xref: /linux/drivers/gpu/drm/nouveau/dispnv04/dfp.c (revision ae22a94997b8a03dcb3c922857c203246711f9d4)
1 /*
2  * Copyright 2003 NVIDIA, Corporation
3  * Copyright 2006 Dave Airlie
4  * Copyright 2007 Maarten Maathuis
5  * Copyright 2007-2009 Stuart Bennett
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the "Software"),
9  * to deal in the Software without restriction, including without limitation
10  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11  * and/or sell copies of the Software, and to permit persons to whom the
12  * Software is furnished to do so, subject to the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the next
15  * paragraph) shall be included in all copies or substantial portions of the
16  * Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
21  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
23  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
24  * DEALINGS IN THE SOFTWARE.
25  */
26 
27 #include <drm/drm_fourcc.h>
28 #include <drm/drm_modeset_helper_vtables.h>
29 
30 #include "nouveau_drv.h"
31 #include "nouveau_reg.h"
32 #include "nouveau_encoder.h"
33 #include "nouveau_connector.h"
34 #include "nouveau_crtc.h"
35 #include "hw.h"
36 #include "nvreg.h"
37 
38 #include <drm/i2c/sil164.h>
39 
40 #include <subdev/i2c.h>
41 
42 #define FP_TG_CONTROL_ON  (NV_PRAMDAC_FP_TG_CONTROL_DISPEN_POS |	\
43 			   NV_PRAMDAC_FP_TG_CONTROL_HSYNC_POS |		\
44 			   NV_PRAMDAC_FP_TG_CONTROL_VSYNC_POS)
45 #define FP_TG_CONTROL_OFF (NV_PRAMDAC_FP_TG_CONTROL_DISPEN_DISABLE |	\
46 			   NV_PRAMDAC_FP_TG_CONTROL_HSYNC_DISABLE |	\
47 			   NV_PRAMDAC_FP_TG_CONTROL_VSYNC_DISABLE)
48 
49 static inline bool is_fpc_off(uint32_t fpc)
50 {
51 	return ((fpc & (FP_TG_CONTROL_ON | FP_TG_CONTROL_OFF)) ==
52 			FP_TG_CONTROL_OFF);
53 }
54 
55 int nv04_dfp_get_bound_head(struct drm_device *dev, struct dcb_output *dcbent)
56 {
57 	/* special case of nv_read_tmds to find crtc associated with an output.
58 	 * this does not give a correct answer for off-chip dvi, but there's no
59 	 * use for such an answer anyway
60 	 */
61 	int ramdac = (dcbent->or & DCB_OUTPUT_C) >> 2;
62 
63 	NVWriteRAMDAC(dev, ramdac, NV_PRAMDAC_FP_TMDS_CONTROL,
64 	NV_PRAMDAC_FP_TMDS_CONTROL_WRITE_DISABLE | 0x4);
65 	return ((NVReadRAMDAC(dev, ramdac, NV_PRAMDAC_FP_TMDS_DATA) & 0x8) >> 3) ^ ramdac;
66 }
67 
68 void nv04_dfp_bind_head(struct drm_device *dev, struct dcb_output *dcbent,
69 			int head, bool dl)
70 {
71 	/* The BIOS scripts don't do this for us, sadly
72 	 * Luckily we do know the values ;-)
73 	 *
74 	 * head < 0 indicates we wish to force a setting with the overrideval
75 	 * (for VT restore etc.)
76 	 */
77 
78 	int ramdac = (dcbent->or & DCB_OUTPUT_C) >> 2;
79 	uint8_t tmds04 = 0x80;
80 
81 	if (head != ramdac)
82 		tmds04 = 0x88;
83 
84 	if (dcbent->type == DCB_OUTPUT_LVDS)
85 		tmds04 |= 0x01;
86 
87 	nv_write_tmds(dev, dcbent->or, 0, 0x04, tmds04);
88 
89 	if (dl)	/* dual link */
90 		nv_write_tmds(dev, dcbent->or, 1, 0x04, tmds04 ^ 0x08);
91 }
92 
93 void nv04_dfp_disable(struct drm_device *dev, int head)
94 {
95 	struct nv04_crtc_reg *crtcstate = nv04_display(dev)->mode_reg.crtc_reg;
96 
97 	if (NVReadRAMDAC(dev, head, NV_PRAMDAC_FP_TG_CONTROL) &
98 	    FP_TG_CONTROL_ON) {
99 		/* digital remnants must be cleaned before new crtc
100 		 * values programmed.  delay is time for the vga stuff
101 		 * to realise it's in control again
102 		 */
103 		NVWriteRAMDAC(dev, head, NV_PRAMDAC_FP_TG_CONTROL,
104 			      FP_TG_CONTROL_OFF);
105 		msleep(50);
106 	}
107 	/* don't inadvertently turn it on when state written later */
108 	crtcstate[head].fp_control = FP_TG_CONTROL_OFF;
109 	crtcstate[head].CRTC[NV_CIO_CRE_LCD__INDEX] &=
110 		~NV_CIO_CRE_LCD_ROUTE_MASK;
111 }
112 
113 void nv04_dfp_update_fp_control(struct drm_encoder *encoder, int mode)
114 {
115 	struct drm_device *dev = encoder->dev;
116 	struct drm_crtc *crtc;
117 	struct nouveau_crtc *nv_crtc;
118 	uint32_t *fpc;
119 
120 	if (mode == DRM_MODE_DPMS_ON) {
121 		nv_crtc = nouveau_crtc(encoder->crtc);
122 		fpc = &nv04_display(dev)->mode_reg.crtc_reg[nv_crtc->index].fp_control;
123 
124 		if (is_fpc_off(*fpc)) {
125 			/* using saved value is ok, as (is_digital && dpms_on &&
126 			 * fp_control==OFF) is (at present) *only* true when
127 			 * fpc's most recent change was by below "off" code
128 			 */
129 			*fpc = nv_crtc->dpms_saved_fp_control;
130 		}
131 
132 		nv_crtc->fp_users |= 1 << nouveau_encoder(encoder)->dcb->index;
133 		NVWriteRAMDAC(dev, nv_crtc->index, NV_PRAMDAC_FP_TG_CONTROL, *fpc);
134 	} else {
135 		list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
136 			nv_crtc = nouveau_crtc(crtc);
137 			fpc = &nv04_display(dev)->mode_reg.crtc_reg[nv_crtc->index].fp_control;
138 
139 			nv_crtc->fp_users &= ~(1 << nouveau_encoder(encoder)->dcb->index);
140 			if (!is_fpc_off(*fpc) && !nv_crtc->fp_users) {
141 				nv_crtc->dpms_saved_fp_control = *fpc;
142 				/* cut the FP output */
143 				*fpc &= ~FP_TG_CONTROL_ON;
144 				*fpc |= FP_TG_CONTROL_OFF;
145 				NVWriteRAMDAC(dev, nv_crtc->index,
146 					      NV_PRAMDAC_FP_TG_CONTROL, *fpc);
147 			}
148 		}
149 	}
150 }
151 
152 static struct drm_encoder *get_tmds_slave(struct drm_encoder *encoder)
153 {
154 	struct drm_device *dev = encoder->dev;
155 	struct dcb_output *dcb = nouveau_encoder(encoder)->dcb;
156 	struct drm_encoder *slave;
157 
158 	if (dcb->type != DCB_OUTPUT_TMDS || dcb->location == DCB_LOC_ON_CHIP)
159 		return NULL;
160 
161 	/* Some BIOSes (e.g. the one in a Quadro FX1000) report several
162 	 * TMDS transmitters at the same I2C address, in the same I2C
163 	 * bus. This can still work because in that case one of them is
164 	 * always hard-wired to a reasonable configuration using straps,
165 	 * and the other one needs to be programmed.
166 	 *
167 	 * I don't think there's a way to know which is which, even the
168 	 * blob programs the one exposed via I2C for *both* heads, so
169 	 * let's do the same.
170 	 */
171 	list_for_each_entry(slave, &dev->mode_config.encoder_list, head) {
172 		struct dcb_output *slave_dcb = nouveau_encoder(slave)->dcb;
173 
174 		if (slave_dcb->type == DCB_OUTPUT_TMDS && get_slave_funcs(slave) &&
175 		    slave_dcb->tmdsconf.slave_addr == dcb->tmdsconf.slave_addr)
176 			return slave;
177 	}
178 
179 	return NULL;
180 }
181 
182 static bool nv04_dfp_mode_fixup(struct drm_encoder *encoder,
183 				const struct drm_display_mode *mode,
184 				struct drm_display_mode *adjusted_mode)
185 {
186 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
187 	struct nouveau_connector *nv_connector =
188 		nv04_encoder_get_connector(nv_encoder);
189 
190 	if (!nv_connector->native_mode ||
191 	    nv_connector->scaling_mode == DRM_MODE_SCALE_NONE ||
192 	    mode->hdisplay > nv_connector->native_mode->hdisplay ||
193 	    mode->vdisplay > nv_connector->native_mode->vdisplay) {
194 		nv_encoder->mode = *adjusted_mode;
195 
196 	} else {
197 		nv_encoder->mode = *nv_connector->native_mode;
198 		adjusted_mode->clock = nv_connector->native_mode->clock;
199 	}
200 
201 	return true;
202 }
203 
204 static void nv04_dfp_prepare_sel_clk(struct drm_device *dev,
205 				     struct nouveau_encoder *nv_encoder, int head)
206 {
207 	struct nv04_mode_state *state = &nv04_display(dev)->mode_reg;
208 	uint32_t bits1618 = nv_encoder->dcb->or & DCB_OUTPUT_A ? 0x10000 : 0x40000;
209 
210 	if (nv_encoder->dcb->location != DCB_LOC_ON_CHIP)
211 		return;
212 
213 	/* SEL_CLK is only used on the primary ramdac
214 	 * It toggles spread spectrum PLL output and sets the bindings of PLLs
215 	 * to heads on digital outputs
216 	 */
217 	if (head)
218 		state->sel_clk |= bits1618;
219 	else
220 		state->sel_clk &= ~bits1618;
221 
222 	/* nv30:
223 	 *	bit 0		NVClk spread spectrum on/off
224 	 *	bit 2		MemClk spread spectrum on/off
225 	 * 	bit 4		PixClk1 spread spectrum on/off toggle
226 	 * 	bit 6		PixClk2 spread spectrum on/off toggle
227 	 *
228 	 * nv40 (observations from bios behaviour and mmio traces):
229 	 * 	bits 4&6	as for nv30
230 	 * 	bits 5&7	head dependent as for bits 4&6, but do not appear with 4&6;
231 	 * 			maybe a different spread mode
232 	 * 	bits 8&10	seen on dual-link dvi outputs, purpose unknown (set by POST scripts)
233 	 * 	The logic behind turning spread spectrum on/off in the first place,
234 	 * 	and which bit-pair to use, is unclear on nv40 (for earlier cards, the fp table
235 	 * 	entry has the necessary info)
236 	 */
237 	if (nv_encoder->dcb->type == DCB_OUTPUT_LVDS && nv04_display(dev)->saved_reg.sel_clk & 0xf0) {
238 		int shift = (nv04_display(dev)->saved_reg.sel_clk & 0x50) ? 0 : 1;
239 
240 		state->sel_clk &= ~0xf0;
241 		state->sel_clk |= (head ? 0x40 : 0x10) << shift;
242 	}
243 }
244 
245 static void nv04_dfp_prepare(struct drm_encoder *encoder)
246 {
247 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
248 	const struct drm_encoder_helper_funcs *helper = encoder->helper_private;
249 	struct drm_device *dev = encoder->dev;
250 	int head = nouveau_crtc(encoder->crtc)->index;
251 	struct nv04_crtc_reg *crtcstate = nv04_display(dev)->mode_reg.crtc_reg;
252 	uint8_t *cr_lcd = &crtcstate[head].CRTC[NV_CIO_CRE_LCD__INDEX];
253 	uint8_t *cr_lcd_oth = &crtcstate[head ^ 1].CRTC[NV_CIO_CRE_LCD__INDEX];
254 
255 	helper->dpms(encoder, DRM_MODE_DPMS_OFF);
256 
257 	nv04_dfp_prepare_sel_clk(dev, nv_encoder, head);
258 
259 	*cr_lcd = (*cr_lcd & ~NV_CIO_CRE_LCD_ROUTE_MASK) | 0x3;
260 
261 	if (nv_two_heads(dev)) {
262 		if (nv_encoder->dcb->location == DCB_LOC_ON_CHIP)
263 			*cr_lcd |= head ? 0x0 : 0x8;
264 		else {
265 			*cr_lcd |= (nv_encoder->dcb->or << 4) & 0x30;
266 			if (nv_encoder->dcb->type == DCB_OUTPUT_LVDS)
267 				*cr_lcd |= 0x30;
268 			if ((*cr_lcd & 0x30) == (*cr_lcd_oth & 0x30)) {
269 				/* avoid being connected to both crtcs */
270 				*cr_lcd_oth &= ~0x30;
271 				NVWriteVgaCrtc(dev, head ^ 1,
272 					       NV_CIO_CRE_LCD__INDEX,
273 					       *cr_lcd_oth);
274 			}
275 		}
276 	}
277 }
278 
279 
280 static void nv04_dfp_mode_set(struct drm_encoder *encoder,
281 			      struct drm_display_mode *mode,
282 			      struct drm_display_mode *adjusted_mode)
283 {
284 	struct drm_device *dev = encoder->dev;
285 	struct nvif_object *device = &nouveau_drm(dev)->client.device.object;
286 	struct nouveau_drm *drm = nouveau_drm(dev);
287 	struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
288 	struct nv04_crtc_reg *regp = &nv04_display(dev)->mode_reg.crtc_reg[nv_crtc->index];
289 	struct nv04_crtc_reg *savep = &nv04_display(dev)->saved_reg.crtc_reg[nv_crtc->index];
290 	struct nouveau_connector *nv_connector = nouveau_crtc_connector_get(nv_crtc);
291 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
292 	struct drm_display_mode *output_mode = &nv_encoder->mode;
293 	struct drm_connector *connector = &nv_connector->base;
294 	const struct drm_framebuffer *fb = encoder->crtc->primary->fb;
295 	uint32_t mode_ratio, panel_ratio;
296 
297 	NV_DEBUG(drm, "Output mode on CRTC %d:\n", nv_crtc->index);
298 	drm_mode_debug_printmodeline(output_mode);
299 
300 	/* Initialize the FP registers in this CRTC. */
301 	regp->fp_horiz_regs[FP_DISPLAY_END] = output_mode->hdisplay - 1;
302 	regp->fp_horiz_regs[FP_TOTAL] = output_mode->htotal - 1;
303 	if (!nv_gf4_disp_arch(dev) ||
304 	    (output_mode->hsync_start - output_mode->hdisplay) >=
305 					drm->vbios.digital_min_front_porch)
306 		regp->fp_horiz_regs[FP_CRTC] = output_mode->hdisplay;
307 	else
308 		regp->fp_horiz_regs[FP_CRTC] = output_mode->hsync_start - drm->vbios.digital_min_front_porch - 1;
309 	regp->fp_horiz_regs[FP_SYNC_START] = output_mode->hsync_start - 1;
310 	regp->fp_horiz_regs[FP_SYNC_END] = output_mode->hsync_end - 1;
311 	regp->fp_horiz_regs[FP_VALID_START] = output_mode->hskew;
312 	regp->fp_horiz_regs[FP_VALID_END] = output_mode->hdisplay - 1;
313 
314 	regp->fp_vert_regs[FP_DISPLAY_END] = output_mode->vdisplay - 1;
315 	regp->fp_vert_regs[FP_TOTAL] = output_mode->vtotal - 1;
316 	regp->fp_vert_regs[FP_CRTC] = output_mode->vtotal - 5 - 1;
317 	regp->fp_vert_regs[FP_SYNC_START] = output_mode->vsync_start - 1;
318 	regp->fp_vert_regs[FP_SYNC_END] = output_mode->vsync_end - 1;
319 	regp->fp_vert_regs[FP_VALID_START] = 0;
320 	regp->fp_vert_regs[FP_VALID_END] = output_mode->vdisplay - 1;
321 
322 	/* bit26: a bit seen on some g7x, no as yet discernable purpose */
323 	regp->fp_control = NV_PRAMDAC_FP_TG_CONTROL_DISPEN_POS |
324 			   (savep->fp_control & (1 << 26 | NV_PRAMDAC_FP_TG_CONTROL_READ_PROG));
325 	/* Deal with vsync/hsync polarity */
326 	/* LVDS screens do set this, but modes with +ve syncs are very rare */
327 	if (output_mode->flags & DRM_MODE_FLAG_PVSYNC)
328 		regp->fp_control |= NV_PRAMDAC_FP_TG_CONTROL_VSYNC_POS;
329 	if (output_mode->flags & DRM_MODE_FLAG_PHSYNC)
330 		regp->fp_control |= NV_PRAMDAC_FP_TG_CONTROL_HSYNC_POS;
331 	/* panel scaling first, as native would get set otherwise */
332 	if (nv_connector->scaling_mode == DRM_MODE_SCALE_NONE ||
333 	    nv_connector->scaling_mode == DRM_MODE_SCALE_CENTER)	/* panel handles it */
334 		regp->fp_control |= NV_PRAMDAC_FP_TG_CONTROL_MODE_CENTER;
335 	else if (adjusted_mode->hdisplay == output_mode->hdisplay &&
336 		 adjusted_mode->vdisplay == output_mode->vdisplay) /* native mode */
337 		regp->fp_control |= NV_PRAMDAC_FP_TG_CONTROL_MODE_NATIVE;
338 	else /* gpu needs to scale */
339 		regp->fp_control |= NV_PRAMDAC_FP_TG_CONTROL_MODE_SCALE;
340 	if (nvif_rd32(device, NV_PEXTDEV_BOOT_0) & NV_PEXTDEV_BOOT_0_STRAP_FP_IFACE_12BIT)
341 		regp->fp_control |= NV_PRAMDAC_FP_TG_CONTROL_WIDTH_12;
342 	if (nv_encoder->dcb->location != DCB_LOC_ON_CHIP &&
343 	    output_mode->clock > 165000)
344 		regp->fp_control |= (2 << 24);
345 	if (nv_encoder->dcb->type == DCB_OUTPUT_LVDS) {
346 		bool duallink = false, dummy;
347 		if (nv_connector->edid &&
348 		    nv_connector->type == DCB_CONNECTOR_LVDS_SPWG) {
349 			duallink = (((u8 *)nv_connector->edid)[121] == 2);
350 		} else {
351 			nouveau_bios_parse_lvds_table(dev, output_mode->clock,
352 						      &duallink, &dummy);
353 		}
354 
355 		if (duallink)
356 			regp->fp_control |= (8 << 28);
357 	} else
358 	if (output_mode->clock > 165000)
359 		regp->fp_control |= (8 << 28);
360 
361 	regp->fp_debug_0 = NV_PRAMDAC_FP_DEBUG_0_YWEIGHT_ROUND |
362 			   NV_PRAMDAC_FP_DEBUG_0_XWEIGHT_ROUND |
363 			   NV_PRAMDAC_FP_DEBUG_0_YINTERP_BILINEAR |
364 			   NV_PRAMDAC_FP_DEBUG_0_XINTERP_BILINEAR |
365 			   NV_RAMDAC_FP_DEBUG_0_TMDS_ENABLED |
366 			   NV_PRAMDAC_FP_DEBUG_0_YSCALE_ENABLE |
367 			   NV_PRAMDAC_FP_DEBUG_0_XSCALE_ENABLE;
368 
369 	/* We want automatic scaling */
370 	regp->fp_debug_1 = 0;
371 	/* This can override HTOTAL and VTOTAL */
372 	regp->fp_debug_2 = 0;
373 
374 	/* Use 20.12 fixed point format to avoid floats */
375 	mode_ratio = (1 << 12) * adjusted_mode->hdisplay / adjusted_mode->vdisplay;
376 	panel_ratio = (1 << 12) * output_mode->hdisplay / output_mode->vdisplay;
377 	/* if ratios are equal, SCALE_ASPECT will automatically (and correctly)
378 	 * get treated the same as SCALE_FULLSCREEN */
379 	if (nv_connector->scaling_mode == DRM_MODE_SCALE_ASPECT &&
380 	    mode_ratio != panel_ratio) {
381 		uint32_t diff, scale;
382 		bool divide_by_2 = nv_gf4_disp_arch(dev);
383 
384 		if (mode_ratio < panel_ratio) {
385 			/* vertical needs to expand to glass size (automatic)
386 			 * horizontal needs to be scaled at vertical scale factor
387 			 * to maintain aspect */
388 
389 			scale = (1 << 12) * adjusted_mode->vdisplay / output_mode->vdisplay;
390 			regp->fp_debug_1 = NV_PRAMDAC_FP_DEBUG_1_XSCALE_TESTMODE_ENABLE |
391 					   XLATE(scale, divide_by_2, NV_PRAMDAC_FP_DEBUG_1_XSCALE_VALUE);
392 
393 			/* restrict area of screen used, horizontally */
394 			diff = output_mode->hdisplay -
395 			       output_mode->vdisplay * mode_ratio / (1 << 12);
396 			regp->fp_horiz_regs[FP_VALID_START] += diff / 2;
397 			regp->fp_horiz_regs[FP_VALID_END] -= diff / 2;
398 		}
399 
400 		if (mode_ratio > panel_ratio) {
401 			/* horizontal needs to expand to glass size (automatic)
402 			 * vertical needs to be scaled at horizontal scale factor
403 			 * to maintain aspect */
404 
405 			scale = (1 << 12) * adjusted_mode->hdisplay / output_mode->hdisplay;
406 			regp->fp_debug_1 = NV_PRAMDAC_FP_DEBUG_1_YSCALE_TESTMODE_ENABLE |
407 					   XLATE(scale, divide_by_2, NV_PRAMDAC_FP_DEBUG_1_YSCALE_VALUE);
408 
409 			/* restrict area of screen used, vertically */
410 			diff = output_mode->vdisplay -
411 			       (1 << 12) * output_mode->hdisplay / mode_ratio;
412 			regp->fp_vert_regs[FP_VALID_START] += diff / 2;
413 			regp->fp_vert_regs[FP_VALID_END] -= diff / 2;
414 		}
415 	}
416 
417 	/* Output property. */
418 	if ((nv_connector->dithering_mode == DITHERING_MODE_ON) ||
419 	    (nv_connector->dithering_mode == DITHERING_MODE_AUTO &&
420 	     fb->format->depth > connector->display_info.bpc * 3)) {
421 		if (drm->client.device.info.chipset == 0x11)
422 			regp->dither = savep->dither | 0x00010000;
423 		else {
424 			int i;
425 			regp->dither = savep->dither | 0x00000001;
426 			for (i = 0; i < 3; i++) {
427 				regp->dither_regs[i] = 0xe4e4e4e4;
428 				regp->dither_regs[i + 3] = 0x44444444;
429 			}
430 		}
431 	} else {
432 		if (drm->client.device.info.chipset != 0x11) {
433 			/* reset them */
434 			int i;
435 			for (i = 0; i < 3; i++) {
436 				regp->dither_regs[i] = savep->dither_regs[i];
437 				regp->dither_regs[i + 3] = savep->dither_regs[i + 3];
438 			}
439 		}
440 		regp->dither = savep->dither;
441 	}
442 
443 	regp->fp_margin_color = 0;
444 }
445 
446 static void nv04_dfp_commit(struct drm_encoder *encoder)
447 {
448 	struct drm_device *dev = encoder->dev;
449 	struct nouveau_drm *drm = nouveau_drm(dev);
450 	const struct drm_encoder_helper_funcs *helper = encoder->helper_private;
451 	struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
452 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
453 	struct dcb_output *dcbe = nv_encoder->dcb;
454 	int head = nouveau_crtc(encoder->crtc)->index;
455 	struct drm_encoder *slave_encoder;
456 
457 	if (dcbe->type == DCB_OUTPUT_TMDS)
458 		run_tmds_table(dev, dcbe, head, nv_encoder->mode.clock);
459 	else if (dcbe->type == DCB_OUTPUT_LVDS)
460 		call_lvds_script(dev, dcbe, head, LVDS_RESET, nv_encoder->mode.clock);
461 
462 	/* update fp_control state for any changes made by scripts,
463 	 * so correct value is written at DPMS on */
464 	nv04_display(dev)->mode_reg.crtc_reg[head].fp_control =
465 		NVReadRAMDAC(dev, head, NV_PRAMDAC_FP_TG_CONTROL);
466 
467 	/* This could use refinement for flatpanels, but it should work this way */
468 	if (drm->client.device.info.chipset < 0x44)
469 		NVWriteRAMDAC(dev, 0, NV_PRAMDAC_TEST_CONTROL + nv04_dac_output_offset(encoder), 0xf0000000);
470 	else
471 		NVWriteRAMDAC(dev, 0, NV_PRAMDAC_TEST_CONTROL + nv04_dac_output_offset(encoder), 0x00100000);
472 
473 	/* Init external transmitters */
474 	slave_encoder = get_tmds_slave(encoder);
475 	if (slave_encoder)
476 		get_slave_funcs(slave_encoder)->mode_set(
477 			slave_encoder, &nv_encoder->mode, &nv_encoder->mode);
478 
479 	helper->dpms(encoder, DRM_MODE_DPMS_ON);
480 
481 	NV_DEBUG(drm, "Output %s is running on CRTC %d using output %c\n",
482 		 nv04_encoder_get_connector(nv_encoder)->base.name,
483 		 nv_crtc->index, '@' + ffs(nv_encoder->dcb->or));
484 }
485 
486 static void nv04_dfp_update_backlight(struct drm_encoder *encoder, int mode)
487 {
488 #ifdef __powerpc__
489 	struct drm_device *dev = encoder->dev;
490 	struct nvif_object *device = &nouveau_drm(dev)->client.device.object;
491 	struct pci_dev *pdev = to_pci_dev(dev->dev);
492 
493 	/* BIOS scripts usually take care of the backlight, thanks
494 	 * Apple for your consistency.
495 	 */
496 	if (pdev->device == 0x0174 || pdev->device == 0x0179 ||
497 	    pdev->device == 0x0189 || pdev->device == 0x0329) {
498 		if (mode == DRM_MODE_DPMS_ON) {
499 			nvif_mask(device, NV_PBUS_DEBUG_DUALHEAD_CTL, 1 << 31, 1 << 31);
500 			nvif_mask(device, NV_PCRTC_GPIO_EXT, 3, 1);
501 		} else {
502 			nvif_mask(device, NV_PBUS_DEBUG_DUALHEAD_CTL, 1 << 31, 0);
503 			nvif_mask(device, NV_PCRTC_GPIO_EXT, 3, 0);
504 		}
505 	}
506 #endif
507 }
508 
509 static inline bool is_powersaving_dpms(int mode)
510 {
511 	return mode != DRM_MODE_DPMS_ON && mode != NV_DPMS_CLEARED;
512 }
513 
514 static void nv04_lvds_dpms(struct drm_encoder *encoder, int mode)
515 {
516 	struct drm_device *dev = encoder->dev;
517 	struct drm_crtc *crtc = encoder->crtc;
518 	struct nouveau_drm *drm = nouveau_drm(dev);
519 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
520 	bool was_powersaving = is_powersaving_dpms(nv_encoder->last_dpms);
521 
522 	if (nv_encoder->last_dpms == mode)
523 		return;
524 	nv_encoder->last_dpms = mode;
525 
526 	NV_DEBUG(drm, "Setting dpms mode %d on lvds encoder (output %d)\n",
527 		 mode, nv_encoder->dcb->index);
528 
529 	if (was_powersaving && is_powersaving_dpms(mode))
530 		return;
531 
532 	if (nv_encoder->dcb->lvdsconf.use_power_scripts) {
533 		/* when removing an output, crtc may not be set, but PANEL_OFF
534 		 * must still be run
535 		 */
536 		int head = crtc ? nouveau_crtc(crtc)->index :
537 			   nv04_dfp_get_bound_head(dev, nv_encoder->dcb);
538 
539 		if (mode == DRM_MODE_DPMS_ON) {
540 			call_lvds_script(dev, nv_encoder->dcb, head,
541 					 LVDS_PANEL_ON, nv_encoder->mode.clock);
542 		} else
543 			/* pxclk of 0 is fine for PANEL_OFF, and for a
544 			 * disconnected LVDS encoder there is no native_mode
545 			 */
546 			call_lvds_script(dev, nv_encoder->dcb, head,
547 					 LVDS_PANEL_OFF, 0);
548 	}
549 
550 	nv04_dfp_update_backlight(encoder, mode);
551 	nv04_dfp_update_fp_control(encoder, mode);
552 
553 	if (mode == DRM_MODE_DPMS_ON)
554 		nv04_dfp_prepare_sel_clk(dev, nv_encoder, nouveau_crtc(crtc)->index);
555 	else {
556 		nv04_display(dev)->mode_reg.sel_clk = NVReadRAMDAC(dev, 0, NV_PRAMDAC_SEL_CLK);
557 		nv04_display(dev)->mode_reg.sel_clk &= ~0xf0;
558 	}
559 	NVWriteRAMDAC(dev, 0, NV_PRAMDAC_SEL_CLK, nv04_display(dev)->mode_reg.sel_clk);
560 }
561 
562 static void nv04_tmds_dpms(struct drm_encoder *encoder, int mode)
563 {
564 	struct nouveau_drm *drm = nouveau_drm(encoder->dev);
565 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
566 
567 	if (nv_encoder->last_dpms == mode)
568 		return;
569 	nv_encoder->last_dpms = mode;
570 
571 	NV_DEBUG(drm, "Setting dpms mode %d on tmds encoder (output %d)\n",
572 		 mode, nv_encoder->dcb->index);
573 
574 	nv04_dfp_update_backlight(encoder, mode);
575 	nv04_dfp_update_fp_control(encoder, mode);
576 }
577 
578 static void nv04_dfp_save(struct drm_encoder *encoder)
579 {
580 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
581 	struct drm_device *dev = encoder->dev;
582 
583 	if (nv_two_heads(dev))
584 		nv_encoder->restore.head =
585 			nv04_dfp_get_bound_head(dev, nv_encoder->dcb);
586 }
587 
588 static void nv04_dfp_restore(struct drm_encoder *encoder)
589 {
590 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
591 	struct drm_device *dev = encoder->dev;
592 	int head = nv_encoder->restore.head;
593 
594 	if (nv_encoder->dcb->type == DCB_OUTPUT_LVDS) {
595 		struct nouveau_connector *connector =
596 			nv04_encoder_get_connector(nv_encoder);
597 
598 		if (connector && connector->native_mode)
599 			call_lvds_script(dev, nv_encoder->dcb, head,
600 					 LVDS_PANEL_ON,
601 					 connector->native_mode->clock);
602 
603 	} else if (nv_encoder->dcb->type == DCB_OUTPUT_TMDS) {
604 		int clock = nouveau_hw_pllvals_to_clk
605 					(&nv04_display(dev)->saved_reg.crtc_reg[head].pllvals);
606 
607 		run_tmds_table(dev, nv_encoder->dcb, head, clock);
608 	}
609 
610 	nv_encoder->last_dpms = NV_DPMS_CLEARED;
611 }
612 
613 static void nv04_dfp_destroy(struct drm_encoder *encoder)
614 {
615 	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
616 
617 	if (get_slave_funcs(encoder))
618 		get_slave_funcs(encoder)->destroy(encoder);
619 
620 	drm_encoder_cleanup(encoder);
621 	kfree(nv_encoder);
622 }
623 
624 static void nv04_tmds_slave_init(struct drm_encoder *encoder)
625 {
626 	struct drm_device *dev = encoder->dev;
627 	struct dcb_output *dcb = nouveau_encoder(encoder)->dcb;
628 	struct nouveau_drm *drm = nouveau_drm(dev);
629 	struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device);
630 	struct nvkm_i2c_bus *bus = nvkm_i2c_bus_find(i2c, NVKM_I2C_BUS_PRI);
631 	struct nvkm_i2c_bus_probe info[] = {
632 		{
633 		    {
634 		        .type = "sil164",
635 		        .addr = (dcb->tmdsconf.slave_addr == 0x7 ? 0x3a : 0x38),
636 		        .platform_data = &(struct sil164_encoder_params) {
637 		            SIL164_INPUT_EDGE_RISING
638 		         }
639 		    }, 0
640 		},
641 		{ }
642 	};
643 	int type;
644 
645 	if (!nv_gf4_disp_arch(dev) || !bus || get_tmds_slave(encoder))
646 		return;
647 
648 	type = nvkm_i2c_bus_probe(bus, "TMDS transmitter", info, NULL, NULL);
649 	if (type < 0)
650 		return;
651 
652 	drm_i2c_encoder_init(dev, to_encoder_slave(encoder),
653 			     &bus->i2c, &info[type].dev);
654 }
655 
656 static const struct drm_encoder_helper_funcs nv04_lvds_helper_funcs = {
657 	.dpms = nv04_lvds_dpms,
658 	.mode_fixup = nv04_dfp_mode_fixup,
659 	.prepare = nv04_dfp_prepare,
660 	.commit = nv04_dfp_commit,
661 	.mode_set = nv04_dfp_mode_set,
662 	.detect = NULL,
663 };
664 
665 static const struct drm_encoder_helper_funcs nv04_tmds_helper_funcs = {
666 	.dpms = nv04_tmds_dpms,
667 	.mode_fixup = nv04_dfp_mode_fixup,
668 	.prepare = nv04_dfp_prepare,
669 	.commit = nv04_dfp_commit,
670 	.mode_set = nv04_dfp_mode_set,
671 	.detect = NULL,
672 };
673 
674 static const struct drm_encoder_funcs nv04_dfp_funcs = {
675 	.destroy = nv04_dfp_destroy,
676 };
677 
678 int
679 nv04_dfp_create(struct drm_connector *connector, struct dcb_output *entry)
680 {
681 	const struct drm_encoder_helper_funcs *helper;
682 	struct nouveau_encoder *nv_encoder = NULL;
683 	struct drm_encoder *encoder;
684 	int type;
685 
686 	switch (entry->type) {
687 	case DCB_OUTPUT_TMDS:
688 		type = DRM_MODE_ENCODER_TMDS;
689 		helper = &nv04_tmds_helper_funcs;
690 		break;
691 	case DCB_OUTPUT_LVDS:
692 		type = DRM_MODE_ENCODER_LVDS;
693 		helper = &nv04_lvds_helper_funcs;
694 		break;
695 	default:
696 		return -EINVAL;
697 	}
698 
699 	nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
700 	if (!nv_encoder)
701 		return -ENOMEM;
702 
703 	nv_encoder->enc_save = nv04_dfp_save;
704 	nv_encoder->enc_restore = nv04_dfp_restore;
705 
706 	encoder = to_drm_encoder(nv_encoder);
707 
708 	nv_encoder->dcb = entry;
709 	nv_encoder->or = ffs(entry->or) - 1;
710 
711 	drm_encoder_init(connector->dev, encoder, &nv04_dfp_funcs, type, NULL);
712 	drm_encoder_helper_add(encoder, helper);
713 
714 	encoder->possible_crtcs = entry->heads;
715 	encoder->possible_clones = 0;
716 
717 	if (entry->type == DCB_OUTPUT_TMDS &&
718 	    entry->location != DCB_LOC_ON_CHIP)
719 		nv04_tmds_slave_init(encoder);
720 
721 	drm_connector_attach_encoder(connector, encoder);
722 	return 0;
723 }
724