xref: /linux/drivers/gpu/drm/msm/msm_gpu.h (revision 64b14a184e83eb62ea0615e31a409956049d40e7)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2013 Red Hat
4  * Author: Rob Clark <robdclark@gmail.com>
5  */
6 
7 #ifndef __MSM_GPU_H__
8 #define __MSM_GPU_H__
9 
10 #include <linux/adreno-smmu-priv.h>
11 #include <linux/clk.h>
12 #include <linux/interconnect.h>
13 #include <linux/pm_opp.h>
14 #include <linux/regulator/consumer.h>
15 
16 #include "msm_drv.h"
17 #include "msm_fence.h"
18 #include "msm_ringbuffer.h"
19 #include "msm_gem.h"
20 
21 struct msm_gem_submit;
22 struct msm_gpu_perfcntr;
23 struct msm_gpu_state;
24 
25 struct msm_gpu_config {
26 	const char *ioname;
27 	unsigned int nr_rings;
28 };
29 
30 /* So far, with hardware that I've seen to date, we can have:
31  *  + zero, one, or two z180 2d cores
32  *  + a3xx or a2xx 3d core, which share a common CP (the firmware
33  *    for the CP seems to implement some different PM4 packet types
34  *    but the basics of cmdstream submission are the same)
35  *
36  * Which means that the eventual complete "class" hierarchy, once
37  * support for all past and present hw is in place, becomes:
38  *  + msm_gpu
39  *    + adreno_gpu
40  *      + a3xx_gpu
41  *      + a2xx_gpu
42  *    + z180_gpu
43  */
44 struct msm_gpu_funcs {
45 	int (*get_param)(struct msm_gpu *gpu, uint32_t param, uint64_t *value);
46 	int (*hw_init)(struct msm_gpu *gpu);
47 	int (*pm_suspend)(struct msm_gpu *gpu);
48 	int (*pm_resume)(struct msm_gpu *gpu);
49 	void (*submit)(struct msm_gpu *gpu, struct msm_gem_submit *submit);
50 	void (*flush)(struct msm_gpu *gpu, struct msm_ringbuffer *ring);
51 	irqreturn_t (*irq)(struct msm_gpu *irq);
52 	struct msm_ringbuffer *(*active_ring)(struct msm_gpu *gpu);
53 	void (*recover)(struct msm_gpu *gpu);
54 	void (*destroy)(struct msm_gpu *gpu);
55 #if defined(CONFIG_DEBUG_FS) || defined(CONFIG_DEV_COREDUMP)
56 	/* show GPU status in debugfs: */
57 	void (*show)(struct msm_gpu *gpu, struct msm_gpu_state *state,
58 			struct drm_printer *p);
59 	/* for generation specific debugfs: */
60 	void (*debugfs_init)(struct msm_gpu *gpu, struct drm_minor *minor);
61 #endif
62 	unsigned long (*gpu_busy)(struct msm_gpu *gpu);
63 	struct msm_gpu_state *(*gpu_state_get)(struct msm_gpu *gpu);
64 	int (*gpu_state_put)(struct msm_gpu_state *state);
65 	unsigned long (*gpu_get_freq)(struct msm_gpu *gpu);
66 	void (*gpu_set_freq)(struct msm_gpu *gpu, struct dev_pm_opp *opp);
67 	struct msm_gem_address_space *(*create_address_space)
68 		(struct msm_gpu *gpu, struct platform_device *pdev);
69 	struct msm_gem_address_space *(*create_private_address_space)
70 		(struct msm_gpu *gpu);
71 	uint32_t (*get_rptr)(struct msm_gpu *gpu, struct msm_ringbuffer *ring);
72 };
73 
74 /* Additional state for iommu faults: */
75 struct msm_gpu_fault_info {
76 	u64 ttbr0;
77 	unsigned long iova;
78 	int flags;
79 	const char *type;
80 	const char *block;
81 };
82 
83 /**
84  * struct msm_gpu_devfreq - devfreq related state
85  */
86 struct msm_gpu_devfreq {
87 	/** devfreq: devfreq instance */
88 	struct devfreq *devfreq;
89 
90 	/**
91 	 * idle_constraint:
92 	 *
93 	 * A PM QoS constraint to limit max freq while the GPU is idle.
94 	 */
95 	struct dev_pm_qos_request idle_freq;
96 
97 	/**
98 	 * boost_constraint:
99 	 *
100 	 * A PM QoS constraint to boost min freq for a period of time
101 	 * until the boost expires.
102 	 */
103 	struct dev_pm_qos_request boost_freq;
104 
105 	/**
106 	 * busy_cycles:
107 	 *
108 	 * Used by implementation of gpu->gpu_busy() to track the last
109 	 * busy counter value, for calculating elapsed busy cycles since
110 	 * last sampling period.
111 	 */
112 	u64 busy_cycles;
113 
114 	/** time: Time of last sampling period. */
115 	ktime_t time;
116 
117 	/** idle_time: Time of last transition to idle: */
118 	ktime_t idle_time;
119 
120 	/**
121 	 * idle_work:
122 	 *
123 	 * Used to delay clamping to idle freq on active->idle transition.
124 	 */
125 	struct msm_hrtimer_work idle_work;
126 
127 	/**
128 	 * boost_work:
129 	 *
130 	 * Used to reset the boost_constraint after the boost period has
131 	 * elapsed
132 	 */
133 	struct msm_hrtimer_work boost_work;
134 };
135 
136 struct msm_gpu {
137 	const char *name;
138 	struct drm_device *dev;
139 	struct platform_device *pdev;
140 	const struct msm_gpu_funcs *funcs;
141 
142 	struct adreno_smmu_priv adreno_smmu;
143 
144 	/* performance counters (hw & sw): */
145 	spinlock_t perf_lock;
146 	bool perfcntr_active;
147 	struct {
148 		bool active;
149 		ktime_t time;
150 	} last_sample;
151 	uint32_t totaltime, activetime;    /* sw counters */
152 	uint32_t last_cntrs[5];            /* hw counters */
153 	const struct msm_gpu_perfcntr *perfcntrs;
154 	uint32_t num_perfcntrs;
155 
156 	struct msm_ringbuffer *rb[MSM_GPU_MAX_RINGS];
157 	int nr_rings;
158 
159 	/**
160 	 * cur_ctx_seqno:
161 	 *
162 	 * The ctx->seqno value of the last context to submit rendering,
163 	 * and the one with current pgtables installed (for generations
164 	 * that support per-context pgtables).  Tracked by seqno rather
165 	 * than pointer value to avoid dangling pointers, and cases where
166 	 * a ctx can be freed and a new one created with the same address.
167 	 */
168 	int cur_ctx_seqno;
169 
170 	/*
171 	 * List of GEM active objects on this gpu.  Protected by
172 	 * msm_drm_private::mm_lock
173 	 */
174 	struct list_head active_list;
175 
176 	/**
177 	 * lock:
178 	 *
179 	 * General lock for serializing all the gpu things.
180 	 *
181 	 * TODO move to per-ring locking where feasible (ie. submit/retire
182 	 * path, etc)
183 	 */
184 	struct mutex lock;
185 
186 	/**
187 	 * active_submits:
188 	 *
189 	 * The number of submitted but not yet retired submits, used to
190 	 * determine transitions between active and idle.
191 	 *
192 	 * Protected by active_lock
193 	 */
194 	int active_submits;
195 
196 	/** lock: protects active_submits and idle/active transitions */
197 	struct mutex active_lock;
198 
199 	/* does gpu need hw_init? */
200 	bool needs_hw_init;
201 
202 	/* number of GPU hangs (for all contexts) */
203 	int global_faults;
204 
205 	void __iomem *mmio;
206 	int irq;
207 
208 	struct msm_gem_address_space *aspace;
209 
210 	/* Power Control: */
211 	struct regulator *gpu_reg, *gpu_cx;
212 	struct clk_bulk_data *grp_clks;
213 	int nr_clocks;
214 	struct clk *ebi1_clk, *core_clk, *rbbmtimer_clk;
215 	uint32_t fast_rate;
216 
217 	/* Hang and Inactivity Detection:
218 	 */
219 #define DRM_MSM_INACTIVE_PERIOD   66 /* in ms (roughly four frames) */
220 
221 #define DRM_MSM_HANGCHECK_DEFAULT_PERIOD 500 /* in ms */
222 	struct timer_list hangcheck_timer;
223 
224 	/* Fault info for most recent iova fault: */
225 	struct msm_gpu_fault_info fault_info;
226 
227 	/* work for handling GPU ioval faults: */
228 	struct kthread_work fault_work;
229 
230 	/* work for handling GPU recovery: */
231 	struct kthread_work recover_work;
232 
233 	/** retire_event: notified when submits are retired: */
234 	wait_queue_head_t retire_event;
235 
236 	/* work for handling active-list retiring: */
237 	struct kthread_work retire_work;
238 
239 	/* worker for retire/recover: */
240 	struct kthread_worker *worker;
241 
242 	struct drm_gem_object *memptrs_bo;
243 
244 	struct msm_gpu_devfreq devfreq;
245 
246 	uint32_t suspend_count;
247 
248 	struct msm_gpu_state *crashstate;
249 
250 	/* Enable clamping to idle freq when inactive: */
251 	bool clamp_to_idle;
252 
253 	/* True if the hardware supports expanded apriv (a650 and newer) */
254 	bool hw_apriv;
255 
256 	struct thermal_cooling_device *cooling;
257 };
258 
259 static inline struct msm_gpu *dev_to_gpu(struct device *dev)
260 {
261 	struct adreno_smmu_priv *adreno_smmu = dev_get_drvdata(dev);
262 	return container_of(adreno_smmu, struct msm_gpu, adreno_smmu);
263 }
264 
265 /* It turns out that all targets use the same ringbuffer size */
266 #define MSM_GPU_RINGBUFFER_SZ SZ_32K
267 #define MSM_GPU_RINGBUFFER_BLKSIZE 32
268 
269 #define MSM_GPU_RB_CNTL_DEFAULT \
270 		(AXXX_CP_RB_CNTL_BUFSZ(ilog2(MSM_GPU_RINGBUFFER_SZ / 8)) | \
271 		AXXX_CP_RB_CNTL_BLKSZ(ilog2(MSM_GPU_RINGBUFFER_BLKSIZE / 8)))
272 
273 static inline bool msm_gpu_active(struct msm_gpu *gpu)
274 {
275 	int i;
276 
277 	for (i = 0; i < gpu->nr_rings; i++) {
278 		struct msm_ringbuffer *ring = gpu->rb[i];
279 
280 		if (fence_after(ring->seqno, ring->memptrs->fence))
281 			return true;
282 	}
283 
284 	return false;
285 }
286 
287 /* Perf-Counters:
288  * The select_reg and select_val are just there for the benefit of the child
289  * class that actually enables the perf counter..  but msm_gpu base class
290  * will handle sampling/displaying the counters.
291  */
292 
293 struct msm_gpu_perfcntr {
294 	uint32_t select_reg;
295 	uint32_t sample_reg;
296 	uint32_t select_val;
297 	const char *name;
298 };
299 
300 /*
301  * The number of priority levels provided by drm gpu scheduler.  The
302  * DRM_SCHED_PRIORITY_KERNEL priority level is treated specially in some
303  * cases, so we don't use it (no need for kernel generated jobs).
304  */
305 #define NR_SCHED_PRIORITIES (1 + DRM_SCHED_PRIORITY_HIGH - DRM_SCHED_PRIORITY_MIN)
306 
307 /**
308  * struct msm_file_private - per-drm_file context
309  *
310  * @queuelock:    synchronizes access to submitqueues list
311  * @submitqueues: list of &msm_gpu_submitqueue created by userspace
312  * @queueid:      counter incremented each time a submitqueue is created,
313  *                used to assign &msm_gpu_submitqueue.id
314  * @aspace:       the per-process GPU address-space
315  * @ref:          reference count
316  * @seqno:        unique per process seqno
317  */
318 struct msm_file_private {
319 	rwlock_t queuelock;
320 	struct list_head submitqueues;
321 	int queueid;
322 	struct msm_gem_address_space *aspace;
323 	struct kref ref;
324 	int seqno;
325 
326 	/**
327 	 * entities:
328 	 *
329 	 * Table of per-priority-level sched entities used by submitqueues
330 	 * associated with this &drm_file.  Because some userspace apps
331 	 * make assumptions about rendering from multiple gl contexts
332 	 * (of the same priority) within the process happening in FIFO
333 	 * order without requiring any fencing beyond MakeCurrent(), we
334 	 * create at most one &drm_sched_entity per-process per-priority-
335 	 * level.
336 	 */
337 	struct drm_sched_entity *entities[NR_SCHED_PRIORITIES * MSM_GPU_MAX_RINGS];
338 };
339 
340 /**
341  * msm_gpu_convert_priority - Map userspace priority to ring # and sched priority
342  *
343  * @gpu:        the gpu instance
344  * @prio:       the userspace priority level
345  * @ring_nr:    [out] the ringbuffer the userspace priority maps to
346  * @sched_prio: [out] the gpu scheduler priority level which the userspace
347  *              priority maps to
348  *
349  * With drm/scheduler providing it's own level of prioritization, our total
350  * number of available priority levels is (nr_rings * NR_SCHED_PRIORITIES).
351  * Each ring is associated with it's own scheduler instance.  However, our
352  * UABI is that lower numerical values are higher priority.  So mapping the
353  * single userspace priority level into ring_nr and sched_prio takes some
354  * care.  The userspace provided priority (when a submitqueue is created)
355  * is mapped to ring nr and scheduler priority as such:
356  *
357  *   ring_nr    = userspace_prio / NR_SCHED_PRIORITIES
358  *   sched_prio = NR_SCHED_PRIORITIES -
359  *                (userspace_prio % NR_SCHED_PRIORITIES) - 1
360  *
361  * This allows generations without preemption (nr_rings==1) to have some
362  * amount of prioritization, and provides more priority levels for gens
363  * that do have preemption.
364  */
365 static inline int msm_gpu_convert_priority(struct msm_gpu *gpu, int prio,
366 		unsigned *ring_nr, enum drm_sched_priority *sched_prio)
367 {
368 	unsigned rn, sp;
369 
370 	rn = div_u64_rem(prio, NR_SCHED_PRIORITIES, &sp);
371 
372 	/* invert sched priority to map to higher-numeric-is-higher-
373 	 * priority convention
374 	 */
375 	sp = NR_SCHED_PRIORITIES - sp - 1;
376 
377 	if (rn >= gpu->nr_rings)
378 		return -EINVAL;
379 
380 	*ring_nr = rn;
381 	*sched_prio = sp;
382 
383 	return 0;
384 }
385 
386 /**
387  * struct msm_gpu_submitqueues - Userspace created context.
388  *
389  * A submitqueue is associated with a gl context or vk queue (or equiv)
390  * in userspace.
391  *
392  * @id:        userspace id for the submitqueue, unique within the drm_file
393  * @flags:     userspace flags for the submitqueue, specified at creation
394  *             (currently unusued)
395  * @ring_nr:   the ringbuffer used by this submitqueue, which is determined
396  *             by the submitqueue's priority
397  * @faults:    the number of GPU hangs associated with this submitqueue
398  * @last_fence: the sequence number of the last allocated fence (for error
399  *             checking)
400  * @ctx:       the per-drm_file context associated with the submitqueue (ie.
401  *             which set of pgtables do submits jobs associated with the
402  *             submitqueue use)
403  * @node:      node in the context's list of submitqueues
404  * @fence_idr: maps fence-id to dma_fence for userspace visible fence
405  *             seqno, protected by submitqueue lock
406  * @lock:      submitqueue lock
407  * @ref:       reference count
408  * @entity:    the submit job-queue
409  */
410 struct msm_gpu_submitqueue {
411 	int id;
412 	u32 flags;
413 	u32 ring_nr;
414 	int faults;
415 	uint32_t last_fence;
416 	struct msm_file_private *ctx;
417 	struct list_head node;
418 	struct idr fence_idr;
419 	struct mutex lock;
420 	struct kref ref;
421 	struct drm_sched_entity *entity;
422 };
423 
424 struct msm_gpu_state_bo {
425 	u64 iova;
426 	size_t size;
427 	void *data;
428 	bool encoded;
429 };
430 
431 struct msm_gpu_state {
432 	struct kref ref;
433 	struct timespec64 time;
434 
435 	struct {
436 		u64 iova;
437 		u32 fence;
438 		u32 seqno;
439 		u32 rptr;
440 		u32 wptr;
441 		void *data;
442 		int data_size;
443 		bool encoded;
444 	} ring[MSM_GPU_MAX_RINGS];
445 
446 	int nr_registers;
447 	u32 *registers;
448 
449 	u32 rbbm_status;
450 
451 	char *comm;
452 	char *cmd;
453 
454 	struct msm_gpu_fault_info fault_info;
455 
456 	int nr_bos;
457 	struct msm_gpu_state_bo *bos;
458 };
459 
460 static inline void gpu_write(struct msm_gpu *gpu, u32 reg, u32 data)
461 {
462 	msm_writel(data, gpu->mmio + (reg << 2));
463 }
464 
465 static inline u32 gpu_read(struct msm_gpu *gpu, u32 reg)
466 {
467 	return msm_readl(gpu->mmio + (reg << 2));
468 }
469 
470 static inline void gpu_rmw(struct msm_gpu *gpu, u32 reg, u32 mask, u32 or)
471 {
472 	msm_rmw(gpu->mmio + (reg << 2), mask, or);
473 }
474 
475 static inline u64 gpu_read64(struct msm_gpu *gpu, u32 lo, u32 hi)
476 {
477 	u64 val;
478 
479 	/*
480 	 * Why not a readq here? Two reasons: 1) many of the LO registers are
481 	 * not quad word aligned and 2) the GPU hardware designers have a bit
482 	 * of a history of putting registers where they fit, especially in
483 	 * spins. The longer a GPU family goes the higher the chance that
484 	 * we'll get burned.  We could do a series of validity checks if we
485 	 * wanted to, but really is a readq() that much better? Nah.
486 	 */
487 
488 	/*
489 	 * For some lo/hi registers (like perfcounters), the hi value is latched
490 	 * when the lo is read, so make sure to read the lo first to trigger
491 	 * that
492 	 */
493 	val = (u64) msm_readl(gpu->mmio + (lo << 2));
494 	val |= ((u64) msm_readl(gpu->mmio + (hi << 2)) << 32);
495 
496 	return val;
497 }
498 
499 static inline void gpu_write64(struct msm_gpu *gpu, u32 lo, u32 hi, u64 val)
500 {
501 	/* Why not a writeq here? Read the screed above */
502 	msm_writel(lower_32_bits(val), gpu->mmio + (lo << 2));
503 	msm_writel(upper_32_bits(val), gpu->mmio + (hi << 2));
504 }
505 
506 int msm_gpu_pm_suspend(struct msm_gpu *gpu);
507 int msm_gpu_pm_resume(struct msm_gpu *gpu);
508 
509 int msm_submitqueue_init(struct drm_device *drm, struct msm_file_private *ctx);
510 struct msm_gpu_submitqueue *msm_submitqueue_get(struct msm_file_private *ctx,
511 		u32 id);
512 int msm_submitqueue_create(struct drm_device *drm,
513 		struct msm_file_private *ctx,
514 		u32 prio, u32 flags, u32 *id);
515 int msm_submitqueue_query(struct drm_device *drm, struct msm_file_private *ctx,
516 		struct drm_msm_submitqueue_query *args);
517 int msm_submitqueue_remove(struct msm_file_private *ctx, u32 id);
518 void msm_submitqueue_close(struct msm_file_private *ctx);
519 
520 void msm_submitqueue_destroy(struct kref *kref);
521 
522 void __msm_file_private_destroy(struct kref *kref);
523 
524 static inline void msm_file_private_put(struct msm_file_private *ctx)
525 {
526 	kref_put(&ctx->ref, __msm_file_private_destroy);
527 }
528 
529 static inline struct msm_file_private *msm_file_private_get(
530 	struct msm_file_private *ctx)
531 {
532 	kref_get(&ctx->ref);
533 	return ctx;
534 }
535 
536 void msm_devfreq_init(struct msm_gpu *gpu);
537 void msm_devfreq_cleanup(struct msm_gpu *gpu);
538 void msm_devfreq_resume(struct msm_gpu *gpu);
539 void msm_devfreq_suspend(struct msm_gpu *gpu);
540 void msm_devfreq_boost(struct msm_gpu *gpu, unsigned factor);
541 void msm_devfreq_active(struct msm_gpu *gpu);
542 void msm_devfreq_idle(struct msm_gpu *gpu);
543 
544 int msm_gpu_hw_init(struct msm_gpu *gpu);
545 
546 void msm_gpu_perfcntr_start(struct msm_gpu *gpu);
547 void msm_gpu_perfcntr_stop(struct msm_gpu *gpu);
548 int msm_gpu_perfcntr_sample(struct msm_gpu *gpu, uint32_t *activetime,
549 		uint32_t *totaltime, uint32_t ncntrs, uint32_t *cntrs);
550 
551 void msm_gpu_retire(struct msm_gpu *gpu);
552 void msm_gpu_submit(struct msm_gpu *gpu, struct msm_gem_submit *submit);
553 
554 int msm_gpu_init(struct drm_device *drm, struct platform_device *pdev,
555 		struct msm_gpu *gpu, const struct msm_gpu_funcs *funcs,
556 		const char *name, struct msm_gpu_config *config);
557 
558 struct msm_gem_address_space *
559 msm_gpu_create_private_address_space(struct msm_gpu *gpu, struct task_struct *task);
560 
561 void msm_gpu_cleanup(struct msm_gpu *gpu);
562 
563 struct msm_gpu *adreno_load_gpu(struct drm_device *dev);
564 void __init adreno_register(void);
565 void __exit adreno_unregister(void);
566 
567 static inline void msm_submitqueue_put(struct msm_gpu_submitqueue *queue)
568 {
569 	if (queue)
570 		kref_put(&queue->ref, msm_submitqueue_destroy);
571 }
572 
573 static inline struct msm_gpu_state *msm_gpu_crashstate_get(struct msm_gpu *gpu)
574 {
575 	struct msm_gpu_state *state = NULL;
576 
577 	mutex_lock(&gpu->lock);
578 
579 	if (gpu->crashstate) {
580 		kref_get(&gpu->crashstate->ref);
581 		state = gpu->crashstate;
582 	}
583 
584 	mutex_unlock(&gpu->lock);
585 
586 	return state;
587 }
588 
589 static inline void msm_gpu_crashstate_put(struct msm_gpu *gpu)
590 {
591 	mutex_lock(&gpu->lock);
592 
593 	if (gpu->crashstate) {
594 		if (gpu->funcs->gpu_state_put(gpu->crashstate))
595 			gpu->crashstate = NULL;
596 	}
597 
598 	mutex_unlock(&gpu->lock);
599 }
600 
601 /*
602  * Simple macro to semi-cleanly add the MAP_PRIV flag for targets that can
603  * support expanded privileges
604  */
605 #define check_apriv(gpu, flags) \
606 	(((gpu)->hw_apriv ? MSM_BO_MAP_PRIV : 0) | (flags))
607 
608 
609 #endif /* __MSM_GPU_H__ */
610