xref: /linux/drivers/gpu/drm/msm/msm_gpu.h (revision 43f06e8165c4f6e16ab32ede845171ac66d4eaaa)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2013 Red Hat
4  * Author: Rob Clark <robdclark@gmail.com>
5  */
6 
7 #ifndef __MSM_GPU_H__
8 #define __MSM_GPU_H__
9 
10 #include <linux/adreno-smmu-priv.h>
11 #include <linux/clk.h>
12 #include <linux/devfreq.h>
13 #include <linux/interconnect.h>
14 #include <linux/pm_opp.h>
15 #include <linux/regulator/consumer.h>
16 
17 #include "msm_drv.h"
18 #include "msm_fence.h"
19 #include "msm_gpu_trace.h"
20 #include "msm_ringbuffer.h"
21 #include "msm_gem.h"
22 
23 struct msm_gem_submit;
24 struct msm_gem_vm_log_entry;
25 struct msm_gpu_perfcntr;
26 struct msm_gpu_state;
27 struct msm_context;
28 
29 struct msm_gpu_config {
30 	const char *ioname;
31 	unsigned int nr_rings;
32 };
33 
34 /* So far, with hardware that I've seen to date, we can have:
35  *  + zero, one, or two z180 2d cores
36  *  + a3xx or a2xx 3d core, which share a common CP (the firmware
37  *    for the CP seems to implement some different PM4 packet types
38  *    but the basics of cmdstream submission are the same)
39  *
40  * Which means that the eventual complete "class" hierarchy, once
41  * support for all past and present hw is in place, becomes:
42  *  + msm_gpu
43  *    + adreno_gpu
44  *      + a3xx_gpu
45  *      + a2xx_gpu
46  *    + z180_gpu
47  */
48 struct msm_gpu_funcs {
49 	int (*get_param)(struct msm_gpu *gpu, struct msm_context *ctx,
50 			 uint32_t param, uint64_t *value, uint32_t *len);
51 	int (*set_param)(struct msm_gpu *gpu, struct msm_context *ctx,
52 			 uint32_t param, uint64_t value, uint32_t len);
53 	int (*hw_init)(struct msm_gpu *gpu);
54 
55 	/**
56 	 * @ucode_load: Optional hook to upload fw to GEM objs
57 	 */
58 	int (*ucode_load)(struct msm_gpu *gpu);
59 
60 	int (*pm_suspend)(struct msm_gpu *gpu);
61 	int (*pm_resume)(struct msm_gpu *gpu);
62 	void (*submit)(struct msm_gpu *gpu, struct msm_gem_submit *submit);
63 	void (*flush)(struct msm_gpu *gpu, struct msm_ringbuffer *ring);
64 	irqreturn_t (*irq)(struct msm_gpu *irq);
65 	struct msm_ringbuffer *(*active_ring)(struct msm_gpu *gpu);
66 	void (*recover)(struct msm_gpu *gpu);
67 	void (*destroy)(struct msm_gpu *gpu);
68 #if defined(CONFIG_DEBUG_FS) || defined(CONFIG_DEV_COREDUMP)
69 	/* show GPU status in debugfs: */
70 	void (*show)(struct msm_gpu *gpu, struct msm_gpu_state *state,
71 			struct drm_printer *p);
72 	/* for generation specific debugfs: */
73 	void (*debugfs_init)(struct msm_gpu *gpu, struct drm_minor *minor);
74 #endif
75 	/* note: gpu_busy() can assume that we have been pm_resumed */
76 	u64 (*gpu_busy)(struct msm_gpu *gpu, unsigned long *out_sample_rate);
77 	struct msm_gpu_state *(*gpu_state_get)(struct msm_gpu *gpu);
78 	int (*gpu_state_put)(struct msm_gpu_state *state);
79 	unsigned long (*gpu_get_freq)(struct msm_gpu *gpu);
80 	/* note: gpu_set_freq() can assume that we have been pm_resumed */
81 	void (*gpu_set_freq)(struct msm_gpu *gpu, struct dev_pm_opp *opp,
82 			     bool suspended);
83 	struct drm_gpuvm *(*create_vm)(struct msm_gpu *gpu, struct platform_device *pdev);
84 	struct drm_gpuvm *(*create_private_vm)(struct msm_gpu *gpu, bool kernel_managed);
85 	uint32_t (*get_rptr)(struct msm_gpu *gpu, struct msm_ringbuffer *ring);
86 
87 	/**
88 	 * progress: Has the GPU made progress?
89 	 *
90 	 * Return true if GPU position in cmdstream has advanced (or changed)
91 	 * since the last call.  To avoid false negatives, this should account
92 	 * for cmdstream that is buffered in this FIFO upstream of the CP fw.
93 	 */
94 	bool (*progress)(struct msm_gpu *gpu, struct msm_ringbuffer *ring);
95 	void (*sysprof_setup)(struct msm_gpu *gpu);
96 };
97 
98 /* Additional state for iommu faults: */
99 struct msm_gpu_fault_info {
100 	u64 ttbr0;
101 	unsigned long iova;
102 	int flags;
103 	const char *type;
104 	const char *block;
105 
106 	/* Information about what we think/expect is the current SMMU state,
107 	 * for example expected_ttbr0 should match smmu_info.ttbr0 which
108 	 * was read back from SMMU registers.
109 	 */
110 	phys_addr_t pgtbl_ttbr0;
111 	u64 ptes[4];
112 	int asid;
113 };
114 
115 /**
116  * struct msm_gpu_devfreq - devfreq related state
117  */
118 struct msm_gpu_devfreq {
119 	/** devfreq: devfreq instance */
120 	struct devfreq *devfreq;
121 
122 	/** lock: lock for "suspended", "busy_cycles", and "time" */
123 	struct mutex lock;
124 
125 	/**
126 	 * idle_freq:
127 	 *
128 	 * Shadow frequency used while the GPU is idle.  From the PoV of
129 	 * the devfreq governor, we are continuing to sample busyness and
130 	 * adjust frequency while the GPU is idle, but we use this shadow
131 	 * value as the GPU is actually clamped to minimum frequency while
132 	 * it is inactive.
133 	 */
134 	unsigned long idle_freq;
135 
136 	/**
137 	 * boost_constraint:
138 	 *
139 	 * A PM QoS constraint to boost min freq for a period of time
140 	 * until the boost expires.
141 	 */
142 	struct dev_pm_qos_request boost_freq;
143 
144 	/**
145 	 * busy_cycles: Last busy counter value, for calculating elapsed busy
146 	 * cycles since last sampling period.
147 	 */
148 	u64 busy_cycles;
149 
150 	/** time: Time of last sampling period. */
151 	ktime_t time;
152 
153 	/** idle_time: Time of last transition to idle: */
154 	ktime_t idle_time;
155 
156 	/**
157 	 * idle_work:
158 	 *
159 	 * Used to delay clamping to idle freq on active->idle transition.
160 	 */
161 	struct msm_hrtimer_work idle_work;
162 
163 	/**
164 	 * boost_work:
165 	 *
166 	 * Used to reset the boost_constraint after the boost period has
167 	 * elapsed
168 	 */
169 	struct msm_hrtimer_work boost_work;
170 
171 	/** suspended: tracks if we're suspended */
172 	bool suspended;
173 };
174 
175 struct msm_gpu {
176 	const char *name;
177 	struct drm_device *dev;
178 	struct platform_device *pdev;
179 	const struct msm_gpu_funcs *funcs;
180 
181 	struct adreno_smmu_priv adreno_smmu;
182 
183 	/* performance counters (hw & sw): */
184 	spinlock_t perf_lock;
185 	bool perfcntr_active;
186 	struct {
187 		bool active;
188 		ktime_t time;
189 	} last_sample;
190 	uint32_t totaltime, activetime;    /* sw counters */
191 	uint32_t last_cntrs[5];            /* hw counters */
192 	const struct msm_gpu_perfcntr *perfcntrs;
193 	uint32_t num_perfcntrs;
194 
195 	struct msm_ringbuffer *rb[MSM_GPU_MAX_RINGS];
196 	int nr_rings;
197 
198 	/**
199 	 * sysprof_active:
200 	 *
201 	 * The count of contexts that have enabled system profiling.
202 	 */
203 	refcount_t sysprof_active;
204 
205 	/**
206 	 * lock:
207 	 *
208 	 * General lock for serializing all the gpu things.
209 	 *
210 	 * TODO move to per-ring locking where feasible (ie. submit/retire
211 	 * path, etc)
212 	 */
213 	struct mutex lock;
214 
215 	/**
216 	 * active_submits:
217 	 *
218 	 * The number of submitted but not yet retired submits, used to
219 	 * determine transitions between active and idle.
220 	 *
221 	 * Protected by active_lock
222 	 */
223 	int active_submits;
224 
225 	/** lock: protects active_submits and idle/active transitions */
226 	struct mutex active_lock;
227 
228 	/* does gpu need hw_init? */
229 	bool needs_hw_init;
230 
231 	/**
232 	 * global_faults: number of GPU hangs not attributed to a particular
233 	 * address space
234 	 */
235 	int global_faults;
236 
237 	void __iomem *mmio;
238 	int irq;
239 
240 	struct drm_gpuvm *vm;
241 
242 	/* Power Control: */
243 	struct regulator *gpu_reg, *gpu_cx;
244 	struct clk_bulk_data *grp_clks;
245 	int nr_clocks;
246 	struct clk *ebi1_clk, *core_clk, *rbbmtimer_clk;
247 	uint32_t fast_rate;
248 
249 	/* Hang and Inactivity Detection:
250 	 */
251 #define DRM_MSM_INACTIVE_PERIOD   66 /* in ms (roughly four frames) */
252 
253 #define DRM_MSM_HANGCHECK_DEFAULT_PERIOD 500 /* in ms */
254 #define DRM_MSM_HANGCHECK_PROGRESS_RETRIES 3
255 	struct timer_list hangcheck_timer;
256 
257 	/* work for handling GPU recovery: */
258 	struct kthread_work recover_work;
259 
260 	/** retire_event: notified when submits are retired: */
261 	wait_queue_head_t retire_event;
262 
263 	/* work for handling active-list retiring: */
264 	struct kthread_work retire_work;
265 
266 	/* worker for retire/recover: */
267 	struct kthread_worker *worker;
268 
269 	struct drm_gem_object *memptrs_bo;
270 
271 	struct msm_gpu_devfreq devfreq;
272 
273 	uint32_t suspend_count;
274 
275 	struct msm_gpu_state *crashstate;
276 
277 	/* True if the hardware supports expanded apriv (a650 and newer) */
278 	bool hw_apriv;
279 
280 	/**
281 	 * @allow_relocs: allow relocs in SUBMIT ioctl
282 	 *
283 	 * Mesa won't use relocs for driver version 1.4.0 and later.  This
284 	 * switch-over happened early enough in mesa a6xx bringup that we
285 	 * can disallow relocs for a6xx and newer.
286 	 */
287 	bool allow_relocs;
288 
289 	struct thermal_cooling_device *cooling;
290 };
291 
292 static inline struct msm_gpu *dev_to_gpu(struct device *dev)
293 {
294 	struct adreno_smmu_priv *adreno_smmu = dev_get_drvdata(dev);
295 
296 	if (!adreno_smmu)
297 		return NULL;
298 
299 	return container_of(adreno_smmu, struct msm_gpu, adreno_smmu);
300 }
301 
302 /* It turns out that all targets use the same ringbuffer size */
303 #define MSM_GPU_RINGBUFFER_SZ SZ_32K
304 #define MSM_GPU_RINGBUFFER_BLKSIZE 32
305 
306 #define MSM_GPU_RB_CNTL_DEFAULT \
307 		(AXXX_CP_RB_CNTL_BUFSZ(ilog2(MSM_GPU_RINGBUFFER_SZ / 8)) | \
308 		AXXX_CP_RB_CNTL_BLKSZ(ilog2(MSM_GPU_RINGBUFFER_BLKSIZE / 8)))
309 
310 static inline bool msm_gpu_active(struct msm_gpu *gpu)
311 {
312 	int i;
313 
314 	for (i = 0; i < gpu->nr_rings; i++) {
315 		struct msm_ringbuffer *ring = gpu->rb[i];
316 
317 		if (fence_after(ring->fctx->last_fence, ring->memptrs->fence))
318 			return true;
319 	}
320 
321 	return false;
322 }
323 
324 /* Perf-Counters:
325  * The select_reg and select_val are just there for the benefit of the child
326  * class that actually enables the perf counter..  but msm_gpu base class
327  * will handle sampling/displaying the counters.
328  */
329 
330 struct msm_gpu_perfcntr {
331 	uint32_t select_reg;
332 	uint32_t sample_reg;
333 	uint32_t select_val;
334 	const char *name;
335 };
336 
337 /*
338  * The number of priority levels provided by drm gpu scheduler.  The
339  * DRM_SCHED_PRIORITY_KERNEL priority level is treated specially in some
340  * cases, so we don't use it (no need for kernel generated jobs).
341  */
342 #define NR_SCHED_PRIORITIES (1 + DRM_SCHED_PRIORITY_LOW - DRM_SCHED_PRIORITY_HIGH)
343 
344 /**
345  * struct msm_context - per-drm_file context
346  */
347 struct msm_context {
348 	/** @queuelock: synchronizes access to submitqueues list */
349 	rwlock_t queuelock;
350 
351 	/** @submitqueues: list of &msm_gpu_submitqueue created by userspace */
352 	struct list_head submitqueues;
353 
354 	/**
355 	 * @queueid:
356 	 *
357 	 * Counter incremented each time a submitqueue is created, used to
358 	 * assign &msm_gpu_submitqueue.id
359 	 */
360 	int queueid;
361 
362 	/**
363 	 * @closed: The device file associated with this context has been closed.
364 	 *
365 	 * Once the device is closed, any submits that have not been written
366 	 * to the ring buffer are no-op'd.
367 	 */
368 	bool closed;
369 
370 	/**
371 	 * @userspace_managed_vm:
372 	 *
373 	 * Has userspace opted-in to userspace managed VM (ie. VM_BIND) via
374 	 * MSM_PARAM_EN_VM_BIND?
375 	 */
376 	bool userspace_managed_vm;
377 
378 	/**
379 	 * @vm:
380 	 *
381 	 * The per-process GPU address-space.  Do not access directly, use
382 	 * msm_context_vm().
383 	 */
384 	struct drm_gpuvm *vm;
385 
386 	/** @kref: the reference count */
387 	struct kref ref;
388 
389 	/**
390 	 * @seqno:
391 	 *
392 	 * A unique per-process sequence number.  Used to detect context
393 	 * switches, without relying on keeping a, potentially dangling,
394 	 * pointer to the previous context.
395 	 */
396 	int seqno;
397 
398 	/**
399 	 * @sysprof:
400 	 *
401 	 * The value of MSM_PARAM_SYSPROF set by userspace.  This is
402 	 * intended to be used by system profiling tools like Mesa's
403 	 * pps-producer (perfetto), and restricted to CAP_SYS_ADMIN.
404 	 *
405 	 * Setting a value of 1 will preserve performance counters across
406 	 * context switches.  Setting a value of 2 will in addition
407 	 * suppress suspend.  (Performance counters lose state across
408 	 * power collapse, which is undesirable for profiling in some
409 	 * cases.)
410 	 *
411 	 * The value automatically reverts to zero when the drm device
412 	 * file is closed.
413 	 */
414 	int sysprof;
415 
416 	/**
417 	 * @comm: Overridden task comm, see MSM_PARAM_COMM
418 	 *
419 	 * Accessed under msm_gpu::lock
420 	 */
421 	char *comm;
422 
423 	/**
424 	 * @cmdline: Overridden task cmdline, see MSM_PARAM_CMDLINE
425 	 *
426 	 * Accessed under msm_gpu::lock
427 	 */
428 	char *cmdline;
429 
430 	/**
431 	 * @elapsed:
432 	 *
433 	 * The total (cumulative) elapsed time GPU was busy with rendering
434 	 * from this context in ns.
435 	 */
436 	uint64_t elapsed_ns;
437 
438 	/**
439 	 * @cycles:
440 	 *
441 	 * The total (cumulative) GPU cycles elapsed attributed to this
442 	 * context.
443 	 */
444 	uint64_t cycles;
445 
446 	/**
447 	 * @entities:
448 	 *
449 	 * Table of per-priority-level sched entities used by submitqueues
450 	 * associated with this &drm_file.  Because some userspace apps
451 	 * make assumptions about rendering from multiple gl contexts
452 	 * (of the same priority) within the process happening in FIFO
453 	 * order without requiring any fencing beyond MakeCurrent(), we
454 	 * create at most one &drm_sched_entity per-process per-priority-
455 	 * level.
456 	 */
457 	struct drm_sched_entity *entities[NR_SCHED_PRIORITIES * MSM_GPU_MAX_RINGS];
458 
459 	/**
460 	 * @ctx_mem:
461 	 *
462 	 * Total amount of memory of GEM buffers with handles attached for
463 	 * this context.
464 	 */
465 	atomic64_t ctx_mem;
466 };
467 
468 struct drm_gpuvm *msm_context_vm(struct drm_device *dev, struct msm_context *ctx);
469 
470 /**
471  * msm_context_is_vm_bind() - has userspace opted in to VM_BIND?
472  *
473  * @ctx: the drm_file context
474  *
475  * See MSM_PARAM_EN_VM_BIND.  If userspace is managing the VM, it can
476  * do sparse binding including having multiple, potentially partial,
477  * mappings in the VM.  Therefore certain legacy uabi (ie. GET_IOVA,
478  * SET_IOVA) are rejected because they don't have a sensible meaning.
479  */
480 static inline bool
481 msm_context_is_vmbind(struct msm_context *ctx)
482 {
483 	return ctx->userspace_managed_vm;
484 }
485 
486 /**
487  * msm_gpu_convert_priority - Map userspace priority to ring # and sched priority
488  *
489  * @gpu:        the gpu instance
490  * @prio:       the userspace priority level
491  * @ring_nr:    [out] the ringbuffer the userspace priority maps to
492  * @sched_prio: [out] the gpu scheduler priority level which the userspace
493  *              priority maps to
494  *
495  * With drm/scheduler providing it's own level of prioritization, our total
496  * number of available priority levels is (nr_rings * NR_SCHED_PRIORITIES).
497  * Each ring is associated with it's own scheduler instance.  However, our
498  * UABI is that lower numerical values are higher priority.  So mapping the
499  * single userspace priority level into ring_nr and sched_prio takes some
500  * care.  The userspace provided priority (when a submitqueue is created)
501  * is mapped to ring nr and scheduler priority as such:
502  *
503  *   ring_nr    = userspace_prio / NR_SCHED_PRIORITIES
504  *   sched_prio = NR_SCHED_PRIORITIES -
505  *                (userspace_prio % NR_SCHED_PRIORITIES) - 1
506  *
507  * This allows generations without preemption (nr_rings==1) to have some
508  * amount of prioritization, and provides more priority levels for gens
509  * that do have preemption.
510  */
511 static inline int msm_gpu_convert_priority(struct msm_gpu *gpu, int prio,
512 		unsigned *ring_nr, enum drm_sched_priority *sched_prio)
513 {
514 	unsigned rn, sp;
515 
516 	rn = div_u64_rem(prio, NR_SCHED_PRIORITIES, &sp);
517 
518 	/* invert sched priority to map to higher-numeric-is-higher-
519 	 * priority convention
520 	 */
521 	sp = NR_SCHED_PRIORITIES - sp - 1;
522 
523 	if (rn >= gpu->nr_rings)
524 		return -EINVAL;
525 
526 	*ring_nr = rn;
527 	*sched_prio = sp;
528 
529 	return 0;
530 }
531 
532 /**
533  * struct msm_gpu_submitqueues - Userspace created context.
534  *
535  * A submitqueue is associated with a gl context or vk queue (or equiv)
536  * in userspace.
537  *
538  * @id:        userspace id for the submitqueue, unique within the drm_file
539  * @flags:     userspace flags for the submitqueue, specified at creation
540  *             (currently unusued)
541  * @ring_nr:   the ringbuffer used by this submitqueue, which is determined
542  *             by the submitqueue's priority
543  * @faults:    the number of GPU hangs associated with this submitqueue
544  * @last_fence: the sequence number of the last allocated fence (for error
545  *             checking)
546  * @ctx:       the per-drm_file context associated with the submitqueue (ie.
547  *             which set of pgtables do submits jobs associated with the
548  *             submitqueue use)
549  * @node:      node in the context's list of submitqueues
550  * @fence_idr: maps fence-id to dma_fence for userspace visible fence
551  *             seqno, protected by submitqueue lock
552  * @idr_lock:  for serializing access to fence_idr
553  * @lock:      submitqueue lock for serializing submits on a queue
554  * @ref:       reference count
555  * @entity:    the submit job-queue
556  */
557 struct msm_gpu_submitqueue {
558 	int id;
559 	u32 flags;
560 	u32 ring_nr;
561 	int faults;
562 	uint32_t last_fence;
563 	struct msm_context *ctx;
564 	struct list_head node;
565 	struct idr fence_idr;
566 	struct spinlock idr_lock;
567 	struct mutex lock;
568 	struct kref ref;
569 	struct drm_sched_entity *entity;
570 
571 	/** @_vm_bind_entity: used for @entity pointer for VM_BIND queues */
572 	struct drm_sched_entity _vm_bind_entity[0];
573 };
574 
575 struct msm_gpu_state_bo {
576 	u64 iova;
577 	size_t size;
578 	u32 flags;
579 	void *data;
580 	bool encoded;
581 	char name[32];
582 };
583 
584 struct msm_gpu_state {
585 	struct kref ref;
586 	struct timespec64 time;
587 
588 	struct {
589 		u64 iova;
590 		u32 fence;
591 		u32 seqno;
592 		u32 rptr;
593 		u32 wptr;
594 		void *data;
595 		int data_size;
596 		bool encoded;
597 	} ring[MSM_GPU_MAX_RINGS];
598 
599 	int nr_registers;
600 	u32 *registers;
601 
602 	u32 rbbm_status;
603 
604 	char *comm;
605 	char *cmd;
606 
607 	struct msm_gpu_fault_info fault_info;
608 
609 	int nr_vm_logs;
610 	struct msm_gem_vm_log_entry *vm_logs;
611 
612 	int nr_bos;
613 	struct msm_gpu_state_bo *bos;
614 };
615 
616 static inline void gpu_write(struct msm_gpu *gpu, u32 reg, u32 data)
617 {
618 	trace_msm_gpu_regaccess(reg);
619 	writel(data, gpu->mmio + (reg << 2));
620 }
621 
622 static inline u32 gpu_read(struct msm_gpu *gpu, u32 reg)
623 {
624 	trace_msm_gpu_regaccess(reg);
625 	return readl(gpu->mmio + (reg << 2));
626 }
627 
628 static inline void gpu_rmw(struct msm_gpu *gpu, u32 reg, u32 mask, u32 or)
629 {
630 	trace_msm_gpu_regaccess(reg);
631 	msm_rmw(gpu->mmio + (reg << 2), mask, or);
632 }
633 
634 static inline u64 gpu_read64(struct msm_gpu *gpu, u32 reg)
635 {
636 	u64 val;
637 
638 	/*
639 	 * Why not a readq here? Two reasons: 1) many of the LO registers are
640 	 * not quad word aligned and 2) the GPU hardware designers have a bit
641 	 * of a history of putting registers where they fit, especially in
642 	 * spins. The longer a GPU family goes the higher the chance that
643 	 * we'll get burned.  We could do a series of validity checks if we
644 	 * wanted to, but really is a readq() that much better? Nah.
645 	 */
646 
647 	/*
648 	 * For some lo/hi registers (like perfcounters), the hi value is latched
649 	 * when the lo is read, so make sure to read the lo first to trigger
650 	 * that
651 	 */
652 	trace_msm_gpu_regaccess(reg);
653 	val = (u64) readl(gpu->mmio + (reg << 2));
654 	trace_msm_gpu_regaccess(reg+1);
655 	val |= ((u64) readl(gpu->mmio + ((reg + 1) << 2)) << 32);
656 
657 	return val;
658 }
659 
660 static inline void gpu_write64(struct msm_gpu *gpu, u32 reg, u64 val)
661 {
662 	trace_msm_gpu_regaccess(reg);
663 	/* Why not a writeq here? Read the screed above */
664 	writel(lower_32_bits(val), gpu->mmio + (reg << 2));
665 	trace_msm_gpu_regaccess(reg+1);
666 	writel(upper_32_bits(val), gpu->mmio + ((reg + 1) << 2));
667 }
668 
669 int msm_gpu_pm_suspend(struct msm_gpu *gpu);
670 int msm_gpu_pm_resume(struct msm_gpu *gpu);
671 
672 void msm_gpu_show_fdinfo(struct msm_gpu *gpu, struct msm_context *ctx,
673 			 struct drm_printer *p);
674 
675 int msm_submitqueue_init(struct drm_device *drm, struct msm_context *ctx);
676 struct msm_gpu_submitqueue *msm_submitqueue_get(struct msm_context *ctx,
677 		u32 id);
678 int msm_submitqueue_create(struct drm_device *drm,
679 		struct msm_context *ctx,
680 		u32 prio, u32 flags, u32 *id);
681 int msm_submitqueue_query(struct drm_device *drm, struct msm_context *ctx,
682 		struct drm_msm_submitqueue_query *args);
683 int msm_submitqueue_remove(struct msm_context *ctx, u32 id);
684 void msm_submitqueue_close(struct msm_context *ctx);
685 
686 void msm_submitqueue_destroy(struct kref *kref);
687 
688 int msm_context_set_sysprof(struct msm_context *ctx, struct msm_gpu *gpu, int sysprof);
689 void __msm_context_destroy(struct kref *kref);
690 
691 static inline void msm_context_put(struct msm_context *ctx)
692 {
693 	kref_put(&ctx->ref, __msm_context_destroy);
694 }
695 
696 static inline struct msm_context *msm_context_get(
697 	struct msm_context *ctx)
698 {
699 	kref_get(&ctx->ref);
700 	return ctx;
701 }
702 
703 void msm_devfreq_init(struct msm_gpu *gpu);
704 void msm_devfreq_cleanup(struct msm_gpu *gpu);
705 void msm_devfreq_resume(struct msm_gpu *gpu);
706 void msm_devfreq_suspend(struct msm_gpu *gpu);
707 void msm_devfreq_boost(struct msm_gpu *gpu, unsigned factor);
708 void msm_devfreq_active(struct msm_gpu *gpu);
709 void msm_devfreq_idle(struct msm_gpu *gpu);
710 
711 int msm_gpu_hw_init(struct msm_gpu *gpu);
712 
713 void msm_gpu_perfcntr_start(struct msm_gpu *gpu);
714 void msm_gpu_perfcntr_stop(struct msm_gpu *gpu);
715 int msm_gpu_perfcntr_sample(struct msm_gpu *gpu, uint32_t *activetime,
716 		uint32_t *totaltime, uint32_t ncntrs, uint32_t *cntrs);
717 
718 void msm_gpu_retire(struct msm_gpu *gpu);
719 void msm_gpu_submit(struct msm_gpu *gpu, struct msm_gem_submit *submit);
720 
721 int msm_gpu_init(struct drm_device *drm, struct platform_device *pdev,
722 		struct msm_gpu *gpu, const struct msm_gpu_funcs *funcs,
723 		const char *name, struct msm_gpu_config *config);
724 
725 struct drm_gpuvm *
726 msm_gpu_create_private_vm(struct msm_gpu *gpu, struct task_struct *task,
727 			  bool kernel_managed);
728 
729 void msm_gpu_cleanup(struct msm_gpu *gpu);
730 
731 struct msm_gpu *adreno_load_gpu(struct drm_device *dev);
732 bool adreno_has_gpu(struct device_node *node);
733 void __init adreno_register(void);
734 void __exit adreno_unregister(void);
735 
736 static inline void msm_submitqueue_put(struct msm_gpu_submitqueue *queue)
737 {
738 	if (queue)
739 		kref_put(&queue->ref, msm_submitqueue_destroy);
740 }
741 
742 static inline struct msm_gpu_state *msm_gpu_crashstate_get(struct msm_gpu *gpu)
743 {
744 	struct msm_gpu_state *state = NULL;
745 
746 	mutex_lock(&gpu->lock);
747 
748 	if (gpu->crashstate) {
749 		kref_get(&gpu->crashstate->ref);
750 		state = gpu->crashstate;
751 	}
752 
753 	mutex_unlock(&gpu->lock);
754 
755 	return state;
756 }
757 
758 static inline void msm_gpu_crashstate_put(struct msm_gpu *gpu)
759 {
760 	mutex_lock(&gpu->lock);
761 
762 	if (gpu->crashstate) {
763 		if (gpu->funcs->gpu_state_put(gpu->crashstate))
764 			gpu->crashstate = NULL;
765 	}
766 
767 	mutex_unlock(&gpu->lock);
768 }
769 
770 void msm_gpu_fault_crashstate_capture(struct msm_gpu *gpu, struct msm_gpu_fault_info *fault_info);
771 
772 /*
773  * Simple macro to semi-cleanly add the MAP_PRIV flag for targets that can
774  * support expanded privileges
775  */
776 #define check_apriv(gpu, flags) \
777 	(((gpu)->hw_apriv ? MSM_BO_MAP_PRIV : 0) | (flags))
778 
779 
780 #endif /* __MSM_GPU_H__ */
781