xref: /linux/drivers/gpu/drm/msm/msm_gem_vma.c (revision cf4fd52e323604ccfa8390917593e1fb965653ee)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2016 Red Hat
4  * Author: Rob Clark <robdclark@gmail.com>
5  */
6 
7 #include "drm/drm_file.h"
8 #include "drm/msm_drm.h"
9 #include "linux/file.h"
10 #include "linux/sync_file.h"
11 
12 #include "msm_drv.h"
13 #include "msm_gem.h"
14 #include "msm_gpu.h"
15 #include "msm_mmu.h"
16 #include "msm_syncobj.h"
17 
18 #define vm_dbg(fmt, ...) pr_debug("%s:%d: "fmt"\n", __func__, __LINE__, ##__VA_ARGS__)
19 
20 static uint vm_log_shift = 0;
21 MODULE_PARM_DESC(vm_log_shift, "Length of VM op log");
22 module_param_named(vm_log_shift, vm_log_shift, uint, 0600);
23 
24 /**
25  * struct msm_vm_map_op - create new pgtable mapping
26  */
27 struct msm_vm_map_op {
28 	/** @iova: start address for mapping */
29 	uint64_t iova;
30 	/** @range: size of the region to map */
31 	uint64_t range;
32 	/** @offset: offset into @sgt to map */
33 	uint64_t offset;
34 	/** @sgt: pages to map, or NULL for a PRR mapping */
35 	struct sg_table *sgt;
36 	/** @prot: the mapping protection flags */
37 	int prot;
38 
39 	/**
40 	 * @queue_id: The id of the submitqueue the operation is performed
41 	 * on, or zero for (in particular) UNMAP ops triggered outside of
42 	 * a submitqueue (ie. process cleanup)
43 	 */
44 	int queue_id;
45 };
46 
47 /**
48  * struct msm_vm_unmap_op - unmap a range of pages from pgtable
49  */
50 struct msm_vm_unmap_op {
51 	/** @iova: start address for unmap */
52 	uint64_t iova;
53 	/** @range: size of region to unmap */
54 	uint64_t range;
55 
56 	/** @reason: The reason for the unmap */
57 	const char *reason;
58 
59 	/**
60 	 * @queue_id: The id of the submitqueue the operation is performed
61 	 * on, or zero for (in particular) UNMAP ops triggered outside of
62 	 * a submitqueue (ie. process cleanup)
63 	 */
64 	int queue_id;
65 };
66 
67 /**
68  * struct msm_vma_op - A MAP or UNMAP operation
69  */
70 struct msm_vm_op {
71 	/** @op: The operation type */
72 	enum {
73 		MSM_VM_OP_MAP = 1,
74 		MSM_VM_OP_UNMAP,
75 	} op;
76 	union {
77 		/** @map: Parameters used if op == MSM_VMA_OP_MAP */
78 		struct msm_vm_map_op map;
79 		/** @unmap: Parameters used if op == MSM_VMA_OP_UNMAP */
80 		struct msm_vm_unmap_op unmap;
81 	};
82 	/** @node: list head in msm_vm_bind_job::vm_ops */
83 	struct list_head node;
84 
85 	/**
86 	 * @obj: backing object for pages to be mapped/unmapped
87 	 *
88 	 * Async unmap ops, in particular, must hold a reference to the
89 	 * original GEM object backing the mapping that will be unmapped.
90 	 * But the same can be required in the map path, for example if
91 	 * there is not a corresponding unmap op, such as process exit.
92 	 *
93 	 * This ensures that the pages backing the mapping are not freed
94 	 * before the mapping is torn down.
95 	 */
96 	struct drm_gem_object *obj;
97 };
98 
99 /**
100  * struct msm_vm_bind_job - Tracking for a VM_BIND ioctl
101  *
102  * A table of userspace requested VM updates (MSM_VM_BIND_OP_UNMAP/MAP/MAP_NULL)
103  * gets applied to the vm, generating a list of VM ops (MSM_VM_OP_MAP/UNMAP)
104  * which are applied to the pgtables asynchronously.  For example a userspace
105  * requested MSM_VM_BIND_OP_MAP could end up generating both an MSM_VM_OP_UNMAP
106  * to unmap an existing mapping, and a MSM_VM_OP_MAP to apply the new mapping.
107  */
108 struct msm_vm_bind_job {
109 	/** @base: base class for drm_sched jobs */
110 	struct drm_sched_job base;
111 	/** @vm: The VM being operated on */
112 	struct drm_gpuvm *vm;
113 	/** @fence: The fence that is signaled when job completes */
114 	struct dma_fence *fence;
115 	/** @queue: The queue that the job runs on */
116 	struct msm_gpu_submitqueue *queue;
117 	/** @prealloc: Tracking for pre-allocated MMU pgtable pages */
118 	struct msm_mmu_prealloc prealloc;
119 	/** @vm_ops: a list of struct msm_vm_op */
120 	struct list_head vm_ops;
121 	/** @bos_pinned: are the GEM objects being bound pinned? */
122 	bool bos_pinned;
123 	/** @nr_ops: the number of userspace requested ops */
124 	unsigned int nr_ops;
125 	/**
126 	 * @ops: the userspace requested ops
127 	 *
128 	 * The userspace requested ops are copied/parsed and validated
129 	 * before we start applying the updates to try to do as much up-
130 	 * front error checking as possible, to avoid the VM being in an
131 	 * undefined state due to partially executed VM_BIND.
132 	 *
133 	 * This table also serves to hold a reference to the backing GEM
134 	 * objects.
135 	 */
136 	struct msm_vm_bind_op {
137 		uint32_t op;
138 		uint32_t flags;
139 		union {
140 			struct drm_gem_object *obj;
141 			uint32_t handle;
142 		};
143 		uint64_t obj_offset;
144 		uint64_t iova;
145 		uint64_t range;
146 	} ops[];
147 };
148 
149 #define job_foreach_bo(obj, _job) \
150 	for (unsigned i = 0; i < (_job)->nr_ops; i++) \
151 		if ((obj = (_job)->ops[i].obj))
152 
153 static inline struct msm_vm_bind_job *to_msm_vm_bind_job(struct drm_sched_job *job)
154 {
155 	return container_of(job, struct msm_vm_bind_job, base);
156 }
157 
158 static void
159 msm_gem_vm_free(struct drm_gpuvm *gpuvm)
160 {
161 	struct msm_gem_vm *vm = container_of(gpuvm, struct msm_gem_vm, base);
162 
163 	drm_mm_takedown(&vm->mm);
164 	if (vm->mmu)
165 		vm->mmu->funcs->destroy(vm->mmu);
166 	dma_fence_put(vm->last_fence);
167 	put_pid(vm->pid);
168 	kfree(vm->log);
169 	kfree(vm);
170 }
171 
172 /**
173  * msm_gem_vm_unusable() - Mark a VM as unusable
174  * @gpuvm: the VM to mark unusable
175  */
176 void
177 msm_gem_vm_unusable(struct drm_gpuvm *gpuvm)
178 {
179 	struct msm_gem_vm *vm = to_msm_vm(gpuvm);
180 	uint32_t vm_log_len = (1 << vm->log_shift);
181 	uint32_t vm_log_mask = vm_log_len - 1;
182 	uint32_t nr_vm_logs;
183 	int first;
184 
185 	vm->unusable = true;
186 
187 	/* Bail if no log, or empty log: */
188 	if (!vm->log || !vm->log[0].op)
189 		return;
190 
191 	mutex_lock(&vm->mmu_lock);
192 
193 	/*
194 	 * log_idx is the next entry to overwrite, meaning it is the oldest, or
195 	 * first, entry (other than the special case handled below where the
196 	 * log hasn't wrapped around yet)
197 	 */
198 	first = vm->log_idx;
199 
200 	if (!vm->log[first].op) {
201 		/*
202 		 * If the next log entry has not been written yet, then only
203 		 * entries 0 to idx-1 are valid (ie. we haven't wrapped around
204 		 * yet)
205 		 */
206 		nr_vm_logs = MAX(0, first - 1);
207 		first = 0;
208 	} else {
209 		nr_vm_logs = vm_log_len;
210 	}
211 
212 	pr_err("vm-log:\n");
213 	for (int i = 0; i < nr_vm_logs; i++) {
214 		int idx = (i + first) & vm_log_mask;
215 		struct msm_gem_vm_log_entry *e = &vm->log[idx];
216 		pr_err("  - %s:%d: 0x%016llx-0x%016llx\n",
217 		       e->op, e->queue_id, e->iova,
218 		       e->iova + e->range);
219 	}
220 
221 	mutex_unlock(&vm->mmu_lock);
222 }
223 
224 static void
225 vm_log(struct msm_gem_vm *vm, const char *op, uint64_t iova, uint64_t range, int queue_id)
226 {
227 	int idx;
228 
229 	if (!vm->managed)
230 		lockdep_assert_held(&vm->mmu_lock);
231 
232 	vm_dbg("%s:%p:%d: %016llx %016llx", op, vm, queue_id, iova, iova + range);
233 
234 	if (!vm->log)
235 		return;
236 
237 	idx = vm->log_idx;
238 	vm->log[idx].op = op;
239 	vm->log[idx].iova = iova;
240 	vm->log[idx].range = range;
241 	vm->log[idx].queue_id = queue_id;
242 	vm->log_idx = (vm->log_idx + 1) & ((1 << vm->log_shift) - 1);
243 }
244 
245 static void
246 vm_unmap_op(struct msm_gem_vm *vm, const struct msm_vm_unmap_op *op)
247 {
248 	const char *reason = op->reason;
249 
250 	if (!reason)
251 		reason = "unmap";
252 
253 	vm_log(vm, reason, op->iova, op->range, op->queue_id);
254 
255 	vm->mmu->funcs->unmap(vm->mmu, op->iova, op->range);
256 }
257 
258 static int
259 vm_map_op(struct msm_gem_vm *vm, const struct msm_vm_map_op *op)
260 {
261 	vm_log(vm, "map", op->iova, op->range, op->queue_id);
262 
263 	return vm->mmu->funcs->map(vm->mmu, op->iova, op->sgt, op->offset,
264 				   op->range, op->prot);
265 }
266 
267 /* Actually unmap memory for the vma */
268 void msm_gem_vma_unmap(struct drm_gpuva *vma, const char *reason)
269 {
270 	struct msm_gem_vm *vm = to_msm_vm(vma->vm);
271 	struct msm_gem_vma *msm_vma = to_msm_vma(vma);
272 
273 	/* Don't do anything if the memory isn't mapped */
274 	if (!msm_vma->mapped)
275 		return;
276 
277 	/*
278 	 * The mmu_lock is only needed when preallocation is used.  But
279 	 * in that case we don't need to worry about recursion into
280 	 * shrinker
281 	 */
282 	if (!vm->managed)
283 		 mutex_lock(&vm->mmu_lock);
284 
285 	vm_unmap_op(vm, &(struct msm_vm_unmap_op){
286 		.iova = vma->va.addr,
287 		.range = vma->va.range,
288 		.reason = reason,
289 	});
290 
291 	if (!vm->managed)
292 		mutex_unlock(&vm->mmu_lock);
293 
294 	msm_vma->mapped = false;
295 }
296 
297 /* Map and pin vma: */
298 int
299 msm_gem_vma_map(struct drm_gpuva *vma, int prot, struct sg_table *sgt)
300 {
301 	struct msm_gem_vm *vm = to_msm_vm(vma->vm);
302 	struct msm_gem_vma *msm_vma = to_msm_vma(vma);
303 	int ret;
304 
305 	if (GEM_WARN_ON(!vma->va.addr))
306 		return -EINVAL;
307 
308 	if (msm_vma->mapped)
309 		return 0;
310 
311 	msm_vma->mapped = true;
312 
313 	/*
314 	 * The mmu_lock is only needed when preallocation is used.  But
315 	 * in that case we don't need to worry about recursion into
316 	 * shrinker
317 	 */
318 	if (!vm->managed)
319 		mutex_lock(&vm->mmu_lock);
320 
321 	/*
322 	 * NOTE: iommu/io-pgtable can allocate pages, so we cannot hold
323 	 * a lock across map/unmap which is also used in the job_run()
324 	 * path, as this can cause deadlock in job_run() vs shrinker/
325 	 * reclaim.
326 	 *
327 	 * Revisit this if we can come up with a scheme to pre-alloc pages
328 	 * for the pgtable in map/unmap ops.
329 	 */
330 	ret = vm_map_op(vm, &(struct msm_vm_map_op){
331 		.iova = vma->va.addr,
332 		.range = vma->va.range,
333 		.offset = vma->gem.offset,
334 		.sgt = sgt,
335 		.prot = prot,
336 	});
337 
338 	if (!vm->managed)
339 		mutex_unlock(&vm->mmu_lock);
340 
341 	if (ret)
342 		msm_vma->mapped = false;
343 
344 	return ret;
345 }
346 
347 /* Close an iova.  Warn if it is still in use */
348 void msm_gem_vma_close(struct drm_gpuva *vma)
349 {
350 	struct msm_gem_vm *vm = to_msm_vm(vma->vm);
351 	struct msm_gem_vma *msm_vma = to_msm_vma(vma);
352 
353 	GEM_WARN_ON(msm_vma->mapped);
354 
355 	drm_gpuvm_resv_assert_held(&vm->base);
356 
357 	if (vma->gem.obj)
358 		msm_gem_assert_locked(vma->gem.obj);
359 
360 	if (vma->va.addr && vm->managed)
361 		drm_mm_remove_node(&msm_vma->node);
362 
363 	drm_gpuva_remove(vma);
364 	drm_gpuva_unlink(vma);
365 
366 	kfree(vma);
367 }
368 
369 /* Create a new vma and allocate an iova for it */
370 struct drm_gpuva *
371 msm_gem_vma_new(struct drm_gpuvm *gpuvm, struct drm_gem_object *obj,
372 		u64 offset, u64 range_start, u64 range_end)
373 {
374 	struct drm_gpuva_op_map op_map = {
375 		.va.addr = range_start,
376 		.va.range = range_end - range_start,
377 		.gem.obj = obj,
378 		.gem.offset = offset,
379 	};
380 	struct msm_gem_vm *vm = to_msm_vm(gpuvm);
381 	struct drm_gpuvm_bo *vm_bo;
382 	struct msm_gem_vma *vma;
383 	int ret;
384 
385 	drm_gpuvm_resv_assert_held(&vm->base);
386 
387 	vma = kzalloc(sizeof(*vma), GFP_KERNEL);
388 	if (!vma)
389 		return ERR_PTR(-ENOMEM);
390 
391 	if (vm->managed) {
392 		BUG_ON(offset != 0);
393 		BUG_ON(!obj);  /* NULL mappings not valid for kernel managed VM */
394 		ret = drm_mm_insert_node_in_range(&vm->mm, &vma->node,
395 						obj->size, PAGE_SIZE, 0,
396 						range_start, range_end, 0);
397 
398 		if (ret)
399 			goto err_free_vma;
400 
401 		range_start = vma->node.start;
402 		range_end   = range_start + obj->size;
403 	}
404 
405 	if (obj)
406 		GEM_WARN_ON((range_end - range_start) > obj->size);
407 
408 	drm_gpuva_init_from_op(&vma->base, &op_map);
409 	vma->mapped = false;
410 
411 	ret = drm_gpuva_insert(&vm->base, &vma->base);
412 	if (ret)
413 		goto err_free_range;
414 
415 	if (!obj)
416 		return &vma->base;
417 
418 	vm_bo = drm_gpuvm_bo_obtain(&vm->base, obj);
419 	if (IS_ERR(vm_bo)) {
420 		ret = PTR_ERR(vm_bo);
421 		goto err_va_remove;
422 	}
423 
424 	drm_gpuvm_bo_extobj_add(vm_bo);
425 	drm_gpuva_link(&vma->base, vm_bo);
426 	GEM_WARN_ON(drm_gpuvm_bo_put(vm_bo));
427 
428 	return &vma->base;
429 
430 err_va_remove:
431 	drm_gpuva_remove(&vma->base);
432 err_free_range:
433 	if (vm->managed)
434 		drm_mm_remove_node(&vma->node);
435 err_free_vma:
436 	kfree(vma);
437 	return ERR_PTR(ret);
438 }
439 
440 static int
441 msm_gem_vm_bo_validate(struct drm_gpuvm_bo *vm_bo, struct drm_exec *exec)
442 {
443 	struct drm_gem_object *obj = vm_bo->obj;
444 	struct drm_gpuva *vma;
445 	int ret;
446 
447 	vm_dbg("validate: %p", obj);
448 
449 	msm_gem_assert_locked(obj);
450 
451 	drm_gpuvm_bo_for_each_va (vma, vm_bo) {
452 		ret = msm_gem_pin_vma_locked(obj, vma);
453 		if (ret)
454 			return ret;
455 	}
456 
457 	return 0;
458 }
459 
460 struct op_arg {
461 	unsigned flags;
462 	struct msm_vm_bind_job *job;
463 };
464 
465 static void
466 vm_op_enqueue(struct op_arg *arg, struct msm_vm_op _op)
467 {
468 	struct msm_vm_op *op = kmalloc(sizeof(*op), GFP_KERNEL);
469 	*op = _op;
470 	list_add_tail(&op->node, &arg->job->vm_ops);
471 
472 	if (op->obj)
473 		drm_gem_object_get(op->obj);
474 }
475 
476 static struct drm_gpuva *
477 vma_from_op(struct op_arg *arg, struct drm_gpuva_op_map *op)
478 {
479 	return msm_gem_vma_new(arg->job->vm, op->gem.obj, op->gem.offset,
480 			       op->va.addr, op->va.addr + op->va.range);
481 }
482 
483 static int
484 msm_gem_vm_sm_step_map(struct drm_gpuva_op *op, void *arg)
485 {
486 	struct msm_vm_bind_job *job = ((struct op_arg *)arg)->job;
487 	struct drm_gem_object *obj = op->map.gem.obj;
488 	struct drm_gpuva *vma;
489 	struct sg_table *sgt;
490 	unsigned prot;
491 
492 	vma = vma_from_op(arg, &op->map);
493 	if (WARN_ON(IS_ERR(vma)))
494 		return PTR_ERR(vma);
495 
496 	vm_dbg("%p:%p:%p: %016llx %016llx", vma->vm, vma, vma->gem.obj,
497 	       vma->va.addr, vma->va.range);
498 
499 	vma->flags = ((struct op_arg *)arg)->flags;
500 
501 	if (obj) {
502 		sgt = to_msm_bo(obj)->sgt;
503 		prot = msm_gem_prot(obj);
504 	} else {
505 		sgt = NULL;
506 		prot = IOMMU_READ | IOMMU_WRITE;
507 	}
508 
509 	vm_op_enqueue(arg, (struct msm_vm_op){
510 		.op = MSM_VM_OP_MAP,
511 		.map = {
512 			.sgt = sgt,
513 			.iova = vma->va.addr,
514 			.range = vma->va.range,
515 			.offset = vma->gem.offset,
516 			.prot = prot,
517 			.queue_id = job->queue->id,
518 		},
519 		.obj = vma->gem.obj,
520 	});
521 
522 	to_msm_vma(vma)->mapped = true;
523 
524 	return 0;
525 }
526 
527 static int
528 msm_gem_vm_sm_step_remap(struct drm_gpuva_op *op, void *arg)
529 {
530 	struct msm_vm_bind_job *job = ((struct op_arg *)arg)->job;
531 	struct drm_gpuvm *vm = job->vm;
532 	struct drm_gpuva *orig_vma = op->remap.unmap->va;
533 	struct drm_gpuva *prev_vma = NULL, *next_vma = NULL;
534 	struct drm_gpuvm_bo *vm_bo = orig_vma->vm_bo;
535 	bool mapped = to_msm_vma(orig_vma)->mapped;
536 	unsigned flags;
537 
538 	vm_dbg("orig_vma: %p:%p:%p: %016llx %016llx", vm, orig_vma,
539 	       orig_vma->gem.obj, orig_vma->va.addr, orig_vma->va.range);
540 
541 	if (mapped) {
542 		uint64_t unmap_start, unmap_range;
543 
544 		drm_gpuva_op_remap_to_unmap_range(&op->remap, &unmap_start, &unmap_range);
545 
546 		vm_op_enqueue(arg, (struct msm_vm_op){
547 			.op = MSM_VM_OP_UNMAP,
548 			.unmap = {
549 				.iova = unmap_start,
550 				.range = unmap_range,
551 				.queue_id = job->queue->id,
552 			},
553 			.obj = orig_vma->gem.obj,
554 		});
555 
556 		/*
557 		 * Part of this GEM obj is still mapped, but we're going to kill the
558 		 * existing VMA and replace it with one or two new ones (ie. two if
559 		 * the unmapped range is in the middle of the existing (unmap) VMA).
560 		 * So just set the state to unmapped:
561 		 */
562 		to_msm_vma(orig_vma)->mapped = false;
563 	}
564 
565 	/*
566 	 * Hold a ref to the vm_bo between the msm_gem_vma_close() and the
567 	 * creation of the new prev/next vma's, in case the vm_bo is tracked
568 	 * in the VM's evict list:
569 	 */
570 	if (vm_bo)
571 		drm_gpuvm_bo_get(vm_bo);
572 
573 	/*
574 	 * The prev_vma and/or next_vma are replacing the unmapped vma, and
575 	 * therefore should preserve it's flags:
576 	 */
577 	flags = orig_vma->flags;
578 
579 	msm_gem_vma_close(orig_vma);
580 
581 	if (op->remap.prev) {
582 		prev_vma = vma_from_op(arg, op->remap.prev);
583 		if (WARN_ON(IS_ERR(prev_vma)))
584 			return PTR_ERR(prev_vma);
585 
586 		vm_dbg("prev_vma: %p:%p: %016llx %016llx", vm, prev_vma, prev_vma->va.addr, prev_vma->va.range);
587 		to_msm_vma(prev_vma)->mapped = mapped;
588 		prev_vma->flags = flags;
589 	}
590 
591 	if (op->remap.next) {
592 		next_vma = vma_from_op(arg, op->remap.next);
593 		if (WARN_ON(IS_ERR(next_vma)))
594 			return PTR_ERR(next_vma);
595 
596 		vm_dbg("next_vma: %p:%p: %016llx %016llx", vm, next_vma, next_vma->va.addr, next_vma->va.range);
597 		to_msm_vma(next_vma)->mapped = mapped;
598 		next_vma->flags = flags;
599 	}
600 
601 	if (!mapped)
602 		drm_gpuvm_bo_evict(vm_bo, true);
603 
604 	/* Drop the previous ref: */
605 	drm_gpuvm_bo_put(vm_bo);
606 
607 	return 0;
608 }
609 
610 static int
611 msm_gem_vm_sm_step_unmap(struct drm_gpuva_op *op, void *arg)
612 {
613 	struct msm_vm_bind_job *job = ((struct op_arg *)arg)->job;
614 	struct drm_gpuva *vma = op->unmap.va;
615 	struct msm_gem_vma *msm_vma = to_msm_vma(vma);
616 
617 	vm_dbg("%p:%p:%p: %016llx %016llx", vma->vm, vma, vma->gem.obj,
618 	       vma->va.addr, vma->va.range);
619 
620 	if (!msm_vma->mapped)
621 		goto out_close;
622 
623 	vm_op_enqueue(arg, (struct msm_vm_op){
624 		.op = MSM_VM_OP_UNMAP,
625 		.unmap = {
626 			.iova = vma->va.addr,
627 			.range = vma->va.range,
628 			.queue_id = job->queue->id,
629 		},
630 		.obj = vma->gem.obj,
631 	});
632 
633 	msm_vma->mapped = false;
634 
635 out_close:
636 	msm_gem_vma_close(vma);
637 
638 	return 0;
639 }
640 
641 static const struct drm_gpuvm_ops msm_gpuvm_ops = {
642 	.vm_free = msm_gem_vm_free,
643 	.vm_bo_validate = msm_gem_vm_bo_validate,
644 	.sm_step_map = msm_gem_vm_sm_step_map,
645 	.sm_step_remap = msm_gem_vm_sm_step_remap,
646 	.sm_step_unmap = msm_gem_vm_sm_step_unmap,
647 };
648 
649 static struct dma_fence *
650 msm_vma_job_run(struct drm_sched_job *_job)
651 {
652 	struct msm_vm_bind_job *job = to_msm_vm_bind_job(_job);
653 	struct msm_gem_vm *vm = to_msm_vm(job->vm);
654 	struct drm_gem_object *obj;
655 	int ret = vm->unusable ? -EINVAL : 0;
656 
657 	vm_dbg("");
658 
659 	mutex_lock(&vm->mmu_lock);
660 	vm->mmu->prealloc = &job->prealloc;
661 
662 	while (!list_empty(&job->vm_ops)) {
663 		struct msm_vm_op *op =
664 			list_first_entry(&job->vm_ops, struct msm_vm_op, node);
665 
666 		switch (op->op) {
667 		case MSM_VM_OP_MAP:
668 			/*
669 			 * On error, stop trying to map new things.. but we
670 			 * still want to process the unmaps (or in particular,
671 			 * the drm_gem_object_put()s)
672 			 */
673 			if (!ret)
674 				ret = vm_map_op(vm, &op->map);
675 			break;
676 		case MSM_VM_OP_UNMAP:
677 			vm_unmap_op(vm, &op->unmap);
678 			break;
679 		}
680 		drm_gem_object_put(op->obj);
681 		list_del(&op->node);
682 		kfree(op);
683 	}
684 
685 	vm->mmu->prealloc = NULL;
686 	mutex_unlock(&vm->mmu_lock);
687 
688 	/*
689 	 * We failed to perform at least _some_ of the pgtable updates, so
690 	 * now the VM is in an undefined state.  Game over!
691 	 */
692 	if (ret)
693 		msm_gem_vm_unusable(job->vm);
694 
695 	job_foreach_bo (obj, job) {
696 		msm_gem_lock(obj);
697 		msm_gem_unpin_locked(obj);
698 		msm_gem_unlock(obj);
699 	}
700 
701 	/* VM_BIND ops are synchronous, so no fence to wait on: */
702 	return NULL;
703 }
704 
705 static void
706 msm_vma_job_free(struct drm_sched_job *_job)
707 {
708 	struct msm_vm_bind_job *job = to_msm_vm_bind_job(_job);
709 	struct msm_gem_vm *vm = to_msm_vm(job->vm);
710 	struct drm_gem_object *obj;
711 
712 	vm->mmu->funcs->prealloc_cleanup(vm->mmu, &job->prealloc);
713 
714 	atomic_sub(job->prealloc.count, &vm->prealloc_throttle.in_flight);
715 
716 	drm_sched_job_cleanup(_job);
717 
718 	job_foreach_bo (obj, job)
719 		drm_gem_object_put(obj);
720 
721 	msm_submitqueue_put(job->queue);
722 	dma_fence_put(job->fence);
723 
724 	/* In error paths, we could have unexecuted ops: */
725 	while (!list_empty(&job->vm_ops)) {
726 		struct msm_vm_op *op =
727 			list_first_entry(&job->vm_ops, struct msm_vm_op, node);
728 		list_del(&op->node);
729 		kfree(op);
730 	}
731 
732 	wake_up(&vm->prealloc_throttle.wait);
733 
734 	kfree(job);
735 }
736 
737 static const struct drm_sched_backend_ops msm_vm_bind_ops = {
738 	.run_job = msm_vma_job_run,
739 	.free_job = msm_vma_job_free
740 };
741 
742 /**
743  * msm_gem_vm_create() - Create and initialize a &msm_gem_vm
744  * @drm: the drm device
745  * @mmu: the backing MMU objects handling mapping/unmapping
746  * @name: the name of the VM
747  * @va_start: the start offset of the VA space
748  * @va_size: the size of the VA space
749  * @managed: is it a kernel managed VM?
750  *
751  * In a kernel managed VM, the kernel handles address allocation, and only
752  * synchronous operations are supported.  In a user managed VM, userspace
753  * handles virtual address allocation, and both async and sync operations
754  * are supported.
755  */
756 struct drm_gpuvm *
757 msm_gem_vm_create(struct drm_device *drm, struct msm_mmu *mmu, const char *name,
758 		  u64 va_start, u64 va_size, bool managed)
759 {
760 	/*
761 	 * We mostly want to use DRM_GPUVM_RESV_PROTECTED, except that
762 	 * makes drm_gpuvm_bo_evict() a no-op for extobjs (ie. we loose
763 	 * tracking that an extobj is evicted) :facepalm:
764 	 */
765 	enum drm_gpuvm_flags flags = 0;
766 	struct msm_gem_vm *vm;
767 	struct drm_gem_object *dummy_gem;
768 	int ret = 0;
769 
770 	if (IS_ERR(mmu))
771 		return ERR_CAST(mmu);
772 
773 	vm = kzalloc(sizeof(*vm), GFP_KERNEL);
774 	if (!vm)
775 		return ERR_PTR(-ENOMEM);
776 
777 	dummy_gem = drm_gpuvm_resv_object_alloc(drm);
778 	if (!dummy_gem) {
779 		ret = -ENOMEM;
780 		goto err_free_vm;
781 	}
782 
783 	if (!managed) {
784 		struct drm_sched_init_args args = {
785 			.ops = &msm_vm_bind_ops,
786 			.num_rqs = 1,
787 			.credit_limit = 1,
788 			.timeout = MAX_SCHEDULE_TIMEOUT,
789 			.name = "msm-vm-bind",
790 			.dev = drm->dev,
791 		};
792 
793 		ret = drm_sched_init(&vm->sched, &args);
794 		if (ret)
795 			goto err_free_dummy;
796 
797 		init_waitqueue_head(&vm->prealloc_throttle.wait);
798 	}
799 
800 	drm_gpuvm_init(&vm->base, name, flags, drm, dummy_gem,
801 		       va_start, va_size, 0, 0, &msm_gpuvm_ops);
802 	drm_gem_object_put(dummy_gem);
803 
804 	vm->mmu = mmu;
805 	mutex_init(&vm->mmu_lock);
806 	vm->managed = managed;
807 
808 	drm_mm_init(&vm->mm, va_start, va_size);
809 
810 	/*
811 	 * We don't really need vm log for kernel managed VMs, as the kernel
812 	 * is responsible for ensuring that GEM objs are mapped if they are
813 	 * used by a submit.  Furthermore we piggyback on mmu_lock to serialize
814 	 * access to the log.
815 	 *
816 	 * Limit the max log_shift to 8 to prevent userspace from asking us
817 	 * for an unreasonable log size.
818 	 */
819 	if (!managed)
820 		vm->log_shift = MIN(vm_log_shift, 8);
821 
822 	if (vm->log_shift) {
823 		vm->log = kmalloc_array(1 << vm->log_shift, sizeof(vm->log[0]),
824 					GFP_KERNEL | __GFP_ZERO);
825 	}
826 
827 	return &vm->base;
828 
829 err_free_dummy:
830 	drm_gem_object_put(dummy_gem);
831 
832 err_free_vm:
833 	kfree(vm);
834 	return ERR_PTR(ret);
835 }
836 
837 /**
838  * msm_gem_vm_close() - Close a VM
839  * @gpuvm: The VM to close
840  *
841  * Called when the drm device file is closed, to tear down VM related resources
842  * (which will drop refcounts to GEM objects that were still mapped into the
843  * VM at the time).
844  */
845 void
846 msm_gem_vm_close(struct drm_gpuvm *gpuvm)
847 {
848 	struct msm_gem_vm *vm = to_msm_vm(gpuvm);
849 	struct drm_gpuva *vma, *tmp;
850 	struct drm_exec exec;
851 
852 	/*
853 	 * For kernel managed VMs, the VMAs are torn down when the handle is
854 	 * closed, so nothing more to do.
855 	 */
856 	if (vm->managed)
857 		return;
858 
859 	if (vm->last_fence)
860 		dma_fence_wait(vm->last_fence, false);
861 
862 	/* Kill the scheduler now, so we aren't racing with it for cleanup: */
863 	drm_sched_stop(&vm->sched, NULL);
864 	drm_sched_fini(&vm->sched);
865 
866 	/* Tear down any remaining mappings: */
867 	drm_exec_init(&exec, 0, 2);
868 	drm_exec_until_all_locked (&exec) {
869 		drm_exec_lock_obj(&exec, drm_gpuvm_resv_obj(gpuvm));
870 		drm_exec_retry_on_contention(&exec);
871 
872 		drm_gpuvm_for_each_va_safe (vma, tmp, gpuvm) {
873 			struct drm_gem_object *obj = vma->gem.obj;
874 
875 			/*
876 			 * MSM_BO_NO_SHARE objects share the same resv as the
877 			 * VM, in which case the obj is already locked:
878 			 */
879 			if (obj && (obj->resv == drm_gpuvm_resv(gpuvm)))
880 				obj = NULL;
881 
882 			if (obj) {
883 				drm_exec_lock_obj(&exec, obj);
884 				drm_exec_retry_on_contention(&exec);
885 			}
886 
887 			msm_gem_vma_unmap(vma, "close");
888 			msm_gem_vma_close(vma);
889 
890 			if (obj) {
891 				drm_exec_unlock_obj(&exec, obj);
892 			}
893 		}
894 	}
895 	drm_exec_fini(&exec);
896 }
897 
898 
899 static struct msm_vm_bind_job *
900 vm_bind_job_create(struct drm_device *dev, struct drm_file *file,
901 		   struct msm_gpu_submitqueue *queue, uint32_t nr_ops)
902 {
903 	struct msm_vm_bind_job *job;
904 	uint64_t sz;
905 	int ret;
906 
907 	sz = struct_size(job, ops, nr_ops);
908 
909 	if (sz > SIZE_MAX)
910 		return ERR_PTR(-ENOMEM);
911 
912 	job = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN);
913 	if (!job)
914 		return ERR_PTR(-ENOMEM);
915 
916 	ret = drm_sched_job_init(&job->base, queue->entity, 1, queue,
917 				 file->client_id);
918 	if (ret) {
919 		kfree(job);
920 		return ERR_PTR(ret);
921 	}
922 
923 	job->vm = msm_context_vm(dev, queue->ctx);
924 	job->queue = queue;
925 	INIT_LIST_HEAD(&job->vm_ops);
926 
927 	return job;
928 }
929 
930 static bool invalid_alignment(uint64_t addr)
931 {
932 	/*
933 	 * Technically this is about GPU alignment, not CPU alignment.  But
934 	 * I've not seen any qcom SoC where the SMMU does not support the
935 	 * CPU's smallest page size.
936 	 */
937 	return !PAGE_ALIGNED(addr);
938 }
939 
940 static int
941 lookup_op(struct msm_vm_bind_job *job, const struct drm_msm_vm_bind_op *op)
942 {
943 	struct drm_device *dev = job->vm->drm;
944 	int i = job->nr_ops++;
945 	int ret = 0;
946 
947 	job->ops[i].op = op->op;
948 	job->ops[i].handle = op->handle;
949 	job->ops[i].obj_offset = op->obj_offset;
950 	job->ops[i].iova = op->iova;
951 	job->ops[i].range = op->range;
952 	job->ops[i].flags = op->flags;
953 
954 	if (op->flags & ~MSM_VM_BIND_OP_FLAGS)
955 		ret = UERR(EINVAL, dev, "invalid flags: %x\n", op->flags);
956 
957 	if (invalid_alignment(op->iova))
958 		ret = UERR(EINVAL, dev, "invalid address: %016llx\n", op->iova);
959 
960 	if (invalid_alignment(op->obj_offset))
961 		ret = UERR(EINVAL, dev, "invalid bo_offset: %016llx\n", op->obj_offset);
962 
963 	if (invalid_alignment(op->range))
964 		ret = UERR(EINVAL, dev, "invalid range: %016llx\n", op->range);
965 
966 	if (!drm_gpuvm_range_valid(job->vm, op->iova, op->range))
967 		ret = UERR(EINVAL, dev, "invalid range: %016llx, %016llx\n", op->iova, op->range);
968 
969 	/*
970 	 * MAP must specify a valid handle.  But the handle MBZ for
971 	 * UNMAP or MAP_NULL.
972 	 */
973 	if (op->op == MSM_VM_BIND_OP_MAP) {
974 		if (!op->handle)
975 			ret = UERR(EINVAL, dev, "invalid handle\n");
976 	} else if (op->handle) {
977 		ret = UERR(EINVAL, dev, "handle must be zero\n");
978 	}
979 
980 	switch (op->op) {
981 	case MSM_VM_BIND_OP_MAP:
982 	case MSM_VM_BIND_OP_MAP_NULL:
983 	case MSM_VM_BIND_OP_UNMAP:
984 		break;
985 	default:
986 		ret = UERR(EINVAL, dev, "invalid op: %u\n", op->op);
987 		break;
988 	}
989 
990 	return ret;
991 }
992 
993 /*
994  * ioctl parsing, parameter validation, and GEM handle lookup
995  */
996 static int
997 vm_bind_job_lookup_ops(struct msm_vm_bind_job *job, struct drm_msm_vm_bind *args,
998 		       struct drm_file *file, int *nr_bos)
999 {
1000 	struct drm_device *dev = job->vm->drm;
1001 	int ret = 0;
1002 	int cnt = 0;
1003 
1004 	if (args->nr_ops == 1) {
1005 		/* Single op case, the op is inlined: */
1006 		ret = lookup_op(job, &args->op);
1007 	} else {
1008 		for (unsigned i = 0; i < args->nr_ops; i++) {
1009 			struct drm_msm_vm_bind_op op;
1010 			void __user *userptr =
1011 				u64_to_user_ptr(args->ops + (i * sizeof(op)));
1012 
1013 			/* make sure we don't have garbage flags, in case we hit
1014 			 * error path before flags is initialized:
1015 			 */
1016 			job->ops[i].flags = 0;
1017 
1018 			if (copy_from_user(&op, userptr, sizeof(op))) {
1019 				ret = -EFAULT;
1020 				break;
1021 			}
1022 
1023 			ret = lookup_op(job, &op);
1024 			if (ret)
1025 				break;
1026 		}
1027 	}
1028 
1029 	if (ret) {
1030 		job->nr_ops = 0;
1031 		goto out;
1032 	}
1033 
1034 	spin_lock(&file->table_lock);
1035 
1036 	for (unsigned i = 0; i < args->nr_ops; i++) {
1037 		struct drm_gem_object *obj;
1038 
1039 		if (!job->ops[i].handle) {
1040 			job->ops[i].obj = NULL;
1041 			continue;
1042 		}
1043 
1044 		/*
1045 		 * normally use drm_gem_object_lookup(), but for bulk lookup
1046 		 * all under single table_lock just hit object_idr directly:
1047 		 */
1048 		obj = idr_find(&file->object_idr, job->ops[i].handle);
1049 		if (!obj) {
1050 			ret = UERR(EINVAL, dev, "invalid handle %u at index %u\n", job->ops[i].handle, i);
1051 			goto out_unlock;
1052 		}
1053 
1054 		drm_gem_object_get(obj);
1055 
1056 		job->ops[i].obj = obj;
1057 		cnt++;
1058 	}
1059 
1060 	*nr_bos = cnt;
1061 
1062 out_unlock:
1063 	spin_unlock(&file->table_lock);
1064 
1065 out:
1066 	return ret;
1067 }
1068 
1069 static void
1070 prealloc_count(struct msm_vm_bind_job *job,
1071 	       struct msm_vm_bind_op *first,
1072 	       struct msm_vm_bind_op *last)
1073 {
1074 	struct msm_mmu *mmu = to_msm_vm(job->vm)->mmu;
1075 
1076 	if (!first)
1077 		return;
1078 
1079 	uint64_t start_iova = first->iova;
1080 	uint64_t end_iova = last->iova + last->range;
1081 
1082 	mmu->funcs->prealloc_count(mmu, &job->prealloc, start_iova, end_iova - start_iova);
1083 }
1084 
1085 static bool
1086 ops_are_same_pte(struct msm_vm_bind_op *first, struct msm_vm_bind_op *next)
1087 {
1088 	/*
1089 	 * Last level pte covers 2MB.. so we should merge two ops, from
1090 	 * the PoV of figuring out how much pgtable pages to pre-allocate
1091 	 * if they land in the same 2MB range:
1092 	 */
1093 	uint64_t pte_mask = ~(SZ_2M - 1);
1094 	return ((first->iova + first->range) & pte_mask) == (next->iova & pte_mask);
1095 }
1096 
1097 /*
1098  * Determine the amount of memory to prealloc for pgtables.  For sparse images,
1099  * in particular, userspace plays some tricks with the order of page mappings
1100  * to get the desired swizzle pattern, resulting in a large # of tiny MAP ops.
1101  * So detect when multiple MAP operations are physically contiguous, and count
1102  * them as a single mapping.  Otherwise the prealloc_count() will not realize
1103  * they can share pagetable pages and vastly overcount.
1104  */
1105 static int
1106 vm_bind_prealloc_count(struct msm_vm_bind_job *job)
1107 {
1108 	struct msm_vm_bind_op *first = NULL, *last = NULL;
1109 	struct msm_gem_vm *vm = to_msm_vm(job->vm);
1110 	int ret;
1111 
1112 	for (int i = 0; i < job->nr_ops; i++) {
1113 		struct msm_vm_bind_op *op = &job->ops[i];
1114 
1115 		/* We only care about MAP/MAP_NULL: */
1116 		if (op->op == MSM_VM_BIND_OP_UNMAP)
1117 			continue;
1118 
1119 		/*
1120 		 * If op is contiguous with last in the current range, then
1121 		 * it becomes the new last in the range and we continue
1122 		 * looping:
1123 		 */
1124 		if (last && ops_are_same_pte(last, op)) {
1125 			last = op;
1126 			continue;
1127 		}
1128 
1129 		/*
1130 		 * If op is not contiguous with the current range, flush
1131 		 * the current range and start anew:
1132 		 */
1133 		prealloc_count(job, first, last);
1134 		first = last = op;
1135 	}
1136 
1137 	/* Flush the remaining range: */
1138 	prealloc_count(job, first, last);
1139 
1140 	/*
1141 	 * Now that we know the needed amount to pre-alloc, throttle on pending
1142 	 * VM_BIND jobs if we already have too much pre-alloc memory in flight
1143 	 */
1144 	ret = wait_event_interruptible(
1145 			vm->prealloc_throttle.wait,
1146 			atomic_read(&vm->prealloc_throttle.in_flight) <= 1024);
1147 	if (ret)
1148 		return ret;
1149 
1150 	atomic_add(job->prealloc.count, &vm->prealloc_throttle.in_flight);
1151 
1152 	return 0;
1153 }
1154 
1155 /*
1156  * Lock VM and GEM objects
1157  */
1158 static int
1159 vm_bind_job_lock_objects(struct msm_vm_bind_job *job, struct drm_exec *exec)
1160 {
1161 	int ret;
1162 
1163 	/* Lock VM and objects: */
1164 	drm_exec_until_all_locked (exec) {
1165 		ret = drm_exec_lock_obj(exec, drm_gpuvm_resv_obj(job->vm));
1166 		drm_exec_retry_on_contention(exec);
1167 		if (ret)
1168 			return ret;
1169 
1170 		for (unsigned i = 0; i < job->nr_ops; i++) {
1171 			const struct msm_vm_bind_op *op = &job->ops[i];
1172 
1173 			switch (op->op) {
1174 			case MSM_VM_BIND_OP_UNMAP:
1175 				ret = drm_gpuvm_sm_unmap_exec_lock(job->vm, exec,
1176 							      op->iova,
1177 							      op->obj_offset);
1178 				break;
1179 			case MSM_VM_BIND_OP_MAP:
1180 			case MSM_VM_BIND_OP_MAP_NULL: {
1181 				struct drm_gpuvm_map_req map_req = {
1182 					.map.va.addr = op->iova,
1183 					.map.va.range = op->range,
1184 					.map.gem.obj = op->obj,
1185 					.map.gem.offset = op->obj_offset,
1186 				};
1187 
1188 				ret = drm_gpuvm_sm_map_exec_lock(job->vm, exec, 1, &map_req);
1189 				break;
1190 			}
1191 			default:
1192 				/*
1193 				 * lookup_op() should have already thrown an error for
1194 				 * invalid ops
1195 				 */
1196 				WARN_ON("unreachable");
1197 			}
1198 
1199 			drm_exec_retry_on_contention(exec);
1200 			if (ret)
1201 				return ret;
1202 		}
1203 	}
1204 
1205 	return 0;
1206 }
1207 
1208 /*
1209  * Pin GEM objects, ensuring that we have backing pages.  Pinning will move
1210  * the object to the pinned LRU so that the shrinker knows to first consider
1211  * other objects for evicting.
1212  */
1213 static int
1214 vm_bind_job_pin_objects(struct msm_vm_bind_job *job)
1215 {
1216 	struct drm_gem_object *obj;
1217 
1218 	/*
1219 	 * First loop, before holding the LRU lock, avoids holding the
1220 	 * LRU lock while calling msm_gem_pin_vma_locked (which could
1221 	 * trigger get_pages())
1222 	 */
1223 	job_foreach_bo (obj, job) {
1224 		struct page **pages;
1225 
1226 		pages = msm_gem_get_pages_locked(obj, MSM_MADV_WILLNEED);
1227 		if (IS_ERR(pages))
1228 			return PTR_ERR(pages);
1229 	}
1230 
1231 	struct msm_drm_private *priv = job->vm->drm->dev_private;
1232 
1233 	/*
1234 	 * A second loop while holding the LRU lock (a) avoids acquiring/dropping
1235 	 * the LRU lock for each individual bo, while (b) avoiding holding the
1236 	 * LRU lock while calling msm_gem_pin_vma_locked() (which could trigger
1237 	 * get_pages() which could trigger reclaim.. and if we held the LRU lock
1238 	 * could trigger deadlock with the shrinker).
1239 	 */
1240 	mutex_lock(&priv->lru.lock);
1241 	job_foreach_bo (obj, job)
1242 		msm_gem_pin_obj_locked(obj);
1243 	mutex_unlock(&priv->lru.lock);
1244 
1245 	job->bos_pinned = true;
1246 
1247 	return 0;
1248 }
1249 
1250 /*
1251  * Unpin GEM objects.  Normally this is done after the bind job is run.
1252  */
1253 static void
1254 vm_bind_job_unpin_objects(struct msm_vm_bind_job *job)
1255 {
1256 	struct drm_gem_object *obj;
1257 
1258 	if (!job->bos_pinned)
1259 		return;
1260 
1261 	job_foreach_bo (obj, job)
1262 		msm_gem_unpin_locked(obj);
1263 
1264 	job->bos_pinned = false;
1265 }
1266 
1267 /*
1268  * Pre-allocate pgtable memory, and translate the VM bind requests into a
1269  * sequence of pgtable updates to be applied asynchronously.
1270  */
1271 static int
1272 vm_bind_job_prepare(struct msm_vm_bind_job *job)
1273 {
1274 	struct msm_gem_vm *vm = to_msm_vm(job->vm);
1275 	struct msm_mmu *mmu = vm->mmu;
1276 	int ret;
1277 
1278 	ret = mmu->funcs->prealloc_allocate(mmu, &job->prealloc);
1279 	if (ret)
1280 		return ret;
1281 
1282 	for (unsigned i = 0; i < job->nr_ops; i++) {
1283 		const struct msm_vm_bind_op *op = &job->ops[i];
1284 		struct op_arg arg = {
1285 			.job = job,
1286 		};
1287 
1288 		switch (op->op) {
1289 		case MSM_VM_BIND_OP_UNMAP:
1290 			ret = drm_gpuvm_sm_unmap(job->vm, &arg, op->iova,
1291 						 op->range);
1292 			break;
1293 		case MSM_VM_BIND_OP_MAP:
1294 			if (op->flags & MSM_VM_BIND_OP_DUMP)
1295 				arg.flags |= MSM_VMA_DUMP;
1296 			fallthrough;
1297 		case MSM_VM_BIND_OP_MAP_NULL: {
1298 			struct drm_gpuvm_map_req map_req = {
1299 				.map.va.addr = op->iova,
1300 				.map.va.range = op->range,
1301 				.map.gem.obj = op->obj,
1302 				.map.gem.offset = op->obj_offset,
1303 			};
1304 
1305 			ret = drm_gpuvm_sm_map(job->vm, &arg, &map_req);
1306 			break;
1307 		}
1308 		default:
1309 			/*
1310 			 * lookup_op() should have already thrown an error for
1311 			 * invalid ops
1312 			 */
1313 			BUG_ON("unreachable");
1314 		}
1315 
1316 		if (ret) {
1317 			/*
1318 			 * If we've already started modifying the vm, we can't
1319 			 * adequetly describe to userspace the intermediate
1320 			 * state the vm is in.  So throw up our hands!
1321 			 */
1322 			if (i > 0)
1323 				msm_gem_vm_unusable(job->vm);
1324 			return ret;
1325 		}
1326 	}
1327 
1328 	return 0;
1329 }
1330 
1331 /*
1332  * Attach fences to the GEM objects being bound.  This will signify to
1333  * the shrinker that they are busy even after dropping the locks (ie.
1334  * drm_exec_fini())
1335  */
1336 static void
1337 vm_bind_job_attach_fences(struct msm_vm_bind_job *job)
1338 {
1339 	for (unsigned i = 0; i < job->nr_ops; i++) {
1340 		struct drm_gem_object *obj = job->ops[i].obj;
1341 
1342 		if (!obj)
1343 			continue;
1344 
1345 		dma_resv_add_fence(obj->resv, job->fence,
1346 				   DMA_RESV_USAGE_KERNEL);
1347 	}
1348 }
1349 
1350 int
1351 msm_ioctl_vm_bind(struct drm_device *dev, void *data, struct drm_file *file)
1352 {
1353 	struct msm_drm_private *priv = dev->dev_private;
1354 	struct drm_msm_vm_bind *args = data;
1355 	struct msm_context *ctx = file->driver_priv;
1356 	struct msm_vm_bind_job *job = NULL;
1357 	struct msm_gpu *gpu = priv->gpu;
1358 	struct msm_gpu_submitqueue *queue;
1359 	struct msm_syncobj_post_dep *post_deps = NULL;
1360 	struct drm_syncobj **syncobjs_to_reset = NULL;
1361 	struct sync_file *sync_file = NULL;
1362 	struct dma_fence *fence;
1363 	int out_fence_fd = -1;
1364 	int ret, nr_bos = 0;
1365 	unsigned i;
1366 
1367 	if (!gpu)
1368 		return -ENXIO;
1369 
1370 	/*
1371 	 * Maybe we could allow just UNMAP ops?  OTOH userspace should just
1372 	 * immediately close the device file and all will be torn down.
1373 	 */
1374 	if (to_msm_vm(ctx->vm)->unusable)
1375 		return UERR(EPIPE, dev, "context is unusable");
1376 
1377 	/*
1378 	 * Technically, you cannot create a VM_BIND submitqueue in the first
1379 	 * place, if you haven't opted in to VM_BIND context.  But it is
1380 	 * cleaner / less confusing, to check this case directly.
1381 	 */
1382 	if (!msm_context_is_vmbind(ctx))
1383 		return UERR(EINVAL, dev, "context does not support vmbind");
1384 
1385 	if (args->flags & ~MSM_VM_BIND_FLAGS)
1386 		return UERR(EINVAL, dev, "invalid flags");
1387 
1388 	queue = msm_submitqueue_get(ctx, args->queue_id);
1389 	if (!queue)
1390 		return -ENOENT;
1391 
1392 	if (!(queue->flags & MSM_SUBMITQUEUE_VM_BIND)) {
1393 		ret = UERR(EINVAL, dev, "Invalid queue type");
1394 		goto out_post_unlock;
1395 	}
1396 
1397 	if (args->flags & MSM_VM_BIND_FENCE_FD_OUT) {
1398 		out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
1399 		if (out_fence_fd < 0) {
1400 			ret = out_fence_fd;
1401 			goto out_post_unlock;
1402 		}
1403 	}
1404 
1405 	job = vm_bind_job_create(dev, file, queue, args->nr_ops);
1406 	if (IS_ERR(job)) {
1407 		ret = PTR_ERR(job);
1408 		goto out_post_unlock;
1409 	}
1410 
1411 	ret = mutex_lock_interruptible(&queue->lock);
1412 	if (ret)
1413 		goto out_post_unlock;
1414 
1415 	if (args->flags & MSM_VM_BIND_FENCE_FD_IN) {
1416 		struct dma_fence *in_fence;
1417 
1418 		in_fence = sync_file_get_fence(args->fence_fd);
1419 
1420 		if (!in_fence) {
1421 			ret = UERR(EINVAL, dev, "invalid in-fence");
1422 			goto out_unlock;
1423 		}
1424 
1425 		ret = drm_sched_job_add_dependency(&job->base, in_fence);
1426 		if (ret)
1427 			goto out_unlock;
1428 	}
1429 
1430 	if (args->in_syncobjs > 0) {
1431 		syncobjs_to_reset = msm_syncobj_parse_deps(dev, &job->base,
1432 							   file, args->in_syncobjs,
1433 							   args->nr_in_syncobjs,
1434 							   args->syncobj_stride);
1435 		if (IS_ERR(syncobjs_to_reset)) {
1436 			ret = PTR_ERR(syncobjs_to_reset);
1437 			goto out_unlock;
1438 		}
1439 	}
1440 
1441 	if (args->out_syncobjs > 0) {
1442 		post_deps = msm_syncobj_parse_post_deps(dev, file,
1443 							args->out_syncobjs,
1444 							args->nr_out_syncobjs,
1445 							args->syncobj_stride);
1446 		if (IS_ERR(post_deps)) {
1447 			ret = PTR_ERR(post_deps);
1448 			goto out_unlock;
1449 		}
1450 	}
1451 
1452 	ret = vm_bind_job_lookup_ops(job, args, file, &nr_bos);
1453 	if (ret)
1454 		goto out_unlock;
1455 
1456 	ret = vm_bind_prealloc_count(job);
1457 	if (ret)
1458 		goto out_unlock;
1459 
1460 	struct drm_exec exec;
1461 	unsigned flags = DRM_EXEC_IGNORE_DUPLICATES | DRM_EXEC_INTERRUPTIBLE_WAIT;
1462 	drm_exec_init(&exec, flags, nr_bos + 1);
1463 
1464 	ret = vm_bind_job_lock_objects(job, &exec);
1465 	if (ret)
1466 		goto out;
1467 
1468 	ret = vm_bind_job_pin_objects(job);
1469 	if (ret)
1470 		goto out;
1471 
1472 	ret = vm_bind_job_prepare(job);
1473 	if (ret)
1474 		goto out;
1475 
1476 	drm_sched_job_arm(&job->base);
1477 
1478 	job->fence = dma_fence_get(&job->base.s_fence->finished);
1479 
1480 	if (args->flags & MSM_VM_BIND_FENCE_FD_OUT) {
1481 		sync_file = sync_file_create(job->fence);
1482 		if (!sync_file) {
1483 			ret = -ENOMEM;
1484 		} else {
1485 			fd_install(out_fence_fd, sync_file->file);
1486 			args->fence_fd = out_fence_fd;
1487 		}
1488 	}
1489 
1490 	if (ret)
1491 		goto out;
1492 
1493 	vm_bind_job_attach_fences(job);
1494 
1495 	/*
1496 	 * The job can be free'd (and fence unref'd) at any point after
1497 	 * drm_sched_entity_push_job(), so we need to hold our own ref
1498 	 */
1499 	fence = dma_fence_get(job->fence);
1500 
1501 	drm_sched_entity_push_job(&job->base);
1502 
1503 	msm_syncobj_reset(syncobjs_to_reset, args->nr_in_syncobjs);
1504 	msm_syncobj_process_post_deps(post_deps, args->nr_out_syncobjs, fence);
1505 
1506 	dma_fence_put(fence);
1507 
1508 out:
1509 	if (ret)
1510 		vm_bind_job_unpin_objects(job);
1511 
1512 	drm_exec_fini(&exec);
1513 out_unlock:
1514 	mutex_unlock(&queue->lock);
1515 out_post_unlock:
1516 	if (ret && (out_fence_fd >= 0)) {
1517 		put_unused_fd(out_fence_fd);
1518 		if (sync_file)
1519 			fput(sync_file->file);
1520 	}
1521 
1522 	if (!IS_ERR_OR_NULL(job)) {
1523 		if (ret)
1524 			msm_vma_job_free(&job->base);
1525 	} else {
1526 		/*
1527 		 * If the submit hasn't yet taken ownership of the queue
1528 		 * then we need to drop the reference ourself:
1529 		 */
1530 		msm_submitqueue_put(queue);
1531 	}
1532 
1533 	if (!IS_ERR_OR_NULL(post_deps)) {
1534 		for (i = 0; i < args->nr_out_syncobjs; ++i) {
1535 			kfree(post_deps[i].chain);
1536 			drm_syncobj_put(post_deps[i].syncobj);
1537 		}
1538 		kfree(post_deps);
1539 	}
1540 
1541 	if (!IS_ERR_OR_NULL(syncobjs_to_reset)) {
1542 		for (i = 0; i < args->nr_in_syncobjs; ++i) {
1543 			if (syncobjs_to_reset[i])
1544 				drm_syncobj_put(syncobjs_to_reset[i]);
1545 		}
1546 		kfree(syncobjs_to_reset);
1547 	}
1548 
1549 	return ret;
1550 }
1551