xref: /linux/drivers/gpu/drm/msm/msm_gpu.h (revision 52990390f91c1c39ca742fc8f390b29891d95127)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2013 Red Hat
4  * Author: Rob Clark <robdclark@gmail.com>
5  */
6 
7 #ifndef __MSM_GPU_H__
8 #define __MSM_GPU_H__
9 
10 #include <linux/adreno-smmu-priv.h>
11 #include <linux/clk.h>
12 #include <linux/devfreq.h>
13 #include <linux/interconnect.h>
14 #include <linux/pm_opp.h>
15 #include <linux/regulator/consumer.h>
16 
17 #include "msm_drv.h"
18 #include "msm_fence.h"
19 #include "msm_ringbuffer.h"
20 #include "msm_gem.h"
21 
22 struct msm_gem_submit;
23 struct msm_gpu_perfcntr;
24 struct msm_gpu_state;
25 struct msm_file_private;
26 
27 struct msm_gpu_config {
28 	const char *ioname;
29 	unsigned int nr_rings;
30 };
31 
32 /* So far, with hardware that I've seen to date, we can have:
33  *  + zero, one, or two z180 2d cores
34  *  + a3xx or a2xx 3d core, which share a common CP (the firmware
35  *    for the CP seems to implement some different PM4 packet types
36  *    but the basics of cmdstream submission are the same)
37  *
38  * Which means that the eventual complete "class" hierarchy, once
39  * support for all past and present hw is in place, becomes:
40  *  + msm_gpu
41  *    + adreno_gpu
42  *      + a3xx_gpu
43  *      + a2xx_gpu
44  *    + z180_gpu
45  */
46 struct msm_gpu_funcs {
47 	int (*get_param)(struct msm_gpu *gpu, struct msm_file_private *ctx,
48 			 uint32_t param, uint64_t *value, uint32_t *len);
49 	int (*set_param)(struct msm_gpu *gpu, struct msm_file_private *ctx,
50 			 uint32_t param, uint64_t value, uint32_t len);
51 	int (*hw_init)(struct msm_gpu *gpu);
52 
53 	/**
54 	 * @ucode_load: Optional hook to upload fw to GEM objs
55 	 */
56 	int (*ucode_load)(struct msm_gpu *gpu);
57 
58 	int (*pm_suspend)(struct msm_gpu *gpu);
59 	int (*pm_resume)(struct msm_gpu *gpu);
60 	void (*submit)(struct msm_gpu *gpu, struct msm_gem_submit *submit);
61 	void (*flush)(struct msm_gpu *gpu, struct msm_ringbuffer *ring);
62 	irqreturn_t (*irq)(struct msm_gpu *irq);
63 	struct msm_ringbuffer *(*active_ring)(struct msm_gpu *gpu);
64 	void (*recover)(struct msm_gpu *gpu);
65 	void (*destroy)(struct msm_gpu *gpu);
66 #if defined(CONFIG_DEBUG_FS) || defined(CONFIG_DEV_COREDUMP)
67 	/* show GPU status in debugfs: */
68 	void (*show)(struct msm_gpu *gpu, struct msm_gpu_state *state,
69 			struct drm_printer *p);
70 	/* for generation specific debugfs: */
71 	void (*debugfs_init)(struct msm_gpu *gpu, struct drm_minor *minor);
72 #endif
73 	/* note: gpu_busy() can assume that we have been pm_resumed */
74 	u64 (*gpu_busy)(struct msm_gpu *gpu, unsigned long *out_sample_rate);
75 	struct msm_gpu_state *(*gpu_state_get)(struct msm_gpu *gpu);
76 	int (*gpu_state_put)(struct msm_gpu_state *state);
77 	unsigned long (*gpu_get_freq)(struct msm_gpu *gpu);
78 	/* note: gpu_set_freq() can assume that we have been pm_resumed */
79 	void (*gpu_set_freq)(struct msm_gpu *gpu, struct dev_pm_opp *opp,
80 			     bool suspended);
81 	struct msm_gem_address_space *(*create_address_space)
82 		(struct msm_gpu *gpu, struct platform_device *pdev);
83 	struct msm_gem_address_space *(*create_private_address_space)
84 		(struct msm_gpu *gpu);
85 	uint32_t (*get_rptr)(struct msm_gpu *gpu, struct msm_ringbuffer *ring);
86 
87 	/**
88 	 * progress: Has the GPU made progress?
89 	 *
90 	 * Return true if GPU position in cmdstream has advanced (or changed)
91 	 * since the last call.  To avoid false negatives, this should account
92 	 * for cmdstream that is buffered in this FIFO upstream of the CP fw.
93 	 */
94 	bool (*progress)(struct msm_gpu *gpu, struct msm_ringbuffer *ring);
95 };
96 
97 /* Additional state for iommu faults: */
98 struct msm_gpu_fault_info {
99 	u64 ttbr0;
100 	unsigned long iova;
101 	int flags;
102 	const char *type;
103 	const char *block;
104 };
105 
106 /**
107  * struct msm_gpu_devfreq - devfreq related state
108  */
109 struct msm_gpu_devfreq {
110 	/** devfreq: devfreq instance */
111 	struct devfreq *devfreq;
112 
113 	/** lock: lock for "suspended", "busy_cycles", and "time" */
114 	struct mutex lock;
115 
116 	/**
117 	 * idle_freq:
118 	 *
119 	 * Shadow frequency used while the GPU is idle.  From the PoV of
120 	 * the devfreq governor, we are continuing to sample busyness and
121 	 * adjust frequency while the GPU is idle, but we use this shadow
122 	 * value as the GPU is actually clamped to minimum frequency while
123 	 * it is inactive.
124 	 */
125 	unsigned long idle_freq;
126 
127 	/**
128 	 * boost_constraint:
129 	 *
130 	 * A PM QoS constraint to boost min freq for a period of time
131 	 * until the boost expires.
132 	 */
133 	struct dev_pm_qos_request boost_freq;
134 
135 	/**
136 	 * busy_cycles: Last busy counter value, for calculating elapsed busy
137 	 * cycles since last sampling period.
138 	 */
139 	u64 busy_cycles;
140 
141 	/** time: Time of last sampling period. */
142 	ktime_t time;
143 
144 	/** idle_time: Time of last transition to idle: */
145 	ktime_t idle_time;
146 
147 	/**
148 	 * idle_work:
149 	 *
150 	 * Used to delay clamping to idle freq on active->idle transition.
151 	 */
152 	struct msm_hrtimer_work idle_work;
153 
154 	/**
155 	 * boost_work:
156 	 *
157 	 * Used to reset the boost_constraint after the boost period has
158 	 * elapsed
159 	 */
160 	struct msm_hrtimer_work boost_work;
161 
162 	/** suspended: tracks if we're suspended */
163 	bool suspended;
164 };
165 
166 struct msm_gpu {
167 	const char *name;
168 	struct drm_device *dev;
169 	struct platform_device *pdev;
170 	const struct msm_gpu_funcs *funcs;
171 
172 	struct adreno_smmu_priv adreno_smmu;
173 
174 	/* performance counters (hw & sw): */
175 	spinlock_t perf_lock;
176 	bool perfcntr_active;
177 	struct {
178 		bool active;
179 		ktime_t time;
180 	} last_sample;
181 	uint32_t totaltime, activetime;    /* sw counters */
182 	uint32_t last_cntrs[5];            /* hw counters */
183 	const struct msm_gpu_perfcntr *perfcntrs;
184 	uint32_t num_perfcntrs;
185 
186 	struct msm_ringbuffer *rb[MSM_GPU_MAX_RINGS];
187 	int nr_rings;
188 
189 	/**
190 	 * sysprof_active:
191 	 *
192 	 * The count of contexts that have enabled system profiling.
193 	 */
194 	refcount_t sysprof_active;
195 
196 	/**
197 	 * cur_ctx_seqno:
198 	 *
199 	 * The ctx->seqno value of the last context to submit rendering,
200 	 * and the one with current pgtables installed (for generations
201 	 * that support per-context pgtables).  Tracked by seqno rather
202 	 * than pointer value to avoid dangling pointers, and cases where
203 	 * a ctx can be freed and a new one created with the same address.
204 	 */
205 	int cur_ctx_seqno;
206 
207 	/**
208 	 * lock:
209 	 *
210 	 * General lock for serializing all the gpu things.
211 	 *
212 	 * TODO move to per-ring locking where feasible (ie. submit/retire
213 	 * path, etc)
214 	 */
215 	struct mutex lock;
216 
217 	/**
218 	 * active_submits:
219 	 *
220 	 * The number of submitted but not yet retired submits, used to
221 	 * determine transitions between active and idle.
222 	 *
223 	 * Protected by active_lock
224 	 */
225 	int active_submits;
226 
227 	/** lock: protects active_submits and idle/active transitions */
228 	struct mutex active_lock;
229 
230 	/* does gpu need hw_init? */
231 	bool needs_hw_init;
232 
233 	/**
234 	 * global_faults: number of GPU hangs not attributed to a particular
235 	 * address space
236 	 */
237 	int global_faults;
238 
239 	void __iomem *mmio;
240 	int irq;
241 
242 	struct msm_gem_address_space *aspace;
243 
244 	/* Power Control: */
245 	struct regulator *gpu_reg, *gpu_cx;
246 	struct clk_bulk_data *grp_clks;
247 	int nr_clocks;
248 	struct clk *ebi1_clk, *core_clk, *rbbmtimer_clk;
249 	uint32_t fast_rate;
250 
251 	/* Hang and Inactivity Detection:
252 	 */
253 #define DRM_MSM_INACTIVE_PERIOD   66 /* in ms (roughly four frames) */
254 
255 #define DRM_MSM_HANGCHECK_DEFAULT_PERIOD 500 /* in ms */
256 #define DRM_MSM_HANGCHECK_PROGRESS_RETRIES 3
257 	struct timer_list hangcheck_timer;
258 
259 	/* Fault info for most recent iova fault: */
260 	struct msm_gpu_fault_info fault_info;
261 
262 	/* work for handling GPU ioval faults: */
263 	struct kthread_work fault_work;
264 
265 	/* work for handling GPU recovery: */
266 	struct kthread_work recover_work;
267 
268 	/** retire_event: notified when submits are retired: */
269 	wait_queue_head_t retire_event;
270 
271 	/* work for handling active-list retiring: */
272 	struct kthread_work retire_work;
273 
274 	/* worker for retire/recover: */
275 	struct kthread_worker *worker;
276 
277 	struct drm_gem_object *memptrs_bo;
278 
279 	struct msm_gpu_devfreq devfreq;
280 
281 	uint32_t suspend_count;
282 
283 	struct msm_gpu_state *crashstate;
284 
285 	/* True if the hardware supports expanded apriv (a650 and newer) */
286 	bool hw_apriv;
287 
288 	struct thermal_cooling_device *cooling;
289 };
290 
291 static inline struct msm_gpu *dev_to_gpu(struct device *dev)
292 {
293 	struct adreno_smmu_priv *adreno_smmu = dev_get_drvdata(dev);
294 
295 	if (!adreno_smmu)
296 		return NULL;
297 
298 	return container_of(adreno_smmu, struct msm_gpu, adreno_smmu);
299 }
300 
301 /* It turns out that all targets use the same ringbuffer size */
302 #define MSM_GPU_RINGBUFFER_SZ SZ_32K
303 #define MSM_GPU_RINGBUFFER_BLKSIZE 32
304 
305 #define MSM_GPU_RB_CNTL_DEFAULT \
306 		(AXXX_CP_RB_CNTL_BUFSZ(ilog2(MSM_GPU_RINGBUFFER_SZ / 8)) | \
307 		AXXX_CP_RB_CNTL_BLKSZ(ilog2(MSM_GPU_RINGBUFFER_BLKSIZE / 8)))
308 
309 static inline bool msm_gpu_active(struct msm_gpu *gpu)
310 {
311 	int i;
312 
313 	for (i = 0; i < gpu->nr_rings; i++) {
314 		struct msm_ringbuffer *ring = gpu->rb[i];
315 
316 		if (fence_after(ring->fctx->last_fence, ring->memptrs->fence))
317 			return true;
318 	}
319 
320 	return false;
321 }
322 
323 /* Perf-Counters:
324  * The select_reg and select_val are just there for the benefit of the child
325  * class that actually enables the perf counter..  but msm_gpu base class
326  * will handle sampling/displaying the counters.
327  */
328 
329 struct msm_gpu_perfcntr {
330 	uint32_t select_reg;
331 	uint32_t sample_reg;
332 	uint32_t select_val;
333 	const char *name;
334 };
335 
336 /*
337  * The number of priority levels provided by drm gpu scheduler.  The
338  * DRM_SCHED_PRIORITY_KERNEL priority level is treated specially in some
339  * cases, so we don't use it (no need for kernel generated jobs).
340  */
341 #define NR_SCHED_PRIORITIES (1 + DRM_SCHED_PRIORITY_HIGH - DRM_SCHED_PRIORITY_MIN)
342 
343 /**
344  * struct msm_file_private - per-drm_file context
345  *
346  * @queuelock:    synchronizes access to submitqueues list
347  * @submitqueues: list of &msm_gpu_submitqueue created by userspace
348  * @queueid:      counter incremented each time a submitqueue is created,
349  *                used to assign &msm_gpu_submitqueue.id
350  * @aspace:       the per-process GPU address-space
351  * @ref:          reference count
352  * @seqno:        unique per process seqno
353  */
354 struct msm_file_private {
355 	rwlock_t queuelock;
356 	struct list_head submitqueues;
357 	int queueid;
358 	struct msm_gem_address_space *aspace;
359 	struct kref ref;
360 	int seqno;
361 
362 	/**
363 	 * sysprof:
364 	 *
365 	 * The value of MSM_PARAM_SYSPROF set by userspace.  This is
366 	 * intended to be used by system profiling tools like Mesa's
367 	 * pps-producer (perfetto), and restricted to CAP_SYS_ADMIN.
368 	 *
369 	 * Setting a value of 1 will preserve performance counters across
370 	 * context switches.  Setting a value of 2 will in addition
371 	 * suppress suspend.  (Performance counters lose state across
372 	 * power collapse, which is undesirable for profiling in some
373 	 * cases.)
374 	 *
375 	 * The value automatically reverts to zero when the drm device
376 	 * file is closed.
377 	 */
378 	int sysprof;
379 
380 	/**
381 	 * comm: Overridden task comm, see MSM_PARAM_COMM
382 	 *
383 	 * Accessed under msm_gpu::lock
384 	 */
385 	char *comm;
386 
387 	/**
388 	 * cmdline: Overridden task cmdline, see MSM_PARAM_CMDLINE
389 	 *
390 	 * Accessed under msm_gpu::lock
391 	 */
392 	char *cmdline;
393 
394 	/**
395 	 * elapsed:
396 	 *
397 	 * The total (cumulative) elapsed time GPU was busy with rendering
398 	 * from this context in ns.
399 	 */
400 	uint64_t elapsed_ns;
401 
402 	/**
403 	 * cycles:
404 	 *
405 	 * The total (cumulative) GPU cycles elapsed attributed to this
406 	 * context.
407 	 */
408 	uint64_t cycles;
409 
410 	/**
411 	 * entities:
412 	 *
413 	 * Table of per-priority-level sched entities used by submitqueues
414 	 * associated with this &drm_file.  Because some userspace apps
415 	 * make assumptions about rendering from multiple gl contexts
416 	 * (of the same priority) within the process happening in FIFO
417 	 * order without requiring any fencing beyond MakeCurrent(), we
418 	 * create at most one &drm_sched_entity per-process per-priority-
419 	 * level.
420 	 */
421 	struct drm_sched_entity *entities[NR_SCHED_PRIORITIES * MSM_GPU_MAX_RINGS];
422 };
423 
424 /**
425  * msm_gpu_convert_priority - Map userspace priority to ring # and sched priority
426  *
427  * @gpu:        the gpu instance
428  * @prio:       the userspace priority level
429  * @ring_nr:    [out] the ringbuffer the userspace priority maps to
430  * @sched_prio: [out] the gpu scheduler priority level which the userspace
431  *              priority maps to
432  *
433  * With drm/scheduler providing it's own level of prioritization, our total
434  * number of available priority levels is (nr_rings * NR_SCHED_PRIORITIES).
435  * Each ring is associated with it's own scheduler instance.  However, our
436  * UABI is that lower numerical values are higher priority.  So mapping the
437  * single userspace priority level into ring_nr and sched_prio takes some
438  * care.  The userspace provided priority (when a submitqueue is created)
439  * is mapped to ring nr and scheduler priority as such:
440  *
441  *   ring_nr    = userspace_prio / NR_SCHED_PRIORITIES
442  *   sched_prio = NR_SCHED_PRIORITIES -
443  *                (userspace_prio % NR_SCHED_PRIORITIES) - 1
444  *
445  * This allows generations without preemption (nr_rings==1) to have some
446  * amount of prioritization, and provides more priority levels for gens
447  * that do have preemption.
448  */
449 static inline int msm_gpu_convert_priority(struct msm_gpu *gpu, int prio,
450 		unsigned *ring_nr, enum drm_sched_priority *sched_prio)
451 {
452 	unsigned rn, sp;
453 
454 	rn = div_u64_rem(prio, NR_SCHED_PRIORITIES, &sp);
455 
456 	/* invert sched priority to map to higher-numeric-is-higher-
457 	 * priority convention
458 	 */
459 	sp = NR_SCHED_PRIORITIES - sp - 1;
460 
461 	if (rn >= gpu->nr_rings)
462 		return -EINVAL;
463 
464 	*ring_nr = rn;
465 	*sched_prio = sp;
466 
467 	return 0;
468 }
469 
470 /**
471  * struct msm_gpu_submitqueues - Userspace created context.
472  *
473  * A submitqueue is associated with a gl context or vk queue (or equiv)
474  * in userspace.
475  *
476  * @id:        userspace id for the submitqueue, unique within the drm_file
477  * @flags:     userspace flags for the submitqueue, specified at creation
478  *             (currently unusued)
479  * @ring_nr:   the ringbuffer used by this submitqueue, which is determined
480  *             by the submitqueue's priority
481  * @faults:    the number of GPU hangs associated with this submitqueue
482  * @last_fence: the sequence number of the last allocated fence (for error
483  *             checking)
484  * @ctx:       the per-drm_file context associated with the submitqueue (ie.
485  *             which set of pgtables do submits jobs associated with the
486  *             submitqueue use)
487  * @node:      node in the context's list of submitqueues
488  * @fence_idr: maps fence-id to dma_fence for userspace visible fence
489  *             seqno, protected by submitqueue lock
490  * @idr_lock:  for serializing access to fence_idr
491  * @lock:      submitqueue lock for serializing submits on a queue
492  * @ref:       reference count
493  * @entity:    the submit job-queue
494  */
495 struct msm_gpu_submitqueue {
496 	int id;
497 	u32 flags;
498 	u32 ring_nr;
499 	int faults;
500 	uint32_t last_fence;
501 	struct msm_file_private *ctx;
502 	struct list_head node;
503 	struct idr fence_idr;
504 	struct spinlock idr_lock;
505 	struct mutex lock;
506 	struct kref ref;
507 	struct drm_sched_entity *entity;
508 };
509 
510 struct msm_gpu_state_bo {
511 	u64 iova;
512 	size_t size;
513 	void *data;
514 	bool encoded;
515 	char name[32];
516 };
517 
518 struct msm_gpu_state {
519 	struct kref ref;
520 	struct timespec64 time;
521 
522 	struct {
523 		u64 iova;
524 		u32 fence;
525 		u32 seqno;
526 		u32 rptr;
527 		u32 wptr;
528 		void *data;
529 		int data_size;
530 		bool encoded;
531 	} ring[MSM_GPU_MAX_RINGS];
532 
533 	int nr_registers;
534 	u32 *registers;
535 
536 	u32 rbbm_status;
537 
538 	char *comm;
539 	char *cmd;
540 
541 	struct msm_gpu_fault_info fault_info;
542 
543 	int nr_bos;
544 	struct msm_gpu_state_bo *bos;
545 };
546 
547 static inline void gpu_write(struct msm_gpu *gpu, u32 reg, u32 data)
548 {
549 	msm_writel(data, gpu->mmio + (reg << 2));
550 }
551 
552 static inline u32 gpu_read(struct msm_gpu *gpu, u32 reg)
553 {
554 	return msm_readl(gpu->mmio + (reg << 2));
555 }
556 
557 static inline void gpu_rmw(struct msm_gpu *gpu, u32 reg, u32 mask, u32 or)
558 {
559 	msm_rmw(gpu->mmio + (reg << 2), mask, or);
560 }
561 
562 static inline u64 gpu_read64(struct msm_gpu *gpu, u32 reg)
563 {
564 	u64 val;
565 
566 	/*
567 	 * Why not a readq here? Two reasons: 1) many of the LO registers are
568 	 * not quad word aligned and 2) the GPU hardware designers have a bit
569 	 * of a history of putting registers where they fit, especially in
570 	 * spins. The longer a GPU family goes the higher the chance that
571 	 * we'll get burned.  We could do a series of validity checks if we
572 	 * wanted to, but really is a readq() that much better? Nah.
573 	 */
574 
575 	/*
576 	 * For some lo/hi registers (like perfcounters), the hi value is latched
577 	 * when the lo is read, so make sure to read the lo first to trigger
578 	 * that
579 	 */
580 	val = (u64) msm_readl(gpu->mmio + (reg << 2));
581 	val |= ((u64) msm_readl(gpu->mmio + ((reg + 1) << 2)) << 32);
582 
583 	return val;
584 }
585 
586 static inline void gpu_write64(struct msm_gpu *gpu, u32 reg, u64 val)
587 {
588 	/* Why not a writeq here? Read the screed above */
589 	msm_writel(lower_32_bits(val), gpu->mmio + (reg << 2));
590 	msm_writel(upper_32_bits(val), gpu->mmio + ((reg + 1) << 2));
591 }
592 
593 int msm_gpu_pm_suspend(struct msm_gpu *gpu);
594 int msm_gpu_pm_resume(struct msm_gpu *gpu);
595 
596 void msm_gpu_show_fdinfo(struct msm_gpu *gpu, struct msm_file_private *ctx,
597 			 struct drm_printer *p);
598 
599 int msm_submitqueue_init(struct drm_device *drm, struct msm_file_private *ctx);
600 struct msm_gpu_submitqueue *msm_submitqueue_get(struct msm_file_private *ctx,
601 		u32 id);
602 int msm_submitqueue_create(struct drm_device *drm,
603 		struct msm_file_private *ctx,
604 		u32 prio, u32 flags, u32 *id);
605 int msm_submitqueue_query(struct drm_device *drm, struct msm_file_private *ctx,
606 		struct drm_msm_submitqueue_query *args);
607 int msm_submitqueue_remove(struct msm_file_private *ctx, u32 id);
608 void msm_submitqueue_close(struct msm_file_private *ctx);
609 
610 void msm_submitqueue_destroy(struct kref *kref);
611 
612 int msm_file_private_set_sysprof(struct msm_file_private *ctx,
613 				 struct msm_gpu *gpu, int sysprof);
614 void __msm_file_private_destroy(struct kref *kref);
615 
616 static inline void msm_file_private_put(struct msm_file_private *ctx)
617 {
618 	kref_put(&ctx->ref, __msm_file_private_destroy);
619 }
620 
621 static inline struct msm_file_private *msm_file_private_get(
622 	struct msm_file_private *ctx)
623 {
624 	kref_get(&ctx->ref);
625 	return ctx;
626 }
627 
628 void msm_devfreq_init(struct msm_gpu *gpu);
629 void msm_devfreq_cleanup(struct msm_gpu *gpu);
630 void msm_devfreq_resume(struct msm_gpu *gpu);
631 void msm_devfreq_suspend(struct msm_gpu *gpu);
632 void msm_devfreq_boost(struct msm_gpu *gpu, unsigned factor);
633 void msm_devfreq_active(struct msm_gpu *gpu);
634 void msm_devfreq_idle(struct msm_gpu *gpu);
635 
636 int msm_gpu_hw_init(struct msm_gpu *gpu);
637 
638 void msm_gpu_perfcntr_start(struct msm_gpu *gpu);
639 void msm_gpu_perfcntr_stop(struct msm_gpu *gpu);
640 int msm_gpu_perfcntr_sample(struct msm_gpu *gpu, uint32_t *activetime,
641 		uint32_t *totaltime, uint32_t ncntrs, uint32_t *cntrs);
642 
643 void msm_gpu_retire(struct msm_gpu *gpu);
644 void msm_gpu_submit(struct msm_gpu *gpu, struct msm_gem_submit *submit);
645 
646 int msm_gpu_init(struct drm_device *drm, struct platform_device *pdev,
647 		struct msm_gpu *gpu, const struct msm_gpu_funcs *funcs,
648 		const char *name, struct msm_gpu_config *config);
649 
650 struct msm_gem_address_space *
651 msm_gpu_create_private_address_space(struct msm_gpu *gpu, struct task_struct *task);
652 
653 void msm_gpu_cleanup(struct msm_gpu *gpu);
654 
655 struct msm_gpu *adreno_load_gpu(struct drm_device *dev);
656 void __init adreno_register(void);
657 void __exit adreno_unregister(void);
658 
659 static inline void msm_submitqueue_put(struct msm_gpu_submitqueue *queue)
660 {
661 	if (queue)
662 		kref_put(&queue->ref, msm_submitqueue_destroy);
663 }
664 
665 static inline struct msm_gpu_state *msm_gpu_crashstate_get(struct msm_gpu *gpu)
666 {
667 	struct msm_gpu_state *state = NULL;
668 
669 	mutex_lock(&gpu->lock);
670 
671 	if (gpu->crashstate) {
672 		kref_get(&gpu->crashstate->ref);
673 		state = gpu->crashstate;
674 	}
675 
676 	mutex_unlock(&gpu->lock);
677 
678 	return state;
679 }
680 
681 static inline void msm_gpu_crashstate_put(struct msm_gpu *gpu)
682 {
683 	mutex_lock(&gpu->lock);
684 
685 	if (gpu->crashstate) {
686 		if (gpu->funcs->gpu_state_put(gpu->crashstate))
687 			gpu->crashstate = NULL;
688 	}
689 
690 	mutex_unlock(&gpu->lock);
691 }
692 
693 /*
694  * Simple macro to semi-cleanly add the MAP_PRIV flag for targets that can
695  * support expanded privileges
696  */
697 #define check_apriv(gpu, flags) \
698 	(((gpu)->hw_apriv ? MSM_BO_MAP_PRIV : 0) | (flags))
699 
700 
701 #endif /* __MSM_GPU_H__ */
702