1 /* 2 * Copyright (C) 2013 Red Hat 3 * Author: Rob Clark <robdclark@gmail.com> 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 as published by 7 * the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 * 14 * You should have received a copy of the GNU General Public License along with 15 * this program. If not, see <http://www.gnu.org/licenses/>. 16 */ 17 18 #ifndef __MSM_GPU_H__ 19 #define __MSM_GPU_H__ 20 21 #include <linux/clk.h> 22 #include <linux/interconnect.h> 23 #include <linux/regulator/consumer.h> 24 25 #include "msm_drv.h" 26 #include "msm_fence.h" 27 #include "msm_ringbuffer.h" 28 29 struct msm_gem_submit; 30 struct msm_gpu_perfcntr; 31 struct msm_gpu_state; 32 33 struct msm_gpu_config { 34 const char *ioname; 35 uint64_t va_start; 36 uint64_t va_end; 37 unsigned int nr_rings; 38 }; 39 40 /* So far, with hardware that I've seen to date, we can have: 41 * + zero, one, or two z180 2d cores 42 * + a3xx or a2xx 3d core, which share a common CP (the firmware 43 * for the CP seems to implement some different PM4 packet types 44 * but the basics of cmdstream submission are the same) 45 * 46 * Which means that the eventual complete "class" hierarchy, once 47 * support for all past and present hw is in place, becomes: 48 * + msm_gpu 49 * + adreno_gpu 50 * + a3xx_gpu 51 * + a2xx_gpu 52 * + z180_gpu 53 */ 54 struct msm_gpu_funcs { 55 int (*get_param)(struct msm_gpu *gpu, uint32_t param, uint64_t *value); 56 int (*hw_init)(struct msm_gpu *gpu); 57 int (*pm_suspend)(struct msm_gpu *gpu); 58 int (*pm_resume)(struct msm_gpu *gpu); 59 void (*submit)(struct msm_gpu *gpu, struct msm_gem_submit *submit, 60 struct msm_file_private *ctx); 61 void (*flush)(struct msm_gpu *gpu, struct msm_ringbuffer *ring); 62 irqreturn_t (*irq)(struct msm_gpu *irq); 63 struct msm_ringbuffer *(*active_ring)(struct msm_gpu *gpu); 64 void (*recover)(struct msm_gpu *gpu); 65 void (*destroy)(struct msm_gpu *gpu); 66 #if defined(CONFIG_DEBUG_FS) || defined(CONFIG_DEV_COREDUMP) 67 /* show GPU status in debugfs: */ 68 void (*show)(struct msm_gpu *gpu, struct msm_gpu_state *state, 69 struct drm_printer *p); 70 /* for generation specific debugfs: */ 71 int (*debugfs_init)(struct msm_gpu *gpu, struct drm_minor *minor); 72 #endif 73 unsigned long (*gpu_busy)(struct msm_gpu *gpu); 74 struct msm_gpu_state *(*gpu_state_get)(struct msm_gpu *gpu); 75 int (*gpu_state_put)(struct msm_gpu_state *state); 76 unsigned long (*gpu_get_freq)(struct msm_gpu *gpu); 77 void (*gpu_set_freq)(struct msm_gpu *gpu, unsigned long freq); 78 }; 79 80 struct msm_gpu { 81 const char *name; 82 struct drm_device *dev; 83 struct platform_device *pdev; 84 const struct msm_gpu_funcs *funcs; 85 86 /* performance counters (hw & sw): */ 87 spinlock_t perf_lock; 88 bool perfcntr_active; 89 struct { 90 bool active; 91 ktime_t time; 92 } last_sample; 93 uint32_t totaltime, activetime; /* sw counters */ 94 uint32_t last_cntrs[5]; /* hw counters */ 95 const struct msm_gpu_perfcntr *perfcntrs; 96 uint32_t num_perfcntrs; 97 98 struct msm_ringbuffer *rb[MSM_GPU_MAX_RINGS]; 99 int nr_rings; 100 101 /* list of GEM active objects: */ 102 struct list_head active_list; 103 104 /* does gpu need hw_init? */ 105 bool needs_hw_init; 106 107 /* number of GPU hangs (for all contexts) */ 108 int global_faults; 109 110 /* worker for handling active-list retiring: */ 111 struct work_struct retire_work; 112 113 void __iomem *mmio; 114 int irq; 115 116 struct msm_gem_address_space *aspace; 117 118 /* Power Control: */ 119 struct regulator *gpu_reg, *gpu_cx; 120 struct clk_bulk_data *grp_clks; 121 int nr_clocks; 122 struct clk *ebi1_clk, *core_clk, *rbbmtimer_clk; 123 uint32_t fast_rate; 124 125 struct icc_path *icc_path; 126 127 /* Hang and Inactivity Detection: 128 */ 129 #define DRM_MSM_INACTIVE_PERIOD 66 /* in ms (roughly four frames) */ 130 131 #define DRM_MSM_HANGCHECK_PERIOD 500 /* in ms */ 132 #define DRM_MSM_HANGCHECK_JIFFIES msecs_to_jiffies(DRM_MSM_HANGCHECK_PERIOD) 133 struct timer_list hangcheck_timer; 134 struct work_struct recover_work; 135 136 struct drm_gem_object *memptrs_bo; 137 138 struct { 139 struct devfreq *devfreq; 140 u64 busy_cycles; 141 ktime_t time; 142 } devfreq; 143 144 struct msm_gpu_state *crashstate; 145 }; 146 147 /* It turns out that all targets use the same ringbuffer size */ 148 #define MSM_GPU_RINGBUFFER_SZ SZ_32K 149 #define MSM_GPU_RINGBUFFER_BLKSIZE 32 150 151 #define MSM_GPU_RB_CNTL_DEFAULT \ 152 (AXXX_CP_RB_CNTL_BUFSZ(ilog2(MSM_GPU_RINGBUFFER_SZ / 8)) | \ 153 AXXX_CP_RB_CNTL_BLKSZ(ilog2(MSM_GPU_RINGBUFFER_BLKSIZE / 8))) 154 155 static inline bool msm_gpu_active(struct msm_gpu *gpu) 156 { 157 int i; 158 159 for (i = 0; i < gpu->nr_rings; i++) { 160 struct msm_ringbuffer *ring = gpu->rb[i]; 161 162 if (ring->seqno > ring->memptrs->fence) 163 return true; 164 } 165 166 return false; 167 } 168 169 /* Perf-Counters: 170 * The select_reg and select_val are just there for the benefit of the child 171 * class that actually enables the perf counter.. but msm_gpu base class 172 * will handle sampling/displaying the counters. 173 */ 174 175 struct msm_gpu_perfcntr { 176 uint32_t select_reg; 177 uint32_t sample_reg; 178 uint32_t select_val; 179 const char *name; 180 }; 181 182 struct msm_gpu_submitqueue { 183 int id; 184 u32 flags; 185 u32 prio; 186 int faults; 187 struct list_head node; 188 struct kref ref; 189 }; 190 191 struct msm_gpu_state_bo { 192 u64 iova; 193 size_t size; 194 void *data; 195 bool encoded; 196 }; 197 198 struct msm_gpu_state { 199 struct kref ref; 200 struct timespec64 time; 201 202 struct { 203 u64 iova; 204 u32 fence; 205 u32 seqno; 206 u32 rptr; 207 u32 wptr; 208 void *data; 209 int data_size; 210 bool encoded; 211 } ring[MSM_GPU_MAX_RINGS]; 212 213 int nr_registers; 214 u32 *registers; 215 216 u32 rbbm_status; 217 218 char *comm; 219 char *cmd; 220 221 int nr_bos; 222 struct msm_gpu_state_bo *bos; 223 }; 224 225 static inline void gpu_write(struct msm_gpu *gpu, u32 reg, u32 data) 226 { 227 msm_writel(data, gpu->mmio + (reg << 2)); 228 } 229 230 static inline u32 gpu_read(struct msm_gpu *gpu, u32 reg) 231 { 232 return msm_readl(gpu->mmio + (reg << 2)); 233 } 234 235 static inline void gpu_rmw(struct msm_gpu *gpu, u32 reg, u32 mask, u32 or) 236 { 237 uint32_t val = gpu_read(gpu, reg); 238 239 val &= ~mask; 240 gpu_write(gpu, reg, val | or); 241 } 242 243 static inline u64 gpu_read64(struct msm_gpu *gpu, u32 lo, u32 hi) 244 { 245 u64 val; 246 247 /* 248 * Why not a readq here? Two reasons: 1) many of the LO registers are 249 * not quad word aligned and 2) the GPU hardware designers have a bit 250 * of a history of putting registers where they fit, especially in 251 * spins. The longer a GPU family goes the higher the chance that 252 * we'll get burned. We could do a series of validity checks if we 253 * wanted to, but really is a readq() that much better? Nah. 254 */ 255 256 /* 257 * For some lo/hi registers (like perfcounters), the hi value is latched 258 * when the lo is read, so make sure to read the lo first to trigger 259 * that 260 */ 261 val = (u64) msm_readl(gpu->mmio + (lo << 2)); 262 val |= ((u64) msm_readl(gpu->mmio + (hi << 2)) << 32); 263 264 return val; 265 } 266 267 static inline void gpu_write64(struct msm_gpu *gpu, u32 lo, u32 hi, u64 val) 268 { 269 /* Why not a writeq here? Read the screed above */ 270 msm_writel(lower_32_bits(val), gpu->mmio + (lo << 2)); 271 msm_writel(upper_32_bits(val), gpu->mmio + (hi << 2)); 272 } 273 274 int msm_gpu_pm_suspend(struct msm_gpu *gpu); 275 int msm_gpu_pm_resume(struct msm_gpu *gpu); 276 void msm_gpu_resume_devfreq(struct msm_gpu *gpu); 277 278 int msm_gpu_hw_init(struct msm_gpu *gpu); 279 280 void msm_gpu_perfcntr_start(struct msm_gpu *gpu); 281 void msm_gpu_perfcntr_stop(struct msm_gpu *gpu); 282 int msm_gpu_perfcntr_sample(struct msm_gpu *gpu, uint32_t *activetime, 283 uint32_t *totaltime, uint32_t ncntrs, uint32_t *cntrs); 284 285 void msm_gpu_retire(struct msm_gpu *gpu); 286 void msm_gpu_submit(struct msm_gpu *gpu, struct msm_gem_submit *submit, 287 struct msm_file_private *ctx); 288 289 int msm_gpu_init(struct drm_device *drm, struct platform_device *pdev, 290 struct msm_gpu *gpu, const struct msm_gpu_funcs *funcs, 291 const char *name, struct msm_gpu_config *config); 292 293 void msm_gpu_cleanup(struct msm_gpu *gpu); 294 295 struct msm_gpu *adreno_load_gpu(struct drm_device *dev); 296 void __init adreno_register(void); 297 void __exit adreno_unregister(void); 298 299 static inline void msm_submitqueue_put(struct msm_gpu_submitqueue *queue) 300 { 301 if (queue) 302 kref_put(&queue->ref, msm_submitqueue_destroy); 303 } 304 305 static inline struct msm_gpu_state *msm_gpu_crashstate_get(struct msm_gpu *gpu) 306 { 307 struct msm_gpu_state *state = NULL; 308 309 mutex_lock(&gpu->dev->struct_mutex); 310 311 if (gpu->crashstate) { 312 kref_get(&gpu->crashstate->ref); 313 state = gpu->crashstate; 314 } 315 316 mutex_unlock(&gpu->dev->struct_mutex); 317 318 return state; 319 } 320 321 static inline void msm_gpu_crashstate_put(struct msm_gpu *gpu) 322 { 323 mutex_lock(&gpu->dev->struct_mutex); 324 325 if (gpu->crashstate) { 326 if (gpu->funcs->gpu_state_put(gpu->crashstate)) 327 gpu->crashstate = NULL; 328 } 329 330 mutex_unlock(&gpu->dev->struct_mutex); 331 } 332 333 #endif /* __MSM_GPU_H__ */ 334