1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * Copyright (C) 2013 Red Hat 4 * Author: Rob Clark <robdclark@gmail.com> 5 */ 6 7 #ifndef __MSM_GPU_H__ 8 #define __MSM_GPU_H__ 9 10 #include <linux/adreno-smmu-priv.h> 11 #include <linux/clk.h> 12 #include <linux/devfreq.h> 13 #include <linux/interconnect.h> 14 #include <linux/pm_opp.h> 15 #include <linux/regulator/consumer.h> 16 17 #include "msm_drv.h" 18 #include "msm_fence.h" 19 #include "msm_ringbuffer.h" 20 #include "msm_gem.h" 21 22 struct msm_gem_submit; 23 struct msm_gpu_perfcntr; 24 struct msm_gpu_state; 25 struct msm_file_private; 26 27 struct msm_gpu_config { 28 const char *ioname; 29 unsigned int nr_rings; 30 }; 31 32 /* So far, with hardware that I've seen to date, we can have: 33 * + zero, one, or two z180 2d cores 34 * + a3xx or a2xx 3d core, which share a common CP (the firmware 35 * for the CP seems to implement some different PM4 packet types 36 * but the basics of cmdstream submission are the same) 37 * 38 * Which means that the eventual complete "class" hierarchy, once 39 * support for all past and present hw is in place, becomes: 40 * + msm_gpu 41 * + adreno_gpu 42 * + a3xx_gpu 43 * + a2xx_gpu 44 * + z180_gpu 45 */ 46 struct msm_gpu_funcs { 47 int (*get_param)(struct msm_gpu *gpu, struct msm_file_private *ctx, 48 uint32_t param, uint64_t *value, uint32_t *len); 49 int (*set_param)(struct msm_gpu *gpu, struct msm_file_private *ctx, 50 uint32_t param, uint64_t value, uint32_t len); 51 int (*hw_init)(struct msm_gpu *gpu); 52 53 /** 54 * @ucode_load: Optional hook to upload fw to GEM objs 55 */ 56 int (*ucode_load)(struct msm_gpu *gpu); 57 58 int (*pm_suspend)(struct msm_gpu *gpu); 59 int (*pm_resume)(struct msm_gpu *gpu); 60 void (*submit)(struct msm_gpu *gpu, struct msm_gem_submit *submit); 61 void (*flush)(struct msm_gpu *gpu, struct msm_ringbuffer *ring); 62 irqreturn_t (*irq)(struct msm_gpu *irq); 63 struct msm_ringbuffer *(*active_ring)(struct msm_gpu *gpu); 64 void (*recover)(struct msm_gpu *gpu); 65 void (*destroy)(struct msm_gpu *gpu); 66 #if defined(CONFIG_DEBUG_FS) || defined(CONFIG_DEV_COREDUMP) 67 /* show GPU status in debugfs: */ 68 void (*show)(struct msm_gpu *gpu, struct msm_gpu_state *state, 69 struct drm_printer *p); 70 /* for generation specific debugfs: */ 71 void (*debugfs_init)(struct msm_gpu *gpu, struct drm_minor *minor); 72 #endif 73 /* note: gpu_busy() can assume that we have been pm_resumed */ 74 u64 (*gpu_busy)(struct msm_gpu *gpu, unsigned long *out_sample_rate); 75 struct msm_gpu_state *(*gpu_state_get)(struct msm_gpu *gpu); 76 int (*gpu_state_put)(struct msm_gpu_state *state); 77 unsigned long (*gpu_get_freq)(struct msm_gpu *gpu); 78 /* note: gpu_set_freq() can assume that we have been pm_resumed */ 79 void (*gpu_set_freq)(struct msm_gpu *gpu, struct dev_pm_opp *opp, 80 bool suspended); 81 struct msm_gem_address_space *(*create_address_space) 82 (struct msm_gpu *gpu, struct platform_device *pdev); 83 struct msm_gem_address_space *(*create_private_address_space) 84 (struct msm_gpu *gpu); 85 uint32_t (*get_rptr)(struct msm_gpu *gpu, struct msm_ringbuffer *ring); 86 87 /** 88 * progress: Has the GPU made progress? 89 * 90 * Return true if GPU position in cmdstream has advanced (or changed) 91 * since the last call. To avoid false negatives, this should account 92 * for cmdstream that is buffered in this FIFO upstream of the CP fw. 93 */ 94 bool (*progress)(struct msm_gpu *gpu, struct msm_ringbuffer *ring); 95 }; 96 97 /* Additional state for iommu faults: */ 98 struct msm_gpu_fault_info { 99 u64 ttbr0; 100 unsigned long iova; 101 int flags; 102 const char *type; 103 const char *block; 104 }; 105 106 /** 107 * struct msm_gpu_devfreq - devfreq related state 108 */ 109 struct msm_gpu_devfreq { 110 /** devfreq: devfreq instance */ 111 struct devfreq *devfreq; 112 113 /** lock: lock for "suspended", "busy_cycles", and "time" */ 114 struct mutex lock; 115 116 /** 117 * idle_freq: 118 * 119 * Shadow frequency used while the GPU is idle. From the PoV of 120 * the devfreq governor, we are continuing to sample busyness and 121 * adjust frequency while the GPU is idle, but we use this shadow 122 * value as the GPU is actually clamped to minimum frequency while 123 * it is inactive. 124 */ 125 unsigned long idle_freq; 126 127 /** 128 * boost_constraint: 129 * 130 * A PM QoS constraint to boost min freq for a period of time 131 * until the boost expires. 132 */ 133 struct dev_pm_qos_request boost_freq; 134 135 /** 136 * busy_cycles: Last busy counter value, for calculating elapsed busy 137 * cycles since last sampling period. 138 */ 139 u64 busy_cycles; 140 141 /** time: Time of last sampling period. */ 142 ktime_t time; 143 144 /** idle_time: Time of last transition to idle: */ 145 ktime_t idle_time; 146 147 /** 148 * idle_work: 149 * 150 * Used to delay clamping to idle freq on active->idle transition. 151 */ 152 struct msm_hrtimer_work idle_work; 153 154 /** 155 * boost_work: 156 * 157 * Used to reset the boost_constraint after the boost period has 158 * elapsed 159 */ 160 struct msm_hrtimer_work boost_work; 161 162 /** suspended: tracks if we're suspended */ 163 bool suspended; 164 }; 165 166 struct msm_gpu { 167 const char *name; 168 struct drm_device *dev; 169 struct platform_device *pdev; 170 const struct msm_gpu_funcs *funcs; 171 172 struct adreno_smmu_priv adreno_smmu; 173 174 /* performance counters (hw & sw): */ 175 spinlock_t perf_lock; 176 bool perfcntr_active; 177 struct { 178 bool active; 179 ktime_t time; 180 } last_sample; 181 uint32_t totaltime, activetime; /* sw counters */ 182 uint32_t last_cntrs[5]; /* hw counters */ 183 const struct msm_gpu_perfcntr *perfcntrs; 184 uint32_t num_perfcntrs; 185 186 struct msm_ringbuffer *rb[MSM_GPU_MAX_RINGS]; 187 int nr_rings; 188 189 /** 190 * sysprof_active: 191 * 192 * The count of contexts that have enabled system profiling. 193 */ 194 refcount_t sysprof_active; 195 196 /** 197 * lock: 198 * 199 * General lock for serializing all the gpu things. 200 * 201 * TODO move to per-ring locking where feasible (ie. submit/retire 202 * path, etc) 203 */ 204 struct mutex lock; 205 206 /** 207 * active_submits: 208 * 209 * The number of submitted but not yet retired submits, used to 210 * determine transitions between active and idle. 211 * 212 * Protected by active_lock 213 */ 214 int active_submits; 215 216 /** lock: protects active_submits and idle/active transitions */ 217 struct mutex active_lock; 218 219 /* does gpu need hw_init? */ 220 bool needs_hw_init; 221 222 /** 223 * global_faults: number of GPU hangs not attributed to a particular 224 * address space 225 */ 226 int global_faults; 227 228 void __iomem *mmio; 229 int irq; 230 231 struct msm_gem_address_space *aspace; 232 233 /* Power Control: */ 234 struct regulator *gpu_reg, *gpu_cx; 235 struct clk_bulk_data *grp_clks; 236 int nr_clocks; 237 struct clk *ebi1_clk, *core_clk, *rbbmtimer_clk; 238 uint32_t fast_rate; 239 240 /* Hang and Inactivity Detection: 241 */ 242 #define DRM_MSM_INACTIVE_PERIOD 66 /* in ms (roughly four frames) */ 243 244 #define DRM_MSM_HANGCHECK_DEFAULT_PERIOD 500 /* in ms */ 245 #define DRM_MSM_HANGCHECK_PROGRESS_RETRIES 3 246 struct timer_list hangcheck_timer; 247 248 /* Fault info for most recent iova fault: */ 249 struct msm_gpu_fault_info fault_info; 250 251 /* work for handling GPU ioval faults: */ 252 struct kthread_work fault_work; 253 254 /* work for handling GPU recovery: */ 255 struct kthread_work recover_work; 256 257 /** retire_event: notified when submits are retired: */ 258 wait_queue_head_t retire_event; 259 260 /* work for handling active-list retiring: */ 261 struct kthread_work retire_work; 262 263 /* worker for retire/recover: */ 264 struct kthread_worker *worker; 265 266 struct drm_gem_object *memptrs_bo; 267 268 struct msm_gpu_devfreq devfreq; 269 270 uint32_t suspend_count; 271 272 struct msm_gpu_state *crashstate; 273 274 /* True if the hardware supports expanded apriv (a650 and newer) */ 275 bool hw_apriv; 276 277 /** 278 * @allow_relocs: allow relocs in SUBMIT ioctl 279 * 280 * Mesa won't use relocs for driver version 1.4.0 and later. This 281 * switch-over happened early enough in mesa a6xx bringup that we 282 * can disallow relocs for a6xx and newer. 283 */ 284 bool allow_relocs; 285 286 struct thermal_cooling_device *cooling; 287 }; 288 289 static inline struct msm_gpu *dev_to_gpu(struct device *dev) 290 { 291 struct adreno_smmu_priv *adreno_smmu = dev_get_drvdata(dev); 292 293 if (!adreno_smmu) 294 return NULL; 295 296 return container_of(adreno_smmu, struct msm_gpu, adreno_smmu); 297 } 298 299 /* It turns out that all targets use the same ringbuffer size */ 300 #define MSM_GPU_RINGBUFFER_SZ SZ_32K 301 #define MSM_GPU_RINGBUFFER_BLKSIZE 32 302 303 #define MSM_GPU_RB_CNTL_DEFAULT \ 304 (AXXX_CP_RB_CNTL_BUFSZ(ilog2(MSM_GPU_RINGBUFFER_SZ / 8)) | \ 305 AXXX_CP_RB_CNTL_BLKSZ(ilog2(MSM_GPU_RINGBUFFER_BLKSIZE / 8))) 306 307 static inline bool msm_gpu_active(struct msm_gpu *gpu) 308 { 309 int i; 310 311 for (i = 0; i < gpu->nr_rings; i++) { 312 struct msm_ringbuffer *ring = gpu->rb[i]; 313 314 if (fence_after(ring->fctx->last_fence, ring->memptrs->fence)) 315 return true; 316 } 317 318 return false; 319 } 320 321 /* Perf-Counters: 322 * The select_reg and select_val are just there for the benefit of the child 323 * class that actually enables the perf counter.. but msm_gpu base class 324 * will handle sampling/displaying the counters. 325 */ 326 327 struct msm_gpu_perfcntr { 328 uint32_t select_reg; 329 uint32_t sample_reg; 330 uint32_t select_val; 331 const char *name; 332 }; 333 334 /* 335 * The number of priority levels provided by drm gpu scheduler. The 336 * DRM_SCHED_PRIORITY_KERNEL priority level is treated specially in some 337 * cases, so we don't use it (no need for kernel generated jobs). 338 */ 339 #define NR_SCHED_PRIORITIES (1 + DRM_SCHED_PRIORITY_LOW - DRM_SCHED_PRIORITY_HIGH) 340 341 /** 342 * struct msm_file_private - per-drm_file context 343 * 344 * @queuelock: synchronizes access to submitqueues list 345 * @submitqueues: list of &msm_gpu_submitqueue created by userspace 346 * @queueid: counter incremented each time a submitqueue is created, 347 * used to assign &msm_gpu_submitqueue.id 348 * @aspace: the per-process GPU address-space 349 * @ref: reference count 350 * @seqno: unique per process seqno 351 */ 352 struct msm_file_private { 353 rwlock_t queuelock; 354 struct list_head submitqueues; 355 int queueid; 356 struct msm_gem_address_space *aspace; 357 struct kref ref; 358 int seqno; 359 360 /** 361 * sysprof: 362 * 363 * The value of MSM_PARAM_SYSPROF set by userspace. This is 364 * intended to be used by system profiling tools like Mesa's 365 * pps-producer (perfetto), and restricted to CAP_SYS_ADMIN. 366 * 367 * Setting a value of 1 will preserve performance counters across 368 * context switches. Setting a value of 2 will in addition 369 * suppress suspend. (Performance counters lose state across 370 * power collapse, which is undesirable for profiling in some 371 * cases.) 372 * 373 * The value automatically reverts to zero when the drm device 374 * file is closed. 375 */ 376 int sysprof; 377 378 /** 379 * comm: Overridden task comm, see MSM_PARAM_COMM 380 * 381 * Accessed under msm_gpu::lock 382 */ 383 char *comm; 384 385 /** 386 * cmdline: Overridden task cmdline, see MSM_PARAM_CMDLINE 387 * 388 * Accessed under msm_gpu::lock 389 */ 390 char *cmdline; 391 392 /** 393 * elapsed: 394 * 395 * The total (cumulative) elapsed time GPU was busy with rendering 396 * from this context in ns. 397 */ 398 uint64_t elapsed_ns; 399 400 /** 401 * cycles: 402 * 403 * The total (cumulative) GPU cycles elapsed attributed to this 404 * context. 405 */ 406 uint64_t cycles; 407 408 /** 409 * entities: 410 * 411 * Table of per-priority-level sched entities used by submitqueues 412 * associated with this &drm_file. Because some userspace apps 413 * make assumptions about rendering from multiple gl contexts 414 * (of the same priority) within the process happening in FIFO 415 * order without requiring any fencing beyond MakeCurrent(), we 416 * create at most one &drm_sched_entity per-process per-priority- 417 * level. 418 */ 419 struct drm_sched_entity *entities[NR_SCHED_PRIORITIES * MSM_GPU_MAX_RINGS]; 420 421 /** 422 * ctx_mem: 423 * 424 * Total amount of memory of GEM buffers with handles attached for 425 * this context. 426 */ 427 atomic64_t ctx_mem; 428 }; 429 430 /** 431 * msm_gpu_convert_priority - Map userspace priority to ring # and sched priority 432 * 433 * @gpu: the gpu instance 434 * @prio: the userspace priority level 435 * @ring_nr: [out] the ringbuffer the userspace priority maps to 436 * @sched_prio: [out] the gpu scheduler priority level which the userspace 437 * priority maps to 438 * 439 * With drm/scheduler providing it's own level of prioritization, our total 440 * number of available priority levels is (nr_rings * NR_SCHED_PRIORITIES). 441 * Each ring is associated with it's own scheduler instance. However, our 442 * UABI is that lower numerical values are higher priority. So mapping the 443 * single userspace priority level into ring_nr and sched_prio takes some 444 * care. The userspace provided priority (when a submitqueue is created) 445 * is mapped to ring nr and scheduler priority as such: 446 * 447 * ring_nr = userspace_prio / NR_SCHED_PRIORITIES 448 * sched_prio = NR_SCHED_PRIORITIES - 449 * (userspace_prio % NR_SCHED_PRIORITIES) - 1 450 * 451 * This allows generations without preemption (nr_rings==1) to have some 452 * amount of prioritization, and provides more priority levels for gens 453 * that do have preemption. 454 */ 455 static inline int msm_gpu_convert_priority(struct msm_gpu *gpu, int prio, 456 unsigned *ring_nr, enum drm_sched_priority *sched_prio) 457 { 458 unsigned rn, sp; 459 460 rn = div_u64_rem(prio, NR_SCHED_PRIORITIES, &sp); 461 462 /* invert sched priority to map to higher-numeric-is-higher- 463 * priority convention 464 */ 465 sp = NR_SCHED_PRIORITIES - sp - 1; 466 467 if (rn >= gpu->nr_rings) 468 return -EINVAL; 469 470 *ring_nr = rn; 471 *sched_prio = sp; 472 473 return 0; 474 } 475 476 /** 477 * struct msm_gpu_submitqueues - Userspace created context. 478 * 479 * A submitqueue is associated with a gl context or vk queue (or equiv) 480 * in userspace. 481 * 482 * @id: userspace id for the submitqueue, unique within the drm_file 483 * @flags: userspace flags for the submitqueue, specified at creation 484 * (currently unusued) 485 * @ring_nr: the ringbuffer used by this submitqueue, which is determined 486 * by the submitqueue's priority 487 * @faults: the number of GPU hangs associated with this submitqueue 488 * @last_fence: the sequence number of the last allocated fence (for error 489 * checking) 490 * @ctx: the per-drm_file context associated with the submitqueue (ie. 491 * which set of pgtables do submits jobs associated with the 492 * submitqueue use) 493 * @node: node in the context's list of submitqueues 494 * @fence_idr: maps fence-id to dma_fence for userspace visible fence 495 * seqno, protected by submitqueue lock 496 * @idr_lock: for serializing access to fence_idr 497 * @lock: submitqueue lock for serializing submits on a queue 498 * @ref: reference count 499 * @entity: the submit job-queue 500 */ 501 struct msm_gpu_submitqueue { 502 int id; 503 u32 flags; 504 u32 ring_nr; 505 int faults; 506 uint32_t last_fence; 507 struct msm_file_private *ctx; 508 struct list_head node; 509 struct idr fence_idr; 510 struct spinlock idr_lock; 511 struct mutex lock; 512 struct kref ref; 513 struct drm_sched_entity *entity; 514 }; 515 516 struct msm_gpu_state_bo { 517 u64 iova; 518 size_t size; 519 u32 flags; 520 void *data; 521 bool encoded; 522 char name[32]; 523 }; 524 525 struct msm_gpu_state { 526 struct kref ref; 527 struct timespec64 time; 528 529 struct { 530 u64 iova; 531 u32 fence; 532 u32 seqno; 533 u32 rptr; 534 u32 wptr; 535 void *data; 536 int data_size; 537 bool encoded; 538 } ring[MSM_GPU_MAX_RINGS]; 539 540 int nr_registers; 541 u32 *registers; 542 543 u32 rbbm_status; 544 545 char *comm; 546 char *cmd; 547 548 struct msm_gpu_fault_info fault_info; 549 550 int nr_bos; 551 struct msm_gpu_state_bo *bos; 552 }; 553 554 static inline void gpu_write(struct msm_gpu *gpu, u32 reg, u32 data) 555 { 556 writel(data, gpu->mmio + (reg << 2)); 557 } 558 559 static inline u32 gpu_read(struct msm_gpu *gpu, u32 reg) 560 { 561 return readl(gpu->mmio + (reg << 2)); 562 } 563 564 static inline void gpu_rmw(struct msm_gpu *gpu, u32 reg, u32 mask, u32 or) 565 { 566 msm_rmw(gpu->mmio + (reg << 2), mask, or); 567 } 568 569 static inline u64 gpu_read64(struct msm_gpu *gpu, u32 reg) 570 { 571 u64 val; 572 573 /* 574 * Why not a readq here? Two reasons: 1) many of the LO registers are 575 * not quad word aligned and 2) the GPU hardware designers have a bit 576 * of a history of putting registers where they fit, especially in 577 * spins. The longer a GPU family goes the higher the chance that 578 * we'll get burned. We could do a series of validity checks if we 579 * wanted to, but really is a readq() that much better? Nah. 580 */ 581 582 /* 583 * For some lo/hi registers (like perfcounters), the hi value is latched 584 * when the lo is read, so make sure to read the lo first to trigger 585 * that 586 */ 587 val = (u64) readl(gpu->mmio + (reg << 2)); 588 val |= ((u64) readl(gpu->mmio + ((reg + 1) << 2)) << 32); 589 590 return val; 591 } 592 593 static inline void gpu_write64(struct msm_gpu *gpu, u32 reg, u64 val) 594 { 595 /* Why not a writeq here? Read the screed above */ 596 writel(lower_32_bits(val), gpu->mmio + (reg << 2)); 597 writel(upper_32_bits(val), gpu->mmio + ((reg + 1) << 2)); 598 } 599 600 int msm_gpu_pm_suspend(struct msm_gpu *gpu); 601 int msm_gpu_pm_resume(struct msm_gpu *gpu); 602 603 void msm_gpu_show_fdinfo(struct msm_gpu *gpu, struct msm_file_private *ctx, 604 struct drm_printer *p); 605 606 int msm_submitqueue_init(struct drm_device *drm, struct msm_file_private *ctx); 607 struct msm_gpu_submitqueue *msm_submitqueue_get(struct msm_file_private *ctx, 608 u32 id); 609 int msm_submitqueue_create(struct drm_device *drm, 610 struct msm_file_private *ctx, 611 u32 prio, u32 flags, u32 *id); 612 int msm_submitqueue_query(struct drm_device *drm, struct msm_file_private *ctx, 613 struct drm_msm_submitqueue_query *args); 614 int msm_submitqueue_remove(struct msm_file_private *ctx, u32 id); 615 void msm_submitqueue_close(struct msm_file_private *ctx); 616 617 void msm_submitqueue_destroy(struct kref *kref); 618 619 int msm_file_private_set_sysprof(struct msm_file_private *ctx, 620 struct msm_gpu *gpu, int sysprof); 621 void __msm_file_private_destroy(struct kref *kref); 622 623 static inline void msm_file_private_put(struct msm_file_private *ctx) 624 { 625 kref_put(&ctx->ref, __msm_file_private_destroy); 626 } 627 628 static inline struct msm_file_private *msm_file_private_get( 629 struct msm_file_private *ctx) 630 { 631 kref_get(&ctx->ref); 632 return ctx; 633 } 634 635 void msm_devfreq_init(struct msm_gpu *gpu); 636 void msm_devfreq_cleanup(struct msm_gpu *gpu); 637 void msm_devfreq_resume(struct msm_gpu *gpu); 638 void msm_devfreq_suspend(struct msm_gpu *gpu); 639 void msm_devfreq_boost(struct msm_gpu *gpu, unsigned factor); 640 void msm_devfreq_active(struct msm_gpu *gpu); 641 void msm_devfreq_idle(struct msm_gpu *gpu); 642 643 int msm_gpu_hw_init(struct msm_gpu *gpu); 644 645 void msm_gpu_perfcntr_start(struct msm_gpu *gpu); 646 void msm_gpu_perfcntr_stop(struct msm_gpu *gpu); 647 int msm_gpu_perfcntr_sample(struct msm_gpu *gpu, uint32_t *activetime, 648 uint32_t *totaltime, uint32_t ncntrs, uint32_t *cntrs); 649 650 void msm_gpu_retire(struct msm_gpu *gpu); 651 void msm_gpu_submit(struct msm_gpu *gpu, struct msm_gem_submit *submit); 652 653 int msm_gpu_init(struct drm_device *drm, struct platform_device *pdev, 654 struct msm_gpu *gpu, const struct msm_gpu_funcs *funcs, 655 const char *name, struct msm_gpu_config *config); 656 657 struct msm_gem_address_space * 658 msm_gpu_create_private_address_space(struct msm_gpu *gpu, struct task_struct *task); 659 660 void msm_gpu_cleanup(struct msm_gpu *gpu); 661 662 struct msm_gpu *adreno_load_gpu(struct drm_device *dev); 663 void __init adreno_register(void); 664 void __exit adreno_unregister(void); 665 666 static inline void msm_submitqueue_put(struct msm_gpu_submitqueue *queue) 667 { 668 if (queue) 669 kref_put(&queue->ref, msm_submitqueue_destroy); 670 } 671 672 static inline struct msm_gpu_state *msm_gpu_crashstate_get(struct msm_gpu *gpu) 673 { 674 struct msm_gpu_state *state = NULL; 675 676 mutex_lock(&gpu->lock); 677 678 if (gpu->crashstate) { 679 kref_get(&gpu->crashstate->ref); 680 state = gpu->crashstate; 681 } 682 683 mutex_unlock(&gpu->lock); 684 685 return state; 686 } 687 688 static inline void msm_gpu_crashstate_put(struct msm_gpu *gpu) 689 { 690 mutex_lock(&gpu->lock); 691 692 if (gpu->crashstate) { 693 if (gpu->funcs->gpu_state_put(gpu->crashstate)) 694 gpu->crashstate = NULL; 695 } 696 697 mutex_unlock(&gpu->lock); 698 } 699 700 /* 701 * Simple macro to semi-cleanly add the MAP_PRIV flag for targets that can 702 * support expanded privileges 703 */ 704 #define check_apriv(gpu, flags) \ 705 (((gpu)->hw_apriv ? MSM_BO_MAP_PRIV : 0) | (flags)) 706 707 708 #endif /* __MSM_GPU_H__ */ 709