1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * Copyright (C) 2013 Red Hat 4 * Author: Rob Clark <robdclark@gmail.com> 5 */ 6 7 #ifndef __MSM_GPU_H__ 8 #define __MSM_GPU_H__ 9 10 #include <linux/adreno-smmu-priv.h> 11 #include <linux/clk.h> 12 #include <linux/devfreq.h> 13 #include <linux/interconnect.h> 14 #include <linux/pm_opp.h> 15 #include <linux/regulator/consumer.h> 16 17 #include "msm_drv.h" 18 #include "msm_fence.h" 19 #include "msm_ringbuffer.h" 20 #include "msm_gem.h" 21 22 struct msm_gem_submit; 23 struct msm_gem_vm_log_entry; 24 struct msm_gpu_perfcntr; 25 struct msm_gpu_state; 26 struct msm_context; 27 28 struct msm_gpu_config { 29 const char *ioname; 30 unsigned int nr_rings; 31 }; 32 33 /* So far, with hardware that I've seen to date, we can have: 34 * + zero, one, or two z180 2d cores 35 * + a3xx or a2xx 3d core, which share a common CP (the firmware 36 * for the CP seems to implement some different PM4 packet types 37 * but the basics of cmdstream submission are the same) 38 * 39 * Which means that the eventual complete "class" hierarchy, once 40 * support for all past and present hw is in place, becomes: 41 * + msm_gpu 42 * + adreno_gpu 43 * + a3xx_gpu 44 * + a2xx_gpu 45 * + z180_gpu 46 */ 47 struct msm_gpu_funcs { 48 int (*get_param)(struct msm_gpu *gpu, struct msm_context *ctx, 49 uint32_t param, uint64_t *value, uint32_t *len); 50 int (*set_param)(struct msm_gpu *gpu, struct msm_context *ctx, 51 uint32_t param, uint64_t value, uint32_t len); 52 int (*hw_init)(struct msm_gpu *gpu); 53 54 /** 55 * @ucode_load: Optional hook to upload fw to GEM objs 56 */ 57 int (*ucode_load)(struct msm_gpu *gpu); 58 59 int (*pm_suspend)(struct msm_gpu *gpu); 60 int (*pm_resume)(struct msm_gpu *gpu); 61 void (*submit)(struct msm_gpu *gpu, struct msm_gem_submit *submit); 62 void (*flush)(struct msm_gpu *gpu, struct msm_ringbuffer *ring); 63 irqreturn_t (*irq)(struct msm_gpu *irq); 64 struct msm_ringbuffer *(*active_ring)(struct msm_gpu *gpu); 65 void (*recover)(struct msm_gpu *gpu); 66 void (*destroy)(struct msm_gpu *gpu); 67 #if defined(CONFIG_DEBUG_FS) || defined(CONFIG_DEV_COREDUMP) 68 /* show GPU status in debugfs: */ 69 void (*show)(struct msm_gpu *gpu, struct msm_gpu_state *state, 70 struct drm_printer *p); 71 /* for generation specific debugfs: */ 72 void (*debugfs_init)(struct msm_gpu *gpu, struct drm_minor *minor); 73 #endif 74 /* note: gpu_busy() can assume that we have been pm_resumed */ 75 u64 (*gpu_busy)(struct msm_gpu *gpu, unsigned long *out_sample_rate); 76 struct msm_gpu_state *(*gpu_state_get)(struct msm_gpu *gpu); 77 int (*gpu_state_put)(struct msm_gpu_state *state); 78 unsigned long (*gpu_get_freq)(struct msm_gpu *gpu); 79 /* note: gpu_set_freq() can assume that we have been pm_resumed */ 80 void (*gpu_set_freq)(struct msm_gpu *gpu, struct dev_pm_opp *opp, 81 bool suspended); 82 struct drm_gpuvm *(*create_vm)(struct msm_gpu *gpu, struct platform_device *pdev); 83 struct drm_gpuvm *(*create_private_vm)(struct msm_gpu *gpu, bool kernel_managed); 84 uint32_t (*get_rptr)(struct msm_gpu *gpu, struct msm_ringbuffer *ring); 85 86 /** 87 * progress: Has the GPU made progress? 88 * 89 * Return true if GPU position in cmdstream has advanced (or changed) 90 * since the last call. To avoid false negatives, this should account 91 * for cmdstream that is buffered in this FIFO upstream of the CP fw. 92 */ 93 bool (*progress)(struct msm_gpu *gpu, struct msm_ringbuffer *ring); 94 }; 95 96 /* Additional state for iommu faults: */ 97 struct msm_gpu_fault_info { 98 u64 ttbr0; 99 unsigned long iova; 100 int flags; 101 const char *type; 102 const char *block; 103 104 /* Information about what we think/expect is the current SMMU state, 105 * for example expected_ttbr0 should match smmu_info.ttbr0 which 106 * was read back from SMMU registers. 107 */ 108 phys_addr_t pgtbl_ttbr0; 109 u64 ptes[4]; 110 int asid; 111 }; 112 113 /** 114 * struct msm_gpu_devfreq - devfreq related state 115 */ 116 struct msm_gpu_devfreq { 117 /** devfreq: devfreq instance */ 118 struct devfreq *devfreq; 119 120 /** lock: lock for "suspended", "busy_cycles", and "time" */ 121 struct mutex lock; 122 123 /** 124 * idle_freq: 125 * 126 * Shadow frequency used while the GPU is idle. From the PoV of 127 * the devfreq governor, we are continuing to sample busyness and 128 * adjust frequency while the GPU is idle, but we use this shadow 129 * value as the GPU is actually clamped to minimum frequency while 130 * it is inactive. 131 */ 132 unsigned long idle_freq; 133 134 /** 135 * boost_constraint: 136 * 137 * A PM QoS constraint to boost min freq for a period of time 138 * until the boost expires. 139 */ 140 struct dev_pm_qos_request boost_freq; 141 142 /** 143 * busy_cycles: Last busy counter value, for calculating elapsed busy 144 * cycles since last sampling period. 145 */ 146 u64 busy_cycles; 147 148 /** time: Time of last sampling period. */ 149 ktime_t time; 150 151 /** idle_time: Time of last transition to idle: */ 152 ktime_t idle_time; 153 154 /** 155 * idle_work: 156 * 157 * Used to delay clamping to idle freq on active->idle transition. 158 */ 159 struct msm_hrtimer_work idle_work; 160 161 /** 162 * boost_work: 163 * 164 * Used to reset the boost_constraint after the boost period has 165 * elapsed 166 */ 167 struct msm_hrtimer_work boost_work; 168 169 /** suspended: tracks if we're suspended */ 170 bool suspended; 171 }; 172 173 struct msm_gpu { 174 const char *name; 175 struct drm_device *dev; 176 struct platform_device *pdev; 177 const struct msm_gpu_funcs *funcs; 178 179 struct adreno_smmu_priv adreno_smmu; 180 181 /* performance counters (hw & sw): */ 182 spinlock_t perf_lock; 183 bool perfcntr_active; 184 struct { 185 bool active; 186 ktime_t time; 187 } last_sample; 188 uint32_t totaltime, activetime; /* sw counters */ 189 uint32_t last_cntrs[5]; /* hw counters */ 190 const struct msm_gpu_perfcntr *perfcntrs; 191 uint32_t num_perfcntrs; 192 193 struct msm_ringbuffer *rb[MSM_GPU_MAX_RINGS]; 194 int nr_rings; 195 196 /** 197 * sysprof_active: 198 * 199 * The count of contexts that have enabled system profiling. 200 */ 201 refcount_t sysprof_active; 202 203 /** 204 * lock: 205 * 206 * General lock for serializing all the gpu things. 207 * 208 * TODO move to per-ring locking where feasible (ie. submit/retire 209 * path, etc) 210 */ 211 struct mutex lock; 212 213 /** 214 * active_submits: 215 * 216 * The number of submitted but not yet retired submits, used to 217 * determine transitions between active and idle. 218 * 219 * Protected by active_lock 220 */ 221 int active_submits; 222 223 /** lock: protects active_submits and idle/active transitions */ 224 struct mutex active_lock; 225 226 /* does gpu need hw_init? */ 227 bool needs_hw_init; 228 229 /** 230 * global_faults: number of GPU hangs not attributed to a particular 231 * address space 232 */ 233 int global_faults; 234 235 void __iomem *mmio; 236 int irq; 237 238 struct drm_gpuvm *vm; 239 240 /* Power Control: */ 241 struct regulator *gpu_reg, *gpu_cx; 242 struct clk_bulk_data *grp_clks; 243 int nr_clocks; 244 struct clk *ebi1_clk, *core_clk, *rbbmtimer_clk; 245 uint32_t fast_rate; 246 247 /* Hang and Inactivity Detection: 248 */ 249 #define DRM_MSM_INACTIVE_PERIOD 66 /* in ms (roughly four frames) */ 250 251 #define DRM_MSM_HANGCHECK_DEFAULT_PERIOD 500 /* in ms */ 252 #define DRM_MSM_HANGCHECK_PROGRESS_RETRIES 3 253 struct timer_list hangcheck_timer; 254 255 /* work for handling GPU recovery: */ 256 struct kthread_work recover_work; 257 258 /** retire_event: notified when submits are retired: */ 259 wait_queue_head_t retire_event; 260 261 /* work for handling active-list retiring: */ 262 struct kthread_work retire_work; 263 264 /* worker for retire/recover: */ 265 struct kthread_worker *worker; 266 267 struct drm_gem_object *memptrs_bo; 268 269 struct msm_gpu_devfreq devfreq; 270 271 uint32_t suspend_count; 272 273 struct msm_gpu_state *crashstate; 274 275 /* True if the hardware supports expanded apriv (a650 and newer) */ 276 bool hw_apriv; 277 278 /** 279 * @allow_relocs: allow relocs in SUBMIT ioctl 280 * 281 * Mesa won't use relocs for driver version 1.4.0 and later. This 282 * switch-over happened early enough in mesa a6xx bringup that we 283 * can disallow relocs for a6xx and newer. 284 */ 285 bool allow_relocs; 286 287 struct thermal_cooling_device *cooling; 288 }; 289 290 static inline struct msm_gpu *dev_to_gpu(struct device *dev) 291 { 292 struct adreno_smmu_priv *adreno_smmu = dev_get_drvdata(dev); 293 294 if (!adreno_smmu) 295 return NULL; 296 297 return container_of(adreno_smmu, struct msm_gpu, adreno_smmu); 298 } 299 300 /* It turns out that all targets use the same ringbuffer size */ 301 #define MSM_GPU_RINGBUFFER_SZ SZ_32K 302 #define MSM_GPU_RINGBUFFER_BLKSIZE 32 303 304 #define MSM_GPU_RB_CNTL_DEFAULT \ 305 (AXXX_CP_RB_CNTL_BUFSZ(ilog2(MSM_GPU_RINGBUFFER_SZ / 8)) | \ 306 AXXX_CP_RB_CNTL_BLKSZ(ilog2(MSM_GPU_RINGBUFFER_BLKSIZE / 8))) 307 308 static inline bool msm_gpu_active(struct msm_gpu *gpu) 309 { 310 int i; 311 312 for (i = 0; i < gpu->nr_rings; i++) { 313 struct msm_ringbuffer *ring = gpu->rb[i]; 314 315 if (fence_after(ring->fctx->last_fence, ring->memptrs->fence)) 316 return true; 317 } 318 319 return false; 320 } 321 322 /* Perf-Counters: 323 * The select_reg and select_val are just there for the benefit of the child 324 * class that actually enables the perf counter.. but msm_gpu base class 325 * will handle sampling/displaying the counters. 326 */ 327 328 struct msm_gpu_perfcntr { 329 uint32_t select_reg; 330 uint32_t sample_reg; 331 uint32_t select_val; 332 const char *name; 333 }; 334 335 /* 336 * The number of priority levels provided by drm gpu scheduler. The 337 * DRM_SCHED_PRIORITY_KERNEL priority level is treated specially in some 338 * cases, so we don't use it (no need for kernel generated jobs). 339 */ 340 #define NR_SCHED_PRIORITIES (1 + DRM_SCHED_PRIORITY_LOW - DRM_SCHED_PRIORITY_HIGH) 341 342 /** 343 * struct msm_context - per-drm_file context 344 */ 345 struct msm_context { 346 /** @queuelock: synchronizes access to submitqueues list */ 347 rwlock_t queuelock; 348 349 /** @submitqueues: list of &msm_gpu_submitqueue created by userspace */ 350 struct list_head submitqueues; 351 352 /** 353 * @queueid: 354 * 355 * Counter incremented each time a submitqueue is created, used to 356 * assign &msm_gpu_submitqueue.id 357 */ 358 int queueid; 359 360 /** 361 * @closed: The device file associated with this context has been closed. 362 * 363 * Once the device is closed, any submits that have not been written 364 * to the ring buffer are no-op'd. 365 */ 366 bool closed; 367 368 /** 369 * @userspace_managed_vm: 370 * 371 * Has userspace opted-in to userspace managed VM (ie. VM_BIND) via 372 * MSM_PARAM_EN_VM_BIND? 373 */ 374 bool userspace_managed_vm; 375 376 /** 377 * @vm: 378 * 379 * The per-process GPU address-space. Do not access directly, use 380 * msm_context_vm(). 381 */ 382 struct drm_gpuvm *vm; 383 384 /** @kref: the reference count */ 385 struct kref ref; 386 387 /** 388 * @seqno: 389 * 390 * A unique per-process sequence number. Used to detect context 391 * switches, without relying on keeping a, potentially dangling, 392 * pointer to the previous context. 393 */ 394 int seqno; 395 396 /** 397 * @sysprof: 398 * 399 * The value of MSM_PARAM_SYSPROF set by userspace. This is 400 * intended to be used by system profiling tools like Mesa's 401 * pps-producer (perfetto), and restricted to CAP_SYS_ADMIN. 402 * 403 * Setting a value of 1 will preserve performance counters across 404 * context switches. Setting a value of 2 will in addition 405 * suppress suspend. (Performance counters lose state across 406 * power collapse, which is undesirable for profiling in some 407 * cases.) 408 * 409 * The value automatically reverts to zero when the drm device 410 * file is closed. 411 */ 412 int sysprof; 413 414 /** 415 * @comm: Overridden task comm, see MSM_PARAM_COMM 416 * 417 * Accessed under msm_gpu::lock 418 */ 419 char *comm; 420 421 /** 422 * @cmdline: Overridden task cmdline, see MSM_PARAM_CMDLINE 423 * 424 * Accessed under msm_gpu::lock 425 */ 426 char *cmdline; 427 428 /** 429 * @elapsed: 430 * 431 * The total (cumulative) elapsed time GPU was busy with rendering 432 * from this context in ns. 433 */ 434 uint64_t elapsed_ns; 435 436 /** 437 * @cycles: 438 * 439 * The total (cumulative) GPU cycles elapsed attributed to this 440 * context. 441 */ 442 uint64_t cycles; 443 444 /** 445 * @entities: 446 * 447 * Table of per-priority-level sched entities used by submitqueues 448 * associated with this &drm_file. Because some userspace apps 449 * make assumptions about rendering from multiple gl contexts 450 * (of the same priority) within the process happening in FIFO 451 * order without requiring any fencing beyond MakeCurrent(), we 452 * create at most one &drm_sched_entity per-process per-priority- 453 * level. 454 */ 455 struct drm_sched_entity *entities[NR_SCHED_PRIORITIES * MSM_GPU_MAX_RINGS]; 456 457 /** 458 * @ctx_mem: 459 * 460 * Total amount of memory of GEM buffers with handles attached for 461 * this context. 462 */ 463 atomic64_t ctx_mem; 464 }; 465 466 struct drm_gpuvm *msm_context_vm(struct drm_device *dev, struct msm_context *ctx); 467 468 /** 469 * msm_context_is_vm_bind() - has userspace opted in to VM_BIND? 470 * 471 * @ctx: the drm_file context 472 * 473 * See MSM_PARAM_EN_VM_BIND. If userspace is managing the VM, it can 474 * do sparse binding including having multiple, potentially partial, 475 * mappings in the VM. Therefore certain legacy uabi (ie. GET_IOVA, 476 * SET_IOVA) are rejected because they don't have a sensible meaning. 477 */ 478 static inline bool 479 msm_context_is_vmbind(struct msm_context *ctx) 480 { 481 return ctx->userspace_managed_vm; 482 } 483 484 /** 485 * msm_gpu_convert_priority - Map userspace priority to ring # and sched priority 486 * 487 * @gpu: the gpu instance 488 * @prio: the userspace priority level 489 * @ring_nr: [out] the ringbuffer the userspace priority maps to 490 * @sched_prio: [out] the gpu scheduler priority level which the userspace 491 * priority maps to 492 * 493 * With drm/scheduler providing it's own level of prioritization, our total 494 * number of available priority levels is (nr_rings * NR_SCHED_PRIORITIES). 495 * Each ring is associated with it's own scheduler instance. However, our 496 * UABI is that lower numerical values are higher priority. So mapping the 497 * single userspace priority level into ring_nr and sched_prio takes some 498 * care. The userspace provided priority (when a submitqueue is created) 499 * is mapped to ring nr and scheduler priority as such: 500 * 501 * ring_nr = userspace_prio / NR_SCHED_PRIORITIES 502 * sched_prio = NR_SCHED_PRIORITIES - 503 * (userspace_prio % NR_SCHED_PRIORITIES) - 1 504 * 505 * This allows generations without preemption (nr_rings==1) to have some 506 * amount of prioritization, and provides more priority levels for gens 507 * that do have preemption. 508 */ 509 static inline int msm_gpu_convert_priority(struct msm_gpu *gpu, int prio, 510 unsigned *ring_nr, enum drm_sched_priority *sched_prio) 511 { 512 unsigned rn, sp; 513 514 rn = div_u64_rem(prio, NR_SCHED_PRIORITIES, &sp); 515 516 /* invert sched priority to map to higher-numeric-is-higher- 517 * priority convention 518 */ 519 sp = NR_SCHED_PRIORITIES - sp - 1; 520 521 if (rn >= gpu->nr_rings) 522 return -EINVAL; 523 524 *ring_nr = rn; 525 *sched_prio = sp; 526 527 return 0; 528 } 529 530 /** 531 * struct msm_gpu_submitqueues - Userspace created context. 532 * 533 * A submitqueue is associated with a gl context or vk queue (or equiv) 534 * in userspace. 535 * 536 * @id: userspace id for the submitqueue, unique within the drm_file 537 * @flags: userspace flags for the submitqueue, specified at creation 538 * (currently unusued) 539 * @ring_nr: the ringbuffer used by this submitqueue, which is determined 540 * by the submitqueue's priority 541 * @faults: the number of GPU hangs associated with this submitqueue 542 * @last_fence: the sequence number of the last allocated fence (for error 543 * checking) 544 * @ctx: the per-drm_file context associated with the submitqueue (ie. 545 * which set of pgtables do submits jobs associated with the 546 * submitqueue use) 547 * @node: node in the context's list of submitqueues 548 * @fence_idr: maps fence-id to dma_fence for userspace visible fence 549 * seqno, protected by submitqueue lock 550 * @idr_lock: for serializing access to fence_idr 551 * @lock: submitqueue lock for serializing submits on a queue 552 * @ref: reference count 553 * @entity: the submit job-queue 554 */ 555 struct msm_gpu_submitqueue { 556 int id; 557 u32 flags; 558 u32 ring_nr; 559 int faults; 560 uint32_t last_fence; 561 struct msm_context *ctx; 562 struct list_head node; 563 struct idr fence_idr; 564 struct spinlock idr_lock; 565 struct mutex lock; 566 struct kref ref; 567 struct drm_sched_entity *entity; 568 569 /** @_vm_bind_entity: used for @entity pointer for VM_BIND queues */ 570 struct drm_sched_entity _vm_bind_entity[0]; 571 }; 572 573 struct msm_gpu_state_bo { 574 u64 iova; 575 size_t size; 576 u32 flags; 577 void *data; 578 bool encoded; 579 char name[32]; 580 }; 581 582 struct msm_gpu_state { 583 struct kref ref; 584 struct timespec64 time; 585 586 struct { 587 u64 iova; 588 u32 fence; 589 u32 seqno; 590 u32 rptr; 591 u32 wptr; 592 void *data; 593 int data_size; 594 bool encoded; 595 } ring[MSM_GPU_MAX_RINGS]; 596 597 int nr_registers; 598 u32 *registers; 599 600 u32 rbbm_status; 601 602 char *comm; 603 char *cmd; 604 605 struct msm_gpu_fault_info fault_info; 606 607 int nr_vm_logs; 608 struct msm_gem_vm_log_entry *vm_logs; 609 610 int nr_bos; 611 struct msm_gpu_state_bo *bos; 612 }; 613 614 static inline void gpu_write(struct msm_gpu *gpu, u32 reg, u32 data) 615 { 616 writel(data, gpu->mmio + (reg << 2)); 617 } 618 619 static inline u32 gpu_read(struct msm_gpu *gpu, u32 reg) 620 { 621 return readl(gpu->mmio + (reg << 2)); 622 } 623 624 static inline void gpu_rmw(struct msm_gpu *gpu, u32 reg, u32 mask, u32 or) 625 { 626 msm_rmw(gpu->mmio + (reg << 2), mask, or); 627 } 628 629 static inline u64 gpu_read64(struct msm_gpu *gpu, u32 reg) 630 { 631 u64 val; 632 633 /* 634 * Why not a readq here? Two reasons: 1) many of the LO registers are 635 * not quad word aligned and 2) the GPU hardware designers have a bit 636 * of a history of putting registers where they fit, especially in 637 * spins. The longer a GPU family goes the higher the chance that 638 * we'll get burned. We could do a series of validity checks if we 639 * wanted to, but really is a readq() that much better? Nah. 640 */ 641 642 /* 643 * For some lo/hi registers (like perfcounters), the hi value is latched 644 * when the lo is read, so make sure to read the lo first to trigger 645 * that 646 */ 647 val = (u64) readl(gpu->mmio + (reg << 2)); 648 val |= ((u64) readl(gpu->mmio + ((reg + 1) << 2)) << 32); 649 650 return val; 651 } 652 653 static inline void gpu_write64(struct msm_gpu *gpu, u32 reg, u64 val) 654 { 655 /* Why not a writeq here? Read the screed above */ 656 writel(lower_32_bits(val), gpu->mmio + (reg << 2)); 657 writel(upper_32_bits(val), gpu->mmio + ((reg + 1) << 2)); 658 } 659 660 int msm_gpu_pm_suspend(struct msm_gpu *gpu); 661 int msm_gpu_pm_resume(struct msm_gpu *gpu); 662 663 void msm_gpu_show_fdinfo(struct msm_gpu *gpu, struct msm_context *ctx, 664 struct drm_printer *p); 665 666 int msm_submitqueue_init(struct drm_device *drm, struct msm_context *ctx); 667 struct msm_gpu_submitqueue *msm_submitqueue_get(struct msm_context *ctx, 668 u32 id); 669 int msm_submitqueue_create(struct drm_device *drm, 670 struct msm_context *ctx, 671 u32 prio, u32 flags, u32 *id); 672 int msm_submitqueue_query(struct drm_device *drm, struct msm_context *ctx, 673 struct drm_msm_submitqueue_query *args); 674 int msm_submitqueue_remove(struct msm_context *ctx, u32 id); 675 void msm_submitqueue_close(struct msm_context *ctx); 676 677 void msm_submitqueue_destroy(struct kref *kref); 678 679 int msm_context_set_sysprof(struct msm_context *ctx, struct msm_gpu *gpu, int sysprof); 680 void __msm_context_destroy(struct kref *kref); 681 682 static inline void msm_context_put(struct msm_context *ctx) 683 { 684 kref_put(&ctx->ref, __msm_context_destroy); 685 } 686 687 static inline struct msm_context *msm_context_get( 688 struct msm_context *ctx) 689 { 690 kref_get(&ctx->ref); 691 return ctx; 692 } 693 694 void msm_devfreq_init(struct msm_gpu *gpu); 695 void msm_devfreq_cleanup(struct msm_gpu *gpu); 696 void msm_devfreq_resume(struct msm_gpu *gpu); 697 void msm_devfreq_suspend(struct msm_gpu *gpu); 698 void msm_devfreq_boost(struct msm_gpu *gpu, unsigned factor); 699 void msm_devfreq_active(struct msm_gpu *gpu); 700 void msm_devfreq_idle(struct msm_gpu *gpu); 701 702 int msm_gpu_hw_init(struct msm_gpu *gpu); 703 704 void msm_gpu_perfcntr_start(struct msm_gpu *gpu); 705 void msm_gpu_perfcntr_stop(struct msm_gpu *gpu); 706 int msm_gpu_perfcntr_sample(struct msm_gpu *gpu, uint32_t *activetime, 707 uint32_t *totaltime, uint32_t ncntrs, uint32_t *cntrs); 708 709 void msm_gpu_retire(struct msm_gpu *gpu); 710 void msm_gpu_submit(struct msm_gpu *gpu, struct msm_gem_submit *submit); 711 712 int msm_gpu_init(struct drm_device *drm, struct platform_device *pdev, 713 struct msm_gpu *gpu, const struct msm_gpu_funcs *funcs, 714 const char *name, struct msm_gpu_config *config); 715 716 struct drm_gpuvm * 717 msm_gpu_create_private_vm(struct msm_gpu *gpu, struct task_struct *task, 718 bool kernel_managed); 719 720 void msm_gpu_cleanup(struct msm_gpu *gpu); 721 722 struct msm_gpu *adreno_load_gpu(struct drm_device *dev); 723 bool adreno_has_gpu(struct device_node *node); 724 void __init adreno_register(void); 725 void __exit adreno_unregister(void); 726 727 static inline void msm_submitqueue_put(struct msm_gpu_submitqueue *queue) 728 { 729 if (queue) 730 kref_put(&queue->ref, msm_submitqueue_destroy); 731 } 732 733 static inline struct msm_gpu_state *msm_gpu_crashstate_get(struct msm_gpu *gpu) 734 { 735 struct msm_gpu_state *state = NULL; 736 737 mutex_lock(&gpu->lock); 738 739 if (gpu->crashstate) { 740 kref_get(&gpu->crashstate->ref); 741 state = gpu->crashstate; 742 } 743 744 mutex_unlock(&gpu->lock); 745 746 return state; 747 } 748 749 static inline void msm_gpu_crashstate_put(struct msm_gpu *gpu) 750 { 751 mutex_lock(&gpu->lock); 752 753 if (gpu->crashstate) { 754 if (gpu->funcs->gpu_state_put(gpu->crashstate)) 755 gpu->crashstate = NULL; 756 } 757 758 mutex_unlock(&gpu->lock); 759 } 760 761 void msm_gpu_fault_crashstate_capture(struct msm_gpu *gpu, struct msm_gpu_fault_info *fault_info); 762 763 /* 764 * Simple macro to semi-cleanly add the MAP_PRIV flag for targets that can 765 * support expanded privileges 766 */ 767 #define check_apriv(gpu, flags) \ 768 (((gpu)->hw_apriv ? MSM_BO_MAP_PRIV : 0) | (flags)) 769 770 771 #endif /* __MSM_GPU_H__ */ 772