1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * Copyright (C) 2013 Red Hat 4 * Author: Rob Clark <robdclark@gmail.com> 5 */ 6 7 #ifndef __MSM_GPU_H__ 8 #define __MSM_GPU_H__ 9 10 #include <linux/adreno-smmu-priv.h> 11 #include <linux/clk.h> 12 #include <linux/devfreq.h> 13 #include <linux/interconnect.h> 14 #include <linux/pm_opp.h> 15 #include <linux/regulator/consumer.h> 16 17 #include "msm_drv.h" 18 #include "msm_fence.h" 19 #include "msm_gpu_trace.h" 20 #include "msm_ringbuffer.h" 21 #include "msm_gem.h" 22 23 struct msm_gem_submit; 24 struct msm_gem_vm_log_entry; 25 struct msm_gpu_perfcntr; 26 struct msm_gpu_state; 27 struct msm_context; 28 29 struct msm_gpu_config { 30 const char *ioname; 31 unsigned int nr_rings; 32 }; 33 34 /* So far, with hardware that I've seen to date, we can have: 35 * + zero, one, or two z180 2d cores 36 * + a3xx or a2xx 3d core, which share a common CP (the firmware 37 * for the CP seems to implement some different PM4 packet types 38 * but the basics of cmdstream submission are the same) 39 * 40 * Which means that the eventual complete "class" hierarchy, once 41 * support for all past and present hw is in place, becomes: 42 * + msm_gpu 43 * + adreno_gpu 44 * + a3xx_gpu 45 * + a2xx_gpu 46 * + z180_gpu 47 */ 48 struct msm_gpu_funcs { 49 int (*get_param)(struct msm_gpu *gpu, struct msm_context *ctx, 50 uint32_t param, uint64_t *value, uint32_t *len); 51 int (*set_param)(struct msm_gpu *gpu, struct msm_context *ctx, 52 uint32_t param, uint64_t value, uint32_t len); 53 int (*hw_init)(struct msm_gpu *gpu); 54 55 /** 56 * @ucode_load: Optional hook to upload fw to GEM objs 57 */ 58 int (*ucode_load)(struct msm_gpu *gpu); 59 60 int (*pm_suspend)(struct msm_gpu *gpu); 61 int (*pm_resume)(struct msm_gpu *gpu); 62 void (*submit)(struct msm_gpu *gpu, struct msm_gem_submit *submit); 63 void (*flush)(struct msm_gpu *gpu, struct msm_ringbuffer *ring); 64 irqreturn_t (*irq)(struct msm_gpu *irq); 65 struct msm_ringbuffer *(*active_ring)(struct msm_gpu *gpu); 66 void (*recover)(struct msm_gpu *gpu); 67 void (*destroy)(struct msm_gpu *gpu); 68 #if defined(CONFIG_DEBUG_FS) || defined(CONFIG_DEV_COREDUMP) 69 /* show GPU status in debugfs: */ 70 void (*show)(struct msm_gpu *gpu, struct msm_gpu_state *state, 71 struct drm_printer *p); 72 /* for generation specific debugfs: */ 73 void (*debugfs_init)(struct msm_gpu *gpu, struct drm_minor *minor); 74 #endif 75 /* note: gpu_busy() can assume that we have been pm_resumed */ 76 u64 (*gpu_busy)(struct msm_gpu *gpu, unsigned long *out_sample_rate); 77 struct msm_gpu_state *(*gpu_state_get)(struct msm_gpu *gpu); 78 int (*gpu_state_put)(struct msm_gpu_state *state); 79 unsigned long (*gpu_get_freq)(struct msm_gpu *gpu); 80 /* note: gpu_set_freq() can assume that we have been pm_resumed */ 81 void (*gpu_set_freq)(struct msm_gpu *gpu, struct dev_pm_opp *opp, 82 bool suspended); 83 struct drm_gpuvm *(*create_vm)(struct msm_gpu *gpu, struct platform_device *pdev); 84 struct drm_gpuvm *(*create_private_vm)(struct msm_gpu *gpu, bool kernel_managed); 85 uint32_t (*get_rptr)(struct msm_gpu *gpu, struct msm_ringbuffer *ring); 86 87 /** 88 * progress: Has the GPU made progress? 89 * 90 * Return true if GPU position in cmdstream has advanced (or changed) 91 * since the last call. To avoid false negatives, this should account 92 * for cmdstream that is buffered in this FIFO upstream of the CP fw. 93 */ 94 bool (*progress)(struct msm_gpu *gpu, struct msm_ringbuffer *ring); 95 void (*sysprof_setup)(struct msm_gpu *gpu); 96 }; 97 98 /* Additional state for iommu faults: */ 99 struct msm_gpu_fault_info { 100 u64 ttbr0; 101 unsigned long iova; 102 int flags; 103 const char *type; 104 const char *block; 105 106 /* Information about what we think/expect is the current SMMU state, 107 * for example expected_ttbr0 should match smmu_info.ttbr0 which 108 * was read back from SMMU registers. 109 */ 110 phys_addr_t pgtbl_ttbr0; 111 u64 ptes[4]; 112 int asid; 113 }; 114 115 /** 116 * struct msm_gpu_devfreq - devfreq related state 117 */ 118 struct msm_gpu_devfreq { 119 /** @devfreq: devfreq instance */ 120 struct devfreq *devfreq; 121 /** @lock: lock for "suspended", "busy_cycles", and "time" */ 122 struct mutex lock; 123 /** 124 * @idle_freq: 125 * Shadow frequency used while the GPU is idle. From the PoV of 126 * the devfreq governor, we are continuing to sample busyness and 127 * adjust frequency while the GPU is idle, but we use this shadow 128 * value as the GPU is actually clamped to minimum frequency while 129 * it is inactive. 130 */ 131 unsigned long idle_freq; 132 /** 133 * @boost_freq: 134 * A PM QoS constraint to boost min freq for a period of time 135 * until the boost expires. 136 */ 137 struct dev_pm_qos_request boost_freq; 138 /** 139 * @busy_cycles: Last busy counter value, for calculating elapsed busy 140 * cycles since last sampling period. 141 */ 142 u64 busy_cycles; 143 /** @time: Time of last sampling period. */ 144 ktime_t time; 145 /** @idle_time: Time of last transition to idle. */ 146 ktime_t idle_time; 147 /** 148 * @idle_work: 149 * Used to delay clamping to idle freq on active->idle transition. 150 */ 151 struct msm_hrtimer_work idle_work; 152 /** 153 * @boost_work: 154 * Used to reset the boost_constraint after the boost period has 155 * elapsed 156 */ 157 struct msm_hrtimer_work boost_work; 158 159 /** @suspended: tracks if we're suspended */ 160 bool suspended; 161 }; 162 163 struct msm_gpu { 164 const char *name; 165 struct drm_device *dev; 166 struct platform_device *pdev; 167 const struct msm_gpu_funcs *funcs; 168 169 struct adreno_smmu_priv adreno_smmu; 170 171 /* performance counters (hw & sw): */ 172 spinlock_t perf_lock; 173 bool perfcntr_active; 174 struct { 175 bool active; 176 ktime_t time; 177 } last_sample; 178 uint32_t totaltime, activetime; /* sw counters */ 179 uint32_t last_cntrs[5]; /* hw counters */ 180 const struct msm_gpu_perfcntr *perfcntrs; 181 uint32_t num_perfcntrs; 182 183 struct msm_ringbuffer *rb[MSM_GPU_MAX_RINGS]; 184 int nr_rings; 185 186 /** 187 * sysprof_active: 188 * 189 * The count of contexts that have enabled system profiling. 190 */ 191 refcount_t sysprof_active; 192 193 /** 194 * lock: 195 * 196 * General lock for serializing all the gpu things. 197 * 198 * TODO move to per-ring locking where feasible (ie. submit/retire 199 * path, etc) 200 */ 201 struct mutex lock; 202 203 /** 204 * active_submits: 205 * 206 * The number of submitted but not yet retired submits, used to 207 * determine transitions between active and idle. 208 * 209 * Protected by active_lock 210 */ 211 int active_submits; 212 213 /** lock: protects active_submits and idle/active transitions */ 214 struct mutex active_lock; 215 216 /* does gpu need hw_init? */ 217 bool needs_hw_init; 218 219 /** 220 * global_faults: number of GPU hangs not attributed to a particular 221 * address space 222 */ 223 int global_faults; 224 225 void __iomem *mmio; 226 int irq; 227 228 struct drm_gpuvm *vm; 229 230 /* Power Control: */ 231 struct regulator *gpu_reg, *gpu_cx; 232 struct clk_bulk_data *grp_clks; 233 int nr_clocks; 234 struct clk *ebi1_clk, *core_clk, *rbbmtimer_clk; 235 uint32_t fast_rate; 236 237 /* Hang and Inactivity Detection: 238 */ 239 #define DRM_MSM_INACTIVE_PERIOD 66 /* in ms (roughly four frames) */ 240 241 #define DRM_MSM_HANGCHECK_DEFAULT_PERIOD 500 /* in ms */ 242 #define DRM_MSM_HANGCHECK_PROGRESS_RETRIES 3 243 struct timer_list hangcheck_timer; 244 245 /* work for handling GPU recovery: */ 246 struct kthread_work recover_work; 247 248 /** retire_event: notified when submits are retired: */ 249 wait_queue_head_t retire_event; 250 251 /* work for handling active-list retiring: */ 252 struct kthread_work retire_work; 253 254 /* worker for retire/recover: */ 255 struct kthread_worker *worker; 256 257 struct drm_gem_object *memptrs_bo; 258 259 struct msm_gpu_devfreq devfreq; 260 261 uint32_t suspend_count; 262 263 struct msm_gpu_state *crashstate; 264 265 /* True if the hardware supports expanded apriv (a650 and newer) */ 266 bool hw_apriv; 267 268 /** 269 * @allow_relocs: allow relocs in SUBMIT ioctl 270 * 271 * Mesa won't use relocs for driver version 1.4.0 and later. This 272 * switch-over happened early enough in mesa a6xx bringup that we 273 * can disallow relocs for a6xx and newer. 274 */ 275 bool allow_relocs; 276 277 struct thermal_cooling_device *cooling; 278 }; 279 280 static inline struct msm_gpu *dev_to_gpu(struct device *dev) 281 { 282 struct adreno_smmu_priv *adreno_smmu = dev_get_drvdata(dev); 283 284 if (!adreno_smmu) 285 return NULL; 286 287 return container_of(adreno_smmu, struct msm_gpu, adreno_smmu); 288 } 289 290 static inline bool 291 adreno_smmu_has_prr(struct msm_gpu *gpu) 292 { 293 struct adreno_smmu_priv *adreno_smmu = dev_get_drvdata(&gpu->pdev->dev); 294 295 if (!adreno_smmu) 296 return false; 297 298 return adreno_smmu && adreno_smmu->set_prr_addr; 299 } 300 301 /* It turns out that all targets use the same ringbuffer size */ 302 #define MSM_GPU_RINGBUFFER_SZ SZ_32K 303 #define MSM_GPU_RINGBUFFER_BLKSIZE 32 304 305 #define MSM_GPU_RB_CNTL_DEFAULT \ 306 (AXXX_CP_RB_CNTL_BUFSZ(ilog2(MSM_GPU_RINGBUFFER_SZ / 8)) | \ 307 AXXX_CP_RB_CNTL_BLKSZ(ilog2(MSM_GPU_RINGBUFFER_BLKSIZE / 8))) 308 309 static inline bool msm_gpu_active(struct msm_gpu *gpu) 310 { 311 int i; 312 313 for (i = 0; i < gpu->nr_rings; i++) { 314 struct msm_ringbuffer *ring = gpu->rb[i]; 315 316 if (fence_after(ring->fctx->last_fence, ring->memptrs->fence)) 317 return true; 318 } 319 320 return false; 321 } 322 323 /* Perf-Counters: 324 * The select_reg and select_val are just there for the benefit of the child 325 * class that actually enables the perf counter.. but msm_gpu base class 326 * will handle sampling/displaying the counters. 327 */ 328 329 struct msm_gpu_perfcntr { 330 uint32_t select_reg; 331 uint32_t sample_reg; 332 uint32_t select_val; 333 const char *name; 334 }; 335 336 /* 337 * The number of priority levels provided by drm gpu scheduler. The 338 * DRM_SCHED_PRIORITY_KERNEL priority level is treated specially in some 339 * cases, so we don't use it (no need for kernel generated jobs). 340 */ 341 #define NR_SCHED_PRIORITIES (1 + DRM_SCHED_PRIORITY_LOW - DRM_SCHED_PRIORITY_HIGH) 342 343 /** 344 * struct msm_context - per-drm_file context 345 */ 346 struct msm_context { 347 /** @queuelock: synchronizes access to submitqueues list */ 348 rwlock_t queuelock; 349 /** @submitqueues: list of &msm_gpu_submitqueue created by userspace */ 350 struct list_head submitqueues; 351 /** 352 * @queueid: 353 * Counter incremented each time a submitqueue is created, used to 354 * assign &msm_gpu_submitqueue.id 355 */ 356 int queueid; 357 /** 358 * @closed: The device file associated with this context has been closed. 359 * Once the device is closed, any submits that have not been written 360 * to the ring buffer are no-op'd. 361 */ 362 bool closed; 363 /** 364 * @userspace_managed_vm: 365 * Has userspace opted-in to userspace managed VM (ie. VM_BIND) via 366 * MSM_PARAM_EN_VM_BIND? 367 */ 368 bool userspace_managed_vm; 369 /** 370 * @vm: 371 * The per-process GPU address-space. Do not access directly, use 372 * msm_context_vm(). 373 */ 374 struct drm_gpuvm *vm; 375 /** @ref: the reference count */ 376 struct kref ref; 377 /** 378 * @seqno: 379 * A unique per-process sequence number. Used to detect context 380 * switches, without relying on keeping a, potentially dangling, 381 * pointer to the previous context. 382 */ 383 int seqno; 384 /** 385 * @sysprof: 386 * The value of MSM_PARAM_SYSPROF set by userspace. This is 387 * intended to be used by system profiling tools like Mesa's 388 * pps-producer (perfetto), and restricted to CAP_SYS_ADMIN. 389 * 390 * Setting a value of 1 will preserve performance counters across 391 * context switches. Setting a value of 2 will in addition 392 * suppress suspend. (Performance counters lose state across 393 * power collapse, which is undesirable for profiling in some 394 * cases.) 395 * 396 * The value automatically reverts to zero when the drm device 397 * file is closed. 398 */ 399 int sysprof; 400 /** 401 * @comm: Overridden task comm, see MSM_PARAM_COMM 402 * 403 * Accessed under msm_gpu::lock 404 */ 405 char *comm; 406 /** 407 * @cmdline: Overridden task cmdline, see MSM_PARAM_CMDLINE 408 * 409 * Accessed under msm_gpu::lock 410 */ 411 char *cmdline; 412 /** 413 * @elapsed_ns: 414 * The total (cumulative) elapsed time GPU was busy with rendering 415 * from this context in ns. 416 */ 417 uint64_t elapsed_ns; 418 /** 419 * @cycles: 420 * The total (cumulative) GPU cycles elapsed attributed to this 421 * context. 422 */ 423 uint64_t cycles; 424 /** 425 * @entities: 426 * Table of per-priority-level sched entities used by submitqueues 427 * associated with this &drm_file. Because some userspace apps 428 * make assumptions about rendering from multiple gl contexts 429 * (of the same priority) within the process happening in FIFO 430 * order without requiring any fencing beyond MakeCurrent(), we 431 * create at most one &drm_sched_entity per-process per-priority- 432 * level. 433 */ 434 struct drm_sched_entity *entities[NR_SCHED_PRIORITIES * MSM_GPU_MAX_RINGS]; 435 /** 436 * @ctx_mem: 437 * Total amount of memory of GEM buffers with handles attached for 438 * this context. 439 */ 440 atomic64_t ctx_mem; 441 }; 442 443 struct drm_gpuvm *msm_context_vm(struct drm_device *dev, struct msm_context *ctx); 444 445 /** 446 * msm_context_is_vmbind() - has userspace opted in to VM_BIND? 447 * 448 * @ctx: the drm_file context 449 * 450 * See MSM_PARAM_EN_VM_BIND. If userspace is managing the VM, it can 451 * do sparse binding including having multiple, potentially partial, 452 * mappings in the VM. Therefore certain legacy uabi (ie. GET_IOVA, 453 * SET_IOVA) are rejected because they don't have a sensible meaning. 454 * 455 * Returns: %true if userspace is managing the VM, %false otherwise. 456 */ 457 static inline bool 458 msm_context_is_vmbind(struct msm_context *ctx) 459 { 460 return ctx->userspace_managed_vm; 461 } 462 463 /** 464 * msm_gpu_convert_priority - Map userspace priority to ring # and sched priority 465 * 466 * @gpu: the gpu instance 467 * @prio: the userspace priority level 468 * @ring_nr: [out] the ringbuffer the userspace priority maps to 469 * @sched_prio: [out] the gpu scheduler priority level which the userspace 470 * priority maps to 471 * 472 * With drm/scheduler providing it's own level of prioritization, our total 473 * number of available priority levels is (nr_rings * NR_SCHED_PRIORITIES). 474 * Each ring is associated with it's own scheduler instance. However, our 475 * UABI is that lower numerical values are higher priority. So mapping the 476 * single userspace priority level into ring_nr and sched_prio takes some 477 * care. The userspace provided priority (when a submitqueue is created) 478 * is mapped to ring nr and scheduler priority as such: 479 * 480 * ring_nr = userspace_prio / NR_SCHED_PRIORITIES 481 * sched_prio = NR_SCHED_PRIORITIES - 482 * (userspace_prio % NR_SCHED_PRIORITIES) - 1 483 * 484 * This allows generations without preemption (nr_rings==1) to have some 485 * amount of prioritization, and provides more priority levels for gens 486 * that do have preemption. 487 * 488 * Returns: %0 on success, %-errno on error. 489 */ 490 static inline int msm_gpu_convert_priority(struct msm_gpu *gpu, int prio, 491 unsigned *ring_nr, enum drm_sched_priority *sched_prio) 492 { 493 unsigned rn, sp; 494 495 rn = div_u64_rem(prio, NR_SCHED_PRIORITIES, &sp); 496 497 /* invert sched priority to map to higher-numeric-is-higher- 498 * priority convention 499 */ 500 sp = NR_SCHED_PRIORITIES - sp - 1; 501 502 if (rn >= gpu->nr_rings) 503 return -EINVAL; 504 505 *ring_nr = rn; 506 *sched_prio = sp; 507 508 return 0; 509 } 510 511 /** 512 * struct msm_gpu_submitqueue - Userspace created context. 513 * 514 * A submitqueue is associated with a gl context or vk queue (or equiv) 515 * in userspace. 516 * 517 * @id: userspace id for the submitqueue, unique within the drm_file 518 * @flags: userspace flags for the submitqueue, specified at creation 519 * (currently unusued) 520 * @ring_nr: the ringbuffer used by this submitqueue, which is determined 521 * by the submitqueue's priority 522 * @faults: the number of GPU hangs associated with this submitqueue 523 * @last_fence: the sequence number of the last allocated fence (for error 524 * checking) 525 * @ctx: the per-drm_file context associated with the submitqueue (ie. 526 * which set of pgtables do submits jobs associated with the 527 * submitqueue use) 528 * @node: node in the context's list of submitqueues 529 * @fence_idr: maps fence-id to dma_fence for userspace visible fence 530 * seqno, protected by submitqueue lock 531 * @idr_lock: for serializing access to fence_idr 532 * @lock: submitqueue lock for serializing submits on a queue 533 * @ref: reference count 534 * @entity: the submit job-queue 535 */ 536 struct msm_gpu_submitqueue { 537 int id; 538 u32 flags; 539 u32 ring_nr; 540 int faults; 541 uint32_t last_fence; 542 struct msm_context *ctx; 543 struct list_head node; 544 struct idr fence_idr; 545 struct spinlock idr_lock; 546 struct mutex lock; 547 struct kref ref; 548 struct drm_sched_entity *entity; 549 550 /** @_vm_bind_entity: used for @entity pointer for VM_BIND queues */ 551 struct drm_sched_entity _vm_bind_entity[0]; 552 }; 553 554 struct msm_gpu_state_bo { 555 u64 iova; 556 size_t size; 557 u32 flags; 558 void *data; 559 bool encoded; 560 char name[32]; 561 }; 562 563 struct msm_gpu_state { 564 struct kref ref; 565 struct timespec64 time; 566 567 struct { 568 u64 iova; 569 u32 fence; 570 u32 seqno; 571 u32 rptr; 572 u32 wptr; 573 void *data; 574 int data_size; 575 bool encoded; 576 } ring[MSM_GPU_MAX_RINGS]; 577 578 int nr_registers; 579 u32 *registers; 580 581 u32 rbbm_status; 582 583 char *comm; 584 char *cmd; 585 586 struct msm_gpu_fault_info fault_info; 587 588 int nr_vm_logs; 589 struct msm_gem_vm_log_entry *vm_logs; 590 591 int nr_bos; 592 struct msm_gpu_state_bo *bos; 593 }; 594 595 static inline void gpu_write(struct msm_gpu *gpu, u32 reg, u32 data) 596 { 597 trace_msm_gpu_regaccess(reg); 598 writel(data, gpu->mmio + (reg << 2)); 599 } 600 601 static inline u32 gpu_read(struct msm_gpu *gpu, u32 reg) 602 { 603 trace_msm_gpu_regaccess(reg); 604 return readl(gpu->mmio + (reg << 2)); 605 } 606 607 static inline void gpu_rmw(struct msm_gpu *gpu, u32 reg, u32 mask, u32 or) 608 { 609 trace_msm_gpu_regaccess(reg); 610 msm_rmw(gpu->mmio + (reg << 2), mask, or); 611 } 612 613 static inline u64 gpu_read64(struct msm_gpu *gpu, u32 reg) 614 { 615 u64 val; 616 617 /* 618 * Why not a readq here? Two reasons: 1) many of the LO registers are 619 * not quad word aligned and 2) the GPU hardware designers have a bit 620 * of a history of putting registers where they fit, especially in 621 * spins. The longer a GPU family goes the higher the chance that 622 * we'll get burned. We could do a series of validity checks if we 623 * wanted to, but really is a readq() that much better? Nah. 624 */ 625 626 /* 627 * For some lo/hi registers (like perfcounters), the hi value is latched 628 * when the lo is read, so make sure to read the lo first to trigger 629 * that 630 */ 631 trace_msm_gpu_regaccess(reg); 632 val = (u64) readl(gpu->mmio + (reg << 2)); 633 trace_msm_gpu_regaccess(reg+1); 634 val |= ((u64) readl(gpu->mmio + ((reg + 1) << 2)) << 32); 635 636 return val; 637 } 638 639 static inline void gpu_write64(struct msm_gpu *gpu, u32 reg, u64 val) 640 { 641 trace_msm_gpu_regaccess(reg); 642 /* Why not a writeq here? Read the screed above */ 643 writel(lower_32_bits(val), gpu->mmio + (reg << 2)); 644 trace_msm_gpu_regaccess(reg+1); 645 writel(upper_32_bits(val), gpu->mmio + ((reg + 1) << 2)); 646 } 647 648 int msm_gpu_pm_suspend(struct msm_gpu *gpu); 649 int msm_gpu_pm_resume(struct msm_gpu *gpu); 650 651 void msm_gpu_show_fdinfo(struct msm_gpu *gpu, struct msm_context *ctx, 652 struct drm_printer *p); 653 654 int msm_submitqueue_init(struct drm_device *drm, struct msm_context *ctx); 655 struct msm_gpu_submitqueue *msm_submitqueue_get(struct msm_context *ctx, 656 u32 id); 657 int msm_submitqueue_create(struct drm_device *drm, 658 struct msm_context *ctx, 659 u32 prio, u32 flags, u32 *id); 660 int msm_submitqueue_query(struct drm_device *drm, struct msm_context *ctx, 661 struct drm_msm_submitqueue_query *args); 662 int msm_submitqueue_remove(struct msm_context *ctx, u32 id); 663 void msm_submitqueue_close(struct msm_context *ctx); 664 665 void msm_submitqueue_destroy(struct kref *kref); 666 667 int msm_context_set_sysprof(struct msm_context *ctx, struct msm_gpu *gpu, int sysprof); 668 void __msm_context_destroy(struct kref *kref); 669 670 static inline void msm_context_put(struct msm_context *ctx) 671 { 672 kref_put(&ctx->ref, __msm_context_destroy); 673 } 674 675 static inline struct msm_context *msm_context_get( 676 struct msm_context *ctx) 677 { 678 kref_get(&ctx->ref); 679 return ctx; 680 } 681 682 void msm_devfreq_init(struct msm_gpu *gpu); 683 void msm_devfreq_cleanup(struct msm_gpu *gpu); 684 void msm_devfreq_resume(struct msm_gpu *gpu); 685 void msm_devfreq_suspend(struct msm_gpu *gpu); 686 void msm_devfreq_boost(struct msm_gpu *gpu, unsigned factor); 687 void msm_devfreq_active(struct msm_gpu *gpu); 688 void msm_devfreq_idle(struct msm_gpu *gpu); 689 690 int msm_gpu_hw_init(struct msm_gpu *gpu); 691 692 void msm_gpu_perfcntr_start(struct msm_gpu *gpu); 693 void msm_gpu_perfcntr_stop(struct msm_gpu *gpu); 694 int msm_gpu_perfcntr_sample(struct msm_gpu *gpu, uint32_t *activetime, 695 uint32_t *totaltime, uint32_t ncntrs, uint32_t *cntrs); 696 697 void msm_gpu_retire(struct msm_gpu *gpu); 698 void msm_gpu_submit(struct msm_gpu *gpu, struct msm_gem_submit *submit); 699 700 int msm_gpu_init(struct drm_device *drm, struct platform_device *pdev, 701 struct msm_gpu *gpu, const struct msm_gpu_funcs *funcs, 702 const char *name, struct msm_gpu_config *config); 703 704 struct drm_gpuvm * 705 msm_gpu_create_private_vm(struct msm_gpu *gpu, struct task_struct *task, 706 bool kernel_managed); 707 708 void msm_gpu_cleanup(struct msm_gpu *gpu); 709 710 struct msm_gpu *adreno_load_gpu(struct drm_device *dev); 711 bool adreno_has_gpu(struct device_node *node); 712 void __init adreno_register(void); 713 void __exit adreno_unregister(void); 714 715 static inline void msm_submitqueue_put(struct msm_gpu_submitqueue *queue) 716 { 717 if (queue) 718 kref_put(&queue->ref, msm_submitqueue_destroy); 719 } 720 721 static inline struct msm_gpu_state *msm_gpu_crashstate_get(struct msm_gpu *gpu) 722 { 723 struct msm_gpu_state *state = NULL; 724 725 mutex_lock(&gpu->lock); 726 727 if (gpu->crashstate) { 728 kref_get(&gpu->crashstate->ref); 729 state = gpu->crashstate; 730 } 731 732 mutex_unlock(&gpu->lock); 733 734 return state; 735 } 736 737 static inline void msm_gpu_crashstate_put(struct msm_gpu *gpu) 738 { 739 mutex_lock(&gpu->lock); 740 741 if (gpu->crashstate) { 742 if (gpu->funcs->gpu_state_put(gpu->crashstate)) 743 gpu->crashstate = NULL; 744 } 745 746 mutex_unlock(&gpu->lock); 747 } 748 749 void msm_gpu_fault_crashstate_capture(struct msm_gpu *gpu, struct msm_gpu_fault_info *fault_info); 750 751 /* 752 * Simple macro to semi-cleanly add the MAP_PRIV flag for targets that can 753 * support expanded privileges 754 */ 755 #define check_apriv(gpu, flags) \ 756 (((gpu)->hw_apriv ? MSM_BO_MAP_PRIV : 0) | (flags)) 757 758 759 #endif /* __MSM_GPU_H__ */ 760