1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * Copyright (C) 2013 Red Hat 4 * Author: Rob Clark <robdclark@gmail.com> 5 */ 6 7 #ifndef __MSM_GPU_H__ 8 #define __MSM_GPU_H__ 9 10 #include <linux/adreno-smmu-priv.h> 11 #include <linux/clk.h> 12 #include <linux/devfreq.h> 13 #include <linux/interconnect.h> 14 #include <linux/pm_opp.h> 15 #include <linux/regulator/consumer.h> 16 17 #include "msm_drv.h" 18 #include "msm_fence.h" 19 #include "msm_ringbuffer.h" 20 #include "msm_gem.h" 21 22 struct msm_gem_submit; 23 struct msm_gpu_perfcntr; 24 struct msm_gpu_state; 25 struct msm_file_private; 26 27 struct msm_gpu_config { 28 const char *ioname; 29 unsigned int nr_rings; 30 }; 31 32 /* So far, with hardware that I've seen to date, we can have: 33 * + zero, one, or two z180 2d cores 34 * + a3xx or a2xx 3d core, which share a common CP (the firmware 35 * for the CP seems to implement some different PM4 packet types 36 * but the basics of cmdstream submission are the same) 37 * 38 * Which means that the eventual complete "class" hierarchy, once 39 * support for all past and present hw is in place, becomes: 40 * + msm_gpu 41 * + adreno_gpu 42 * + a3xx_gpu 43 * + a2xx_gpu 44 * + z180_gpu 45 */ 46 struct msm_gpu_funcs { 47 int (*get_param)(struct msm_gpu *gpu, struct msm_file_private *ctx, 48 uint32_t param, uint64_t *value, uint32_t *len); 49 int (*set_param)(struct msm_gpu *gpu, struct msm_file_private *ctx, 50 uint32_t param, uint64_t value, uint32_t len); 51 int (*hw_init)(struct msm_gpu *gpu); 52 53 /** 54 * @ucode_load: Optional hook to upload fw to GEM objs 55 */ 56 int (*ucode_load)(struct msm_gpu *gpu); 57 58 int (*pm_suspend)(struct msm_gpu *gpu); 59 int (*pm_resume)(struct msm_gpu *gpu); 60 void (*submit)(struct msm_gpu *gpu, struct msm_gem_submit *submit); 61 void (*flush)(struct msm_gpu *gpu, struct msm_ringbuffer *ring); 62 irqreturn_t (*irq)(struct msm_gpu *irq); 63 struct msm_ringbuffer *(*active_ring)(struct msm_gpu *gpu); 64 void (*recover)(struct msm_gpu *gpu); 65 void (*destroy)(struct msm_gpu *gpu); 66 #if defined(CONFIG_DEBUG_FS) || defined(CONFIG_DEV_COREDUMP) 67 /* show GPU status in debugfs: */ 68 void (*show)(struct msm_gpu *gpu, struct msm_gpu_state *state, 69 struct drm_printer *p); 70 /* for generation specific debugfs: */ 71 void (*debugfs_init)(struct msm_gpu *gpu, struct drm_minor *minor); 72 #endif 73 /* note: gpu_busy() can assume that we have been pm_resumed */ 74 u64 (*gpu_busy)(struct msm_gpu *gpu, unsigned long *out_sample_rate); 75 struct msm_gpu_state *(*gpu_state_get)(struct msm_gpu *gpu); 76 int (*gpu_state_put)(struct msm_gpu_state *state); 77 unsigned long (*gpu_get_freq)(struct msm_gpu *gpu); 78 /* note: gpu_set_freq() can assume that we have been pm_resumed */ 79 void (*gpu_set_freq)(struct msm_gpu *gpu, struct dev_pm_opp *opp, 80 bool suspended); 81 struct msm_gem_address_space *(*create_address_space) 82 (struct msm_gpu *gpu, struct platform_device *pdev); 83 struct msm_gem_address_space *(*create_private_address_space) 84 (struct msm_gpu *gpu); 85 uint32_t (*get_rptr)(struct msm_gpu *gpu, struct msm_ringbuffer *ring); 86 87 /** 88 * progress: Has the GPU made progress? 89 * 90 * Return true if GPU position in cmdstream has advanced (or changed) 91 * since the last call. To avoid false negatives, this should account 92 * for cmdstream that is buffered in this FIFO upstream of the CP fw. 93 */ 94 bool (*progress)(struct msm_gpu *gpu, struct msm_ringbuffer *ring); 95 }; 96 97 /* Additional state for iommu faults: */ 98 struct msm_gpu_fault_info { 99 u64 ttbr0; 100 unsigned long iova; 101 int flags; 102 const char *type; 103 const char *block; 104 }; 105 106 /** 107 * struct msm_gpu_devfreq - devfreq related state 108 */ 109 struct msm_gpu_devfreq { 110 /** devfreq: devfreq instance */ 111 struct devfreq *devfreq; 112 113 /** lock: lock for "suspended", "busy_cycles", and "time" */ 114 struct mutex lock; 115 116 /** 117 * idle_freq: 118 * 119 * Shadow frequency used while the GPU is idle. From the PoV of 120 * the devfreq governor, we are continuing to sample busyness and 121 * adjust frequency while the GPU is idle, but we use this shadow 122 * value as the GPU is actually clamped to minimum frequency while 123 * it is inactive. 124 */ 125 unsigned long idle_freq; 126 127 /** 128 * boost_constraint: 129 * 130 * A PM QoS constraint to boost min freq for a period of time 131 * until the boost expires. 132 */ 133 struct dev_pm_qos_request boost_freq; 134 135 /** 136 * busy_cycles: Last busy counter value, for calculating elapsed busy 137 * cycles since last sampling period. 138 */ 139 u64 busy_cycles; 140 141 /** time: Time of last sampling period. */ 142 ktime_t time; 143 144 /** idle_time: Time of last transition to idle: */ 145 ktime_t idle_time; 146 147 /** 148 * idle_work: 149 * 150 * Used to delay clamping to idle freq on active->idle transition. 151 */ 152 struct msm_hrtimer_work idle_work; 153 154 /** 155 * boost_work: 156 * 157 * Used to reset the boost_constraint after the boost period has 158 * elapsed 159 */ 160 struct msm_hrtimer_work boost_work; 161 162 /** suspended: tracks if we're suspended */ 163 bool suspended; 164 }; 165 166 struct msm_gpu { 167 const char *name; 168 struct drm_device *dev; 169 struct platform_device *pdev; 170 const struct msm_gpu_funcs *funcs; 171 172 struct adreno_smmu_priv adreno_smmu; 173 174 /* performance counters (hw & sw): */ 175 spinlock_t perf_lock; 176 bool perfcntr_active; 177 struct { 178 bool active; 179 ktime_t time; 180 } last_sample; 181 uint32_t totaltime, activetime; /* sw counters */ 182 uint32_t last_cntrs[5]; /* hw counters */ 183 const struct msm_gpu_perfcntr *perfcntrs; 184 uint32_t num_perfcntrs; 185 186 struct msm_ringbuffer *rb[MSM_GPU_MAX_RINGS]; 187 int nr_rings; 188 189 /** 190 * sysprof_active: 191 * 192 * The count of contexts that have enabled system profiling. 193 */ 194 refcount_t sysprof_active; 195 196 /** 197 * cur_ctx_seqno: 198 * 199 * The ctx->seqno value of the last context to submit rendering, 200 * and the one with current pgtables installed (for generations 201 * that support per-context pgtables). Tracked by seqno rather 202 * than pointer value to avoid dangling pointers, and cases where 203 * a ctx can be freed and a new one created with the same address. 204 */ 205 int cur_ctx_seqno; 206 207 /** 208 * lock: 209 * 210 * General lock for serializing all the gpu things. 211 * 212 * TODO move to per-ring locking where feasible (ie. submit/retire 213 * path, etc) 214 */ 215 struct mutex lock; 216 217 /** 218 * active_submits: 219 * 220 * The number of submitted but not yet retired submits, used to 221 * determine transitions between active and idle. 222 * 223 * Protected by active_lock 224 */ 225 int active_submits; 226 227 /** lock: protects active_submits and idle/active transitions */ 228 struct mutex active_lock; 229 230 /* does gpu need hw_init? */ 231 bool needs_hw_init; 232 233 /** 234 * global_faults: number of GPU hangs not attributed to a particular 235 * address space 236 */ 237 int global_faults; 238 239 void __iomem *mmio; 240 int irq; 241 242 struct msm_gem_address_space *aspace; 243 244 /* Power Control: */ 245 struct regulator *gpu_reg, *gpu_cx; 246 struct clk_bulk_data *grp_clks; 247 int nr_clocks; 248 struct clk *ebi1_clk, *core_clk, *rbbmtimer_clk; 249 uint32_t fast_rate; 250 251 /* Hang and Inactivity Detection: 252 */ 253 #define DRM_MSM_INACTIVE_PERIOD 66 /* in ms (roughly four frames) */ 254 255 #define DRM_MSM_HANGCHECK_DEFAULT_PERIOD 500 /* in ms */ 256 #define DRM_MSM_HANGCHECK_PROGRESS_RETRIES 3 257 struct timer_list hangcheck_timer; 258 259 /* Fault info for most recent iova fault: */ 260 struct msm_gpu_fault_info fault_info; 261 262 /* work for handling GPU ioval faults: */ 263 struct kthread_work fault_work; 264 265 /* work for handling GPU recovery: */ 266 struct kthread_work recover_work; 267 268 /** retire_event: notified when submits are retired: */ 269 wait_queue_head_t retire_event; 270 271 /* work for handling active-list retiring: */ 272 struct kthread_work retire_work; 273 274 /* worker for retire/recover: */ 275 struct kthread_worker *worker; 276 277 struct drm_gem_object *memptrs_bo; 278 279 struct msm_gpu_devfreq devfreq; 280 281 uint32_t suspend_count; 282 283 struct msm_gpu_state *crashstate; 284 285 /* True if the hardware supports expanded apriv (a650 and newer) */ 286 bool hw_apriv; 287 288 /** 289 * @allow_relocs: allow relocs in SUBMIT ioctl 290 * 291 * Mesa won't use relocs for driver version 1.4.0 and later. This 292 * switch-over happened early enough in mesa a6xx bringup that we 293 * can disallow relocs for a6xx and newer. 294 */ 295 bool allow_relocs; 296 297 struct thermal_cooling_device *cooling; 298 }; 299 300 static inline struct msm_gpu *dev_to_gpu(struct device *dev) 301 { 302 struct adreno_smmu_priv *adreno_smmu = dev_get_drvdata(dev); 303 304 if (!adreno_smmu) 305 return NULL; 306 307 return container_of(adreno_smmu, struct msm_gpu, adreno_smmu); 308 } 309 310 /* It turns out that all targets use the same ringbuffer size */ 311 #define MSM_GPU_RINGBUFFER_SZ SZ_32K 312 #define MSM_GPU_RINGBUFFER_BLKSIZE 32 313 314 #define MSM_GPU_RB_CNTL_DEFAULT \ 315 (AXXX_CP_RB_CNTL_BUFSZ(ilog2(MSM_GPU_RINGBUFFER_SZ / 8)) | \ 316 AXXX_CP_RB_CNTL_BLKSZ(ilog2(MSM_GPU_RINGBUFFER_BLKSIZE / 8))) 317 318 static inline bool msm_gpu_active(struct msm_gpu *gpu) 319 { 320 int i; 321 322 for (i = 0; i < gpu->nr_rings; i++) { 323 struct msm_ringbuffer *ring = gpu->rb[i]; 324 325 if (fence_after(ring->fctx->last_fence, ring->memptrs->fence)) 326 return true; 327 } 328 329 return false; 330 } 331 332 /* Perf-Counters: 333 * The select_reg and select_val are just there for the benefit of the child 334 * class that actually enables the perf counter.. but msm_gpu base class 335 * will handle sampling/displaying the counters. 336 */ 337 338 struct msm_gpu_perfcntr { 339 uint32_t select_reg; 340 uint32_t sample_reg; 341 uint32_t select_val; 342 const char *name; 343 }; 344 345 /* 346 * The number of priority levels provided by drm gpu scheduler. The 347 * DRM_SCHED_PRIORITY_KERNEL priority level is treated specially in some 348 * cases, so we don't use it (no need for kernel generated jobs). 349 */ 350 #define NR_SCHED_PRIORITIES (1 + DRM_SCHED_PRIORITY_LOW - DRM_SCHED_PRIORITY_HIGH) 351 352 /** 353 * struct msm_file_private - per-drm_file context 354 * 355 * @queuelock: synchronizes access to submitqueues list 356 * @submitqueues: list of &msm_gpu_submitqueue created by userspace 357 * @queueid: counter incremented each time a submitqueue is created, 358 * used to assign &msm_gpu_submitqueue.id 359 * @aspace: the per-process GPU address-space 360 * @ref: reference count 361 * @seqno: unique per process seqno 362 */ 363 struct msm_file_private { 364 rwlock_t queuelock; 365 struct list_head submitqueues; 366 int queueid; 367 struct msm_gem_address_space *aspace; 368 struct kref ref; 369 int seqno; 370 371 /** 372 * sysprof: 373 * 374 * The value of MSM_PARAM_SYSPROF set by userspace. This is 375 * intended to be used by system profiling tools like Mesa's 376 * pps-producer (perfetto), and restricted to CAP_SYS_ADMIN. 377 * 378 * Setting a value of 1 will preserve performance counters across 379 * context switches. Setting a value of 2 will in addition 380 * suppress suspend. (Performance counters lose state across 381 * power collapse, which is undesirable for profiling in some 382 * cases.) 383 * 384 * The value automatically reverts to zero when the drm device 385 * file is closed. 386 */ 387 int sysprof; 388 389 /** 390 * comm: Overridden task comm, see MSM_PARAM_COMM 391 * 392 * Accessed under msm_gpu::lock 393 */ 394 char *comm; 395 396 /** 397 * cmdline: Overridden task cmdline, see MSM_PARAM_CMDLINE 398 * 399 * Accessed under msm_gpu::lock 400 */ 401 char *cmdline; 402 403 /** 404 * elapsed: 405 * 406 * The total (cumulative) elapsed time GPU was busy with rendering 407 * from this context in ns. 408 */ 409 uint64_t elapsed_ns; 410 411 /** 412 * cycles: 413 * 414 * The total (cumulative) GPU cycles elapsed attributed to this 415 * context. 416 */ 417 uint64_t cycles; 418 419 /** 420 * entities: 421 * 422 * Table of per-priority-level sched entities used by submitqueues 423 * associated with this &drm_file. Because some userspace apps 424 * make assumptions about rendering from multiple gl contexts 425 * (of the same priority) within the process happening in FIFO 426 * order without requiring any fencing beyond MakeCurrent(), we 427 * create at most one &drm_sched_entity per-process per-priority- 428 * level. 429 */ 430 struct drm_sched_entity *entities[NR_SCHED_PRIORITIES * MSM_GPU_MAX_RINGS]; 431 432 /** 433 * ctx_mem: 434 * 435 * Total amount of memory of GEM buffers with handles attached for 436 * this context. 437 */ 438 atomic64_t ctx_mem; 439 }; 440 441 /** 442 * msm_gpu_convert_priority - Map userspace priority to ring # and sched priority 443 * 444 * @gpu: the gpu instance 445 * @prio: the userspace priority level 446 * @ring_nr: [out] the ringbuffer the userspace priority maps to 447 * @sched_prio: [out] the gpu scheduler priority level which the userspace 448 * priority maps to 449 * 450 * With drm/scheduler providing it's own level of prioritization, our total 451 * number of available priority levels is (nr_rings * NR_SCHED_PRIORITIES). 452 * Each ring is associated with it's own scheduler instance. However, our 453 * UABI is that lower numerical values are higher priority. So mapping the 454 * single userspace priority level into ring_nr and sched_prio takes some 455 * care. The userspace provided priority (when a submitqueue is created) 456 * is mapped to ring nr and scheduler priority as such: 457 * 458 * ring_nr = userspace_prio / NR_SCHED_PRIORITIES 459 * sched_prio = NR_SCHED_PRIORITIES - 460 * (userspace_prio % NR_SCHED_PRIORITIES) - 1 461 * 462 * This allows generations without preemption (nr_rings==1) to have some 463 * amount of prioritization, and provides more priority levels for gens 464 * that do have preemption. 465 */ 466 static inline int msm_gpu_convert_priority(struct msm_gpu *gpu, int prio, 467 unsigned *ring_nr, enum drm_sched_priority *sched_prio) 468 { 469 unsigned rn, sp; 470 471 rn = div_u64_rem(prio, NR_SCHED_PRIORITIES, &sp); 472 473 /* invert sched priority to map to higher-numeric-is-higher- 474 * priority convention 475 */ 476 sp = NR_SCHED_PRIORITIES - sp - 1; 477 478 if (rn >= gpu->nr_rings) 479 return -EINVAL; 480 481 *ring_nr = rn; 482 *sched_prio = sp; 483 484 return 0; 485 } 486 487 /** 488 * struct msm_gpu_submitqueues - Userspace created context. 489 * 490 * A submitqueue is associated with a gl context or vk queue (or equiv) 491 * in userspace. 492 * 493 * @id: userspace id for the submitqueue, unique within the drm_file 494 * @flags: userspace flags for the submitqueue, specified at creation 495 * (currently unusued) 496 * @ring_nr: the ringbuffer used by this submitqueue, which is determined 497 * by the submitqueue's priority 498 * @faults: the number of GPU hangs associated with this submitqueue 499 * @last_fence: the sequence number of the last allocated fence (for error 500 * checking) 501 * @ctx: the per-drm_file context associated with the submitqueue (ie. 502 * which set of pgtables do submits jobs associated with the 503 * submitqueue use) 504 * @node: node in the context's list of submitqueues 505 * @fence_idr: maps fence-id to dma_fence for userspace visible fence 506 * seqno, protected by submitqueue lock 507 * @idr_lock: for serializing access to fence_idr 508 * @lock: submitqueue lock for serializing submits on a queue 509 * @ref: reference count 510 * @entity: the submit job-queue 511 */ 512 struct msm_gpu_submitqueue { 513 int id; 514 u32 flags; 515 u32 ring_nr; 516 int faults; 517 uint32_t last_fence; 518 struct msm_file_private *ctx; 519 struct list_head node; 520 struct idr fence_idr; 521 struct spinlock idr_lock; 522 struct mutex lock; 523 struct kref ref; 524 struct drm_sched_entity *entity; 525 }; 526 527 struct msm_gpu_state_bo { 528 u64 iova; 529 size_t size; 530 u32 flags; 531 void *data; 532 bool encoded; 533 char name[32]; 534 }; 535 536 struct msm_gpu_state { 537 struct kref ref; 538 struct timespec64 time; 539 540 struct { 541 u64 iova; 542 u32 fence; 543 u32 seqno; 544 u32 rptr; 545 u32 wptr; 546 void *data; 547 int data_size; 548 bool encoded; 549 } ring[MSM_GPU_MAX_RINGS]; 550 551 int nr_registers; 552 u32 *registers; 553 554 u32 rbbm_status; 555 556 char *comm; 557 char *cmd; 558 559 struct msm_gpu_fault_info fault_info; 560 561 int nr_bos; 562 struct msm_gpu_state_bo *bos; 563 }; 564 565 static inline void gpu_write(struct msm_gpu *gpu, u32 reg, u32 data) 566 { 567 writel(data, gpu->mmio + (reg << 2)); 568 } 569 570 static inline u32 gpu_read(struct msm_gpu *gpu, u32 reg) 571 { 572 return readl(gpu->mmio + (reg << 2)); 573 } 574 575 static inline void gpu_rmw(struct msm_gpu *gpu, u32 reg, u32 mask, u32 or) 576 { 577 msm_rmw(gpu->mmio + (reg << 2), mask, or); 578 } 579 580 static inline u64 gpu_read64(struct msm_gpu *gpu, u32 reg) 581 { 582 u64 val; 583 584 /* 585 * Why not a readq here? Two reasons: 1) many of the LO registers are 586 * not quad word aligned and 2) the GPU hardware designers have a bit 587 * of a history of putting registers where they fit, especially in 588 * spins. The longer a GPU family goes the higher the chance that 589 * we'll get burned. We could do a series of validity checks if we 590 * wanted to, but really is a readq() that much better? Nah. 591 */ 592 593 /* 594 * For some lo/hi registers (like perfcounters), the hi value is latched 595 * when the lo is read, so make sure to read the lo first to trigger 596 * that 597 */ 598 val = (u64) readl(gpu->mmio + (reg << 2)); 599 val |= ((u64) readl(gpu->mmio + ((reg + 1) << 2)) << 32); 600 601 return val; 602 } 603 604 static inline void gpu_write64(struct msm_gpu *gpu, u32 reg, u64 val) 605 { 606 /* Why not a writeq here? Read the screed above */ 607 writel(lower_32_bits(val), gpu->mmio + (reg << 2)); 608 writel(upper_32_bits(val), gpu->mmio + ((reg + 1) << 2)); 609 } 610 611 int msm_gpu_pm_suspend(struct msm_gpu *gpu); 612 int msm_gpu_pm_resume(struct msm_gpu *gpu); 613 614 void msm_gpu_show_fdinfo(struct msm_gpu *gpu, struct msm_file_private *ctx, 615 struct drm_printer *p); 616 617 int msm_submitqueue_init(struct drm_device *drm, struct msm_file_private *ctx); 618 struct msm_gpu_submitqueue *msm_submitqueue_get(struct msm_file_private *ctx, 619 u32 id); 620 int msm_submitqueue_create(struct drm_device *drm, 621 struct msm_file_private *ctx, 622 u32 prio, u32 flags, u32 *id); 623 int msm_submitqueue_query(struct drm_device *drm, struct msm_file_private *ctx, 624 struct drm_msm_submitqueue_query *args); 625 int msm_submitqueue_remove(struct msm_file_private *ctx, u32 id); 626 void msm_submitqueue_close(struct msm_file_private *ctx); 627 628 void msm_submitqueue_destroy(struct kref *kref); 629 630 int msm_file_private_set_sysprof(struct msm_file_private *ctx, 631 struct msm_gpu *gpu, int sysprof); 632 void __msm_file_private_destroy(struct kref *kref); 633 634 static inline void msm_file_private_put(struct msm_file_private *ctx) 635 { 636 kref_put(&ctx->ref, __msm_file_private_destroy); 637 } 638 639 static inline struct msm_file_private *msm_file_private_get( 640 struct msm_file_private *ctx) 641 { 642 kref_get(&ctx->ref); 643 return ctx; 644 } 645 646 void msm_devfreq_init(struct msm_gpu *gpu); 647 void msm_devfreq_cleanup(struct msm_gpu *gpu); 648 void msm_devfreq_resume(struct msm_gpu *gpu); 649 void msm_devfreq_suspend(struct msm_gpu *gpu); 650 void msm_devfreq_boost(struct msm_gpu *gpu, unsigned factor); 651 void msm_devfreq_active(struct msm_gpu *gpu); 652 void msm_devfreq_idle(struct msm_gpu *gpu); 653 654 int msm_gpu_hw_init(struct msm_gpu *gpu); 655 656 void msm_gpu_perfcntr_start(struct msm_gpu *gpu); 657 void msm_gpu_perfcntr_stop(struct msm_gpu *gpu); 658 int msm_gpu_perfcntr_sample(struct msm_gpu *gpu, uint32_t *activetime, 659 uint32_t *totaltime, uint32_t ncntrs, uint32_t *cntrs); 660 661 void msm_gpu_retire(struct msm_gpu *gpu); 662 void msm_gpu_submit(struct msm_gpu *gpu, struct msm_gem_submit *submit); 663 664 int msm_gpu_init(struct drm_device *drm, struct platform_device *pdev, 665 struct msm_gpu *gpu, const struct msm_gpu_funcs *funcs, 666 const char *name, struct msm_gpu_config *config); 667 668 struct msm_gem_address_space * 669 msm_gpu_create_private_address_space(struct msm_gpu *gpu, struct task_struct *task); 670 671 void msm_gpu_cleanup(struct msm_gpu *gpu); 672 673 struct msm_gpu *adreno_load_gpu(struct drm_device *dev); 674 void __init adreno_register(void); 675 void __exit adreno_unregister(void); 676 677 static inline void msm_submitqueue_put(struct msm_gpu_submitqueue *queue) 678 { 679 if (queue) 680 kref_put(&queue->ref, msm_submitqueue_destroy); 681 } 682 683 static inline struct msm_gpu_state *msm_gpu_crashstate_get(struct msm_gpu *gpu) 684 { 685 struct msm_gpu_state *state = NULL; 686 687 mutex_lock(&gpu->lock); 688 689 if (gpu->crashstate) { 690 kref_get(&gpu->crashstate->ref); 691 state = gpu->crashstate; 692 } 693 694 mutex_unlock(&gpu->lock); 695 696 return state; 697 } 698 699 static inline void msm_gpu_crashstate_put(struct msm_gpu *gpu) 700 { 701 mutex_lock(&gpu->lock); 702 703 if (gpu->crashstate) { 704 if (gpu->funcs->gpu_state_put(gpu->crashstate)) 705 gpu->crashstate = NULL; 706 } 707 708 mutex_unlock(&gpu->lock); 709 } 710 711 /* 712 * Simple macro to semi-cleanly add the MAP_PRIV flag for targets that can 713 * support expanded privileges 714 */ 715 #define check_apriv(gpu, flags) \ 716 (((gpu)->hw_apriv ? MSM_BO_MAP_PRIV : 0) | (flags)) 717 718 719 #endif /* __MSM_GPU_H__ */ 720