_mode *mode, bool hda)
772 {
773 	struct nouveau_drm *drm = nouveau_drm(encoder->dev);
774 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
775 	struct drm_hdmi_info *hdmi = &nv_connector->base.display_info.hdmi;
776 	union hdmi_infoframe infoframe = { 0 };
777 	const u8 rekey = 56; /* binary driver, and tegra, constant */
778 	u32 max_ac_packet;
779 	struct {
780 		struct nvif_outp_infoframe_v0 infoframe;
781 		u8 data[17];
782 	} args = { 0 };
783 	int ret, size;
784 
785 	max_ac_packet  = mode->htotal - mode->hdisplay;
786 	max_ac_packet -= rekey;
787 	max_ac_packet -= 18; /* constant from tegra */
788 	max_ac_packet /= 32;
789 
790 	if (nv_encoder->i2c && hdmi->scdc.scrambling.supported) {
791 		const bool high_tmds_clock_ratio = mode->clock > 340000;
792 		u8 scdc;
793 
794 		ret = drm_scdc_readb(nv_encoder->i2c, SCDC_TMDS_CONFIG, &scdc);
795 		if (ret < 0) {
796 			NV_ERROR(drm, "Failure to read SCDC_TMDS_CONFIG: %d\n", ret);
797 			return;
798 		}
799 
800 		scdc &= ~(SCDC_TMDS_BIT_CLOCK_RATIO_BY_40 | SCDC_SCRAMBLING_ENABLE);
801 		if (high_tmds_clock_ratio || hdmi->scdc.scrambling.low_rates)
802 			scdc |= SCDC_SCRAMBLING_ENABLE;
803 		if (high_tmds_clock_ratio)
804 			scdc |= SCDC_TMDS_BIT_CLOCK_RATIO_BY_40;
805 
806 		ret = drm_scdc_writeb(nv_encoder->i2c, SCDC_TMDS_CONFIG, scdc);
807 		if (ret < 0)
808 			NV_ERROR(drm, "Failure to write SCDC_TMDS_CONFIG = 0x%02x: %d\n",
809 				 scdc, ret);
810 	}
811 
812 	ret = nvif_outp_hdmi(&nv_encoder->outp, nv_crtc->index, true, max_ac_packet, rekey,
813 			     mode->clock, hdmi->scdc.supported, hdmi->scdc.scrambling.supported,
814 			     hdmi->scdc.scrambling.low_rates);
815 	if (ret)
816 		return;
817 
818 	/* AVI InfoFrame. */
819 	args.infoframe.version = 0;
820 	args.infoframe.head = nv_crtc->index;
821 
822 	if (!drm_hdmi_avi_infoframe_from_display_mode(&infoframe.avi, &nv_connector->base, mode)) {
823 		drm_hdmi_avi_infoframe_quant_range(&infoframe.avi, &nv_connector->base, mode,
824 						   HDMI_QUANTIZATION_RANGE_FULL);
825 
826 		size = hdmi_infoframe_pack(&infoframe, args.data, ARRAY_SIZE(args.data));
827 	} else {
828 		size = 0;
829 	}
830 
831 	nvif_outp_infoframe(&nv_encoder->outp, NVIF_OUTP_INFOFRAME_V0_AVI, &args.infoframe, size);
832 
833 	/* Vendor InfoFrame. */
834 	memset(&args.data, 0, sizeof(args.data));
835 	if (!drm_hdmi_vendor_infoframe_from_display_mode(&infoframe.vendor.hdmi,
836 							 &nv_connector->base, mode))
837 		size = hdmi_infoframe_pack(&infoframe, args.data, ARRAY_SIZE(args.data));
838 	else
839 		size = 0;
840 
841 	nvif_outp_infoframe(&nv_encoder->outp, NVIF_OUTP_INFOFRAME_V0_VSI, &args.infoframe, size);
842 
843 	nv_encoder->hdmi.enabled = true;
844 }
845 
846 /******************************************************************************
847  * MST
848  *****************************************************************************/
849 #define nv50_mstm(p) container_of((p), struct nv50_mstm, mgr)
850 #define nv50_mstc(p) container_of((p), struct nv50_mstc, connector)
851 #define nv50_msto(p) container_of((p), struct nv50_msto, encoder)
852 
853 struct nv50_mstc {
854 	struct nv50_mstm *mstm;
855 	struct drm_dp_mst_port *port;
856 	struct drm_connector connector;
857 
858 	struct drm_display_mode *native;
859 	struct edid *edid;
860 };
861 
862 struct nv50_msto {
863 	struct drm_encoder encoder;
864 
865 	/* head is statically assigned on msto creation */
866 	struct nv50_head *head;
867 	struct nv50_mstc *mstc;
868 	bool disabled;
869 	bool enabled;
870 
871 	u32 display_id;
872 };
873 
874 struct nouveau_encoder *nv50_real_outp(struct drm_encoder *encoder)
875 {
876 	struct nv50_msto *msto;
877 
878 	if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST)
879 		return nouveau_encoder(encoder);
880 
881 	msto = nv50_msto(encoder);
882 	if (!msto->mstc)
883 		return NULL;
884 	return msto->mstc->mstm->outp;
885 }
886 
887 static void
888 nv50_msto_cleanup(struct drm_atomic_state *state,
889 		  struct drm_dp_mst_topology_state *new_mst_state,
890 		  struct drm_dp_mst_topology_mgr *mgr,
891 		  struct nv50_msto *msto)
892 {
893 	struct nouveau_drm *drm = nouveau_drm(msto->encoder.dev);
894 	struct drm_dp_mst_atomic_payload *new_payload =
895 		drm_atomic_get_mst_payload_state(new_mst_state, msto->mstc->port);
896 	struct drm_dp_mst_topology_state *old_mst_state =
897 		drm_atomic_get_old_mst_topology_state(state, mgr);
898 	const struct drm_dp_mst_atomic_payload *old_payload =
899 		drm_atomic_get_mst_payload_state(old_mst_state, msto->mstc->port);
900 	struct nv50_mstc *mstc = msto->mstc;
901 	struct nv50_mstm *mstm = mstc->mstm;
902 
903 	NV_ATOMIC(drm, "%s: msto cleanup\n", msto->encoder.name);
904 
905 	if (msto->disabled) {
906 		if (msto->head->func->display_id) {
907 			nvif_outp_dp_mst_id_put(&mstm->outp->outp, msto->display_id);
908 			msto->display_id = 0;
909 		}
910 
911 		msto->mstc = NULL;
912 		msto->disabled = false;
913 		drm_dp_remove_payload_part2(mgr, new_mst_state, old_payload, new_payload);
914 	} else if (msto->enabled) {
915 		drm_dp_add_payload_part2(mgr, state, new_payload);
916 		msto->enabled = false;
917 	}
918 }
919 
920 static void
921 nv50_msto_prepare(struct drm_atomic_state *state,
922 		  struct drm_dp_mst_topology_state *mst_state,
923 		  struct drm_dp_mst_topology_mgr *mgr,
924 		  struct nv50_msto *msto)
925 {
926 	struct nouveau_drm *drm = nouveau_drm(msto->encoder.dev);
927 	struct nv50_mstc *mstc = msto->mstc;
928 	struct nv50_mstm *mstm = mstc->mstm;
929 	struct drm_dp_mst_atomic_payload *payload;
930 	int ret = 0;
931 
932 	NV_ATOMIC(drm, "%s: msto prepare\n", msto->encoder.name);
933 
934 	payload = drm_atomic_get_mst_payload_state(mst_state, mstc->port);
935 
936 	if (msto->disabled) {
937 		drm_dp_remove_payload_part1(mgr, mst_state, payload);
938 		nvif_outp_dp_mst_vcpi(&mstm->outp->outp, msto->head->base.index, 0, 0, 0, 0);
939 		ret = 1;
940 	} else {
941 		if (msto->enabled)
942 			ret = drm_dp_add_payload_part1(mgr, mst_state, payload);
943 	}
944 
945 	if (ret == 0) {
946 		nvif_outp_dp_mst_vcpi(&mstm->outp->outp, msto->head->base.index,
947 				      payload->vc_start_slot, payload->time_slots,
948 				      payload->pbn, payload->time_slots * mst_state->pbn_div);
949 	} else {
950 		nvif_outp_dp_mst_vcpi(&mstm->outp->outp, msto->head->base.index, 0, 0, 0, 0);
951 	}
952 }
953 
954 static int
955 nv50_msto_atomic_check(struct drm_encoder *encoder,
956 		       struct drm_crtc_state *crtc_state,
957 		       struct drm_connector_state *conn_state)
958 {
959 	struct drm_atomic_state *state = crtc_state->state;
960 	struct drm_connector *connector = conn_state->connector;
961 	struct drm_dp_mst_topology_state *mst_state;
962 	struct nv50_mstc *mstc = nv50_mstc(connector);
963 	struct nv50_mstm *mstm = mstc->mstm;
964 	struct nv50_head_atom *asyh = nv50_head_atom(crtc_state);
965 	int slots;
966 	int ret;
967 
968 	ret = nv50_outp_atomic_check_view(encoder, crtc_state, conn_state,
969 					  mstc->native);
970 	if (ret)
971 		return ret;
972 
973 	if (!drm_atomic_crtc_needs_modeset(crtc_state))
974 		return 0;
975 
976 	/*
977 	 * When restoring duplicated states, we need to make sure that the bw
978 	 * remains the same and avoid recalculating it, as the connector's bpc
979 	 * may have changed after the state was duplicated
980 	 */
981 	if (!state->duplicated) {
982 		const int clock = crtc_state->adjusted_mode.clock;
983 
984 		asyh->or.bpc = connector->display_info.bpc;
985 		asyh->dp.pbn = drm_dp_calc_pbn_mode(clock, asyh->or.bpc * 3,
986 						    false);
987 	}
988 
989 	mst_state = drm_atomic_get_mst_topology_state(state, &mstm->mgr);
990 	if (IS_ERR(mst_state))
991 		return PTR_ERR(mst_state);
992 
993 	if (!mst_state->pbn_div) {
994 		struct nouveau_encoder *outp = mstc->mstm->outp;
995 
996 		mst_state->pbn_div = drm_dp_get_vc_payload_bw(&mstm->mgr,
997 							      outp->dp.link_bw, outp->dp.link_nr);
998 	}
999 
1000 	slots = drm_dp_atomic_find_time_slots(state, &mstm->mgr, mstc->port, asyh->dp.pbn);
1001 	if (slots < 0)
1002 		return slots;
1003 
1004 	asyh->dp.tu = slots;
1005 
1006 	return 0;
1007 }
1008 
1009 static u8
1010 nv50_dp_bpc_to_depth(unsigned int bpc)
1011 {
1012 	switch (bpc) {
1013 	case  6: return NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_BPP_18_444;
1014 	case  8: return NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_BPP_24_444;
1015 	case 10:
1016 	default: return NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_BPP_30_444;
1017 	}
1018 }
1019 
1020 static void
1021 nv50_msto_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state)
1022 {
1023 	struct nv50_msto *msto = nv50_msto(encoder);
1024 	struct nv50_head *head = msto->head;
1025 	struct nv50_head_atom *asyh =
1026 		nv50_head_atom(drm_atomic_get_new_crtc_state(state, &head->base.base));
1027 	struct nv50_mstc *mstc = NULL;
1028 	struct nv50_mstm *mstm = NULL;
1029 	struct drm_connector *connector;
1030 	struct drm_connector_list_iter conn_iter;
1031 	u8 proto;
1032 
1033 	drm_connector_list_iter_begin(encoder->dev, &conn_iter);
1034 	drm_for_each_connector_iter(connector, &conn_iter) {
1035 		if (connector->state->best_encoder == &msto->encoder) {
1036 			mstc = nv50_mstc(connector);
1037 			mstm = mstc->mstm;
1038 			break;
1039 		}
1040 	}
1041 	drm_connector_list_iter_end(&conn_iter);
1042 
1043 	if (WARN_ON(!mstc))
1044 		return;
1045 
1046 	if (!mstm->links++) {
1047 		nvif_outp_acquire_sor(&mstm->outp->outp, false /*TODO: MST audio... */);
1048 		nouveau_dp_train(mstm->outp, true, 0, 0);
1049 	}
1050 
1051 	if (head->func->display_id) {
1052 		if (!WARN_ON(nvif_outp_dp_mst_id_get(&mstm->outp->outp, &msto->display_id)))
1053 			head->func->display_id(head, msto->display_id);
1054 	}
1055 
1056 	if (mstm->outp->outp.or.link & 1)
1057 		proto = NV917D_SOR_SET_CONTROL_PROTOCOL_DP_A;
1058 	else
1059 		proto = NV917D_SOR_SET_CONTROL_PROTOCOL_DP_B;
1060 
1061 	mstm->outp->update(mstm->outp, head->base.index, asyh, proto,
1062 			   nv50_dp_bpc_to_depth(asyh->or.bpc));
1063 
1064 	msto->mstc = mstc;
1065 	msto->enabled = true;
1066 	mstm->modified = true;
1067 }
1068 
1069 static void
1070 nv50_msto_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state)
1071 {
1072 	struct nv50_msto *msto = nv50_msto(encoder);
1073 	struct nv50_mstc *mstc = msto->mstc;
1074 	struct nv50_mstm *mstm = mstc->mstm;
1075 
1076 	if (msto->head->func->display_id)
1077 		msto->head->func->display_id(msto->head, 0);
1078 
1079 	mstm->outp->update(mstm->outp, msto->head->base.index, NULL, 0, 0);
1080 	mstm->modified = true;
1081 	if (!--mstm->links)
1082 		mstm->disabled = true;
1083 	msto->disabled = true;
1084 }
1085 
1086 static const struct drm_encoder_helper_funcs
1087 nv50_msto_help = {
1088 	.atomic_disable = nv50_msto_atomic_disable,
1089 	.atomic_enable = nv50_msto_atomic_enable,
1090 	.atomic_check = nv50_msto_atomic_check,
1091 };
1092 
1093 static void
1094 nv50_msto_destroy(struct drm_encoder *encoder)
1095 {
1096 	struct nv50_msto *msto = nv50_msto(encoder);
1097 	drm_encoder_cleanup(&msto->encoder);
1098 	kfree(msto);
1099 }
1100 
1101 static const struct drm_encoder_funcs
1102 nv50_msto = {
1103 	.destroy = nv50_msto_destroy,
1104 };
1105 
1106 static struct nv50_msto *
1107 nv50_msto_new(struct drm_device *dev, struct nv50_head *head, int id)
1108 {
1109 	struct nv50_msto *msto;
1110 	int ret;
1111 
1112 	msto = kzalloc(sizeof(*msto), GFP_KERNEL);
1113 	if (!msto)
1114 		return ERR_PTR(-ENOMEM);
1115 
1116 	ret = drm_encoder_init(dev, &msto->encoder, &nv50_msto,
1117 			       DRM_MODE_ENCODER_DPMST, "mst-%d", id);
1118 	if (ret) {
1119 		kfree(msto);
1120 		return ERR_PTR(ret);
1121 	}
1122 
1123 	drm_encoder_helper_add(&msto->encoder, &nv50_msto_help);
1124 	msto->encoder.possible_crtcs = drm_crtc_mask(&head->base.base);
1125 	msto->head = head;
1126 	return msto;
1127 }
1128 
1129 static struct drm_encoder *
1130 nv50_mstc_atomic_best_encoder(struct drm_connector *connector,
1131 			      struct drm_atomic_state *state)
1132 {
1133 	struct drm_connector_state *connector_state = drm_atomic_get_new_connector_state(state,
1134 											 connector);
1135 	struct nv50_mstc *mstc = nv50_mstc(connector);
1136 	struct drm_crtc *crtc = connector_state->crtc;
1137 
1138 	if (!(mstc->mstm->outp->dcb->heads & drm_crtc_mask(crtc)))
1139 		return NULL;
1140 
1141 	return &nv50_head(crtc)->msto->encoder;
1142 }
1143 
1144 static enum drm_mode_status
1145 nv50_mstc_mode_valid(struct drm_connector *connector,
1146 		     struct drm_display_mode *mode)
1147 {
1148 	struct nv50_mstc *mstc = nv50_mstc(connector);
1149 	struct nouveau_encoder *outp = mstc->mstm->outp;
1150 
1151 	/* TODO: calculate the PBN from the dotclock and validate against the
1152 	 * MSTB's max possible PBN
1153 	 */
1154 
1155 	return nv50_dp_mode_valid(outp, mode, NULL);
1156 }
1157 
1158 static int
1159 nv50_mstc_get_modes(struct drm_connector *connector)
1160 {
1161 	struct nv50_mstc *mstc = nv50_mstc(connector);
1162 	int ret = 0;
1163 
1164 	mstc->edid = drm_dp_mst_get_edid(&mstc->connector, mstc->port->mgr, mstc->port);
1165 	drm_connector_update_edid_property(&mstc->connector, mstc->edid);
1166 	if (mstc->edid)
1167 		ret = drm_add_edid_modes(&mstc->connector, mstc->edid);
1168 
1169 	/*
1170 	 * XXX: Since we don't use HDR in userspace quite yet, limit the bpc
1171 	 * to 8 to save bandwidth on the topology. In the future, we'll want
1172 	 * to properly fix this by dynamically selecting the highest possible
1173 	 * bpc that would fit in the topology
1174 	 */
1175 	if (connector->display_info.bpc)
1176 		connector->display_info.bpc =
1177 			clamp(connector->display_info.bpc, 6U, 8U);
1178 	else
1179 		connector->display_info.bpc = 8;
1180 
1181 	if (mstc->native)
1182 		drm_mode_destroy(mstc->connector.dev, mstc->native);
1183 	mstc->native = nouveau_conn_native_mode(&mstc->connector);
1184 	return ret;
1185 }
1186 
1187 static int
1188 nv50_mstc_atomic_check(struct drm_connector *connector,
1189 		       struct drm_atomic_state *state)
1190 {
1191 	struct nv50_mstc *mstc = nv50_mstc(connector);
1192 	struct drm_dp_mst_topology_mgr *mgr = &mstc->mstm->mgr;
1193 
1194 	return drm_dp_atomic_release_time_slots(state, mgr, mstc->port);
1195 }
1196 
1197 static int
1198 nv50_mstc_detect(struct drm_connector *connector,
1199 		 struct drm_modeset_acquire_ctx *ctx, bool force)
1200 {
1201 	struct nv50_mstc *mstc = nv50_mstc(connector);
1202 	int ret;
1203 
1204 	if (drm_connector_is_unregistered(connector))
1205 		return connector_status_disconnected;
1206 
1207 	ret = pm_runtime_get_sync(connector->dev->dev);
1208 	if (ret < 0 && ret != -EACCES) {
1209 		pm_runtime_put_autosuspend(connector->dev->dev);
1210 		return connector_status_disconnected;
1211 	}
1212 
1213 	ret = drm_dp_mst_detect_port(connector, ctx, mstc->port->mgr,
1214 				     mstc->port);
1215 	if (ret != connector_status_connected)
1216 		goto out;
1217 
1218 out:
1219 	pm_runtime_mark_last_busy(connector->dev->dev);
1220 	pm_runtime_put_autosuspend(connector->dev->dev);
1221 	return ret;
1222 }
1223 
1224 static const struct drm_connector_helper_funcs
1225 nv50_mstc_help = {
1226 	.get_modes = nv50_mstc_get_modes,
1227 	.mode_valid = nv50_mstc_mode_valid,
1228 	.atomic_best_encoder = nv50_mstc_atomic_best_encoder,
1229 	.atomic_check = nv50_mstc_atomic_check,
1230 	.detect_ctx = nv50_mstc_detect,
1231 };
1232 
1233 static void
1234 nv50_mstc_destroy(struct drm_connector *connector)
1235 {
1236 	struct nv50_mstc *mstc = nv50_mstc(connector);
1237 
1238 	drm_connector_cleanup(&mstc->connector);
1239 	drm_dp_mst_put_port_malloc(mstc->port);
1240 
1241 	kfree(mstc);
1242 }
1243 
1244 static const struct drm_connector_funcs
1245 nv50_mstc = {
1246 	.reset = nouveau_conn_reset,
1247 	.fill_modes = drm_helper_probe_single_connector_modes,
1248 	.destroy = nv50_mstc_destroy,
1249 	.atomic_duplicate_state = nouveau_conn_atomic_duplicate_state,
1250 	.atomic_destroy_state = nouveau_conn_atomic_destroy_state,
1251 	.atomic_set_property = nouveau_conn_atomic_set_property,
1252 	.atomic_get_property = nouveau_conn_atomic_get_property,
1253 };
1254 
1255 static int
1256 nv50_mstc_new(struct nv50_mstm *mstm, struct drm_dp_mst_port *port,
1257 	      const char *path, struct nv50_mstc **pmstc)
1258 {
1259 	struct drm_device *dev = mstm->outp->base.base.dev;
1260 	struct drm_crtc *crtc;
1261 	struct nv50_mstc *mstc;
1262 	int ret;
1263 
1264 	if (!(mstc = *pmstc = kzalloc(sizeof(*mstc), GFP_KERNEL)))
1265 		return -ENOMEM;
1266 	mstc->mstm = mstm;
1267 	mstc->port = port;
1268 
1269 	ret = drm_connector_init(dev, &mstc->connector, &nv50_mstc,
1270 				 DRM_MODE_CONNECTOR_DisplayPort);
1271 	if (ret) {
1272 		kfree(*pmstc);
1273 		*pmstc = NULL;
1274 		return ret;
1275 	}
1276 
1277 	drm_connector_helper_add(&mstc->connector, &nv50_mstc_help);
1278 
1279 	mstc->connector.funcs->reset(&mstc->connector);
1280 	nouveau_conn_attach_properties(&mstc->connector);
1281 
1282 	drm_for_each_crtc(crtc, dev) {
1283 		if (!(mstm->outp->dcb->heads & drm_crtc_mask(crtc)))
1284 			continue;
1285 
1286 		drm_connector_attach_encoder(&mstc->connector,
1287 					     &nv50_head(crtc)->msto->encoder);
1288 	}
1289 
1290 	drm_object_attach_property(&mstc->connector.base, dev->mode_config.path_property, 0);
1291 	drm_object_attach_property(&mstc->connector.base, dev->mode_config.tile_property, 0);
1292 	drm_connector_set_path_property(&mstc->connector, path);
1293 	drm_dp_mst_get_port_malloc(port);
1294 	return 0;
1295 }
1296 
1297 static void
1298 nv50_mstm_cleanup(struct drm_atomic_state *state,
1299 		  struct drm_dp_mst_topology_state *mst_state,
1300 		  struct nv50_mstm *mstm)
1301 {
1302 	struct nouveau_drm *drm = nouveau_drm(mstm->outp->base.base.dev);
1303 	struct drm_encoder *encoder;
1304 
1305 	NV_ATOMIC(drm, "%s: mstm cleanup\n", mstm->outp->base.base.name);
1306 	drm_dp_check_act_status(&mstm->mgr);
1307 
1308 	drm_for_each_encoder(encoder, mstm->outp->base.base.dev) {
1309 		if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) {
1310 			struct nv50_msto *msto = nv50_msto(encoder);
1311 			struct nv50_mstc *mstc = msto->mstc;
1312 			if (mstc && mstc->mstm == mstm)
1313 				nv50_msto_cleanup(state, mst_state, &mstm->mgr, msto);
1314 		}
1315 	}
1316 
1317 	if (mstm->disabled) {
1318 		nouveau_dp_power_down(mstm->outp);
1319 		nvif_outp_release(&mstm->outp->outp);
1320 		mstm->disabled = false;
1321 	}
1322 
1323 	mstm->modified = false;
1324 }
1325 
1326 static void
1327 nv50_mstm_prepare(struct drm_atomic_state *state,
1328 		  struct drm_dp_mst_topology_state *mst_state,
1329 		  struct nv50_mstm *mstm)
1330 {
1331 	struct nouveau_drm *drm = nouveau_drm(mstm->outp->base.base.dev);
1332 	struct drm_encoder *encoder;
1333 
1334 	NV_ATOMIC(drm, "%s: mstm prepare\n", mstm->outp->base.base.name);
1335 
1336 	/* Disable payloads first */
1337 	drm_for_each_encoder(encoder, mstm->outp->base.base.dev) {
1338 		if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) {
1339 			struct nv50_msto *msto = nv50_msto(encoder);
1340 			struct nv50_mstc *mstc = msto->mstc;
1341 			if (mstc && mstc->mstm == mstm && msto->disabled)
1342 				nv50_msto_prepare(state, mst_state, &mstm->mgr, msto);
1343 		}
1344 	}
1345 
1346 	/* Add payloads for new heads, while also updating the start slots of any unmodified (but
1347 	 * active) heads that may have had their VC slots shifted left after the previous step
1348 	 */
1349 	drm_for_each_encoder(encoder, mstm->outp->base.base.dev) {
1350 		if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) {
1351 			struct nv50_msto *msto = nv50_msto(encoder);
1352 			struct nv50_mstc *mstc = msto->mstc;
1353 			if (mstc && mstc->mstm == mstm && !msto->disabled)
1354 				nv50_msto_prepare(state, mst_state, &mstm->mgr, msto);
1355 		}
1356 	}
1357 }
1358 
1359 static struct drm_connector *
1360 nv50_mstm_add_connector(struct drm_dp_mst_topology_mgr *mgr,
1361 			struct drm_dp_mst_port *port, const char *path)
1362 {
1363 	struct nv50_mstm *mstm = nv50_mstm(mgr);
1364 	struct nv50_mstc *mstc;
1365 	int ret;
1366 
1367 	ret = nv50_mstc_new(mstm, port, path, &mstc);
1368 	if (ret)
1369 		return NULL;
1370 
1371 	return &mstc->connector;
1372 }
1373 
1374 static const struct drm_dp_mst_topology_cbs
1375 nv50_mstm = {
1376 	.add_connector = nv50_mstm_add_connector,
1377 };
1378 
1379 bool
1380 nv50_mstm_service(struct nouveau_drm *drm,
1381 		  struct nouveau_connector *nv_connector,
1382 		  struct nv50_mstm *mstm)
1383 {
1384 	struct drm_dp_aux *aux = &nv_connector->aux;
1385 	bool handled = true, ret = true;
1386 	int rc;
1387 	u8 esi[8] = {};
1388 
1389 	while (handled) {
1390 		u8 ack[8] = {};
1391 
1392 		rc = drm_dp_dpcd_read(aux, DP_SINK_COUNT_ESI, esi, 8);
1393 		if (rc != 8) {
1394 			ret = false;
1395 			break;
1396 		}
1397 
1398 		drm_dp_mst_hpd_irq_handle_event(&mstm->mgr, esi, ack, &handled);
1399 		if (!handled)
1400 			break;
1401 
1402 		rc = drm_dp_dpcd_writeb(aux, DP_SINK_COUNT_ESI + 1, ack[1]);
1403 
1404 		if (rc != 1) {
1405 			ret = false;
1406 			break;
1407 		}
1408 
1409 		drm_dp_mst_hpd_irq_send_new_request(&mstm->mgr);
1410 	}
1411 
1412 	if (!ret)
1413 		NV_DEBUG(drm, "Failed to handle ESI on %s: %d\n",
1414 			 nv_connector->base.name, rc);
1415 
1416 	return ret;
1417 }
1418 
1419 void
1420 nv50_mstm_remove(struct nv50_mstm *mstm)
1421 {
1422 	mstm->is_mst = false;
1423 	drm_dp_mst_topology_mgr_set_mst(&mstm->mgr, false);
1424 }
1425 
1426 int
1427 nv50_mstm_detect(struct nouveau_encoder *outp)
1428 {
1429 	struct nv50_mstm *mstm = outp->dp.mstm;
1430 	struct drm_dp_aux *aux;
1431 	int ret;
1432 
1433 	if (!mstm || !mstm->can_mst)
1434 		return 0;
1435 
1436 	aux = mstm->mgr.aux;
1437 
1438 	/* Clear any leftover MST state we didn't set ourselves by first
1439 	 * disabling MST if it was already enabled
1440 	 */
1441 	ret = drm_dp_dpcd_writeb(aux, DP_MSTM_CTRL, 0);
1442 	if (ret < 0)
1443 		return ret;
1444 
1445 	/* And start enabling */
1446 	ret = drm_dp_mst_topology_mgr_set_mst(&mstm->mgr, true);
1447 	if (ret)
1448 		return ret;
1449 
1450 	mstm->is_mst = true;
1451 	return 1;
1452 }
1453 
1454 static void
1455 nv50_mstm_fini(struct nouveau_encoder *outp)
1456 {
1457 	struct nv50_mstm *mstm = outp->dp.mstm;
1458 
1459 	if (!mstm)
1460 		return;
1461 
1462 	/* Don't change the MST state of this connector until we've finished
1463 	 * resuming, since we can't safely grab hpd_irq_lock in our resume
1464 	 * path to protect mstm->is_mst without potentially deadlocking
1465 	 */
1466 	mutex_lock(&outp->dp.hpd_irq_lock);
1467 	mstm->suspended = true;
1468 	mutex_unlock(&outp->dp.hpd_irq_lock);
1469 
1470 	if (mstm->is_mst)
1471 		drm_dp_mst_topology_mgr_suspend(&mstm->mgr);
1472 }
1473 
1474 static void
1475 nv50_mstm_init(struct nouveau_encoder *outp, bool runtime)
1476 {
1477 	struct nv50_mstm *mstm = outp->dp.mstm;
1478 	int ret = 0;
1479 
1480 	if (!mstm)
1481 		return;
1482 
1483 	if (mstm->is_mst) {
1484 		ret = drm_dp_mst_topology_mgr_resume(&mstm->mgr, !runtime);
1485 		if (ret == -1)
1486 			nv50_mstm_remove(mstm);
1487 	}
1488 
1489 	mutex_lock(&outp->dp.hpd_irq_lock);
1490 	mstm->suspended = false;
1491 	mutex_unlock(&outp->dp.hpd_irq_lock);
1492 
1493 	if (ret == -1)
1494 		drm_kms_helper_hotplug_event(mstm->mgr.dev);
1495 }
1496 
1497 static void
1498 nv50_mstm_del(struct nv50_mstm **pmstm)
1499 {
1500 	struct nv50_mstm *mstm = *pmstm;
1501 	if (mstm) {
1502 		drm_dp_mst_topology_mgr_destroy(&mstm->mgr);
1503 		kfree(*pmstm);
1504 		*pmstm = NULL;
1505 	}
1506 }
1507 
1508 static int
1509 nv50_mstm_new(struct nouveau_encoder *outp, struct drm_dp_aux *aux, int aux_max,
1510 	      int conn_base_id, struct nv50_mstm **pmstm)
1511 {
1512 	const int max_payloads = hweight8(outp->dcb->heads);
1513 	struct drm_device *dev = outp->base.base.dev;
1514 	struct nv50_mstm *mstm;
1515 	int ret;
1516 
1517 	if (!(mstm = *pmstm = kzalloc(sizeof(*mstm), GFP_KERNEL)))
1518 		return -ENOMEM;
1519 	mstm->outp = outp;
1520 	mstm->mgr.cbs = &nv50_mstm;
1521 
1522 	ret = drm_dp_mst_topology_mgr_init(&mstm->mgr, dev, aux, aux_max,
1523 					   max_payloads, conn_base_id);
1524 	if (ret)
1525 		return ret;
1526 
1527 	return 0;
1528 }
1529 
1530 /******************************************************************************
1531  * SOR
1532  *****************************************************************************/
1533 static void
1534 nv50_sor_update(struct nouveau_encoder *nv_encoder, u8 head,
1535 		struct nv50_head_atom *asyh, u8 proto, u8 depth)
1536 {
1537 	struct nv50_disp *disp = nv50_disp(nv_encoder->base.base.dev);
1538 	struct nv50_core *core = disp->core;
1539 
1540 	if (!asyh) {
1541 		nv_encoder->ctrl &= ~BIT(head);
1542 		if (NVDEF_TEST(nv_encoder->ctrl, NV507D, SOR_SET_CONTROL, OWNER, ==, NONE))
1543 			nv_encoder->ctrl = 0;
1544 	} else {
1545 		nv_encoder->ctrl |= NVVAL(NV507D, SOR_SET_CONTROL, PROTOCOL, proto);
1546 		nv_encoder->ctrl |= BIT(head);
1547 		asyh->or.depth = depth;
1548 	}
1549 
1550 	core->func->sor->ctrl(core, nv_encoder->outp.or.id, nv_encoder->ctrl, asyh);
1551 }
1552 
1553 /* TODO: Should we extend this to PWM-only backlights?
1554  * As well, should we add a DRM helper for waiting for the backlight to acknowledge
1555  * the panel backlight has been shut off? Intel doesn't seem to do this, and uses a
1556  * fixed time delay from the vbios…
1557  */
1558 static void
1559 nv50_sor_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state)
1560 {
1561 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1562 	struct nv50_head *head = nv50_head(nv_encoder->crtc);
1563 #ifdef CONFIG_DRM_NOUVEAU_BACKLIGHT
1564 	struct nouveau_connector *nv_connector = nv50_outp_get_old_connector(state, nv_encoder);
1565 	struct nouveau_drm *drm = nouveau_drm(nv_encoder->base.base.dev);
1566 	struct nouveau_backlight *backlight = nv_connector->backlight;
1567 	struct drm_dp_aux *aux = &nv_connector->aux;
1568 	int ret;
1569 
1570 	if (backlight && backlight->uses_dpcd) {
1571 		ret = drm_edp_backlight_disable(aux, &backlight->edp_info);
1572 		if (ret < 0)
1573 			NV_ERROR(drm, "Failed to disable backlight on [CONNECTOR:%d:%s]: %d\n",
1574 				 nv_connector->base.base.id, nv_connector->base.name, ret);
1575 	}
1576 #endif
1577 
1578 	if (nv_encoder->dcb->type == DCB_OUTPUT_TMDS && nv_encoder->hdmi.enabled) {
1579 		nvif_outp_hdmi(&nv_encoder->outp, head->base.index,
1580 			       false, 0, 0, 0, false, false, false);
1581 		nv_encoder->hdmi.enabled = false;
1582 	}
1583 
1584 	if (nv_encoder->dcb->type == DCB_OUTPUT_DP)
1585 		nouveau_dp_power_down(nv_encoder);
1586 
1587 	if (head->func->display_id)
1588 		head->func->display_id(head, 0);
1589 
1590 	nv_encoder->update(nv_encoder, head->base.index, NULL, 0, 0);
1591 	nv50_audio_disable(encoder, &head->base);
1592 	nv_encoder->crtc = NULL;
1593 }
1594 
1595 static void
1596 nv50_sor_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state)
1597 {
1598 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1599 	struct nouveau_crtc *nv_crtc = nv50_outp_get_new_crtc(state, nv_encoder);
1600 	struct nv50_head_atom *asyh =
1601 		nv50_head_atom(drm_atomic_get_new_crtc_state(state, &nv_crtc->base));
1602 	struct drm_display_mode *mode = &asyh->state.adjusted_mode;
1603 	struct nv50_disp *disp = nv50_disp(encoder->dev);
1604 	struct nv50_head *head = nv50_head(&nv_crtc->base);
1605 	struct nvif_outp *outp = &nv_encoder->outp;
1606 	struct drm_device *dev = encoder->dev;
1607 	struct nouveau_drm *drm = nouveau_drm(dev);
1608 	struct nouveau_connector *nv_connector;
1609 #ifdef CONFIG_DRM_NOUVEAU_BACKLIGHT
1610 	struct nouveau_backlight *backlight;
1611 #endif
1612 	struct nvbios *bios = &drm->vbios;
1613 	bool lvds_dual = false, lvds_8bpc = false, hda = false;
1614 	u8 proto = NV507D_SOR_SET_CONTROL_PROTOCOL_CUSTOM;
1615 	u8 depth = NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_DEFAULT;
1616 
1617 	nv_connector = nv50_outp_get_new_connector(state, nv_encoder);
1618 	nv_encoder->crtc = &nv_crtc->base;
1619 
1620 	if ((disp->disp->object.oclass == GT214_DISP ||
1621 	     disp->disp->object.oclass >= GF110_DISP) &&
1622 	    nv_encoder->dcb->type != DCB_OUTPUT_LVDS &&
1623 	    drm_detect_monitor_audio(nv_connector->edid))
1624 		hda = true;
1625 
1626 	if (!nvif_outp_acquired(outp))
1627 		nvif_outp_acquire_sor(outp, hda);
1628 
1629 	switch (nv_encoder->dcb->type) {
1630 	case DCB_OUTPUT_TMDS:
1631 		if (disp->disp->object.oclass != NV50_DISP &&
1632 		    drm_detect_hdmi_monitor(nv_connector->edid))
1633 			nv50_hdmi_enable(encoder, nv_crtc, nv_connector, state, mode, hda);
1634 
1635 		if (nv_encoder->outp.or.link & 1) {
1636 			proto = NV507D_SOR_SET_CONTROL_PROTOCOL_SINGLE_TMDS_A;
1637 			/* Only enable dual-link if:
1638 			 *  - Need to (i.e. rate > 165MHz)
1639 			 *  - DCB says we can
1640 			 *  - Not an HDMI monitor, since there's no dual-link
1641 			 *    on HDMI.
1642 			 */
1643 			if (mode->clock >= 165000 &&
1644 			    nv_encoder->dcb->duallink_possible &&
1645 			    !drm_detect_hdmi_monitor(nv_connector->edid))
1646 				proto = NV507D_SOR_SET_CONTROL_PROTOCOL_DUAL_TMDS;
1647 		} else {
1648 			proto = NV507D_SOR_SET_CONTROL_PROTOCOL_SINGLE_TMDS_B;
1649 		}
1650 		break;
1651 	case DCB_OUTPUT_LVDS:
1652 		proto = NV507D_SOR_SET_CONTROL_PROTOCOL_LVDS_CUSTOM;
1653 
1654 		if (bios->fp_no_ddc) {
1655 			lvds_dual = bios->fp.dual_link;
1656 			lvds_8bpc = bios->fp.if_is_24bit;
1657 		} else {
1658 			if (nv_connector->type == DCB_CONNECTOR_LVDS_SPWG) {
1659 				if (((u8 *)nv_connector->edid)[121] == 2)
1660 					lvds_dual = true;
1661 			} else
1662 			if (mode->clock >= bios->fp.duallink_transition_clk) {
1663 				lvds_dual = true;
1664 			}
1665 
1666 			if (lvds_dual) {
1667 				if (bios->fp.strapless_is_24bit & 2)
1668 					lvds_8bpc = true;
1669 			} else {
1670 				if (bios->fp.strapless_is_24bit & 1)
1671 					lvds_8bpc = true;
1672 			}
1673 
1674 			if (asyh->or.bpc == 8)
1675 				lvds_8bpc = true;
1676 		}
1677 
1678 		nvif_outp_lvds(&nv_encoder->outp, lvds_dual, lvds_8bpc);
1679 		break;
1680 	case DCB_OUTPUT_DP:
1681 		nouveau_dp_train(nv_encoder, false, mode->clock, asyh->or.bpc);
1682 		depth = nv50_dp_bpc_to_depth(asyh->or.bpc);
1683 
1684 		if (nv_encoder->outp.or.link & 1)
1685 			proto = NV887D_SOR_SET_CONTROL_PROTOCOL_DP_A;
1686 		else
1687 			proto = NV887D_SOR_SET_CONTROL_PROTOCOL_DP_B;
1688 
1689 #ifdef CONFIG_DRM_NOUVEAU_BACKLIGHT
1690 		backlight = nv_connector->backlight;
1691 		if (backlight && backlight->uses_dpcd)
1692 			drm_edp_backlight_enable(&nv_connector->aux, &backlight->edp_info,
1693 						 (u16)backlight->dev->props.brightness);
1694 #endif
1695 
1696 		break;
1697 	default:
1698 		BUG();
1699 		break;
1700 	}
1701 
1702 	if (head->func->display_id)
1703 		head->func->display_id(head, BIT(nv_encoder->outp.id));
1704 
1705 	nv_encoder->update(nv_encoder, nv_crtc->index, asyh, proto, depth);
1706 }
1707 
1708 static const struct drm_encoder_helper_funcs
1709 nv50_sor_help = {
1710 	.atomic_check = nv50_outp_atomic_check,
1711 	.atomic_enable = nv50_sor_atomic_enable,
1712 	.atomic_disable = nv50_sor_atomic_disable,
1713 };
1714 
1715 static void
1716 nv50_sor_destroy(struct drm_encoder *encoder)
1717 {
1718 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1719 
1720 	nv50_mstm_del(&nv_encoder->dp.mstm);
1721 	drm_encoder_cleanup(encoder);
1722 
1723 	if (nv_encoder->dcb->type == DCB_OUTPUT_DP)
1724 		mutex_destroy(&nv_encoder->dp.hpd_irq_lock);
1725 
1726 	nvif_outp_dtor(&nv_encoder->outp);
1727 	kfree(encoder);
1728 }
1729 
1730 static const struct drm_encoder_funcs
1731 nv50_sor_func = {
1732 	.destroy = nv50_sor_destroy,
1733 };
1734 
1735 static int
1736 nv50_sor_create(struct nouveau_encoder *nv_encoder)
1737 {
1738 	struct drm_connector *connector = &nv_encoder->conn->base;
1739 	struct nouveau_connector *nv_connector = nouveau_connector(connector);
1740 	struct nouveau_drm *drm = nouveau_drm(connector->dev);
1741 	struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device);
1742 	struct drm_encoder *encoder;
1743 	struct dcb_output *dcbe = nv_encoder->dcb;
1744 	struct nv50_disp *disp = nv50_disp(connector->dev);
1745 	int type, ret;
1746 
1747 	switch (dcbe->type) {
1748 	case DCB_OUTPUT_LVDS: type = DRM_MODE_ENCODER_LVDS; break;
1749 	case DCB_OUTPUT_TMDS:
1750 	case DCB_OUTPUT_DP:
1751 	default:
1752 		type = DRM_MODE_ENCODER_TMDS;
1753 		break;
1754 	}
1755 
1756 	nv_encoder->update = nv50_sor_update;
1757 
1758 	encoder = to_drm_encoder(nv_encoder);
1759 	drm_encoder_init(connector->dev, encoder, &nv50_sor_func, type,
1760 			 "sor-%04x-%04x", dcbe->hasht, dcbe->hashm);
1761 	drm_encoder_helper_add(encoder, &nv50_sor_help);
1762 
1763 	drm_connector_attach_encoder(connector, encoder);
1764 
1765 	disp->core->func->sor->get_caps(disp, nv_encoder, ffs(dcbe->or) - 1);
1766 	nv50_outp_dump_caps(drm, nv_encoder);
1767 
1768 	if (dcbe->type == DCB_OUTPUT_DP) {
1769 		mutex_init(&nv_encoder->dp.hpd_irq_lock);
1770 
1771 		if (disp->disp->object.oclass < GF110_DISP) {
1772 			/* HW has no support for address-only
1773 			 * transactions, so we're required to
1774 			 * use custom I2C-over-AUX code.
1775 			 */
1776 			struct nvkm_i2c_aux *aux;
1777 
1778 			aux = nvkm_i2c_aux_find(i2c, dcbe->i2c_index);
1779 			if (!aux)
1780 				return -EINVAL;
1781 
1782 			nv_encoder->i2c = &aux->i2c;
1783 		} else {
1784 			nv_encoder->i2c = &nv_connector->aux.ddc;
1785 		}
1786 
1787 		if (nv_connector->type != DCB_CONNECTOR_eDP && nv_encoder->outp.info.dp.mst) {
1788 			ret = nv50_mstm_new(nv_encoder, &nv_connector->aux,
1789 					    16, nv_connector->base.base.id,
1790 					    &nv_encoder->dp.mstm);
1791 			if (ret)
1792 				return ret;
1793 		}
1794 	} else
1795 	if (nv_encoder->outp.info.ddc != NVIF_OUTP_DDC_INVALID) {
1796 		struct nvkm_i2c_bus *bus =
1797 			nvkm_i2c_bus_find(i2c, dcbe->i2c_index);
1798 		if (bus)
1799 			nv_encoder->i2c = &bus->i2c;
1800 	}
1801 
1802 	return 0;
1803 }
1804 
1805 /******************************************************************************
1806  * PIOR
1807  *****************************************************************************/
1808 static int
1809 nv50_pior_atomic_check(struct drm_encoder *encoder,
1810 		       struct drm_crtc_state *crtc_state,
1811 		       struct drm_connector_state *conn_state)
1812 {
1813 	int ret = nv50_outp_atomic_check(encoder, crtc_state, conn_state);
1814 	if (ret)
1815 		return ret;
1816 	crtc_state->adjusted_mode.clock *= 2;
1817 	return 0;
1818 }
1819 
1820 static void
1821 nv50_pior_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state)
1822 {
1823 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1824 	struct nv50_core *core = nv50_disp(encoder->dev)->core;
1825 	const u32 ctrl = NVDEF(NV507D, PIOR_SET_CONTROL, OWNER, NONE);
1826 
1827 	core->func->pior->ctrl(core, nv_encoder->outp.or.id, ctrl, NULL);
1828 	nv_encoder->crtc = NULL;
1829 }
1830 
1831 static void
1832 nv50_pior_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state)
1833 {
1834 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1835 	struct nouveau_crtc *nv_crtc = nv50_outp_get_new_crtc(state, nv_encoder);
1836 	struct nv50_head_atom *asyh =
1837 		nv50_head_atom(drm_atomic_get_new_crtc_state(state, &nv_crtc->base));
1838 	struct nv50_core *core = nv50_disp(encoder->dev)->core;
1839 	u32 ctrl = 0;
1840 
1841 	switch (nv_crtc->index) {
1842 	case 0: ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, OWNER, HEAD0); break;
1843 	case 1: ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, OWNER, HEAD1); break;
1844 	default:
1845 		WARN_ON(1);
1846 		break;
1847 	}
1848 
1849 	switch (asyh->or.bpc) {
1850 	case 10: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_BPP_30_444; break;
1851 	case  8: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_BPP_24_444; break;
1852 	case  6: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_BPP_18_444; break;
1853 	default: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_DEFAULT; break;
1854 	}
1855 
1856 	if (!nvif_outp_acquired(&nv_encoder->outp))
1857 		nvif_outp_acquire_pior(&nv_encoder->outp);
1858 
1859 	switch (nv_encoder->dcb->type) {
1860 	case DCB_OUTPUT_TMDS:
1861 		ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, PROTOCOL, EXT_TMDS_ENC);
1862 		break;
1863 	case DCB_OUTPUT_DP:
1864 		ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, PROTOCOL, EXT_TMDS_ENC);
1865 		nouveau_dp_train(nv_encoder, false, asyh->state.adjusted_mode.clock, 6);
1866 		break;
1867 	default:
1868 		BUG();
1869 		break;
1870 	}
1871 
1872 	core->func->pior->ctrl(core, nv_encoder->outp.or.id, ctrl, asyh);
1873 	nv_encoder->crtc = &nv_crtc->base;
1874 }
1875 
1876 static const struct drm_encoder_helper_funcs
1877 nv50_pior_help = {
1878 	.atomic_check = nv50_pior_atomic_check,
1879 	.atomic_enable = nv50_pior_atomic_enable,
1880 	.atomic_disable = nv50_pior_atomic_disable,
1881 };
1882 
1883 static void
1884 nv50_pior_destroy(struct drm_encoder *encoder)
1885 {
1886 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1887 
1888 	nvif_outp_dtor(&nv_encoder->outp);
1889 
1890 	drm_encoder_cleanup(encoder);
1891 
1892 	mutex_destroy(&nv_encoder->dp.hpd_irq_lock);
1893 	kfree(encoder);
1894 }
1895 
1896 static const struct drm_encoder_funcs
1897 nv50_pior_func = {
1898 	.destroy = nv50_pior_destroy,
1899 };
1900 
1901 static int
1902 nv50_pior_create(struct nouveau_encoder *nv_encoder)
1903 {
1904 	struct drm_connector *connector = &nv_encoder->conn->base;
1905 	struct drm_device *dev = connector->dev;
1906 	struct nouveau_drm *drm = nouveau_drm(dev);
1907 	struct nv50_disp *disp = nv50_disp(dev);
1908 	struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device);
1909 	struct nvkm_i2c_bus *bus = NULL;
1910 	struct nvkm_i2c_aux *aux = NULL;
1911 	struct i2c_adapter *ddc;
1912 	struct drm_encoder *encoder;
1913 	struct dcb_output *dcbe = nv_encoder->dcb;
1914 	int type;
1915 
1916 	switch (dcbe->type) {
1917 	case DCB_OUTPUT_TMDS:
1918 		bus  = nvkm_i2c_bus_find(i2c, nv_encoder->outp.info.ddc);
1919 		ddc  = bus ? &bus->i2c : NULL;
1920 		type = DRM_MODE_ENCODER_TMDS;
1921 		break;
1922 	case DCB_OUTPUT_DP:
1923 		aux  = nvkm_i2c_aux_find(i2c, nv_encoder->outp.info.dp.aux);
1924 		ddc  = aux ? &aux->i2c : NULL;
1925 		type = DRM_MODE_ENCODER_TMDS;
1926 		break;
1927 	default:
1928 		return -ENODEV;
1929 	}
1930 
1931 	nv_encoder->i2c = ddc;
1932 
1933 	mutex_init(&nv_encoder->dp.hpd_irq_lock);
1934 
1935 	encoder = to_drm_encoder(nv_encoder);
1936 	drm_encoder_init(connector->dev, encoder, &nv50_pior_func, type,
1937 			 "pior-%04x-%04x", dcbe->hasht, dcbe->hashm);
1938 	drm_encoder_helper_add(encoder, &nv50_pior_help);
1939 
1940 	drm_connector_attach_encoder(connector, encoder);
1941 
1942 	disp->core->func->pior->get_caps(disp, nv_encoder, ffs(dcbe->or) - 1);
1943 	nv50_outp_dump_caps(drm, nv_encoder);
1944 
1945 	return 0;
1946 }
1947 
1948 /******************************************************************************
1949  * Atomic
1950  *****************************************************************************/
1951 
1952 static void
1953 nv50_disp_atomic_commit_core(struct drm_atomic_state *state, u32 *interlock)
1954 {
1955 	struct drm_dp_mst_topology_mgr *mgr;
1956 	struct drm_dp_mst_topology_state *mst_state;
1957 	struct nouveau_drm *drm = nouveau_drm(state->dev);
1958 	struct nv50_disp *disp = nv50_disp(drm->dev);
1959 	struct nv50_atom *atom = nv50_atom(state);
1960 	struct nv50_core *core = disp->core;
1961 	struct nv50_outp_atom *outp;
1962 	struct nv50_mstm *mstm;
1963 	int i;
1964 
1965 	NV_ATOMIC(drm, "commit core %08x\n", interlock[NV50_DISP_INTERLOCK_BASE]);
1966 
1967 	for_each_new_mst_mgr_in_state(state, mgr, mst_state, i) {
1968 		mstm = nv50_mstm(mgr);
1969 		if (mstm->modified)
1970 			nv50_mstm_prepare(state, mst_state, mstm);
1971 	}
1972 
1973 	core->func->ntfy_init(disp->sync, NV50_DISP_CORE_NTFY);
1974 	core->func->update(core, interlock, true);
1975 	if (core->func->ntfy_wait_done(disp->sync, NV50_DISP_CORE_NTFY,
1976 				       disp->core->chan.base.device))
1977 		NV_ERROR(drm, "core notifier timeout\n");
1978 
1979 	for_each_new_mst_mgr_in_state(state, mgr, mst_state, i) {
1980 		mstm = nv50_mstm(mgr);
1981 		if (mstm->modified)
1982 			nv50_mstm_cleanup(state, mst_state, mstm);
1983 	}
1984 
1985 	list_for_each_entry(outp, &atom->outp, head) {
1986 		if (outp->encoder->encoder_type != DRM_MODE_ENCODER_DPMST) {
1987 			struct nouveau_encoder *nv_encoder = nouveau_encoder(outp->encoder);
1988 
1989 			if (outp->enabled) {
1990 				nv50_audio_enable(outp->encoder, nouveau_crtc(nv_encoder->crtc),
1991 						  nv_encoder->conn, NULL, NULL);
1992 				outp->enabled = outp->disabled = false;
1993 			} else {
1994 				if (outp->disabled) {
1995 					nvif_outp_release(&nv_encoder->outp);
1996 					outp->disabled = false;
1997 				}
1998 			}
1999 		}
2000 	}
2001 }
2002 
2003 static void
2004 nv50_disp_atomic_commit_wndw(struct drm_atomic_state *state, u32 *interlock)
2005 {
2006 	struct drm_plane_state *new_plane_state;
2007 	struct drm_plane *plane;
2008 	int i;
2009 
2010 	for_each_new_plane_in_state(state, plane, new_plane_state, i) {
2011 		struct nv50_wndw *wndw = nv50_wndw(plane);
2012 		if (interlock[wndw->interlock.type] & wndw->interlock.data) {
2013 			if (wndw->func->update)
2014 				wndw->func->update(wndw, interlock);
2015 		}
2016 	}
2017 }
2018 
2019 static void
2020 nv50_disp_atomic_commit_tail(struct drm_atomic_state *state)
2021 {
2022 	struct drm_device *dev = state->dev;
2023 	struct drm_crtc_state *new_crtc_state, *old_crtc_state;
2024 	struct drm_crtc *crtc;
2025 	struct drm_plane_state *new_plane_state;
2026 	struct drm_plane *plane;
2027 	struct nouveau_drm *drm = nouveau_drm(dev);
2028 	struct nv50_disp *disp = nv50_disp(dev);
2029 	struct nv50_atom *atom = nv50_atom(state);
2030 	struct nv50_core *core = disp->core;
2031 	struct nv50_outp_atom *outp, *outt;
2032 	u32 interlock[NV50_DISP_INTERLOCK__SIZE] = {};
2033 	int i;
2034 	bool flushed = false;
2035 
2036 	NV_ATOMIC(drm, "commit %d %d\n", atom->lock_core, atom->flush_disable);
2037 	nv50_crc_atomic_stop_reporting(state);
2038 	drm_atomic_helper_wait_for_fences(dev, state, false);
2039 	drm_atomic_helper_wait_for_dependencies(state);
2040 	drm_dp_mst_atomic_wait_for_dependencies(state);
2041 	drm_atomic_helper_update_legacy_modeset_state(dev, state);
2042 	drm_atomic_helper_calc_timestamping_constants(state);
2043 
2044 	if (atom->lock_core)
2045 		mutex_lock(&disp->mutex);
2046 
2047 	/* Disable head(s). */
2048 	for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
2049 		struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state);
2050 		struct nv50_head *head = nv50_head(crtc);
2051 
2052 		NV_ATOMIC(drm, "%s: clr %04x (set %04x)\n", crtc->name,
2053 			  asyh->clr.mask, asyh->set.mask);
2054 
2055 		if (old_crtc_state->active && !new_crtc_state->active) {
2056 			pm_runtime_put_noidle(dev->dev);
2057 			drm_crtc_vblank_off(crtc);
2058 		}
2059 
2060 		if (asyh->clr.mask) {
2061 			nv50_head_flush_clr(head, asyh, atom->flush_disable);
2062 			interlock[NV50_DISP_INTERLOCK_CORE] |= 1;
2063 		}
2064 	}
2065 
2066 	/* Disable plane(s). */
2067 	for_each_new_plane_in_state(state, plane, new_plane_state, i) {
2068 		struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state);
2069 		struct nv50_wndw *wndw = nv50_wndw(plane);
2070 
2071 		NV_ATOMIC(drm, "%s: clr %02x (set %02x)\n", plane->name,
2072 			  asyw->clr.mask, asyw->set.mask);
2073 		if (!asyw->clr.mask)
2074 			continue;
2075 
2076 		nv50_wndw_flush_clr(wndw, interlock, atom->flush_disable, asyw);
2077 	}
2078 
2079 	/* Disable output path(s). */
2080 	list_for_each_entry(outp, &atom->outp, head) {
2081 		const struct drm_encoder_helper_funcs *help;
2082 		struct drm_encoder *encoder;
2083 
2084 		encoder = outp->encoder;
2085 		help = encoder->helper_private;
2086 
2087 		NV_ATOMIC(drm, "%s: clr %02x (set %02x)\n", encoder->name,
2088 			  outp->clr.mask, outp->set.mask);
2089 
2090 		if (outp->clr.mask) {
2091 			help->atomic_disable(encoder, state);
2092 			outp->disabled = true;
2093 			interlock[NV50_DISP_INTERLOCK_CORE] |= 1;
2094 		}
2095 	}
2096 
2097 	/* Flush disable. */
2098 	if (interlock[NV50_DISP_INTERLOCK_CORE]) {
2099 		if (atom->flush_disable) {
2100 			nv50_disp_atomic_commit_wndw(state, interlock);
2101 			nv50_disp_atomic_commit_core(state, interlock);
2102 			memset(interlock, 0x00, sizeof(interlock));
2103 
2104 			flushed = true;
2105 		}
2106 	}
2107 
2108 	if (flushed)
2109 		nv50_crc_atomic_release_notifier_contexts(state);
2110 	nv50_crc_atomic_init_notifier_contexts(state);
2111 
2112 	/* Update output path(s). */
2113 	list_for_each_entry(outp, &atom->outp, head) {
2114 		const struct drm_encoder_helper_funcs *help;
2115 		struct drm_encoder *encoder;
2116 
2117 		encoder = outp->encoder;
2118 		help = encoder->helper_private;
2119 
2120 		NV_ATOMIC(drm, "%s: set %02x (clr %02x)\n", encoder->name,
2121 			  outp->set.mask, outp->clr.mask);
2122 
2123 		if (outp->set.mask) {
2124 			help->atomic_enable(encoder, state);
2125 			outp->enabled = true;
2126 			interlock[NV50_DISP_INTERLOCK_CORE] = 1;
2127 		}
2128 	}
2129 
2130 	/* Update head(s). */
2131 	for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
2132 		struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state);
2133 		struct nv50_head *head = nv50_head(crtc);
2134 
2135 		NV_ATOMIC(drm, "%s: set %04x (clr %04x)\n", crtc->name,
2136 			  asyh->set.mask, asyh->clr.mask);
2137 
2138 		if (asyh->set.mask) {
2139 			nv50_head_flush_set(head, asyh);
2140 			interlock[NV50_DISP_INTERLOCK_CORE] = 1;
2141 		}
2142 
2143 		if (new_crtc_state->active) {
2144 			if (!old_crtc_state->active) {
2145 				drm_crtc_vblank_on(crtc);
2146 				pm_runtime_get_noresume(dev->dev);
2147 			}
2148 			if (new_crtc_state->event)
2149 				drm_crtc_vblank_get(crtc);
2150 		}
2151 	}
2152 
2153 	/* Update window->head assignment.
2154 	 *
2155 	 * This has to happen in an update that's not interlocked with
2156 	 * any window channels to avoid hitting HW error checks.
2157 	 *
2158 	 *TODO: Proper handling of window ownership (Turing apparently
2159 	 *      supports non-fixed mappings).
2160 	 */
2161 	if (core->assign_windows) {
2162 		core->func->wndw.owner(core);
2163 		nv50_disp_atomic_commit_core(state, interlock);
2164 		core->assign_windows = false;
2165 		interlock[NV50_DISP_INTERLOCK_CORE] = 0;
2166 	}
2167 
2168 	/* Finish updating head(s)...
2169 	 *
2170 	 * NVD is rather picky about both where window assignments can change,
2171 	 * *and* about certain core and window channel states matching.
2172 	 *
2173 	 * The EFI GOP driver on newer GPUs configures window channels with a
2174 	 * different output format to what we do, and the core channel update
2175 	 * in the assign_windows case above would result in a state mismatch.
2176 	 *
2177 	 * Delay some of the head update until after that point to workaround
2178 	 * the issue.  This only affects the initial modeset.
2179 	 *
2180 	 * TODO: handle this better when adding flexible window mapping
2181 	 */
2182 	for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
2183 		struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state);
2184 		struct nv50_head *head = nv50_head(crtc);
2185 
2186 		NV_ATOMIC(drm, "%s: set %04x (clr %04x)\n", crtc->name,
2187 			  asyh->set.mask, asyh->clr.mask);
2188 
2189 		if (asyh->set.mask) {
2190 			nv50_head_flush_set_wndw(head, asyh);
2191 			interlock[NV50_DISP_INTERLOCK_CORE] = 1;
2192 		}
2193 	}
2194 
2195 	/* Update plane(s). */
2196 	for_each_new_plane_in_state(state, plane, new_plane_state, i) {
2197 		struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state);
2198 		struct nv50_wndw *wndw = nv50_wndw(plane);
2199 
2200 		NV_ATOMIC(drm, "%s: set %02x (clr %02x)\n", plane->name,
2201 			  asyw->set.mask, asyw->clr.mask);
2202 		if ( !asyw->set.mask &&
2203 		    (!asyw->clr.mask || atom->flush_disable))
2204 			continue;
2205 
2206 		nv50_wndw_flush_set(wndw, interlock, asyw);
2207 	}
2208 
2209 	/* Flush update. */
2210 	nv50_disp_atomic_commit_wndw(state, interlock);
2211 
2212 	if (interlock[NV50_DISP_INTERLOCK_CORE]) {
2213 		if (interlock[NV50_DISP_INTERLOCK_BASE] ||
2214 		    interlock[NV50_DISP_INTERLOCK_OVLY] ||
2215 		    interlock[NV50_DISP_INTERLOCK_WNDW] ||
2216 		    !atom->state.legacy_cursor_update)
2217 			nv50_disp_atomic_commit_core(state, interlock);
2218 		else
2219 			disp->core->func->update(disp->core, interlock, false);
2220 	}
2221 
2222 	if (atom->lock_core)
2223 		mutex_unlock(&disp->mutex);
2224 
2225 	list_for_each_entry_safe(outp, outt, &atom->outp, head) {
2226 		list_del(&outp->head);
2227 		kfree(outp);
2228 	}
2229 
2230 	/* Wait for HW to signal completion. */
2231 	for_each_new_plane_in_state(state, plane, new_plane_state, i) {
2232 		struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state);
2233 		struct nv50_wndw *wndw = nv50_wndw(plane);
2234 		int ret = nv50_wndw_wait_armed(wndw, asyw);
2235 		if (ret)
2236 			NV_ERROR(drm, "%s: timeout\n", plane->name);
2237 	}
2238 
2239 	for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
2240 		if (new_crtc_state->event) {
2241 			unsigned long flags;
2242 			/* Get correct count/ts if racing with vblank irq */
2243 			if (new_crtc_state->active)
2244 				drm_crtc_accurate_vblank_count(crtc);
2245 			spin_lock_irqsave(&crtc->dev->event_lock, flags);
2246 			drm_crtc_send_vblank_event(crtc, new_crtc_state->event);
2247 			spin_unlock_irqrestore(&crtc->dev->event_lock, flags);
2248 
2249 			new_crtc_state->event = NULL;
2250 			if (new_crtc_state->active)
2251 				drm_crtc_vblank_put(crtc);
2252 		}
2253 	}
2254 
2255 	nv50_crc_atomic_start_reporting(state);
2256 	if (!flushed)
2257 		nv50_crc_atomic_release_notifier_contexts(state);
2258 
2259 	drm_atomic_helper_commit_hw_done(state);
2260 	drm_atomic_helper_cleanup_planes(dev, state);
2261 	drm_atomic_helper_commit_cleanup_done(state);
2262 	drm_atomic_state_put(state);
2263 
2264 	/* Drop the RPM ref we got from nv50_disp_atomic_commit() */
2265 	pm_runtime_mark_last_busy(dev->dev);
2266 	pm_runtime_put_autosuspend(dev->dev);
2267 }
2268 
2269 static void
2270 nv50_disp_atomic_commit_work(struct work_struct *work)
2271 {
2272 	struct drm_atomic_state *state =
2273 		container_of(work, typeof(*state), commit_work);
2274 	nv50_disp_atomic_commit_tail(state);
2275 }
2276 
2277 static int
2278 nv50_disp_atomic_commit(struct drm_device *dev,
2279 			struct drm_atomic_state *state, bool nonblock)
2280 {
2281 	struct drm_plane_state *new_plane_state;
2282 	struct drm_plane *plane;
2283 	int ret, i;
2284 
2285 	ret = pm_runtime_get_sync(dev->dev);
2286 	if (ret < 0 && ret != -EACCES) {
2287 		pm_runtime_put_autosuspend(dev->dev);
2288 		return ret;
2289 	}
2290 
2291 	ret = drm_atomic_helper_setup_commit(state, nonblock);
2292 	if (ret)
2293 		goto done;
2294 
2295 	INIT_WORK(&state->commit_work, nv50_disp_atomic_commit_work);
2296 
2297 	ret = drm_atomic_helper_prepare_planes(dev, state);
2298 	if (ret)
2299 		goto done;
2300 
2301 	if (!nonblock) {
2302 		ret = drm_atomic_helper_wait_for_fences(dev, state, true);
2303 		if (ret)
2304 			goto err_cleanup;
2305 	}
2306 
2307 	ret = drm_atomic_helper_swap_state(state, true);
2308 	if (ret)
2309 		goto err_cleanup;
2310 
2311 	for_each_new_plane_in_state(state, plane, new_plane_state, i) {
2312 		struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state);
2313 		struct nv50_wndw *wndw = nv50_wndw(plane);
2314 
2315 		if (asyw->set.image)
2316 			nv50_wndw_ntfy_enable(wndw, asyw);
2317 	}
2318 
2319 	drm_atomic_state_get(state);
2320 
2321 	/*
2322 	 * Grab another RPM ref for the commit tail, which will release the
2323 	 * ref when it's finished
2324 	 */
2325 	pm_runtime_get_noresume(dev->dev);
2326 
2327 	if (nonblock)
2328 		queue_work(system_unbound_wq, &state->commit_work);
2329 	else
2330 		nv50_disp_atomic_commit_tail(state);
2331 
2332 err_cleanup:
2333 	if (ret)
2334 		drm_atomic_helper_cleanup_planes(dev, state);
2335 done:
2336 	pm_runtime_put_autosuspend(dev->dev);
2337 	return ret;
2338 }
2339 
2340 static struct nv50_outp_atom *
2341 nv50_disp_outp_atomic_add(struct nv50_atom *atom, struct drm_encoder *encoder)
2342 {
2343 	struct nv50_outp_atom *outp;
2344 
2345 	list_for_each_entry(outp, &atom->outp, head) {
2346 		if (outp->encoder == encoder)
2347 			return outp;
2348 	}
2349 
2350 	outp = kzalloc(sizeof(*outp), GFP_KERNEL);
2351 	if (!outp)
2352 		return ERR_PTR(-ENOMEM);
2353 
2354 	list_add(&outp->head, &atom->outp);
2355 	outp->encoder = encoder;
2356 	return outp;
2357 }
2358 
2359 static int
2360 nv50_disp_outp_atomic_check_clr(struct nv50_atom *atom,
2361 				struct drm_connector_state *old_connector_state)
2362 {
2363 	struct drm_encoder *encoder = old_connector_state->best_encoder;
2364 	struct drm_crtc_state *old_crtc_state, *new_crtc_state;
2365 	struct drm_crtc *crtc;
2366 	struct nv50_outp_atom *outp;
2367 
2368 	if (!(crtc = old_connector_state->crtc))
2369 		return 0;
2370 
2371 	old_crtc_state = drm_atomic_get_old_crtc_state(&atom->state, crtc);
2372 	new_crtc_state = drm_atomic_get_new_crtc_state(&atom->state, crtc);
2373 	if (old_crtc_state->active && drm_atomic_crtc_needs_modeset(new_crtc_state)) {
2374 		outp = nv50_disp_outp_atomic_add(atom, encoder);
2375 		if (IS_ERR(outp))
2376 			return PTR_ERR(outp);
2377 
2378 		if (outp->encoder->encoder_type == DRM_MODE_ENCODER_DPMST ||
2379 		    nouveau_encoder(outp->encoder)->dcb->type == DCB_OUTPUT_DP)
2380 			atom->flush_disable = true;
2381 		outp->clr.ctrl = true;
2382 		atom->lock_core = true;
2383 	}
2384 
2385 	return 0;
2386 }
2387 
2388 static int
2389 nv50_disp_outp_atomic_check_set(struct nv50_atom *atom,
2390 				struct drm_connector_state *connector_state)
2391 {
2392 	struct drm_encoder *encoder = connector_state->best_encoder;
2393 	struct drm_crtc_state *new_crtc_state;
2394 	struct drm_crtc *crtc;
2395 	struct nv50_outp_atom *outp;
2396 
2397 	if (!(crtc = connector_state->crtc))
2398 		return 0;
2399 
2400 	new_crtc_state = drm_atomic_get_new_crtc_state(&atom->state, crtc);
2401 	if (new_crtc_state->active && drm_atomic_crtc_needs_modeset(new_crtc_state)) {
2402 		outp = nv50_disp_outp_atomic_add(atom, encoder);
2403 		if (IS_ERR(outp))
2404 			return PTR_ERR(outp);
2405 
2406 		outp->set.ctrl = true;
2407 		atom->lock_core = true;
2408 	}
2409 
2410 	return 0;
2411 }
2412 
2413 static int
2414 nv50_disp_atomic_check(struct drm_device *dev, struct drm_atomic_state *state)
2415 {
2416 	struct nv50_atom *atom = nv50_atom(state);
2417 	struct nv50_core *core = nv50_disp(dev)->core;
2418 	struct drm_connector_state *old_connector_state, *new_connector_state;
2419 	struct drm_connector *connector;
2420 	struct drm_crtc_state *new_crtc_state;
2421 	struct drm_crtc *crtc;
2422 	struct nv50_head *head;
2423 	struct nv50_head_atom *asyh;
2424 	int ret, i;
2425 
2426 	if (core->assign_windows && core->func->head->static_wndw_map) {
2427 		drm_for_each_crtc(crtc, dev) {
2428 			new_crtc_state = drm_atomic_get_crtc_state(state,
2429 								   crtc);
2430 			if (IS_ERR(new_crtc_state))
2431 				return PTR_ERR(new_crtc_state);
2432 
2433 			head = nv50_head(crtc);
2434 			asyh = nv50_head_atom(new_crtc_state);
2435 			core->func->head->static_wndw_map(head, asyh);
2436 		}
2437 	}
2438 
2439 	/* We need to handle colour management on a per-plane basis. */
2440 	for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
2441 		if (new_crtc_state->color_mgmt_changed) {
2442 			ret = drm_atomic_add_affected_planes(state, crtc);
2443 			if (ret)
2444 				return ret;
2445 		}
2446 	}
2447 
2448 	ret = drm_atomic_helper_check(dev, state);
2449 	if (ret)
2450 		return ret;
2451 
2452 	for_each_oldnew_connector_in_state(state, connector, old_connector_state, new_connector_state, i) {
2453 		ret = nv50_disp_outp_atomic_check_clr(atom, old_connector_state);
2454 		if (ret)
2455 			return ret;
2456 
2457 		ret = nv50_disp_outp_atomic_check_set(atom, new_connector_state);
2458 		if (ret)
2459 			return ret;
2460 	}
2461 
2462 	ret = drm_dp_mst_atomic_check(state);
2463 	if (ret)
2464 		return ret;
2465 
2466 	nv50_crc_atomic_check_outp(atom);
2467 
2468 	return 0;
2469 }
2470 
2471 static void
2472 nv50_disp_atomic_state_clear(struct drm_atomic_state *state)
2473 {
2474 	struct nv50_atom *atom = nv50_atom(state);
2475 	struct nv50_outp_atom *outp, *outt;
2476 
2477 	list_for_each_entry_safe(outp, outt, &atom->outp, head) {
2478 		list_del(&outp->head);
2479 		kfree(outp);
2480 	}
2481 
2482 	drm_atomic_state_default_clear(state);
2483 }
2484 
2485 static void
2486 nv50_disp_atomic_state_free(struct drm_atomic_state *state)
2487 {
2488 	struct nv50_atom *atom = nv50_atom(state);
2489 	drm_atomic_state_default_release(&atom->state);
2490 	kfree(atom);
2491 }
2492 
2493 static struct drm_atomic_state *
2494 nv50_disp_atomic_state_alloc(struct drm_device *dev)
2495 {
2496 	struct nv50_atom *atom;
2497 	if (!(atom = kzalloc(sizeof(*atom), GFP_KERNEL)) ||
2498 	    drm_atomic_state_init(dev, &atom->state) < 0) {
2499 		kfree(atom);
2500 		return NULL;
2501 	}
2502 	INIT_LIST_HEAD(&atom->outp);
2503 	return &atom->state;
2504 }
2505 
2506 static const struct drm_mode_config_funcs
2507 nv50_disp_func = {
2508 	.fb_create = nouveau_user_framebuffer_create,
2509 	.output_poll_changed = drm_fb_helper_output_poll_changed,
2510 	.atomic_check = nv50_disp_atomic_check,
2511 	.atomic_commit = nv50_disp_atomic_commit,
2512 	.atomic_state_alloc = nv50_disp_atomic_state_alloc,
2513 	.atomic_state_clear = nv50_disp_atomic_state_clear,
2514 	.atomic_state_free = nv50_disp_atomic_state_free,
2515 };
2516 
2517 static const struct drm_mode_config_helper_funcs
2518 nv50_disp_helper_func = {
2519 	.atomic_commit_setup = drm_dp_mst_atomic_setup_commit,
2520 };
2521 
2522 /******************************************************************************
2523  * Init
2524  *****************************************************************************/
2525 
2526 static void
2527 nv50_display_fini(struct drm_device *dev, bool runtime, bool suspend)
2528 {
2529 	struct nouveau_drm *drm = nouveau_drm(dev);
2530 	struct drm_encoder *encoder;
2531 
2532 	list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
2533 		if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST)
2534 			nv50_mstm_fini(nouveau_encoder(encoder));
2535 	}
2536 
2537 	if (!runtime)
2538 		cancel_work_sync(&drm->hpd_work);
2539 }
2540 
2541 static inline void
2542 nv50_display_read_hw_or_state(struct drm_device *dev, struct nv50_disp *disp,
2543 			      struct nouveau_encoder *outp)
2544 {
2545 	struct drm_crtc *crtc;
2546 	struct drm_connector_list_iter conn_iter;
2547 	struct drm_connector *conn;
2548 	struct nv50_head_atom *armh;
2549 	const u32 encoder_mask = drm_encoder_mask(&outp->base.base);
2550 	bool found_conn = false, found_head = false;
2551 	u8 proto;
2552 	int head_idx;
2553 	int ret;
2554 
2555 	switch (outp->dcb->type) {
2556 	case DCB_OUTPUT_TMDS:
2557 		ret = nvif_outp_inherit_tmds(&outp->outp, &proto);
2558 		break;
2559 	case DCB_OUTPUT_DP:
2560 		ret = nvif_outp_inherit_dp(&outp->outp, &proto);
2561 		break;
2562 	case DCB_OUTPUT_LVDS:
2563 		ret = nvif_outp_inherit_lvds(&outp->outp, &proto);
2564 		break;
2565 	case DCB_OUTPUT_ANALOG:
2566 		ret = nvif_outp_inherit_rgb_crt(&outp->outp, &proto);
2567 		break;
2568 	default:
2569 		drm_dbg_kms(dev, "Readback for %s not implemented yet, skipping\n",
2570 			    outp->base.base.name);
2571 		drm_WARN_ON(dev, true);
2572 		return;
2573 	}
2574 
2575 	if (ret < 0)
2576 		return;
2577 
2578 	head_idx = ret;
2579 
2580 	drm_for_each_crtc(crtc, dev) {
2581 		if (crtc->index != head_idx)
2582 			continue;
2583 
2584 		armh = nv50_head_atom(crtc->state);
2585 		found_head = true;
2586 		break;
2587 	}
2588 	if (drm_WARN_ON(dev, !found_head))
2589 		return;
2590 
2591 	/* Figure out which connector is being used by this encoder */
2592 	drm_connector_list_iter_begin(dev, &conn_iter);
2593 	nouveau_for_each_non_mst_connector_iter(conn, &conn_iter) {
2594 		if (nouveau_connector(conn)->index == outp->dcb->connector) {
2595 			found_conn = true;
2596 			break;
2597 		}
2598 	}
2599 	drm_connector_list_iter_end(&conn_iter);
2600 	if (drm_WARN_ON(dev, !found_conn))
2601 		return;
2602 
2603 	armh->state.encoder_mask = encoder_mask;
2604 	armh->state.connector_mask = drm_connector_mask(conn);
2605 	armh->state.active = true;
2606 	armh->state.enable = true;
2607 	pm_runtime_get_noresume(dev->dev);
2608 
2609 	outp->crtc = crtc;
2610 	outp->ctrl = NVVAL(NV507D, SOR_SET_CONTROL, PROTOCOL, proto) | BIT(crtc->index);
2611 
2612 	drm_connector_get(conn);
2613 	conn->state->crtc = crtc;
2614 	conn->state->best_encoder = &outp->base.base;
2615 }
2616 
2617 /* Read back the currently programmed display state */
2618 static void
2619 nv50_display_read_hw_state(struct nouveau_drm *drm)
2620 {
2621 	struct drm_device *dev = drm->dev;
2622 	struct drm_encoder *encoder;
2623 	struct drm_modeset_acquire_ctx ctx;
2624 	struct nv50_disp *disp = nv50_disp(dev);
2625 	int ret;
2626 
2627 	DRM_MODESET_LOCK_ALL_BEGIN(dev, ctx, 0, ret);
2628 
2629 	drm_for_each_encoder(encoder, dev) {
2630 		if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST)
2631 			continue;
2632 
2633 		nv50_display_read_hw_or_state(dev, disp, nouveau_encoder(encoder));
2634 	}
2635 
2636 	DRM_MODESET_LOCK_ALL_END(dev, ctx, ret);
2637 }
2638 
2639 static int
2640 nv50_display_init(struct drm_device *dev, bool resume, bool runtime)
2641 {
2642 	struct nv50_core *core = nv50_disp(dev)->core;
2643 	struct drm_encoder *encoder;
2644 
2645 	if (resume || runtime)
2646 		core->func->init(core);
2647 
2648 	list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
2649 		if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) {
2650 			struct nouveau_encoder *nv_encoder =
2651 				nouveau_encoder(encoder);
2652 			nv50_mstm_init(nv_encoder, runtime);
2653 		}
2654 	}
2655 
2656 	if (!resume)
2657 		nv50_display_read_hw_state(nouveau_drm(dev));
2658 
2659 	return 0;
2660 }
2661 
2662 static void
2663 nv50_display_destroy(struct drm_device *dev)
2664 {
2665 	struct nv50_disp *disp = nv50_disp(dev);
2666 
2667 	nv50_audio_component_fini(nouveau_drm(dev));
2668 
2669 	nvif_object_unmap(&disp->caps);
2670 	nvif_object_dtor(&disp->caps);
2671 	nv50_core_del(&disp->core);
2672 
2673 	nouveau_bo_unmap(disp->sync);
2674 	if (disp->sync)
2675 		nouveau_bo_unpin(disp->sync);
2676 	nouveau_bo_ref(NULL, &disp->sync);
2677 
2678 	nouveau_display(dev)->priv = NULL;
2679 	kfree(disp);
2680 }
2681 
2682 int
2683 nv50_display_create(struct drm_device *dev)
2684 {
2685 	struct nouveau_drm *drm = nouveau_drm(dev);
2686 	struct drm_connector *connector, *tmp;
2687 	struct nv50_disp *disp;
2688 	int ret, i;
2689 	bool has_mst = false;
2690 
2691 	disp = kzalloc(sizeof(*disp), GFP_KERNEL);
2692 	if (!disp)
2693 		return -ENOMEM;
2694 
2695 	mutex_init(&disp->mutex);
2696 
2697 	nouveau_display(dev)->priv = disp;
2698 	nouveau_display(dev)->dtor = nv50_display_destroy;
2699 	nouveau_display(dev)->init = nv50_display_init;
2700 	nouveau_display(dev)->fini = nv50_display_fini;
2701 	disp->disp = &nouveau_display(dev)->disp;
2702 	dev->mode_config.funcs = &nv50_disp_func;
2703 	dev->mode_config.helper_private = &nv50_disp_helper_func;
2704 	dev->mode_config.quirk_addfb_prefer_xbgr_30bpp = true;
2705 	dev->mode_config.normalize_zpos = true;
2706 
2707 	/* small shared memory area we use for notifiers and semaphores */
2708 	ret = nouveau_bo_new(&drm->client, 4096, 0x1000,
2709 			     NOUVEAU_GEM_DOMAIN_VRAM,
2710 			     0, 0x0000, NULL, NULL, &disp->sync);
2711 	if (!ret) {
2712 		ret = nouveau_bo_pin(disp->sync, NOUVEAU_GEM_DOMAIN_VRAM, true);
2713 		if (!ret) {
2714 			ret = nouveau_bo_map(disp->sync);
2715 			if (ret)
2716 				nouveau_bo_unpin(disp->sync);
2717 		}
2718 		if (ret)
2719 			nouveau_bo_ref(NULL, &disp->sync);
2720 	}
2721 
2722 	if (ret)
2723 		goto out;
2724 
2725 	/* allocate master evo channel */
2726 	ret = nv50_core_new(drm, &disp->core);
2727 	if (ret)
2728 		goto out;
2729 
2730 	disp->core->func->init(disp->core);
2731 	if (disp->core->func->caps_init) {
2732 		ret = disp->core->func->caps_init(drm, disp);
2733 		if (ret)
2734 			goto out;
2735 	}
2736 
2737 	/* Assign the correct format modifiers */
2738 	if (disp->disp->object.oclass >= TU102_DISP)
2739 		nouveau_display(dev)->format_modifiers = wndwc57e_modifiers;
2740 	else
2741 	if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_FERMI)
2742 		nouveau_display(dev)->format_modifiers = disp90xx_modifiers;
2743 	else
2744 		nouveau_display(dev)->format_modifiers = disp50xx_modifiers;
2745 
2746 	/* FIXME: 256x256 cursors are supported on Kepler, however unlike Maxwell and later
2747 	 * generations Kepler requires that we use small pages (4K) for cursor scanout surfaces. The
2748 	 * proper fix for this is to teach nouveau to migrate fbs being used for the cursor plane to
2749 	 * small page allocations in prepare_fb(). When this is implemented, we should also force
2750 	 * large pages (128K) for ovly fbs in order to fix Kepler ovlys.
2751 	 * But until then, just limit cursors to 128x128 - which is small enough to avoid ever using
2752 	 * large pages.
2753 	 */
2754 	if (disp->disp->object.oclass >= GM107_DISP) {
2755 		dev->mode_config.cursor_width = 256;
2756 		dev->mode_config.cursor_height = 256;
2757 	} else if (disp->disp->object.oclass >= GK104_DISP) {
2758 		dev->mode_config.cursor_width = 128;
2759 		dev->mode_config.cursor_height = 128;
2760 	} else {
2761 		dev->mode_config.cursor_width = 64;
2762 		dev->mode_config.cursor_height = 64;
2763 	}
2764 
2765 	/* create encoder/connector objects based on VBIOS DCB table */
2766 	for_each_set_bit(i, &disp->disp->outp_mask, sizeof(disp->disp->outp_mask) * 8) {
2767 		struct nouveau_encoder *outp;
2768 
2769 		outp = kzalloc(sizeof(*outp), GFP_KERNEL);
2770 		if (!outp)
2771 			break;
2772 
2773 		ret = nvif_outp_ctor(disp->disp, "kmsOutp", i, &outp->outp);
2774 		if (ret) {
2775 			kfree(outp);
2776 			continue;
2777 		}
2778 
2779 		connector = nouveau_connector_create(dev, outp->outp.info.conn);
2780 		if (IS_ERR(connector)) {
2781 			nvif_outp_dtor(&outp->outp);
2782 			kfree(outp);
2783 			continue;
2784 		}
2785 
2786 		outp->base.base.possible_crtcs = outp->outp.info.heads;
2787 		outp->base.base.possible_clones = 0;
2788 		outp->conn = nouveau_connector(connector);
2789 
2790 		outp->dcb = kzalloc(sizeof(*outp->dcb), GFP_KERNEL);
2791 		if (!outp->dcb)
2792 			break;
2793 
2794 		switch (outp->outp.info.proto) {
2795 		case NVIF_OUTP_RGB_CRT:
2796 			outp->dcb->type = DCB_OUTPUT_ANALOG;
2797 			outp->dcb->crtconf.maxfreq = outp->outp.info.rgb_crt.freq_max;
2798 			break;
2799 		case NVIF_OUTP_TMDS:
2800 			outp->dcb->type = DCB_OUTPUT_TMDS;
2801 			outp->dcb->duallink_possible = outp->outp.info.tmds.dual;
2802 			break;
2803 		case NVIF_OUTP_LVDS:
2804 			outp->dcb->type = DCB_OUTPUT_LVDS;
2805 			outp->dcb->lvdsconf.use_acpi_for_edid = outp->outp.info.lvds.acpi_edid;
2806 			break;
2807 		case NVIF_OUTP_DP:
2808 			outp->dcb->type = DCB_OUTPUT_DP;
2809 			outp->dcb->dpconf.link_nr = outp->outp.info.dp.link_nr;
2810 			outp->dcb->dpconf.link_bw = outp->outp.info.dp.link_bw;
2811 			if (outp->outp.info.dp.mst)
2812 				has_mst = true;
2813 			break;
2814 		default:
2815 			WARN_ON(1);
2816 			continue;
2817 		}
2818 
2819 		outp->dcb->heads = outp->outp.info.heads;
2820 		outp->dcb->connector = outp->outp.info.conn;
2821 		outp->dcb->i2c_index = outp->outp.info.ddc;
2822 
2823 		switch (outp->outp.info.type) {
2824 		case NVIF_OUTP_DAC : ret = nv50_dac_create(outp); break;
2825 		case NVIF_OUTP_SOR : ret = nv50_sor_create(outp); break;
2826 		case NVIF_OUTP_PIOR: ret = nv50_pior_create(outp); break;
2827 		default:
2828 			WARN_ON(1);
2829 			continue;
2830 		}
2831 
2832 		if (ret) {
2833 			NV_WARN(drm, "failed to create encoder %d/%d/%d: %d\n",
2834 				i, outp->outp.info.type, outp->outp.info.proto, ret);
2835 		}
2836 	}
2837 
2838 	/* cull any connectors we created that don't have an encoder */
2839 	list_for_each_entry_safe(connector, tmp, &dev->mode_config.connector_list, head) {
2840 		if (connector->possible_encoders)
2841 			continue;
2842 
2843 		NV_WARN(drm, "%s has no encoders, removing\n",
2844 			connector->name);
2845 		connector->funcs->destroy(connector);
2846 	}
2847 
2848 	/* create crtc objects to represent the hw heads */
2849 	for_each_set_bit(i, &disp->disp->head_mask, sizeof(disp->disp->head_mask) * 8) {
2850 		struct nv50_head *head;
2851 
2852 		head = nv50_head_create(dev, i);
2853 		if (IS_ERR(head)) {
2854 			ret = PTR_ERR(head);
2855 			goto out;
2856 		}
2857 
2858 		if (has_mst) {
2859 			head->msto = nv50_msto_new(dev, head, i);
2860 			if (IS_ERR(head->msto)) {
2861 				ret = PTR_ERR(head->msto);
2862 				head->msto = NULL;
2863 				goto out;
2864 			}
2865 
2866 			/*
2867 			 * FIXME: This is a hack to workaround the following
2868 			 * issues:
2869 			 *
2870 			 * https://gitlab.gnome.org/GNOME/mutter/issues/759
2871 			 * https://gitlab.freedesktop.org/xorg/xserver/merge_requests/277
2872 			 *
2873 			 * Once these issues are closed, this should be
2874 			 * removed
2875 			 */
2876 			head->msto->encoder.possible_crtcs = disp->disp->head_mask;
2877 		}
2878 	}
2879 
2880 	/* Disable vblank irqs aggressively for power-saving, safe on nv50+ */
2881 	dev->vblank_disable_immediate = true;
2882 
2883 	nv50_audio_component_init(drm);
2884 
2885 out:
2886 	if (ret)
2887 		nv50_display_destroy(dev);
2888 	return ret;
2889 }
2890 
2891 /******************************************************************************
2892  * Format modifiers
2893  *****************************************************************************/
2894 
2895 /****************************************************************
2896  *            Log2(block height) ----------------------------+  *
2897  *            Page Kind ----------------------------------+  |  *
2898  *            Gob Height/Page Kind Generation ------+     |  |  *
2899  *                          Sector layout -------+  |     |  |  *
2900  *                          Compression ------+  |  |     |  |  */
2901 const u64 disp50xx_modifiers[] = { /*         |  |  |     |  |  */
2902 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 0),
2903 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 1),
2904 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 2),
2905 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 3),
2906 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 4),
2907 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 5),
2908 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 0),
2909 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 1),
2910 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 2),
2911 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 3),
2912 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 4),
2913 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 5),
2914 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 0),
2915 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 1),
2916 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 2),
2917 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 3),
2918 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 4),
2919 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 5),
2920 	DRM_FORMAT_MOD_LINEAR,
2921 	DRM_FORMAT_MOD_INVALID
2922 };
2923 
2924 /****************************************************************
2925  *            Log2(block height) ----------------------------+  *
2926  *            Page Kind ----------------------------------+  |  *
2927  *            Gob Height/Page Kind Generation ------+     |  |  *
2928  *                          Sector layout -------+  |     |  |  *
2929  *                          Compression ------+  |  |     |  |  */
2930 const u64 disp90xx_modifiers[] = { /*         |  |  |     |  |  */
2931 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 0),
2932 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 1),
2933 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 2),
2934 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 3),
2935 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 4),
2936 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 5),
2937 	DRM_FORMAT_MOD_LINEAR,
2938 	DRM_FORMAT_MOD_INVALID
2939 };
2940