1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * Copyright (C) 2013 Red Hat 4 * Author: Rob Clark <robdclark@gmail.com> 5 */ 6 7 #ifndef __MSM_GPU_H__ 8 #define __MSM_GPU_H__ 9 10 #include <linux/adreno-smmu-priv.h> 11 #include <linux/clk.h> 12 #include <linux/devfreq.h> 13 #include <linux/interconnect.h> 14 #include <linux/pm_opp.h> 15 #include <linux/regulator/consumer.h> 16 17 #include "msm_drv.h" 18 #include "msm_fence.h" 19 #include "msm_ringbuffer.h" 20 #include "msm_gem.h" 21 22 struct msm_gem_submit; 23 struct msm_gpu_perfcntr; 24 struct msm_gpu_state; 25 struct msm_file_private; 26 27 struct msm_gpu_config { 28 const char *ioname; 29 unsigned int nr_rings; 30 }; 31 32 /* So far, with hardware that I've seen to date, we can have: 33 * + zero, one, or two z180 2d cores 34 * + a3xx or a2xx 3d core, which share a common CP (the firmware 35 * for the CP seems to implement some different PM4 packet types 36 * but the basics of cmdstream submission are the same) 37 * 38 * Which means that the eventual complete "class" hierarchy, once 39 * support for all past and present hw is in place, becomes: 40 * + msm_gpu 41 * + adreno_gpu 42 * + a3xx_gpu 43 * + a2xx_gpu 44 * + z180_gpu 45 */ 46 struct msm_gpu_funcs { 47 int (*get_param)(struct msm_gpu *gpu, struct msm_file_private *ctx, 48 uint32_t param, uint64_t *value, uint32_t *len); 49 int (*set_param)(struct msm_gpu *gpu, struct msm_file_private *ctx, 50 uint32_t param, uint64_t value, uint32_t len); 51 int (*hw_init)(struct msm_gpu *gpu); 52 53 /** 54 * @ucode_load: Optional hook to upload fw to GEM objs 55 */ 56 int (*ucode_load)(struct msm_gpu *gpu); 57 58 int (*pm_suspend)(struct msm_gpu *gpu); 59 int (*pm_resume)(struct msm_gpu *gpu); 60 void (*submit)(struct msm_gpu *gpu, struct msm_gem_submit *submit); 61 void (*flush)(struct msm_gpu *gpu, struct msm_ringbuffer *ring); 62 irqreturn_t (*irq)(struct msm_gpu *irq); 63 struct msm_ringbuffer *(*active_ring)(struct msm_gpu *gpu); 64 void (*recover)(struct msm_gpu *gpu); 65 void (*destroy)(struct msm_gpu *gpu); 66 #if defined(CONFIG_DEBUG_FS) || defined(CONFIG_DEV_COREDUMP) 67 /* show GPU status in debugfs: */ 68 void (*show)(struct msm_gpu *gpu, struct msm_gpu_state *state, 69 struct drm_printer *p); 70 /* for generation specific debugfs: */ 71 void (*debugfs_init)(struct msm_gpu *gpu, struct drm_minor *minor); 72 #endif 73 /* note: gpu_busy() can assume that we have been pm_resumed */ 74 u64 (*gpu_busy)(struct msm_gpu *gpu, unsigned long *out_sample_rate); 75 struct msm_gpu_state *(*gpu_state_get)(struct msm_gpu *gpu); 76 int (*gpu_state_put)(struct msm_gpu_state *state); 77 unsigned long (*gpu_get_freq)(struct msm_gpu *gpu); 78 /* note: gpu_set_freq() can assume that we have been pm_resumed */ 79 void (*gpu_set_freq)(struct msm_gpu *gpu, struct dev_pm_opp *opp, 80 bool suspended); 81 struct msm_gem_address_space *(*create_address_space) 82 (struct msm_gpu *gpu, struct platform_device *pdev); 83 struct msm_gem_address_space *(*create_private_address_space) 84 (struct msm_gpu *gpu); 85 uint32_t (*get_rptr)(struct msm_gpu *gpu, struct msm_ringbuffer *ring); 86 87 /** 88 * progress: Has the GPU made progress? 89 * 90 * Return true if GPU position in cmdstream has advanced (or changed) 91 * since the last call. To avoid false negatives, this should account 92 * for cmdstream that is buffered in this FIFO upstream of the CP fw. 93 */ 94 bool (*progress)(struct msm_gpu *gpu, struct msm_ringbuffer *ring); 95 }; 96 97 /* Additional state for iommu faults: */ 98 struct msm_gpu_fault_info { 99 u64 ttbr0; 100 unsigned long iova; 101 int flags; 102 const char *type; 103 const char *block; 104 105 /* Information about what we think/expect is the current SMMU state, 106 * for example expected_ttbr0 should match smmu_info.ttbr0 which 107 * was read back from SMMU registers. 108 */ 109 phys_addr_t pgtbl_ttbr0; 110 u64 ptes[4]; 111 int asid; 112 }; 113 114 /** 115 * struct msm_gpu_devfreq - devfreq related state 116 */ 117 struct msm_gpu_devfreq { 118 /** devfreq: devfreq instance */ 119 struct devfreq *devfreq; 120 121 /** lock: lock for "suspended", "busy_cycles", and "time" */ 122 struct mutex lock; 123 124 /** 125 * idle_freq: 126 * 127 * Shadow frequency used while the GPU is idle. From the PoV of 128 * the devfreq governor, we are continuing to sample busyness and 129 * adjust frequency while the GPU is idle, but we use this shadow 130 * value as the GPU is actually clamped to minimum frequency while 131 * it is inactive. 132 */ 133 unsigned long idle_freq; 134 135 /** 136 * boost_constraint: 137 * 138 * A PM QoS constraint to boost min freq for a period of time 139 * until the boost expires. 140 */ 141 struct dev_pm_qos_request boost_freq; 142 143 /** 144 * busy_cycles: Last busy counter value, for calculating elapsed busy 145 * cycles since last sampling period. 146 */ 147 u64 busy_cycles; 148 149 /** time: Time of last sampling period. */ 150 ktime_t time; 151 152 /** idle_time: Time of last transition to idle: */ 153 ktime_t idle_time; 154 155 /** 156 * idle_work: 157 * 158 * Used to delay clamping to idle freq on active->idle transition. 159 */ 160 struct msm_hrtimer_work idle_work; 161 162 /** 163 * boost_work: 164 * 165 * Used to reset the boost_constraint after the boost period has 166 * elapsed 167 */ 168 struct msm_hrtimer_work boost_work; 169 170 /** suspended: tracks if we're suspended */ 171 bool suspended; 172 }; 173 174 struct msm_gpu { 175 const char *name; 176 struct drm_device *dev; 177 struct platform_device *pdev; 178 const struct msm_gpu_funcs *funcs; 179 180 struct adreno_smmu_priv adreno_smmu; 181 182 /* performance counters (hw & sw): */ 183 spinlock_t perf_lock; 184 bool perfcntr_active; 185 struct { 186 bool active; 187 ktime_t time; 188 } last_sample; 189 uint32_t totaltime, activetime; /* sw counters */ 190 uint32_t last_cntrs[5]; /* hw counters */ 191 const struct msm_gpu_perfcntr *perfcntrs; 192 uint32_t num_perfcntrs; 193 194 struct msm_ringbuffer *rb[MSM_GPU_MAX_RINGS]; 195 int nr_rings; 196 197 /** 198 * sysprof_active: 199 * 200 * The count of contexts that have enabled system profiling. 201 */ 202 refcount_t sysprof_active; 203 204 /** 205 * lock: 206 * 207 * General lock for serializing all the gpu things. 208 * 209 * TODO move to per-ring locking where feasible (ie. submit/retire 210 * path, etc) 211 */ 212 struct mutex lock; 213 214 /** 215 * active_submits: 216 * 217 * The number of submitted but not yet retired submits, used to 218 * determine transitions between active and idle. 219 * 220 * Protected by active_lock 221 */ 222 int active_submits; 223 224 /** lock: protects active_submits and idle/active transitions */ 225 struct mutex active_lock; 226 227 /* does gpu need hw_init? */ 228 bool needs_hw_init; 229 230 /** 231 * global_faults: number of GPU hangs not attributed to a particular 232 * address space 233 */ 234 int global_faults; 235 236 void __iomem *mmio; 237 int irq; 238 239 struct msm_gem_address_space *aspace; 240 241 /* Power Control: */ 242 struct regulator *gpu_reg, *gpu_cx; 243 struct clk_bulk_data *grp_clks; 244 int nr_clocks; 245 struct clk *ebi1_clk, *core_clk, *rbbmtimer_clk; 246 uint32_t fast_rate; 247 248 /* Hang and Inactivity Detection: 249 */ 250 #define DRM_MSM_INACTIVE_PERIOD 66 /* in ms (roughly four frames) */ 251 252 #define DRM_MSM_HANGCHECK_DEFAULT_PERIOD 500 /* in ms */ 253 #define DRM_MSM_HANGCHECK_PROGRESS_RETRIES 3 254 struct timer_list hangcheck_timer; 255 256 /* Fault info for most recent iova fault: */ 257 struct msm_gpu_fault_info fault_info; 258 259 /* work for handling GPU ioval faults: */ 260 struct kthread_work fault_work; 261 262 /* work for handling GPU recovery: */ 263 struct kthread_work recover_work; 264 265 /** retire_event: notified when submits are retired: */ 266 wait_queue_head_t retire_event; 267 268 /* work for handling active-list retiring: */ 269 struct kthread_work retire_work; 270 271 /* worker for retire/recover: */ 272 struct kthread_worker *worker; 273 274 struct drm_gem_object *memptrs_bo; 275 276 struct msm_gpu_devfreq devfreq; 277 278 uint32_t suspend_count; 279 280 struct msm_gpu_state *crashstate; 281 282 /* True if the hardware supports expanded apriv (a650 and newer) */ 283 bool hw_apriv; 284 285 /** 286 * @allow_relocs: allow relocs in SUBMIT ioctl 287 * 288 * Mesa won't use relocs for driver version 1.4.0 and later. This 289 * switch-over happened early enough in mesa a6xx bringup that we 290 * can disallow relocs for a6xx and newer. 291 */ 292 bool allow_relocs; 293 294 struct thermal_cooling_device *cooling; 295 }; 296 297 static inline struct msm_gpu *dev_to_gpu(struct device *dev) 298 { 299 struct adreno_smmu_priv *adreno_smmu = dev_get_drvdata(dev); 300 301 if (!adreno_smmu) 302 return NULL; 303 304 return container_of(adreno_smmu, struct msm_gpu, adreno_smmu); 305 } 306 307 /* It turns out that all targets use the same ringbuffer size */ 308 #define MSM_GPU_RINGBUFFER_SZ SZ_32K 309 #define MSM_GPU_RINGBUFFER_BLKSIZE 32 310 311 #define MSM_GPU_RB_CNTL_DEFAULT \ 312 (AXXX_CP_RB_CNTL_BUFSZ(ilog2(MSM_GPU_RINGBUFFER_SZ / 8)) | \ 313 AXXX_CP_RB_CNTL_BLKSZ(ilog2(MSM_GPU_RINGBUFFER_BLKSIZE / 8))) 314 315 static inline bool msm_gpu_active(struct msm_gpu *gpu) 316 { 317 int i; 318 319 for (i = 0; i < gpu->nr_rings; i++) { 320 struct msm_ringbuffer *ring = gpu->rb[i]; 321 322 if (fence_after(ring->fctx->last_fence, ring->memptrs->fence)) 323 return true; 324 } 325 326 return false; 327 } 328 329 /* Perf-Counters: 330 * The select_reg and select_val are just there for the benefit of the child 331 * class that actually enables the perf counter.. but msm_gpu base class 332 * will handle sampling/displaying the counters. 333 */ 334 335 struct msm_gpu_perfcntr { 336 uint32_t select_reg; 337 uint32_t sample_reg; 338 uint32_t select_val; 339 const char *name; 340 }; 341 342 /* 343 * The number of priority levels provided by drm gpu scheduler. The 344 * DRM_SCHED_PRIORITY_KERNEL priority level is treated specially in some 345 * cases, so we don't use it (no need for kernel generated jobs). 346 */ 347 #define NR_SCHED_PRIORITIES (1 + DRM_SCHED_PRIORITY_LOW - DRM_SCHED_PRIORITY_HIGH) 348 349 /** 350 * struct msm_file_private - per-drm_file context 351 * 352 * @queuelock: synchronizes access to submitqueues list 353 * @submitqueues: list of &msm_gpu_submitqueue created by userspace 354 * @queueid: counter incremented each time a submitqueue is created, 355 * used to assign &msm_gpu_submitqueue.id 356 * @aspace: the per-process GPU address-space 357 * @ref: reference count 358 * @seqno: unique per process seqno 359 */ 360 struct msm_file_private { 361 rwlock_t queuelock; 362 struct list_head submitqueues; 363 int queueid; 364 struct msm_gem_address_space *aspace; 365 struct kref ref; 366 int seqno; 367 368 /** 369 * sysprof: 370 * 371 * The value of MSM_PARAM_SYSPROF set by userspace. This is 372 * intended to be used by system profiling tools like Mesa's 373 * pps-producer (perfetto), and restricted to CAP_SYS_ADMIN. 374 * 375 * Setting a value of 1 will preserve performance counters across 376 * context switches. Setting a value of 2 will in addition 377 * suppress suspend. (Performance counters lose state across 378 * power collapse, which is undesirable for profiling in some 379 * cases.) 380 * 381 * The value automatically reverts to zero when the drm device 382 * file is closed. 383 */ 384 int sysprof; 385 386 /** 387 * comm: Overridden task comm, see MSM_PARAM_COMM 388 * 389 * Accessed under msm_gpu::lock 390 */ 391 char *comm; 392 393 /** 394 * cmdline: Overridden task cmdline, see MSM_PARAM_CMDLINE 395 * 396 * Accessed under msm_gpu::lock 397 */ 398 char *cmdline; 399 400 /** 401 * elapsed: 402 * 403 * The total (cumulative) elapsed time GPU was busy with rendering 404 * from this context in ns. 405 */ 406 uint64_t elapsed_ns; 407 408 /** 409 * cycles: 410 * 411 * The total (cumulative) GPU cycles elapsed attributed to this 412 * context. 413 */ 414 uint64_t cycles; 415 416 /** 417 * entities: 418 * 419 * Table of per-priority-level sched entities used by submitqueues 420 * associated with this &drm_file. Because some userspace apps 421 * make assumptions about rendering from multiple gl contexts 422 * (of the same priority) within the process happening in FIFO 423 * order without requiring any fencing beyond MakeCurrent(), we 424 * create at most one &drm_sched_entity per-process per-priority- 425 * level. 426 */ 427 struct drm_sched_entity *entities[NR_SCHED_PRIORITIES * MSM_GPU_MAX_RINGS]; 428 429 /** 430 * ctx_mem: 431 * 432 * Total amount of memory of GEM buffers with handles attached for 433 * this context. 434 */ 435 atomic64_t ctx_mem; 436 }; 437 438 /** 439 * msm_gpu_convert_priority - Map userspace priority to ring # and sched priority 440 * 441 * @gpu: the gpu instance 442 * @prio: the userspace priority level 443 * @ring_nr: [out] the ringbuffer the userspace priority maps to 444 * @sched_prio: [out] the gpu scheduler priority level which the userspace 445 * priority maps to 446 * 447 * With drm/scheduler providing it's own level of prioritization, our total 448 * number of available priority levels is (nr_rings * NR_SCHED_PRIORITIES). 449 * Each ring is associated with it's own scheduler instance. However, our 450 * UABI is that lower numerical values are higher priority. So mapping the 451 * single userspace priority level into ring_nr and sched_prio takes some 452 * care. The userspace provided priority (when a submitqueue is created) 453 * is mapped to ring nr and scheduler priority as such: 454 * 455 * ring_nr = userspace_prio / NR_SCHED_PRIORITIES 456 * sched_prio = NR_SCHED_PRIORITIES - 457 * (userspace_prio % NR_SCHED_PRIORITIES) - 1 458 * 459 * This allows generations without preemption (nr_rings==1) to have some 460 * amount of prioritization, and provides more priority levels for gens 461 * that do have preemption. 462 */ 463 static inline int msm_gpu_convert_priority(struct msm_gpu *gpu, int prio, 464 unsigned *ring_nr, enum drm_sched_priority *sched_prio) 465 { 466 unsigned rn, sp; 467 468 rn = div_u64_rem(prio, NR_SCHED_PRIORITIES, &sp); 469 470 /* invert sched priority to map to higher-numeric-is-higher- 471 * priority convention 472 */ 473 sp = NR_SCHED_PRIORITIES - sp - 1; 474 475 if (rn >= gpu->nr_rings) 476 return -EINVAL; 477 478 *ring_nr = rn; 479 *sched_prio = sp; 480 481 return 0; 482 } 483 484 /** 485 * struct msm_gpu_submitqueues - Userspace created context. 486 * 487 * A submitqueue is associated with a gl context or vk queue (or equiv) 488 * in userspace. 489 * 490 * @id: userspace id for the submitqueue, unique within the drm_file 491 * @flags: userspace flags for the submitqueue, specified at creation 492 * (currently unusued) 493 * @ring_nr: the ringbuffer used by this submitqueue, which is determined 494 * by the submitqueue's priority 495 * @faults: the number of GPU hangs associated with this submitqueue 496 * @last_fence: the sequence number of the last allocated fence (for error 497 * checking) 498 * @ctx: the per-drm_file context associated with the submitqueue (ie. 499 * which set of pgtables do submits jobs associated with the 500 * submitqueue use) 501 * @node: node in the context's list of submitqueues 502 * @fence_idr: maps fence-id to dma_fence for userspace visible fence 503 * seqno, protected by submitqueue lock 504 * @idr_lock: for serializing access to fence_idr 505 * @lock: submitqueue lock for serializing submits on a queue 506 * @ref: reference count 507 * @entity: the submit job-queue 508 */ 509 struct msm_gpu_submitqueue { 510 int id; 511 u32 flags; 512 u32 ring_nr; 513 int faults; 514 uint32_t last_fence; 515 struct msm_file_private *ctx; 516 struct list_head node; 517 struct idr fence_idr; 518 struct spinlock idr_lock; 519 struct mutex lock; 520 struct kref ref; 521 struct drm_sched_entity *entity; 522 }; 523 524 struct msm_gpu_state_bo { 525 u64 iova; 526 size_t size; 527 u32 flags; 528 void *data; 529 bool encoded; 530 char name[32]; 531 }; 532 533 struct msm_gpu_state { 534 struct kref ref; 535 struct timespec64 time; 536 537 struct { 538 u64 iova; 539 u32 fence; 540 u32 seqno; 541 u32 rptr; 542 u32 wptr; 543 void *data; 544 int data_size; 545 bool encoded; 546 } ring[MSM_GPU_MAX_RINGS]; 547 548 int nr_registers; 549 u32 *registers; 550 551 u32 rbbm_status; 552 553 char *comm; 554 char *cmd; 555 556 struct msm_gpu_fault_info fault_info; 557 558 int nr_bos; 559 struct msm_gpu_state_bo *bos; 560 }; 561 562 static inline void gpu_write(struct msm_gpu *gpu, u32 reg, u32 data) 563 { 564 writel(data, gpu->mmio + (reg << 2)); 565 } 566 567 static inline u32 gpu_read(struct msm_gpu *gpu, u32 reg) 568 { 569 return readl(gpu->mmio + (reg << 2)); 570 } 571 572 static inline void gpu_rmw(struct msm_gpu *gpu, u32 reg, u32 mask, u32 or) 573 { 574 msm_rmw(gpu->mmio + (reg << 2), mask, or); 575 } 576 577 static inline u64 gpu_read64(struct msm_gpu *gpu, u32 reg) 578 { 579 u64 val; 580 581 /* 582 * Why not a readq here? Two reasons: 1) many of the LO registers are 583 * not quad word aligned and 2) the GPU hardware designers have a bit 584 * of a history of putting registers where they fit, especially in 585 * spins. The longer a GPU family goes the higher the chance that 586 * we'll get burned. We could do a series of validity checks if we 587 * wanted to, but really is a readq() that much better? Nah. 588 */ 589 590 /* 591 * For some lo/hi registers (like perfcounters), the hi value is latched 592 * when the lo is read, so make sure to read the lo first to trigger 593 * that 594 */ 595 val = (u64) readl(gpu->mmio + (reg << 2)); 596 val |= ((u64) readl(gpu->mmio + ((reg + 1) << 2)) << 32); 597 598 return val; 599 } 600 601 static inline void gpu_write64(struct msm_gpu *gpu, u32 reg, u64 val) 602 { 603 /* Why not a writeq here? Read the screed above */ 604 writel(lower_32_bits(val), gpu->mmio + (reg << 2)); 605 writel(upper_32_bits(val), gpu->mmio + ((reg + 1) << 2)); 606 } 607 608 int msm_gpu_pm_suspend(struct msm_gpu *gpu); 609 int msm_gpu_pm_resume(struct msm_gpu *gpu); 610 611 void msm_gpu_show_fdinfo(struct msm_gpu *gpu, struct msm_file_private *ctx, 612 struct drm_printer *p); 613 614 int msm_submitqueue_init(struct drm_device *drm, struct msm_file_private *ctx); 615 struct msm_gpu_submitqueue *msm_submitqueue_get(struct msm_file_private *ctx, 616 u32 id); 617 int msm_submitqueue_create(struct drm_device *drm, 618 struct msm_file_private *ctx, 619 u32 prio, u32 flags, u32 *id); 620 int msm_submitqueue_query(struct drm_device *drm, struct msm_file_private *ctx, 621 struct drm_msm_submitqueue_query *args); 622 int msm_submitqueue_remove(struct msm_file_private *ctx, u32 id); 623 void msm_submitqueue_close(struct msm_file_private *ctx); 624 625 void msm_submitqueue_destroy(struct kref *kref); 626 627 int msm_file_private_set_sysprof(struct msm_file_private *ctx, 628 struct msm_gpu *gpu, int sysprof); 629 void __msm_file_private_destroy(struct kref *kref); 630 631 static inline void msm_file_private_put(struct msm_file_private *ctx) 632 { 633 kref_put(&ctx->ref, __msm_file_private_destroy); 634 } 635 636 static inline struct msm_file_private *msm_file_private_get( 637 struct msm_file_private *ctx) 638 { 639 kref_get(&ctx->ref); 640 return ctx; 641 } 642 643 void msm_devfreq_init(struct msm_gpu *gpu); 644 void msm_devfreq_cleanup(struct msm_gpu *gpu); 645 void msm_devfreq_resume(struct msm_gpu *gpu); 646 void msm_devfreq_suspend(struct msm_gpu *gpu); 647 void msm_devfreq_boost(struct msm_gpu *gpu, unsigned factor); 648 void msm_devfreq_active(struct msm_gpu *gpu); 649 void msm_devfreq_idle(struct msm_gpu *gpu); 650 651 int msm_gpu_hw_init(struct msm_gpu *gpu); 652 653 void msm_gpu_perfcntr_start(struct msm_gpu *gpu); 654 void msm_gpu_perfcntr_stop(struct msm_gpu *gpu); 655 int msm_gpu_perfcntr_sample(struct msm_gpu *gpu, uint32_t *activetime, 656 uint32_t *totaltime, uint32_t ncntrs, uint32_t *cntrs); 657 658 void msm_gpu_retire(struct msm_gpu *gpu); 659 void msm_gpu_submit(struct msm_gpu *gpu, struct msm_gem_submit *submit); 660 661 int msm_gpu_init(struct drm_device *drm, struct platform_device *pdev, 662 struct msm_gpu *gpu, const struct msm_gpu_funcs *funcs, 663 const char *name, struct msm_gpu_config *config); 664 665 struct msm_gem_address_space * 666 msm_gpu_create_private_address_space(struct msm_gpu *gpu, struct task_struct *task); 667 668 void msm_gpu_cleanup(struct msm_gpu *gpu); 669 670 struct msm_gpu *adreno_load_gpu(struct drm_device *dev); 671 void __init adreno_register(void); 672 void __exit adreno_unregister(void); 673 674 static inline void msm_submitqueue_put(struct msm_gpu_submitqueue *queue) 675 { 676 if (queue) 677 kref_put(&queue->ref, msm_submitqueue_destroy); 678 } 679 680 static inline struct msm_gpu_state *msm_gpu_crashstate_get(struct msm_gpu *gpu) 681 { 682 struct msm_gpu_state *state = NULL; 683 684 mutex_lock(&gpu->lock); 685 686 if (gpu->crashstate) { 687 kref_get(&gpu->crashstate->ref); 688 state = gpu->crashstate; 689 } 690 691 mutex_unlock(&gpu->lock); 692 693 return state; 694 } 695 696 static inline void msm_gpu_crashstate_put(struct msm_gpu *gpu) 697 { 698 mutex_lock(&gpu->lock); 699 700 if (gpu->crashstate) { 701 if (gpu->funcs->gpu_state_put(gpu->crashstate)) 702 gpu->crashstate = NULL; 703 } 704 705 mutex_unlock(&gpu->lock); 706 } 707 708 /* 709 * Simple macro to semi-cleanly add the MAP_PRIV flag for targets that can 710 * support expanded privileges 711 */ 712 #define check_apriv(gpu, flags) \ 713 (((gpu)->hw_apriv ? MSM_BO_MAP_PRIV : 0) | (flags)) 714 715 716 #endif /* __MSM_GPU_H__ */ 717