xref: /linux/drivers/gpu/drm/nouveau/dispnv04/dfp.c (revision e3b9f1e81de2083f359bacd2a94bf1c024f2ede0)
1 /*
2  * Copyright 2003 NVIDIA, Corporation
3  * Copyright 2006 Dave Airlie
4  * Copyright 2007 Maarten Maathuis
5  * Copyright 2007-2009 Stuart Bennett
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the "Software"),
9  * to deal in the Software without restriction, including without limitation
10  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11  * and/or sell copies of the Software, and to permit persons to whom the
12  * Software is furnished to do so, subject to the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the next
15  * paragraph) shall be included in all copies or substantial portions of the
16  * Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
21  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
23  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
24  * DEALINGS IN THE SOFTWARE.
25  */
26 
27 #include <drm/drmP.h>
28 #include <drm/drm_crtc_helper.h>
29 
30 #include "nouveau_drv.h"
31 #include "nouveau_reg.h"
32 #include "nouveau_encoder.h"
33 #include "nouveau_connector.h"
34 #include "nouveau_crtc.h"
35 #include "hw.h"
36 #include "nvreg.h"
37 
38 #include <drm/i2c/sil164.h>
39 
40 #include <subdev/i2c.h>
41 
42 #define FP_TG_CONTROL_ON  (NV_PRAMDAC_FP_TG_CONTROL_DISPEN_POS |	\
43 			   NV_PRAMDAC_FP_TG_CONTROL_HSYNC_POS |		\
44 			   NV_PRAMDAC_FP_TG_CONTROL_VSYNC_POS)
45 #define FP_TG_CONTROL_OFF (NV_PRAMDAC_FP_TG_CONTROL_DISPEN_DISABLE |	\
46 			   NV_PRAMDAC_FP_TG_CONTROL_HSYNC_DISABLE |	\
47 			   NV_PRAMDAC_FP_TG_CONTROL_VSYNC_DISABLE)
48 
49 static inline bool is_fpc_off(uint32_t fpc)
50 {
51 	return ((fpc & (FP_TG_CONTROL_ON | FP_TG_CONTROL_OFF)) ==
52 			FP_TG_CONTROL_OFF);
53 }
54 
55 int nv04_dfp_get_bound_head(struct drm_device *dev, struct dcb_output *dcbent)
56 {
57 	/* special case of nv_read_tmds to find crtc associated with an output.
58 	 * this does not give a correct answer for off-chip dvi, but there's no
59 	 * use for such an answer anyway
60 	 */
61 	int ramdac = (dcbent->or & DCB_OUTPUT_C) >> 2;
62 
63 	NVWriteRAMDAC(dev, ramdac, NV_PRAMDAC_FP_TMDS_CONTROL,
64 	NV_PRAMDAC_FP_TMDS_CONTROL_WRITE_DISABLE | 0x4);
65 	return ((NVReadRAMDAC(dev, ramdac, NV_PRAMDAC_FP_TMDS_DATA) & 0x8) >> 3) ^ ramdac;
66 }
67 
68 void nv04_dfp_bind_head(struct drm_device *dev, struct dcb_output *dcbent,
69 			int head, bool dl)
70 {
71 	/* The BIOS scripts don't do this for us, sadly
72 	 * Luckily we do know the values ;-)
73 	 *
74 	 * head < 0 indicates we wish to force a setting with the overrideval
75 	 * (for VT restore etc.)
76 	 */
77 
78 	int ramdac = (dcbent->or & DCB_OUTPUT_C) >> 2;
79 	uint8_t tmds04 = 0x80;
80 
81 	if (head != ramdac)
82 		tmds04 = 0x88;
83 
84 	if (dcbent->type == DCB_OUTPUT_LVDS)
85 		tmds04 |= 0x01;
86 
87 	nv_write_tmds(dev, dcbent->or, 0, 0x04, tmds04);
88 
89 	if (dl)	/* dual link */
90 		nv_write_tmds(dev, dcbent->or, 1, 0x04, tmds04 ^ 0x08);
91 }
92 
93 void nv04_dfp_disable(struct drm_device *dev, int head)
94 {
95 	struct nv04_crtc_reg *crtcstate = nv04_display(dev)->mode_reg.crtc_reg;
96 
97 	if (NVReadRAMDAC(dev, head, NV_PRAMDAC_FP_TG_CONTROL) &
98 	    FP_TG_CONTROL_ON) {
99 		/* digital remnants must be cleaned before new crtc
100 		 * values programmed.  delay is time for the vga stuff
101 		 * to realise it's in control again
102 		 */
103 		NVWriteRAMDAC(dev, head, NV_PRAMDAC_FP_TG_CONTROL,
104 			      FP_TG_CONTROL_OFF);
105 		msleep(50);
106 	}
107 	/* don't inadvertently turn it on when state written later */
108 	crtcstate[head].fp_control = FP_TG_CONTROL_OFF;
109 	crtcstate[head].CRTC[NV_CIO_CRE_LCD__INDEX] &=
110 		~NV_CIO_CRE_LCD_ROUTE_MASK;
111 }
112 
113 void nv04_dfp_update_fp_control(struct drm_encoder *encoder, int mode)
114 {
115 	struct drm_device *dev = encoder->dev;
116 	struct drm_crtc *crtc;
117 	struct nouveau_crtc *nv_crtc;
118 	uint32_t *fpc;
119 
120 	if (mode == DRM_MODE_DPMS_ON) {
121 		nv_crtc = nouveau_crtc(encoder->crtc);
122 		fpc = &nv04_display(dev)->mode_reg.crtc_reg[nv_crtc->index].fp_control;
123 
124 		if (is_fpc_off(*fpc)) {
125 			/* using saved value is ok, as (is_digital && dpms_on &&
126 			 * fp_control==OFF) is (at present) *only* true when
127 			 * fpc's most recent change was by below "off" code
128 			 */
129 			*fpc = nv_crtc->dpms_saved_fp_control;
130 		}
131 
132 		nv_crtc->fp_users |= 1 << nouveau_encoder(encoder)->dcb->index;
133 		NVWriteRAMDAC(dev, nv_crtc->index, NV_PRAMDAC_FP_TG_CONTROL, *fpc);
134 	} else {
135 		list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
136 			nv_crtc = nouveau_crtc(crtc);
137 			fpc = &nv04_display(dev)->mode_reg.crtc_reg[nv_crtc->index].fp_control;
138 
139 			nv_crtc->fp_users &= ~(1 << nouveau_encoder(encoder)->dcb->index);
140 			if (!is_fpc_off(*fpc) && !nv_crtc->fp_users) {
141 				nv_crtc->dpms_saved_fp_control = *fpc;
142 				/* cut the FP output */
143 				*fpc &= ~FP_TG_CONTROL_ON;
144 				*fpc |= FP_TG_CONTROL_OFF;
145 				NVWriteRAMDAC(dev, nv_crtc->index,
146 					      NV_PRAMDAC_FP_TG_CONTROL, *fpc);
147 			}
148 		}
149 	}
150 }
151 
152 static struct drm_encoder *get_tmds_slave(struct drm_encoder *encoder)
153 {
154 	struct drm_device *dev = encoder->dev;
155 	struct dcb_output *dcb = nouveau_encoder(encoder)->dcb;
156 	struct drm_encoder *slave;
157 
158 	if (dcb->type != DCB_OUTPUT_TMDS || dcb->location == DCB_LOC_ON_CHIP)
159 		return NULL;
160 
161 	/* Some BIOSes (e.g. the one in a Quadro FX1000) report several
162 	 * TMDS transmitters at the same I2C address, in the same I2C
163 	 * bus. This can still work because in that case one of them is
164 	 * always hard-wired to a reasonable configuration using straps,
165 	 * and the other one needs to be programmed.
166 	 *
167 	 * I don't think there's a way to know which is which, even the
168 	 * blob programs the one exposed via I2C for *both* heads, so
169 	 * let's do the same.
170 	 */
171 	list_for_each_entry(slave, &dev->mode_config.encoder_list, head) {
172 		struct dcb_output *slave_dcb = nouveau_encoder(slave)->dcb;
173 
174 		if (slave_dcb->type == DCB_OUTPUT_TMDS && get_slave_funcs(slave) &&
175 		    slave_dcb->tmdsconf.slave_addr == dcb->tmdsconf.slave_addr)
176 			return slave;
177 	}
178 
179 	return NULL;
180 }
181 
182 static bool nv04_dfp_mode_fixup(struct drm_encoder *encoder,
183 				const struct drm_display_mode *mode,
184 				struct drm_display_mode *adjusted_mode)
185 {
186 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
187 	struct nouveau_connector *nv_connector = nouveau_encoder_connector_get(nv_encoder);
188 
189 	if (!nv_connector->native_mode ||
190 	    nv_connector->scaling_mode == DRM_MODE_SCALE_NONE ||
191 	    mode->hdisplay > nv_connector->native_mode->hdisplay ||
192 	    mode->vdisplay > nv_connector->native_mode->vdisplay) {
193 		nv_encoder->mode = *adjusted_mode;
194 
195 	} else {
196 		nv_encoder->mode = *nv_connector->native_mode;
197 		adjusted_mode->clock = nv_connector->native_mode->clock;
198 	}
199 
200 	return true;
201 }
202 
203 static void nv04_dfp_prepare_sel_clk(struct drm_device *dev,
204 				     struct nouveau_encoder *nv_encoder, int head)
205 {
206 	struct nv04_mode_state *state = &nv04_display(dev)->mode_reg;
207 	uint32_t bits1618 = nv_encoder->dcb->or & DCB_OUTPUT_A ? 0x10000 : 0x40000;
208 
209 	if (nv_encoder->dcb->location != DCB_LOC_ON_CHIP)
210 		return;
211 
212 	/* SEL_CLK is only used on the primary ramdac
213 	 * It toggles spread spectrum PLL output and sets the bindings of PLLs
214 	 * to heads on digital outputs
215 	 */
216 	if (head)
217 		state->sel_clk |= bits1618;
218 	else
219 		state->sel_clk &= ~bits1618;
220 
221 	/* nv30:
222 	 *	bit 0		NVClk spread spectrum on/off
223 	 *	bit 2		MemClk spread spectrum on/off
224 	 * 	bit 4		PixClk1 spread spectrum on/off toggle
225 	 * 	bit 6		PixClk2 spread spectrum on/off toggle
226 	 *
227 	 * nv40 (observations from bios behaviour and mmio traces):
228 	 * 	bits 4&6	as for nv30
229 	 * 	bits 5&7	head dependent as for bits 4&6, but do not appear with 4&6;
230 	 * 			maybe a different spread mode
231 	 * 	bits 8&10	seen on dual-link dvi outputs, purpose unknown (set by POST scripts)
232 	 * 	The logic behind turning spread spectrum on/off in the first place,
233 	 * 	and which bit-pair to use, is unclear on nv40 (for earlier cards, the fp table
234 	 * 	entry has the necessary info)
235 	 */
236 	if (nv_encoder->dcb->type == DCB_OUTPUT_LVDS && nv04_display(dev)->saved_reg.sel_clk & 0xf0) {
237 		int shift = (nv04_display(dev)->saved_reg.sel_clk & 0x50) ? 0 : 1;
238 
239 		state->sel_clk &= ~0xf0;
240 		state->sel_clk |= (head ? 0x40 : 0x10) << shift;
241 	}
242 }
243 
244 static void nv04_dfp_prepare(struct drm_encoder *encoder)
245 {
246 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
247 	const struct drm_encoder_helper_funcs *helper = encoder->helper_private;
248 	struct drm_device *dev = encoder->dev;
249 	int head = nouveau_crtc(encoder->crtc)->index;
250 	struct nv04_crtc_reg *crtcstate = nv04_display(dev)->mode_reg.crtc_reg;
251 	uint8_t *cr_lcd = &crtcstate[head].CRTC[NV_CIO_CRE_LCD__INDEX];
252 	uint8_t *cr_lcd_oth = &crtcstate[head ^ 1].CRTC[NV_CIO_CRE_LCD__INDEX];
253 
254 	helper->dpms(encoder, DRM_MODE_DPMS_OFF);
255 
256 	nv04_dfp_prepare_sel_clk(dev, nv_encoder, head);
257 
258 	*cr_lcd = (*cr_lcd & ~NV_CIO_CRE_LCD_ROUTE_MASK) | 0x3;
259 
260 	if (nv_two_heads(dev)) {
261 		if (nv_encoder->dcb->location == DCB_LOC_ON_CHIP)
262 			*cr_lcd |= head ? 0x0 : 0x8;
263 		else {
264 			*cr_lcd |= (nv_encoder->dcb->or << 4) & 0x30;
265 			if (nv_encoder->dcb->type == DCB_OUTPUT_LVDS)
266 				*cr_lcd |= 0x30;
267 			if ((*cr_lcd & 0x30) == (*cr_lcd_oth & 0x30)) {
268 				/* avoid being connected to both crtcs */
269 				*cr_lcd_oth &= ~0x30;
270 				NVWriteVgaCrtc(dev, head ^ 1,
271 					       NV_CIO_CRE_LCD__INDEX,
272 					       *cr_lcd_oth);
273 			}
274 		}
275 	}
276 }
277 
278 
279 static void nv04_dfp_mode_set(struct drm_encoder *encoder,
280 			      struct drm_display_mode *mode,
281 			      struct drm_display_mode *adjusted_mode)
282 {
283 	struct drm_device *dev = encoder->dev;
284 	struct nvif_object *device = &nouveau_drm(dev)->client.device.object;
285 	struct nouveau_drm *drm = nouveau_drm(dev);
286 	struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
287 	struct nv04_crtc_reg *regp = &nv04_display(dev)->mode_reg.crtc_reg[nv_crtc->index];
288 	struct nv04_crtc_reg *savep = &nv04_display(dev)->saved_reg.crtc_reg[nv_crtc->index];
289 	struct nouveau_connector *nv_connector = nouveau_crtc_connector_get(nv_crtc);
290 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
291 	struct drm_display_mode *output_mode = &nv_encoder->mode;
292 	struct drm_connector *connector = &nv_connector->base;
293 	const struct drm_framebuffer *fb = encoder->crtc->primary->fb;
294 	uint32_t mode_ratio, panel_ratio;
295 
296 	NV_DEBUG(drm, "Output mode on CRTC %d:\n", nv_crtc->index);
297 	drm_mode_debug_printmodeline(output_mode);
298 
299 	/* Initialize the FP registers in this CRTC. */
300 	regp->fp_horiz_regs[FP_DISPLAY_END] = output_mode->hdisplay - 1;
301 	regp->fp_horiz_regs[FP_TOTAL] = output_mode->htotal - 1;
302 	if (!nv_gf4_disp_arch(dev) ||
303 	    (output_mode->hsync_start - output_mode->hdisplay) >=
304 					drm->vbios.digital_min_front_porch)
305 		regp->fp_horiz_regs[FP_CRTC] = output_mode->hdisplay;
306 	else
307 		regp->fp_horiz_regs[FP_CRTC] = output_mode->hsync_start - drm->vbios.digital_min_front_porch - 1;
308 	regp->fp_horiz_regs[FP_SYNC_START] = output_mode->hsync_start - 1;
309 	regp->fp_horiz_regs[FP_SYNC_END] = output_mode->hsync_end - 1;
310 	regp->fp_horiz_regs[FP_VALID_START] = output_mode->hskew;
311 	regp->fp_horiz_regs[FP_VALID_END] = output_mode->hdisplay - 1;
312 
313 	regp->fp_vert_regs[FP_DISPLAY_END] = output_mode->vdisplay - 1;
314 	regp->fp_vert_regs[FP_TOTAL] = output_mode->vtotal - 1;
315 	regp->fp_vert_regs[FP_CRTC] = output_mode->vtotal - 5 - 1;
316 	regp->fp_vert_regs[FP_SYNC_START] = output_mode->vsync_start - 1;
317 	regp->fp_vert_regs[FP_SYNC_END] = output_mode->vsync_end - 1;
318 	regp->fp_vert_regs[FP_VALID_START] = 0;
319 	regp->fp_vert_regs[FP_VALID_END] = output_mode->vdisplay - 1;
320 
321 	/* bit26: a bit seen on some g7x, no as yet discernable purpose */
322 	regp->fp_control = NV_PRAMDAC_FP_TG_CONTROL_DISPEN_POS |
323 			   (savep->fp_control & (1 << 26 | NV_PRAMDAC_FP_TG_CONTROL_READ_PROG));
324 	/* Deal with vsync/hsync polarity */
325 	/* LVDS screens do set this, but modes with +ve syncs are very rare */
326 	if (output_mode->flags & DRM_MODE_FLAG_PVSYNC)
327 		regp->fp_control |= NV_PRAMDAC_FP_TG_CONTROL_VSYNC_POS;
328 	if (output_mode->flags & DRM_MODE_FLAG_PHSYNC)
329 		regp->fp_control |= NV_PRAMDAC_FP_TG_CONTROL_HSYNC_POS;
330 	/* panel scaling first, as native would get set otherwise */
331 	if (nv_connector->scaling_mode == DRM_MODE_SCALE_NONE ||
332 	    nv_connector->scaling_mode == DRM_MODE_SCALE_CENTER)	/* panel handles it */
333 		regp->fp_control |= NV_PRAMDAC_FP_TG_CONTROL_MODE_CENTER;
334 	else if (adjusted_mode->hdisplay == output_mode->hdisplay &&
335 		 adjusted_mode->vdisplay == output_mode->vdisplay) /* native mode */
336 		regp->fp_control |= NV_PRAMDAC_FP_TG_CONTROL_MODE_NATIVE;
337 	else /* gpu needs to scale */
338 		regp->fp_control |= NV_PRAMDAC_FP_TG_CONTROL_MODE_SCALE;
339 	if (nvif_rd32(device, NV_PEXTDEV_BOOT_0) & NV_PEXTDEV_BOOT_0_STRAP_FP_IFACE_12BIT)
340 		regp->fp_control |= NV_PRAMDAC_FP_TG_CONTROL_WIDTH_12;
341 	if (nv_encoder->dcb->location != DCB_LOC_ON_CHIP &&
342 	    output_mode->clock > 165000)
343 		regp->fp_control |= (2 << 24);
344 	if (nv_encoder->dcb->type == DCB_OUTPUT_LVDS) {
345 		bool duallink = false, dummy;
346 		if (nv_connector->edid &&
347 		    nv_connector->type == DCB_CONNECTOR_LVDS_SPWG) {
348 			duallink = (((u8 *)nv_connector->edid)[121] == 2);
349 		} else {
350 			nouveau_bios_parse_lvds_table(dev, output_mode->clock,
351 						      &duallink, &dummy);
352 		}
353 
354 		if (duallink)
355 			regp->fp_control |= (8 << 28);
356 	} else
357 	if (output_mode->clock > 165000)
358 		regp->fp_control |= (8 << 28);
359 
360 	regp->fp_debug_0 = NV_PRAMDAC_FP_DEBUG_0_YWEIGHT_ROUND |
361 			   NV_PRAMDAC_FP_DEBUG_0_XWEIGHT_ROUND |
362 			   NV_PRAMDAC_FP_DEBUG_0_YINTERP_BILINEAR |
363 			   NV_PRAMDAC_FP_DEBUG_0_XINTERP_BILINEAR |
364 			   NV_RAMDAC_FP_DEBUG_0_TMDS_ENABLED |
365 			   NV_PRAMDAC_FP_DEBUG_0_YSCALE_ENABLE |
366 			   NV_PRAMDAC_FP_DEBUG_0_XSCALE_ENABLE;
367 
368 	/* We want automatic scaling */
369 	regp->fp_debug_1 = 0;
370 	/* This can override HTOTAL and VTOTAL */
371 	regp->fp_debug_2 = 0;
372 
373 	/* Use 20.12 fixed point format to avoid floats */
374 	mode_ratio = (1 << 12) * adjusted_mode->hdisplay / adjusted_mode->vdisplay;
375 	panel_ratio = (1 << 12) * output_mode->hdisplay / output_mode->vdisplay;
376 	/* if ratios are equal, SCALE_ASPECT will automatically (and correctly)
377 	 * get treated the same as SCALE_FULLSCREEN */
378 	if (nv_connector->scaling_mode == DRM_MODE_SCALE_ASPECT &&
379 	    mode_ratio != panel_ratio) {
380 		uint32_t diff, scale;
381 		bool divide_by_2 = nv_gf4_disp_arch(dev);
382 
383 		if (mode_ratio < panel_ratio) {
384 			/* vertical needs to expand to glass size (automatic)
385 			 * horizontal needs to be scaled at vertical scale factor
386 			 * to maintain aspect */
387 
388 			scale = (1 << 12) * adjusted_mode->vdisplay / output_mode->vdisplay;
389 			regp->fp_debug_1 = NV_PRAMDAC_FP_DEBUG_1_XSCALE_TESTMODE_ENABLE |
390 					   XLATE(scale, divide_by_2, NV_PRAMDAC_FP_DEBUG_1_XSCALE_VALUE);
391 
392 			/* restrict area of screen used, horizontally */
393 			diff = output_mode->hdisplay -
394 			       output_mode->vdisplay * mode_ratio / (1 << 12);
395 			regp->fp_horiz_regs[FP_VALID_START] += diff / 2;
396 			regp->fp_horiz_regs[FP_VALID_END] -= diff / 2;
397 		}
398 
399 		if (mode_ratio > panel_ratio) {
400 			/* horizontal needs to expand to glass size (automatic)
401 			 * vertical needs to be scaled at horizontal scale factor
402 			 * to maintain aspect */
403 
404 			scale = (1 << 12) * adjusted_mode->hdisplay / output_mode->hdisplay;
405 			regp->fp_debug_1 = NV_PRAMDAC_FP_DEBUG_1_YSCALE_TESTMODE_ENABLE |
406 					   XLATE(scale, divide_by_2, NV_PRAMDAC_FP_DEBUG_1_YSCALE_VALUE);
407 
408 			/* restrict area of screen used, vertically */
409 			diff = output_mode->vdisplay -
410 			       (1 << 12) * output_mode->hdisplay / mode_ratio;
411 			regp->fp_vert_regs[FP_VALID_START] += diff / 2;
412 			regp->fp_vert_regs[FP_VALID_END] -= diff / 2;
413 		}
414 	}
415 
416 	/* Output property. */
417 	if ((nv_connector->dithering_mode == DITHERING_MODE_ON) ||
418 	    (nv_connector->dithering_mode == DITHERING_MODE_AUTO &&
419 	     fb->format->depth > connector->display_info.bpc * 3)) {
420 		if (drm->client.device.info.chipset == 0x11)
421 			regp->dither = savep->dither | 0x00010000;
422 		else {
423 			int i;
424 			regp->dither = savep->dither | 0x00000001;
425 			for (i = 0; i < 3; i++) {
426 				regp->dither_regs[i] = 0xe4e4e4e4;
427 				regp->dither_regs[i + 3] = 0x44444444;
428 			}
429 		}
430 	} else {
431 		if (drm->client.device.info.chipset != 0x11) {
432 			/* reset them */
433 			int i;
434 			for (i = 0; i < 3; i++) {
435 				regp->dither_regs[i] = savep->dither_regs[i];
436 				regp->dither_regs[i + 3] = savep->dither_regs[i + 3];
437 			}
438 		}
439 		regp->dither = savep->dither;
440 	}
441 
442 	regp->fp_margin_color = 0;
443 }
444 
445 static void nv04_dfp_commit(struct drm_encoder *encoder)
446 {
447 	struct drm_device *dev = encoder->dev;
448 	struct nouveau_drm *drm = nouveau_drm(dev);
449 	const struct drm_encoder_helper_funcs *helper = encoder->helper_private;
450 	struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
451 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
452 	struct dcb_output *dcbe = nv_encoder->dcb;
453 	int head = nouveau_crtc(encoder->crtc)->index;
454 	struct drm_encoder *slave_encoder;
455 
456 	if (dcbe->type == DCB_OUTPUT_TMDS)
457 		run_tmds_table(dev, dcbe, head, nv_encoder->mode.clock);
458 	else if (dcbe->type == DCB_OUTPUT_LVDS)
459 		call_lvds_script(dev, dcbe, head, LVDS_RESET, nv_encoder->mode.clock);
460 
461 	/* update fp_control state for any changes made by scripts,
462 	 * so correct value is written at DPMS on */
463 	nv04_display(dev)->mode_reg.crtc_reg[head].fp_control =
464 		NVReadRAMDAC(dev, head, NV_PRAMDAC_FP_TG_CONTROL);
465 
466 	/* This could use refinement for flatpanels, but it should work this way */
467 	if (drm->client.device.info.chipset < 0x44)
468 		NVWriteRAMDAC(dev, 0, NV_PRAMDAC_TEST_CONTROL + nv04_dac_output_offset(encoder), 0xf0000000);
469 	else
470 		NVWriteRAMDAC(dev, 0, NV_PRAMDAC_TEST_CONTROL + nv04_dac_output_offset(encoder), 0x00100000);
471 
472 	/* Init external transmitters */
473 	slave_encoder = get_tmds_slave(encoder);
474 	if (slave_encoder)
475 		get_slave_funcs(slave_encoder)->mode_set(
476 			slave_encoder, &nv_encoder->mode, &nv_encoder->mode);
477 
478 	helper->dpms(encoder, DRM_MODE_DPMS_ON);
479 
480 	NV_DEBUG(drm, "Output %s is running on CRTC %d using output %c\n",
481 		 nouveau_encoder_connector_get(nv_encoder)->base.name,
482 		 nv_crtc->index, '@' + ffs(nv_encoder->dcb->or));
483 }
484 
485 static void nv04_dfp_update_backlight(struct drm_encoder *encoder, int mode)
486 {
487 #ifdef __powerpc__
488 	struct drm_device *dev = encoder->dev;
489 	struct nvif_object *device = &nouveau_drm(dev)->client.device.object;
490 
491 	/* BIOS scripts usually take care of the backlight, thanks
492 	 * Apple for your consistency.
493 	 */
494 	if (dev->pdev->device == 0x0174 || dev->pdev->device == 0x0179 ||
495 	    dev->pdev->device == 0x0189 || dev->pdev->device == 0x0329) {
496 		if (mode == DRM_MODE_DPMS_ON) {
497 			nvif_mask(device, NV_PBUS_DEBUG_DUALHEAD_CTL, 1 << 31, 1 << 31);
498 			nvif_mask(device, NV_PCRTC_GPIO_EXT, 3, 1);
499 		} else {
500 			nvif_mask(device, NV_PBUS_DEBUG_DUALHEAD_CTL, 1 << 31, 0);
501 			nvif_mask(device, NV_PCRTC_GPIO_EXT, 3, 0);
502 		}
503 	}
504 #endif
505 }
506 
507 static inline bool is_powersaving_dpms(int mode)
508 {
509 	return mode != DRM_MODE_DPMS_ON && mode != NV_DPMS_CLEARED;
510 }
511 
512 static void nv04_lvds_dpms(struct drm_encoder *encoder, int mode)
513 {
514 	struct drm_device *dev = encoder->dev;
515 	struct drm_crtc *crtc = encoder->crtc;
516 	struct nouveau_drm *drm = nouveau_drm(dev);
517 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
518 	bool was_powersaving = is_powersaving_dpms(nv_encoder->last_dpms);
519 
520 	if (nv_encoder->last_dpms == mode)
521 		return;
522 	nv_encoder->last_dpms = mode;
523 
524 	NV_DEBUG(drm, "Setting dpms mode %d on lvds encoder (output %d)\n",
525 		 mode, nv_encoder->dcb->index);
526 
527 	if (was_powersaving && is_powersaving_dpms(mode))
528 		return;
529 
530 	if (nv_encoder->dcb->lvdsconf.use_power_scripts) {
531 		/* when removing an output, crtc may not be set, but PANEL_OFF
532 		 * must still be run
533 		 */
534 		int head = crtc ? nouveau_crtc(crtc)->index :
535 			   nv04_dfp_get_bound_head(dev, nv_encoder->dcb);
536 
537 		if (mode == DRM_MODE_DPMS_ON) {
538 			call_lvds_script(dev, nv_encoder->dcb, head,
539 					 LVDS_PANEL_ON, nv_encoder->mode.clock);
540 		} else
541 			/* pxclk of 0 is fine for PANEL_OFF, and for a
542 			 * disconnected LVDS encoder there is no native_mode
543 			 */
544 			call_lvds_script(dev, nv_encoder->dcb, head,
545 					 LVDS_PANEL_OFF, 0);
546 	}
547 
548 	nv04_dfp_update_backlight(encoder, mode);
549 	nv04_dfp_update_fp_control(encoder, mode);
550 
551 	if (mode == DRM_MODE_DPMS_ON)
552 		nv04_dfp_prepare_sel_clk(dev, nv_encoder, nouveau_crtc(crtc)->index);
553 	else {
554 		nv04_display(dev)->mode_reg.sel_clk = NVReadRAMDAC(dev, 0, NV_PRAMDAC_SEL_CLK);
555 		nv04_display(dev)->mode_reg.sel_clk &= ~0xf0;
556 	}
557 	NVWriteRAMDAC(dev, 0, NV_PRAMDAC_SEL_CLK, nv04_display(dev)->mode_reg.sel_clk);
558 }
559 
560 static void nv04_tmds_dpms(struct drm_encoder *encoder, int mode)
561 {
562 	struct nouveau_drm *drm = nouveau_drm(encoder->dev);
563 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
564 
565 	if (nv_encoder->last_dpms == mode)
566 		return;
567 	nv_encoder->last_dpms = mode;
568 
569 	NV_DEBUG(drm, "Setting dpms mode %d on tmds encoder (output %d)\n",
570 		 mode, nv_encoder->dcb->index);
571 
572 	nv04_dfp_update_backlight(encoder, mode);
573 	nv04_dfp_update_fp_control(encoder, mode);
574 }
575 
576 static void nv04_dfp_save(struct drm_encoder *encoder)
577 {
578 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
579 	struct drm_device *dev = encoder->dev;
580 
581 	if (nv_two_heads(dev))
582 		nv_encoder->restore.head =
583 			nv04_dfp_get_bound_head(dev, nv_encoder->dcb);
584 }
585 
586 static void nv04_dfp_restore(struct drm_encoder *encoder)
587 {
588 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
589 	struct drm_device *dev = encoder->dev;
590 	int head = nv_encoder->restore.head;
591 
592 	if (nv_encoder->dcb->type == DCB_OUTPUT_LVDS) {
593 		struct nouveau_connector *connector =
594 			nouveau_encoder_connector_get(nv_encoder);
595 
596 		if (connector && connector->native_mode)
597 			call_lvds_script(dev, nv_encoder->dcb, head,
598 					 LVDS_PANEL_ON,
599 					 connector->native_mode->clock);
600 
601 	} else if (nv_encoder->dcb->type == DCB_OUTPUT_TMDS) {
602 		int clock = nouveau_hw_pllvals_to_clk
603 					(&nv04_display(dev)->saved_reg.crtc_reg[head].pllvals);
604 
605 		run_tmds_table(dev, nv_encoder->dcb, head, clock);
606 	}
607 
608 	nv_encoder->last_dpms = NV_DPMS_CLEARED;
609 }
610 
611 static void nv04_dfp_destroy(struct drm_encoder *encoder)
612 {
613 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
614 
615 	if (get_slave_funcs(encoder))
616 		get_slave_funcs(encoder)->destroy(encoder);
617 
618 	drm_encoder_cleanup(encoder);
619 	kfree(nv_encoder);
620 }
621 
622 static void nv04_tmds_slave_init(struct drm_encoder *encoder)
623 {
624 	struct drm_device *dev = encoder->dev;
625 	struct dcb_output *dcb = nouveau_encoder(encoder)->dcb;
626 	struct nouveau_drm *drm = nouveau_drm(dev);
627 	struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device);
628 	struct nvkm_i2c_bus *bus = nvkm_i2c_bus_find(i2c, NVKM_I2C_BUS_PRI);
629 	struct nvkm_i2c_bus_probe info[] = {
630 		{
631 		    {
632 		        .type = "sil164",
633 		        .addr = (dcb->tmdsconf.slave_addr == 0x7 ? 0x3a : 0x38),
634 		        .platform_data = &(struct sil164_encoder_params) {
635 		            SIL164_INPUT_EDGE_RISING
636 		         }
637 		    }, 0
638 		},
639 		{ }
640 	};
641 	int type;
642 
643 	if (!nv_gf4_disp_arch(dev) || !bus || get_tmds_slave(encoder))
644 		return;
645 
646 	type = nvkm_i2c_bus_probe(bus, "TMDS transmitter", info, NULL, NULL);
647 	if (type < 0)
648 		return;
649 
650 	drm_i2c_encoder_init(dev, to_encoder_slave(encoder),
651 			     &bus->i2c, &info[type].dev);
652 }
653 
654 static const struct drm_encoder_helper_funcs nv04_lvds_helper_funcs = {
655 	.dpms = nv04_lvds_dpms,
656 	.mode_fixup = nv04_dfp_mode_fixup,
657 	.prepare = nv04_dfp_prepare,
658 	.commit = nv04_dfp_commit,
659 	.mode_set = nv04_dfp_mode_set,
660 	.detect = NULL,
661 };
662 
663 static const struct drm_encoder_helper_funcs nv04_tmds_helper_funcs = {
664 	.dpms = nv04_tmds_dpms,
665 	.mode_fixup = nv04_dfp_mode_fixup,
666 	.prepare = nv04_dfp_prepare,
667 	.commit = nv04_dfp_commit,
668 	.mode_set = nv04_dfp_mode_set,
669 	.detect = NULL,
670 };
671 
672 static const struct drm_encoder_funcs nv04_dfp_funcs = {
673 	.destroy = nv04_dfp_destroy,
674 };
675 
676 int
677 nv04_dfp_create(struct drm_connector *connector, struct dcb_output *entry)
678 {
679 	const struct drm_encoder_helper_funcs *helper;
680 	struct nouveau_encoder *nv_encoder = NULL;
681 	struct drm_encoder *encoder;
682 	int type;
683 
684 	switch (entry->type) {
685 	case DCB_OUTPUT_TMDS:
686 		type = DRM_MODE_ENCODER_TMDS;
687 		helper = &nv04_tmds_helper_funcs;
688 		break;
689 	case DCB_OUTPUT_LVDS:
690 		type = DRM_MODE_ENCODER_LVDS;
691 		helper = &nv04_lvds_helper_funcs;
692 		break;
693 	default:
694 		return -EINVAL;
695 	}
696 
697 	nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
698 	if (!nv_encoder)
699 		return -ENOMEM;
700 
701 	nv_encoder->enc_save = nv04_dfp_save;
702 	nv_encoder->enc_restore = nv04_dfp_restore;
703 
704 	encoder = to_drm_encoder(nv_encoder);
705 
706 	nv_encoder->dcb = entry;
707 	nv_encoder->or = ffs(entry->or) - 1;
708 
709 	drm_encoder_init(connector->dev, encoder, &nv04_dfp_funcs, type, NULL);
710 	drm_encoder_helper_add(encoder, helper);
711 
712 	encoder->possible_crtcs = entry->heads;
713 	encoder->possible_clones = 0;
714 
715 	if (entry->type == DCB_OUTPUT_TMDS &&
716 	    entry->location != DCB_LOC_ON_CHIP)
717 		nv04_tmds_slave_init(encoder);
718 
719 	drm_mode_connector_attach_encoder(connector, encoder);
720 	return 0;
721 }
722