xref: /linux/drivers/gpu/drm/msm/msm_gpu.h (revision 7f71507851fc7764b36a3221839607d3a45c2025)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2013 Red Hat
4  * Author: Rob Clark <robdclark@gmail.com>
5  */
6 
7 #ifndef __MSM_GPU_H__
8 #define __MSM_GPU_H__
9 
10 #include <linux/adreno-smmu-priv.h>
11 #include <linux/clk.h>
12 #include <linux/devfreq.h>
13 #include <linux/interconnect.h>
14 #include <linux/pm_opp.h>
15 #include <linux/regulator/consumer.h>
16 
17 #include "msm_drv.h"
18 #include "msm_fence.h"
19 #include "msm_ringbuffer.h"
20 #include "msm_gem.h"
21 
22 struct msm_gem_submit;
23 struct msm_gpu_perfcntr;
24 struct msm_gpu_state;
25 struct msm_file_private;
26 
27 struct msm_gpu_config {
28 	const char *ioname;
29 	unsigned int nr_rings;
30 };
31 
32 /* So far, with hardware that I've seen to date, we can have:
33  *  + zero, one, or two z180 2d cores
34  *  + a3xx or a2xx 3d core, which share a common CP (the firmware
35  *    for the CP seems to implement some different PM4 packet types
36  *    but the basics of cmdstream submission are the same)
37  *
38  * Which means that the eventual complete "class" hierarchy, once
39  * support for all past and present hw is in place, becomes:
40  *  + msm_gpu
41  *    + adreno_gpu
42  *      + a3xx_gpu
43  *      + a2xx_gpu
44  *    + z180_gpu
45  */
46 struct msm_gpu_funcs {
47 	int (*get_param)(struct msm_gpu *gpu, struct msm_file_private *ctx,
48 			 uint32_t param, uint64_t *value, uint32_t *len);
49 	int (*set_param)(struct msm_gpu *gpu, struct msm_file_private *ctx,
50 			 uint32_t param, uint64_t value, uint32_t len);
51 	int (*hw_init)(struct msm_gpu *gpu);
52 
53 	/**
54 	 * @ucode_load: Optional hook to upload fw to GEM objs
55 	 */
56 	int (*ucode_load)(struct msm_gpu *gpu);
57 
58 	int (*pm_suspend)(struct msm_gpu *gpu);
59 	int (*pm_resume)(struct msm_gpu *gpu);
60 	void (*submit)(struct msm_gpu *gpu, struct msm_gem_submit *submit);
61 	void (*flush)(struct msm_gpu *gpu, struct msm_ringbuffer *ring);
62 	irqreturn_t (*irq)(struct msm_gpu *irq);
63 	struct msm_ringbuffer *(*active_ring)(struct msm_gpu *gpu);
64 	void (*recover)(struct msm_gpu *gpu);
65 	void (*destroy)(struct msm_gpu *gpu);
66 #if defined(CONFIG_DEBUG_FS) || defined(CONFIG_DEV_COREDUMP)
67 	/* show GPU status in debugfs: */
68 	void (*show)(struct msm_gpu *gpu, struct msm_gpu_state *state,
69 			struct drm_printer *p);
70 	/* for generation specific debugfs: */
71 	void (*debugfs_init)(struct msm_gpu *gpu, struct drm_minor *minor);
72 #endif
73 	/* note: gpu_busy() can assume that we have been pm_resumed */
74 	u64 (*gpu_busy)(struct msm_gpu *gpu, unsigned long *out_sample_rate);
75 	struct msm_gpu_state *(*gpu_state_get)(struct msm_gpu *gpu);
76 	int (*gpu_state_put)(struct msm_gpu_state *state);
77 	unsigned long (*gpu_get_freq)(struct msm_gpu *gpu);
78 	/* note: gpu_set_freq() can assume that we have been pm_resumed */
79 	void (*gpu_set_freq)(struct msm_gpu *gpu, struct dev_pm_opp *opp,
80 			     bool suspended);
81 	struct msm_gem_address_space *(*create_address_space)
82 		(struct msm_gpu *gpu, struct platform_device *pdev);
83 	struct msm_gem_address_space *(*create_private_address_space)
84 		(struct msm_gpu *gpu);
85 	uint32_t (*get_rptr)(struct msm_gpu *gpu, struct msm_ringbuffer *ring);
86 
87 	/**
88 	 * progress: Has the GPU made progress?
89 	 *
90 	 * Return true if GPU position in cmdstream has advanced (or changed)
91 	 * since the last call.  To avoid false negatives, this should account
92 	 * for cmdstream that is buffered in this FIFO upstream of the CP fw.
93 	 */
94 	bool (*progress)(struct msm_gpu *gpu, struct msm_ringbuffer *ring);
95 };
96 
97 /* Additional state for iommu faults: */
98 struct msm_gpu_fault_info {
99 	u64 ttbr0;
100 	unsigned long iova;
101 	int flags;
102 	const char *type;
103 	const char *block;
104 };
105 
106 /**
107  * struct msm_gpu_devfreq - devfreq related state
108  */
109 struct msm_gpu_devfreq {
110 	/** devfreq: devfreq instance */
111 	struct devfreq *devfreq;
112 
113 	/** lock: lock for "suspended", "busy_cycles", and "time" */
114 	struct mutex lock;
115 
116 	/**
117 	 * idle_freq:
118 	 *
119 	 * Shadow frequency used while the GPU is idle.  From the PoV of
120 	 * the devfreq governor, we are continuing to sample busyness and
121 	 * adjust frequency while the GPU is idle, but we use this shadow
122 	 * value as the GPU is actually clamped to minimum frequency while
123 	 * it is inactive.
124 	 */
125 	unsigned long idle_freq;
126 
127 	/**
128 	 * boost_constraint:
129 	 *
130 	 * A PM QoS constraint to boost min freq for a period of time
131 	 * until the boost expires.
132 	 */
133 	struct dev_pm_qos_request boost_freq;
134 
135 	/**
136 	 * busy_cycles: Last busy counter value, for calculating elapsed busy
137 	 * cycles since last sampling period.
138 	 */
139 	u64 busy_cycles;
140 
141 	/** time: Time of last sampling period. */
142 	ktime_t time;
143 
144 	/** idle_time: Time of last transition to idle: */
145 	ktime_t idle_time;
146 
147 	/**
148 	 * idle_work:
149 	 *
150 	 * Used to delay clamping to idle freq on active->idle transition.
151 	 */
152 	struct msm_hrtimer_work idle_work;
153 
154 	/**
155 	 * boost_work:
156 	 *
157 	 * Used to reset the boost_constraint after the boost period has
158 	 * elapsed
159 	 */
160 	struct msm_hrtimer_work boost_work;
161 
162 	/** suspended: tracks if we're suspended */
163 	bool suspended;
164 };
165 
166 struct msm_gpu {
167 	const char *name;
168 	struct drm_device *dev;
169 	struct platform_device *pdev;
170 	const struct msm_gpu_funcs *funcs;
171 
172 	struct adreno_smmu_priv adreno_smmu;
173 
174 	/* performance counters (hw & sw): */
175 	spinlock_t perf_lock;
176 	bool perfcntr_active;
177 	struct {
178 		bool active;
179 		ktime_t time;
180 	} last_sample;
181 	uint32_t totaltime, activetime;    /* sw counters */
182 	uint32_t last_cntrs[5];            /* hw counters */
183 	const struct msm_gpu_perfcntr *perfcntrs;
184 	uint32_t num_perfcntrs;
185 
186 	struct msm_ringbuffer *rb[MSM_GPU_MAX_RINGS];
187 	int nr_rings;
188 
189 	/**
190 	 * sysprof_active:
191 	 *
192 	 * The count of contexts that have enabled system profiling.
193 	 */
194 	refcount_t sysprof_active;
195 
196 	/**
197 	 * lock:
198 	 *
199 	 * General lock for serializing all the gpu things.
200 	 *
201 	 * TODO move to per-ring locking where feasible (ie. submit/retire
202 	 * path, etc)
203 	 */
204 	struct mutex lock;
205 
206 	/**
207 	 * active_submits:
208 	 *
209 	 * The number of submitted but not yet retired submits, used to
210 	 * determine transitions between active and idle.
211 	 *
212 	 * Protected by active_lock
213 	 */
214 	int active_submits;
215 
216 	/** lock: protects active_submits and idle/active transitions */
217 	struct mutex active_lock;
218 
219 	/* does gpu need hw_init? */
220 	bool needs_hw_init;
221 
222 	/**
223 	 * global_faults: number of GPU hangs not attributed to a particular
224 	 * address space
225 	 */
226 	int global_faults;
227 
228 	void __iomem *mmio;
229 	int irq;
230 
231 	struct msm_gem_address_space *aspace;
232 
233 	/* Power Control: */
234 	struct regulator *gpu_reg, *gpu_cx;
235 	struct clk_bulk_data *grp_clks;
236 	int nr_clocks;
237 	struct clk *ebi1_clk, *core_clk, *rbbmtimer_clk;
238 	uint32_t fast_rate;
239 
240 	/* Hang and Inactivity Detection:
241 	 */
242 #define DRM_MSM_INACTIVE_PERIOD   66 /* in ms (roughly four frames) */
243 
244 #define DRM_MSM_HANGCHECK_DEFAULT_PERIOD 500 /* in ms */
245 #define DRM_MSM_HANGCHECK_PROGRESS_RETRIES 3
246 	struct timer_list hangcheck_timer;
247 
248 	/* Fault info for most recent iova fault: */
249 	struct msm_gpu_fault_info fault_info;
250 
251 	/* work for handling GPU ioval faults: */
252 	struct kthread_work fault_work;
253 
254 	/* work for handling GPU recovery: */
255 	struct kthread_work recover_work;
256 
257 	/** retire_event: notified when submits are retired: */
258 	wait_queue_head_t retire_event;
259 
260 	/* work for handling active-list retiring: */
261 	struct kthread_work retire_work;
262 
263 	/* worker for retire/recover: */
264 	struct kthread_worker *worker;
265 
266 	struct drm_gem_object *memptrs_bo;
267 
268 	struct msm_gpu_devfreq devfreq;
269 
270 	uint32_t suspend_count;
271 
272 	struct msm_gpu_state *crashstate;
273 
274 	/* True if the hardware supports expanded apriv (a650 and newer) */
275 	bool hw_apriv;
276 
277 	/**
278 	 * @allow_relocs: allow relocs in SUBMIT ioctl
279 	 *
280 	 * Mesa won't use relocs for driver version 1.4.0 and later.  This
281 	 * switch-over happened early enough in mesa a6xx bringup that we
282 	 * can disallow relocs for a6xx and newer.
283 	 */
284 	bool allow_relocs;
285 
286 	struct thermal_cooling_device *cooling;
287 };
288 
289 static inline struct msm_gpu *dev_to_gpu(struct device *dev)
290 {
291 	struct adreno_smmu_priv *adreno_smmu = dev_get_drvdata(dev);
292 
293 	if (!adreno_smmu)
294 		return NULL;
295 
296 	return container_of(adreno_smmu, struct msm_gpu, adreno_smmu);
297 }
298 
299 /* It turns out that all targets use the same ringbuffer size */
300 #define MSM_GPU_RINGBUFFER_SZ SZ_32K
301 #define MSM_GPU_RINGBUFFER_BLKSIZE 32
302 
303 #define MSM_GPU_RB_CNTL_DEFAULT \
304 		(AXXX_CP_RB_CNTL_BUFSZ(ilog2(MSM_GPU_RINGBUFFER_SZ / 8)) | \
305 		AXXX_CP_RB_CNTL_BLKSZ(ilog2(MSM_GPU_RINGBUFFER_BLKSIZE / 8)))
306 
307 static inline bool msm_gpu_active(struct msm_gpu *gpu)
308 {
309 	int i;
310 
311 	for (i = 0; i < gpu->nr_rings; i++) {
312 		struct msm_ringbuffer *ring = gpu->rb[i];
313 
314 		if (fence_after(ring->fctx->last_fence, ring->memptrs->fence))
315 			return true;
316 	}
317 
318 	return false;
319 }
320 
321 /* Perf-Counters:
322  * The select_reg and select_val are just there for the benefit of the child
323  * class that actually enables the perf counter..  but msm_gpu base class
324  * will handle sampling/displaying the counters.
325  */
326 
327 struct msm_gpu_perfcntr {
328 	uint32_t select_reg;
329 	uint32_t sample_reg;
330 	uint32_t select_val;
331 	const char *name;
332 };
333 
334 /*
335  * The number of priority levels provided by drm gpu scheduler.  The
336  * DRM_SCHED_PRIORITY_KERNEL priority level is treated specially in some
337  * cases, so we don't use it (no need for kernel generated jobs).
338  */
339 #define NR_SCHED_PRIORITIES (1 + DRM_SCHED_PRIORITY_LOW - DRM_SCHED_PRIORITY_HIGH)
340 
341 /**
342  * struct msm_file_private - per-drm_file context
343  *
344  * @queuelock:    synchronizes access to submitqueues list
345  * @submitqueues: list of &msm_gpu_submitqueue created by userspace
346  * @queueid:      counter incremented each time a submitqueue is created,
347  *                used to assign &msm_gpu_submitqueue.id
348  * @aspace:       the per-process GPU address-space
349  * @ref:          reference count
350  * @seqno:        unique per process seqno
351  */
352 struct msm_file_private {
353 	rwlock_t queuelock;
354 	struct list_head submitqueues;
355 	int queueid;
356 	struct msm_gem_address_space *aspace;
357 	struct kref ref;
358 	int seqno;
359 
360 	/**
361 	 * sysprof:
362 	 *
363 	 * The value of MSM_PARAM_SYSPROF set by userspace.  This is
364 	 * intended to be used by system profiling tools like Mesa's
365 	 * pps-producer (perfetto), and restricted to CAP_SYS_ADMIN.
366 	 *
367 	 * Setting a value of 1 will preserve performance counters across
368 	 * context switches.  Setting a value of 2 will in addition
369 	 * suppress suspend.  (Performance counters lose state across
370 	 * power collapse, which is undesirable for profiling in some
371 	 * cases.)
372 	 *
373 	 * The value automatically reverts to zero when the drm device
374 	 * file is closed.
375 	 */
376 	int sysprof;
377 
378 	/**
379 	 * comm: Overridden task comm, see MSM_PARAM_COMM
380 	 *
381 	 * Accessed under msm_gpu::lock
382 	 */
383 	char *comm;
384 
385 	/**
386 	 * cmdline: Overridden task cmdline, see MSM_PARAM_CMDLINE
387 	 *
388 	 * Accessed under msm_gpu::lock
389 	 */
390 	char *cmdline;
391 
392 	/**
393 	 * elapsed:
394 	 *
395 	 * The total (cumulative) elapsed time GPU was busy with rendering
396 	 * from this context in ns.
397 	 */
398 	uint64_t elapsed_ns;
399 
400 	/**
401 	 * cycles:
402 	 *
403 	 * The total (cumulative) GPU cycles elapsed attributed to this
404 	 * context.
405 	 */
406 	uint64_t cycles;
407 
408 	/**
409 	 * entities:
410 	 *
411 	 * Table of per-priority-level sched entities used by submitqueues
412 	 * associated with this &drm_file.  Because some userspace apps
413 	 * make assumptions about rendering from multiple gl contexts
414 	 * (of the same priority) within the process happening in FIFO
415 	 * order without requiring any fencing beyond MakeCurrent(), we
416 	 * create at most one &drm_sched_entity per-process per-priority-
417 	 * level.
418 	 */
419 	struct drm_sched_entity *entities[NR_SCHED_PRIORITIES * MSM_GPU_MAX_RINGS];
420 
421 	/**
422 	 * ctx_mem:
423 	 *
424 	 * Total amount of memory of GEM buffers with handles attached for
425 	 * this context.
426 	 */
427 	atomic64_t ctx_mem;
428 };
429 
430 /**
431  * msm_gpu_convert_priority - Map userspace priority to ring # and sched priority
432  *
433  * @gpu:        the gpu instance
434  * @prio:       the userspace priority level
435  * @ring_nr:    [out] the ringbuffer the userspace priority maps to
436  * @sched_prio: [out] the gpu scheduler priority level which the userspace
437  *              priority maps to
438  *
439  * With drm/scheduler providing it's own level of prioritization, our total
440  * number of available priority levels is (nr_rings * NR_SCHED_PRIORITIES).
441  * Each ring is associated with it's own scheduler instance.  However, our
442  * UABI is that lower numerical values are higher priority.  So mapping the
443  * single userspace priority level into ring_nr and sched_prio takes some
444  * care.  The userspace provided priority (when a submitqueue is created)
445  * is mapped to ring nr and scheduler priority as such:
446  *
447  *   ring_nr    = userspace_prio / NR_SCHED_PRIORITIES
448  *   sched_prio = NR_SCHED_PRIORITIES -
449  *                (userspace_prio % NR_SCHED_PRIORITIES) - 1
450  *
451  * This allows generations without preemption (nr_rings==1) to have some
452  * amount of prioritization, and provides more priority levels for gens
453  * that do have preemption.
454  */
455 static inline int msm_gpu_convert_priority(struct msm_gpu *gpu, int prio,
456 		unsigned *ring_nr, enum drm_sched_priority *sched_prio)
457 {
458 	unsigned rn, sp;
459 
460 	rn = div_u64_rem(prio, NR_SCHED_PRIORITIES, &sp);
461 
462 	/* invert sched priority to map to higher-numeric-is-higher-
463 	 * priority convention
464 	 */
465 	sp = NR_SCHED_PRIORITIES - sp - 1;
466 
467 	if (rn >= gpu->nr_rings)
468 		return -EINVAL;
469 
470 	*ring_nr = rn;
471 	*sched_prio = sp;
472 
473 	return 0;
474 }
475 
476 /**
477  * struct msm_gpu_submitqueues - Userspace created context.
478  *
479  * A submitqueue is associated with a gl context or vk queue (or equiv)
480  * in userspace.
481  *
482  * @id:        userspace id for the submitqueue, unique within the drm_file
483  * @flags:     userspace flags for the submitqueue, specified at creation
484  *             (currently unusued)
485  * @ring_nr:   the ringbuffer used by this submitqueue, which is determined
486  *             by the submitqueue's priority
487  * @faults:    the number of GPU hangs associated with this submitqueue
488  * @last_fence: the sequence number of the last allocated fence (for error
489  *             checking)
490  * @ctx:       the per-drm_file context associated with the submitqueue (ie.
491  *             which set of pgtables do submits jobs associated with the
492  *             submitqueue use)
493  * @node:      node in the context's list of submitqueues
494  * @fence_idr: maps fence-id to dma_fence for userspace visible fence
495  *             seqno, protected by submitqueue lock
496  * @idr_lock:  for serializing access to fence_idr
497  * @lock:      submitqueue lock for serializing submits on a queue
498  * @ref:       reference count
499  * @entity:    the submit job-queue
500  */
501 struct msm_gpu_submitqueue {
502 	int id;
503 	u32 flags;
504 	u32 ring_nr;
505 	int faults;
506 	uint32_t last_fence;
507 	struct msm_file_private *ctx;
508 	struct list_head node;
509 	struct idr fence_idr;
510 	struct spinlock idr_lock;
511 	struct mutex lock;
512 	struct kref ref;
513 	struct drm_sched_entity *entity;
514 };
515 
516 struct msm_gpu_state_bo {
517 	u64 iova;
518 	size_t size;
519 	u32 flags;
520 	void *data;
521 	bool encoded;
522 	char name[32];
523 };
524 
525 struct msm_gpu_state {
526 	struct kref ref;
527 	struct timespec64 time;
528 
529 	struct {
530 		u64 iova;
531 		u32 fence;
532 		u32 seqno;
533 		u32 rptr;
534 		u32 wptr;
535 		void *data;
536 		int data_size;
537 		bool encoded;
538 	} ring[MSM_GPU_MAX_RINGS];
539 
540 	int nr_registers;
541 	u32 *registers;
542 
543 	u32 rbbm_status;
544 
545 	char *comm;
546 	char *cmd;
547 
548 	struct msm_gpu_fault_info fault_info;
549 
550 	int nr_bos;
551 	struct msm_gpu_state_bo *bos;
552 };
553 
554 static inline void gpu_write(struct msm_gpu *gpu, u32 reg, u32 data)
555 {
556 	writel(data, gpu->mmio + (reg << 2));
557 }
558 
559 static inline u32 gpu_read(struct msm_gpu *gpu, u32 reg)
560 {
561 	return readl(gpu->mmio + (reg << 2));
562 }
563 
564 static inline void gpu_rmw(struct msm_gpu *gpu, u32 reg, u32 mask, u32 or)
565 {
566 	msm_rmw(gpu->mmio + (reg << 2), mask, or);
567 }
568 
569 static inline u64 gpu_read64(struct msm_gpu *gpu, u32 reg)
570 {
571 	u64 val;
572 
573 	/*
574 	 * Why not a readq here? Two reasons: 1) many of the LO registers are
575 	 * not quad word aligned and 2) the GPU hardware designers have a bit
576 	 * of a history of putting registers where they fit, especially in
577 	 * spins. The longer a GPU family goes the higher the chance that
578 	 * we'll get burned.  We could do a series of validity checks if we
579 	 * wanted to, but really is a readq() that much better? Nah.
580 	 */
581 
582 	/*
583 	 * For some lo/hi registers (like perfcounters), the hi value is latched
584 	 * when the lo is read, so make sure to read the lo first to trigger
585 	 * that
586 	 */
587 	val = (u64) readl(gpu->mmio + (reg << 2));
588 	val |= ((u64) readl(gpu->mmio + ((reg + 1) << 2)) << 32);
589 
590 	return val;
591 }
592 
593 static inline void gpu_write64(struct msm_gpu *gpu, u32 reg, u64 val)
594 {
595 	/* Why not a writeq here? Read the screed above */
596 	writel(lower_32_bits(val), gpu->mmio + (reg << 2));
597 	writel(upper_32_bits(val), gpu->mmio + ((reg + 1) << 2));
598 }
599 
600 int msm_gpu_pm_suspend(struct msm_gpu *gpu);
601 int msm_gpu_pm_resume(struct msm_gpu *gpu);
602 
603 void msm_gpu_show_fdinfo(struct msm_gpu *gpu, struct msm_file_private *ctx,
604 			 struct drm_printer *p);
605 
606 int msm_submitqueue_init(struct drm_device *drm, struct msm_file_private *ctx);
607 struct msm_gpu_submitqueue *msm_submitqueue_get(struct msm_file_private *ctx,
608 		u32 id);
609 int msm_submitqueue_create(struct drm_device *drm,
610 		struct msm_file_private *ctx,
611 		u32 prio, u32 flags, u32 *id);
612 int msm_submitqueue_query(struct drm_device *drm, struct msm_file_private *ctx,
613 		struct drm_msm_submitqueue_query *args);
614 int msm_submitqueue_remove(struct msm_file_private *ctx, u32 id);
615 void msm_submitqueue_close(struct msm_file_private *ctx);
616 
617 void msm_submitqueue_destroy(struct kref *kref);
618 
619 int msm_file_private_set_sysprof(struct msm_file_private *ctx,
620 				 struct msm_gpu *gpu, int sysprof);
621 void __msm_file_private_destroy(struct kref *kref);
622 
623 static inline void msm_file_private_put(struct msm_file_private *ctx)
624 {
625 	kref_put(&ctx->ref, __msm_file_private_destroy);
626 }
627 
628 static inline struct msm_file_private *msm_file_private_get(
629 	struct msm_file_private *ctx)
630 {
631 	kref_get(&ctx->ref);
632 	return ctx;
633 }
634 
635 void msm_devfreq_init(struct msm_gpu *gpu);
636 void msm_devfreq_cleanup(struct msm_gpu *gpu);
637 void msm_devfreq_resume(struct msm_gpu *gpu);
638 void msm_devfreq_suspend(struct msm_gpu *gpu);
639 void msm_devfreq_boost(struct msm_gpu *gpu, unsigned factor);
640 void msm_devfreq_active(struct msm_gpu *gpu);
641 void msm_devfreq_idle(struct msm_gpu *gpu);
642 
643 int msm_gpu_hw_init(struct msm_gpu *gpu);
644 
645 void msm_gpu_perfcntr_start(struct msm_gpu *gpu);
646 void msm_gpu_perfcntr_stop(struct msm_gpu *gpu);
647 int msm_gpu_perfcntr_sample(struct msm_gpu *gpu, uint32_t *activetime,
648 		uint32_t *totaltime, uint32_t ncntrs, uint32_t *cntrs);
649 
650 void msm_gpu_retire(struct msm_gpu *gpu);
651 void msm_gpu_submit(struct msm_gpu *gpu, struct msm_gem_submit *submit);
652 
653 int msm_gpu_init(struct drm_device *drm, struct platform_device *pdev,
654 		struct msm_gpu *gpu, const struct msm_gpu_funcs *funcs,
655 		const char *name, struct msm_gpu_config *config);
656 
657 struct msm_gem_address_space *
658 msm_gpu_create_private_address_space(struct msm_gpu *gpu, struct task_struct *task);
659 
660 void msm_gpu_cleanup(struct msm_gpu *gpu);
661 
662 struct msm_gpu *adreno_load_gpu(struct drm_device *dev);
663 void __init adreno_register(void);
664 void __exit adreno_unregister(void);
665 
666 static inline void msm_submitqueue_put(struct msm_gpu_submitqueue *queue)
667 {
668 	if (queue)
669 		kref_put(&queue->ref, msm_submitqueue_destroy);
670 }
671 
672 static inline struct msm_gpu_state *msm_gpu_crashstate_get(struct msm_gpu *gpu)
673 {
674 	struct msm_gpu_state *state = NULL;
675 
676 	mutex_lock(&gpu->lock);
677 
678 	if (gpu->crashstate) {
679 		kref_get(&gpu->crashstate->ref);
680 		state = gpu->crashstate;
681 	}
682 
683 	mutex_unlock(&gpu->lock);
684 
685 	return state;
686 }
687 
688 static inline void msm_gpu_crashstate_put(struct msm_gpu *gpu)
689 {
690 	mutex_lock(&gpu->lock);
691 
692 	if (gpu->crashstate) {
693 		if (gpu->funcs->gpu_state_put(gpu->crashstate))
694 			gpu->crashstate = NULL;
695 	}
696 
697 	mutex_unlock(&gpu->lock);
698 }
699 
700 /*
701  * Simple macro to semi-cleanly add the MAP_PRIV flag for targets that can
702  * support expanded privileges
703  */
704 #define check_apriv(gpu, flags) \
705 	(((gpu)->hw_apriv ? MSM_BO_MAP_PRIV : 0) | (flags))
706 
707 
708 #endif /* __MSM_GPU_H__ */
709