1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2016 Red Hat 4 * Author: Rob Clark <robdclark@gmail.com> 5 */ 6 7 #include "drm/drm_file.h" 8 #include "drm/msm_drm.h" 9 #include "linux/file.h" 10 #include "linux/sync_file.h" 11 12 #include "msm_drv.h" 13 #include "msm_gem.h" 14 #include "msm_gpu.h" 15 #include "msm_mmu.h" 16 #include "msm_syncobj.h" 17 18 #define vm_dbg(fmt, ...) pr_debug("%s:%d: "fmt"\n", __func__, __LINE__, ##__VA_ARGS__) 19 20 static uint vm_log_shift = 0; 21 MODULE_PARM_DESC(vm_log_shift, "Length of VM op log"); 22 module_param_named(vm_log_shift, vm_log_shift, uint, 0600); 23 24 /** 25 * struct msm_vm_map_op - create new pgtable mapping 26 */ 27 struct msm_vm_map_op { 28 /** @iova: start address for mapping */ 29 uint64_t iova; 30 /** @range: size of the region to map */ 31 uint64_t range; 32 /** @offset: offset into @sgt to map */ 33 uint64_t offset; 34 /** @sgt: pages to map, or NULL for a PRR mapping */ 35 struct sg_table *sgt; 36 /** @prot: the mapping protection flags */ 37 int prot; 38 39 /** 40 * @queue_id: The id of the submitqueue the operation is performed 41 * on, or zero for (in particular) UNMAP ops triggered outside of 42 * a submitqueue (ie. process cleanup) 43 */ 44 int queue_id; 45 }; 46 47 /** 48 * struct msm_vm_unmap_op - unmap a range of pages from pgtable 49 */ 50 struct msm_vm_unmap_op { 51 /** @iova: start address for unmap */ 52 uint64_t iova; 53 /** @range: size of region to unmap */ 54 uint64_t range; 55 56 /** @reason: The reason for the unmap */ 57 const char *reason; 58 59 /** 60 * @queue_id: The id of the submitqueue the operation is performed 61 * on, or zero for (in particular) UNMAP ops triggered outside of 62 * a submitqueue (ie. process cleanup) 63 */ 64 int queue_id; 65 }; 66 67 /** 68 * struct msm_vma_op - A MAP or UNMAP operation 69 */ 70 struct msm_vm_op { 71 /** @op: The operation type */ 72 enum { 73 MSM_VM_OP_MAP = 1, 74 MSM_VM_OP_UNMAP, 75 } op; 76 union { 77 /** @map: Parameters used if op == MSM_VMA_OP_MAP */ 78 struct msm_vm_map_op map; 79 /** @unmap: Parameters used if op == MSM_VMA_OP_UNMAP */ 80 struct msm_vm_unmap_op unmap; 81 }; 82 /** @node: list head in msm_vm_bind_job::vm_ops */ 83 struct list_head node; 84 85 /** 86 * @obj: backing object for pages to be mapped/unmapped 87 * 88 * Async unmap ops, in particular, must hold a reference to the 89 * original GEM object backing the mapping that will be unmapped. 90 * But the same can be required in the map path, for example if 91 * there is not a corresponding unmap op, such as process exit. 92 * 93 * This ensures that the pages backing the mapping are not freed 94 * before the mapping is torn down. 95 */ 96 struct drm_gem_object *obj; 97 }; 98 99 /** 100 * struct msm_vm_bind_job - Tracking for a VM_BIND ioctl 101 * 102 * A table of userspace requested VM updates (MSM_VM_BIND_OP_UNMAP/MAP/MAP_NULL) 103 * gets applied to the vm, generating a list of VM ops (MSM_VM_OP_MAP/UNMAP) 104 * which are applied to the pgtables asynchronously. For example a userspace 105 * requested MSM_VM_BIND_OP_MAP could end up generating both an MSM_VM_OP_UNMAP 106 * to unmap an existing mapping, and a MSM_VM_OP_MAP to apply the new mapping. 107 */ 108 struct msm_vm_bind_job { 109 /** @base: base class for drm_sched jobs */ 110 struct drm_sched_job base; 111 /** @vm: The VM being operated on */ 112 struct drm_gpuvm *vm; 113 /** @fence: The fence that is signaled when job completes */ 114 struct dma_fence *fence; 115 /** @queue: The queue that the job runs on */ 116 struct msm_gpu_submitqueue *queue; 117 /** @prealloc: Tracking for pre-allocated MMU pgtable pages */ 118 struct msm_mmu_prealloc prealloc; 119 /** @vm_ops: a list of struct msm_vm_op */ 120 struct list_head vm_ops; 121 /** @bos_pinned: are the GEM objects being bound pinned? */ 122 bool bos_pinned; 123 /** @nr_ops: the number of userspace requested ops */ 124 unsigned int nr_ops; 125 /** 126 * @ops: the userspace requested ops 127 * 128 * The userspace requested ops are copied/parsed and validated 129 * before we start applying the updates to try to do as much up- 130 * front error checking as possible, to avoid the VM being in an 131 * undefined state due to partially executed VM_BIND. 132 * 133 * This table also serves to hold a reference to the backing GEM 134 * objects. 135 */ 136 struct msm_vm_bind_op { 137 uint32_t op; 138 uint32_t flags; 139 union { 140 struct drm_gem_object *obj; 141 uint32_t handle; 142 }; 143 uint64_t obj_offset; 144 uint64_t iova; 145 uint64_t range; 146 } ops[]; 147 }; 148 149 #define job_foreach_bo(obj, _job) \ 150 for (unsigned i = 0; i < (_job)->nr_ops; i++) \ 151 if ((obj = (_job)->ops[i].obj)) 152 153 static inline struct msm_vm_bind_job *to_msm_vm_bind_job(struct drm_sched_job *job) 154 { 155 return container_of(job, struct msm_vm_bind_job, base); 156 } 157 158 static void 159 msm_gem_vm_free(struct drm_gpuvm *gpuvm) 160 { 161 struct msm_gem_vm *vm = container_of(gpuvm, struct msm_gem_vm, base); 162 163 drm_mm_takedown(&vm->mm); 164 if (vm->mmu) 165 vm->mmu->funcs->destroy(vm->mmu); 166 dma_fence_put(vm->last_fence); 167 put_pid(vm->pid); 168 kfree(vm->log); 169 kfree(vm); 170 } 171 172 /** 173 * msm_gem_vm_unusable() - Mark a VM as unusable 174 * @gpuvm: the VM to mark unusable 175 */ 176 void 177 msm_gem_vm_unusable(struct drm_gpuvm *gpuvm) 178 { 179 struct msm_gem_vm *vm = to_msm_vm(gpuvm); 180 uint32_t vm_log_len = (1 << vm->log_shift); 181 uint32_t vm_log_mask = vm_log_len - 1; 182 uint32_t nr_vm_logs; 183 int first; 184 185 vm->unusable = true; 186 187 /* Bail if no log, or empty log: */ 188 if (!vm->log || !vm->log[0].op) 189 return; 190 191 mutex_lock(&vm->mmu_lock); 192 193 /* 194 * log_idx is the next entry to overwrite, meaning it is the oldest, or 195 * first, entry (other than the special case handled below where the 196 * log hasn't wrapped around yet) 197 */ 198 first = vm->log_idx; 199 200 if (!vm->log[first].op) { 201 /* 202 * If the next log entry has not been written yet, then only 203 * entries 0 to idx-1 are valid (ie. we haven't wrapped around 204 * yet) 205 */ 206 nr_vm_logs = MAX(0, first - 1); 207 first = 0; 208 } else { 209 nr_vm_logs = vm_log_len; 210 } 211 212 pr_err("vm-log:\n"); 213 for (int i = 0; i < nr_vm_logs; i++) { 214 int idx = (i + first) & vm_log_mask; 215 struct msm_gem_vm_log_entry *e = &vm->log[idx]; 216 pr_err(" - %s:%d: 0x%016llx-0x%016llx\n", 217 e->op, e->queue_id, e->iova, 218 e->iova + e->range); 219 } 220 221 mutex_unlock(&vm->mmu_lock); 222 } 223 224 static void 225 vm_log(struct msm_gem_vm *vm, const char *op, uint64_t iova, uint64_t range, int queue_id) 226 { 227 int idx; 228 229 if (!vm->managed) 230 lockdep_assert_held(&vm->mmu_lock); 231 232 vm_dbg("%s:%p:%d: %016llx %016llx", op, vm, queue_id, iova, iova + range); 233 234 if (!vm->log) 235 return; 236 237 idx = vm->log_idx; 238 vm->log[idx].op = op; 239 vm->log[idx].iova = iova; 240 vm->log[idx].range = range; 241 vm->log[idx].queue_id = queue_id; 242 vm->log_idx = (vm->log_idx + 1) & ((1 << vm->log_shift) - 1); 243 } 244 245 static void 246 vm_unmap_op(struct msm_gem_vm *vm, const struct msm_vm_unmap_op *op) 247 { 248 const char *reason = op->reason; 249 250 if (!reason) 251 reason = "unmap"; 252 253 vm_log(vm, reason, op->iova, op->range, op->queue_id); 254 255 vm->mmu->funcs->unmap(vm->mmu, op->iova, op->range); 256 } 257 258 static int 259 vm_map_op(struct msm_gem_vm *vm, const struct msm_vm_map_op *op) 260 { 261 vm_log(vm, "map", op->iova, op->range, op->queue_id); 262 263 return vm->mmu->funcs->map(vm->mmu, op->iova, op->sgt, op->offset, 264 op->range, op->prot); 265 } 266 267 /* Actually unmap memory for the vma */ 268 void msm_gem_vma_unmap(struct drm_gpuva *vma, const char *reason) 269 { 270 struct msm_gem_vm *vm = to_msm_vm(vma->vm); 271 struct msm_gem_vma *msm_vma = to_msm_vma(vma); 272 273 /* Don't do anything if the memory isn't mapped */ 274 if (!msm_vma->mapped) 275 return; 276 277 /* 278 * The mmu_lock is only needed when preallocation is used. But 279 * in that case we don't need to worry about recursion into 280 * shrinker 281 */ 282 if (!vm->managed) 283 mutex_lock(&vm->mmu_lock); 284 285 vm_unmap_op(vm, &(struct msm_vm_unmap_op){ 286 .iova = vma->va.addr, 287 .range = vma->va.range, 288 .reason = reason, 289 }); 290 291 if (!vm->managed) 292 mutex_unlock(&vm->mmu_lock); 293 294 msm_vma->mapped = false; 295 } 296 297 /* Map and pin vma: */ 298 int 299 msm_gem_vma_map(struct drm_gpuva *vma, int prot, struct sg_table *sgt) 300 { 301 struct msm_gem_vm *vm = to_msm_vm(vma->vm); 302 struct msm_gem_vma *msm_vma = to_msm_vma(vma); 303 int ret; 304 305 if (GEM_WARN_ON(!vma->va.addr)) 306 return -EINVAL; 307 308 if (msm_vma->mapped) 309 return 0; 310 311 msm_vma->mapped = true; 312 313 /* 314 * The mmu_lock is only needed when preallocation is used. But 315 * in that case we don't need to worry about recursion into 316 * shrinker 317 */ 318 if (!vm->managed) 319 mutex_lock(&vm->mmu_lock); 320 321 /* 322 * NOTE: iommu/io-pgtable can allocate pages, so we cannot hold 323 * a lock across map/unmap which is also used in the job_run() 324 * path, as this can cause deadlock in job_run() vs shrinker/ 325 * reclaim. 326 * 327 * Revisit this if we can come up with a scheme to pre-alloc pages 328 * for the pgtable in map/unmap ops. 329 */ 330 ret = vm_map_op(vm, &(struct msm_vm_map_op){ 331 .iova = vma->va.addr, 332 .range = vma->va.range, 333 .offset = vma->gem.offset, 334 .sgt = sgt, 335 .prot = prot, 336 }); 337 338 if (!vm->managed) 339 mutex_unlock(&vm->mmu_lock); 340 341 if (ret) 342 msm_vma->mapped = false; 343 344 return ret; 345 } 346 347 /* Close an iova. Warn if it is still in use */ 348 void msm_gem_vma_close(struct drm_gpuva *vma) 349 { 350 struct msm_gem_vm *vm = to_msm_vm(vma->vm); 351 struct msm_gem_vma *msm_vma = to_msm_vma(vma); 352 353 GEM_WARN_ON(msm_vma->mapped); 354 355 drm_gpuvm_resv_assert_held(&vm->base); 356 357 if (vma->gem.obj) 358 msm_gem_assert_locked(vma->gem.obj); 359 360 if (vma->va.addr && vm->managed) 361 drm_mm_remove_node(&msm_vma->node); 362 363 drm_gpuva_remove(vma); 364 drm_gpuva_unlink(vma); 365 366 kfree(vma); 367 } 368 369 /* Create a new vma and allocate an iova for it */ 370 struct drm_gpuva * 371 msm_gem_vma_new(struct drm_gpuvm *gpuvm, struct drm_gem_object *obj, 372 u64 offset, u64 range_start, u64 range_end) 373 { 374 struct msm_gem_vm *vm = to_msm_vm(gpuvm); 375 struct drm_gpuvm_bo *vm_bo; 376 struct msm_gem_vma *vma; 377 int ret; 378 379 drm_gpuvm_resv_assert_held(&vm->base); 380 381 vma = kzalloc(sizeof(*vma), GFP_KERNEL); 382 if (!vma) 383 return ERR_PTR(-ENOMEM); 384 385 if (vm->managed) { 386 BUG_ON(offset != 0); 387 BUG_ON(!obj); /* NULL mappings not valid for kernel managed VM */ 388 ret = drm_mm_insert_node_in_range(&vm->mm, &vma->node, 389 obj->size, PAGE_SIZE, 0, 390 range_start, range_end, 0); 391 392 if (ret) 393 goto err_free_vma; 394 395 range_start = vma->node.start; 396 range_end = range_start + obj->size; 397 } 398 399 if (obj) 400 GEM_WARN_ON((range_end - range_start) > obj->size); 401 402 struct drm_gpuva_op_map op_map = { 403 .va.addr = range_start, 404 .va.range = range_end - range_start, 405 .gem.obj = obj, 406 .gem.offset = offset, 407 }; 408 409 drm_gpuva_init_from_op(&vma->base, &op_map); 410 vma->mapped = false; 411 412 ret = drm_gpuva_insert(&vm->base, &vma->base); 413 if (ret) 414 goto err_free_range; 415 416 if (!obj) 417 return &vma->base; 418 419 vm_bo = drm_gpuvm_bo_obtain(&vm->base, obj); 420 if (IS_ERR(vm_bo)) { 421 ret = PTR_ERR(vm_bo); 422 goto err_va_remove; 423 } 424 425 drm_gpuvm_bo_extobj_add(vm_bo); 426 drm_gpuva_link(&vma->base, vm_bo); 427 GEM_WARN_ON(drm_gpuvm_bo_put(vm_bo)); 428 429 return &vma->base; 430 431 err_va_remove: 432 drm_gpuva_remove(&vma->base); 433 err_free_range: 434 if (vm->managed) 435 drm_mm_remove_node(&vma->node); 436 err_free_vma: 437 kfree(vma); 438 return ERR_PTR(ret); 439 } 440 441 static int 442 msm_gem_vm_bo_validate(struct drm_gpuvm_bo *vm_bo, struct drm_exec *exec) 443 { 444 struct drm_gem_object *obj = vm_bo->obj; 445 struct drm_gpuva *vma; 446 int ret; 447 448 vm_dbg("validate: %p", obj); 449 450 msm_gem_assert_locked(obj); 451 452 drm_gpuvm_bo_for_each_va (vma, vm_bo) { 453 ret = msm_gem_pin_vma_locked(obj, vma); 454 if (ret) 455 return ret; 456 } 457 458 return 0; 459 } 460 461 struct op_arg { 462 unsigned flags; 463 struct msm_vm_bind_job *job; 464 }; 465 466 static void 467 vm_op_enqueue(struct op_arg *arg, struct msm_vm_op _op) 468 { 469 struct msm_vm_op *op = kmalloc(sizeof(*op), GFP_KERNEL); 470 *op = _op; 471 list_add_tail(&op->node, &arg->job->vm_ops); 472 473 if (op->obj) 474 drm_gem_object_get(op->obj); 475 } 476 477 static struct drm_gpuva * 478 vma_from_op(struct op_arg *arg, struct drm_gpuva_op_map *op) 479 { 480 return msm_gem_vma_new(arg->job->vm, op->gem.obj, op->gem.offset, 481 op->va.addr, op->va.addr + op->va.range); 482 } 483 484 static int 485 msm_gem_vm_sm_step_map(struct drm_gpuva_op *op, void *arg) 486 { 487 struct msm_vm_bind_job *job = ((struct op_arg *)arg)->job; 488 struct drm_gem_object *obj = op->map.gem.obj; 489 struct drm_gpuva *vma; 490 struct sg_table *sgt; 491 unsigned prot; 492 493 vma = vma_from_op(arg, &op->map); 494 if (WARN_ON(IS_ERR(vma))) 495 return PTR_ERR(vma); 496 497 vm_dbg("%p:%p:%p: %016llx %016llx", vma->vm, vma, vma->gem.obj, 498 vma->va.addr, vma->va.range); 499 500 vma->flags = ((struct op_arg *)arg)->flags; 501 502 if (obj) { 503 sgt = to_msm_bo(obj)->sgt; 504 prot = msm_gem_prot(obj); 505 } else { 506 sgt = NULL; 507 prot = IOMMU_READ | IOMMU_WRITE; 508 } 509 510 vm_op_enqueue(arg, (struct msm_vm_op){ 511 .op = MSM_VM_OP_MAP, 512 .map = { 513 .sgt = sgt, 514 .iova = vma->va.addr, 515 .range = vma->va.range, 516 .offset = vma->gem.offset, 517 .prot = prot, 518 .queue_id = job->queue->id, 519 }, 520 .obj = vma->gem.obj, 521 }); 522 523 to_msm_vma(vma)->mapped = true; 524 525 return 0; 526 } 527 528 static int 529 msm_gem_vm_sm_step_remap(struct drm_gpuva_op *op, void *arg) 530 { 531 struct msm_vm_bind_job *job = ((struct op_arg *)arg)->job; 532 struct drm_gpuvm *vm = job->vm; 533 struct drm_gpuva *orig_vma = op->remap.unmap->va; 534 struct drm_gpuva *prev_vma = NULL, *next_vma = NULL; 535 struct drm_gpuvm_bo *vm_bo = orig_vma->vm_bo; 536 bool mapped = to_msm_vma(orig_vma)->mapped; 537 unsigned flags; 538 539 vm_dbg("orig_vma: %p:%p:%p: %016llx %016llx", vm, orig_vma, 540 orig_vma->gem.obj, orig_vma->va.addr, orig_vma->va.range); 541 542 if (mapped) { 543 uint64_t unmap_start, unmap_range; 544 545 drm_gpuva_op_remap_to_unmap_range(&op->remap, &unmap_start, &unmap_range); 546 547 vm_op_enqueue(arg, (struct msm_vm_op){ 548 .op = MSM_VM_OP_UNMAP, 549 .unmap = { 550 .iova = unmap_start, 551 .range = unmap_range, 552 .queue_id = job->queue->id, 553 }, 554 .obj = orig_vma->gem.obj, 555 }); 556 557 /* 558 * Part of this GEM obj is still mapped, but we're going to kill the 559 * existing VMA and replace it with one or two new ones (ie. two if 560 * the unmapped range is in the middle of the existing (unmap) VMA). 561 * So just set the state to unmapped: 562 */ 563 to_msm_vma(orig_vma)->mapped = false; 564 } 565 566 /* 567 * Hold a ref to the vm_bo between the msm_gem_vma_close() and the 568 * creation of the new prev/next vma's, in case the vm_bo is tracked 569 * in the VM's evict list: 570 */ 571 if (vm_bo) 572 drm_gpuvm_bo_get(vm_bo); 573 574 /* 575 * The prev_vma and/or next_vma are replacing the unmapped vma, and 576 * therefore should preserve it's flags: 577 */ 578 flags = orig_vma->flags; 579 580 msm_gem_vma_close(orig_vma); 581 582 if (op->remap.prev) { 583 prev_vma = vma_from_op(arg, op->remap.prev); 584 if (WARN_ON(IS_ERR(prev_vma))) 585 return PTR_ERR(prev_vma); 586 587 vm_dbg("prev_vma: %p:%p: %016llx %016llx", vm, prev_vma, prev_vma->va.addr, prev_vma->va.range); 588 to_msm_vma(prev_vma)->mapped = mapped; 589 prev_vma->flags = flags; 590 } 591 592 if (op->remap.next) { 593 next_vma = vma_from_op(arg, op->remap.next); 594 if (WARN_ON(IS_ERR(next_vma))) 595 return PTR_ERR(next_vma); 596 597 vm_dbg("next_vma: %p:%p: %016llx %016llx", vm, next_vma, next_vma->va.addr, next_vma->va.range); 598 to_msm_vma(next_vma)->mapped = mapped; 599 next_vma->flags = flags; 600 } 601 602 if (!mapped) 603 drm_gpuvm_bo_evict(vm_bo, true); 604 605 /* Drop the previous ref: */ 606 drm_gpuvm_bo_put(vm_bo); 607 608 return 0; 609 } 610 611 static int 612 msm_gem_vm_sm_step_unmap(struct drm_gpuva_op *op, void *arg) 613 { 614 struct msm_vm_bind_job *job = ((struct op_arg *)arg)->job; 615 struct drm_gpuva *vma = op->unmap.va; 616 struct msm_gem_vma *msm_vma = to_msm_vma(vma); 617 618 vm_dbg("%p:%p:%p: %016llx %016llx", vma->vm, vma, vma->gem.obj, 619 vma->va.addr, vma->va.range); 620 621 if (!msm_vma->mapped) 622 goto out_close; 623 624 vm_op_enqueue(arg, (struct msm_vm_op){ 625 .op = MSM_VM_OP_UNMAP, 626 .unmap = { 627 .iova = vma->va.addr, 628 .range = vma->va.range, 629 .queue_id = job->queue->id, 630 }, 631 .obj = vma->gem.obj, 632 }); 633 634 msm_vma->mapped = false; 635 636 out_close: 637 msm_gem_vma_close(vma); 638 639 return 0; 640 } 641 642 static const struct drm_gpuvm_ops msm_gpuvm_ops = { 643 .vm_free = msm_gem_vm_free, 644 .vm_bo_validate = msm_gem_vm_bo_validate, 645 .sm_step_map = msm_gem_vm_sm_step_map, 646 .sm_step_remap = msm_gem_vm_sm_step_remap, 647 .sm_step_unmap = msm_gem_vm_sm_step_unmap, 648 }; 649 650 static struct dma_fence * 651 msm_vma_job_run(struct drm_sched_job *_job) 652 { 653 struct msm_vm_bind_job *job = to_msm_vm_bind_job(_job); 654 struct msm_gem_vm *vm = to_msm_vm(job->vm); 655 struct drm_gem_object *obj; 656 int ret = vm->unusable ? -EINVAL : 0; 657 658 vm_dbg(""); 659 660 mutex_lock(&vm->mmu_lock); 661 vm->mmu->prealloc = &job->prealloc; 662 663 while (!list_empty(&job->vm_ops)) { 664 struct msm_vm_op *op = 665 list_first_entry(&job->vm_ops, struct msm_vm_op, node); 666 667 switch (op->op) { 668 case MSM_VM_OP_MAP: 669 /* 670 * On error, stop trying to map new things.. but we 671 * still want to process the unmaps (or in particular, 672 * the drm_gem_object_put()s) 673 */ 674 if (!ret) 675 ret = vm_map_op(vm, &op->map); 676 break; 677 case MSM_VM_OP_UNMAP: 678 vm_unmap_op(vm, &op->unmap); 679 break; 680 } 681 drm_gem_object_put(op->obj); 682 list_del(&op->node); 683 kfree(op); 684 } 685 686 vm->mmu->prealloc = NULL; 687 mutex_unlock(&vm->mmu_lock); 688 689 /* 690 * We failed to perform at least _some_ of the pgtable updates, so 691 * now the VM is in an undefined state. Game over! 692 */ 693 if (ret) 694 msm_gem_vm_unusable(job->vm); 695 696 job_foreach_bo (obj, job) { 697 msm_gem_lock(obj); 698 msm_gem_unpin_locked(obj); 699 msm_gem_unlock(obj); 700 } 701 702 /* VM_BIND ops are synchronous, so no fence to wait on: */ 703 return NULL; 704 } 705 706 static void 707 msm_vma_job_free(struct drm_sched_job *_job) 708 { 709 struct msm_vm_bind_job *job = to_msm_vm_bind_job(_job); 710 struct msm_gem_vm *vm = to_msm_vm(job->vm); 711 struct drm_gem_object *obj; 712 713 vm->mmu->funcs->prealloc_cleanup(vm->mmu, &job->prealloc); 714 715 atomic_sub(job->prealloc.count, &vm->prealloc_throttle.in_flight); 716 717 drm_sched_job_cleanup(_job); 718 719 job_foreach_bo (obj, job) 720 drm_gem_object_put(obj); 721 722 msm_submitqueue_put(job->queue); 723 dma_fence_put(job->fence); 724 725 /* In error paths, we could have unexecuted ops: */ 726 while (!list_empty(&job->vm_ops)) { 727 struct msm_vm_op *op = 728 list_first_entry(&job->vm_ops, struct msm_vm_op, node); 729 list_del(&op->node); 730 kfree(op); 731 } 732 733 wake_up(&vm->prealloc_throttle.wait); 734 735 kfree(job); 736 } 737 738 static const struct drm_sched_backend_ops msm_vm_bind_ops = { 739 .run_job = msm_vma_job_run, 740 .free_job = msm_vma_job_free 741 }; 742 743 /** 744 * msm_gem_vm_create() - Create and initialize a &msm_gem_vm 745 * @drm: the drm device 746 * @mmu: the backing MMU objects handling mapping/unmapping 747 * @name: the name of the VM 748 * @va_start: the start offset of the VA space 749 * @va_size: the size of the VA space 750 * @managed: is it a kernel managed VM? 751 * 752 * In a kernel managed VM, the kernel handles address allocation, and only 753 * synchronous operations are supported. In a user managed VM, userspace 754 * handles virtual address allocation, and both async and sync operations 755 * are supported. 756 */ 757 struct drm_gpuvm * 758 msm_gem_vm_create(struct drm_device *drm, struct msm_mmu *mmu, const char *name, 759 u64 va_start, u64 va_size, bool managed) 760 { 761 /* 762 * We mostly want to use DRM_GPUVM_RESV_PROTECTED, except that 763 * makes drm_gpuvm_bo_evict() a no-op for extobjs (ie. we loose 764 * tracking that an extobj is evicted) :facepalm: 765 */ 766 enum drm_gpuvm_flags flags = 0; 767 struct msm_gem_vm *vm; 768 struct drm_gem_object *dummy_gem; 769 int ret = 0; 770 771 if (IS_ERR(mmu)) 772 return ERR_CAST(mmu); 773 774 vm = kzalloc(sizeof(*vm), GFP_KERNEL); 775 if (!vm) 776 return ERR_PTR(-ENOMEM); 777 778 dummy_gem = drm_gpuvm_resv_object_alloc(drm); 779 if (!dummy_gem) { 780 ret = -ENOMEM; 781 goto err_free_vm; 782 } 783 784 if (!managed) { 785 struct drm_sched_init_args args = { 786 .ops = &msm_vm_bind_ops, 787 .num_rqs = 1, 788 .credit_limit = 1, 789 .timeout = MAX_SCHEDULE_TIMEOUT, 790 .name = "msm-vm-bind", 791 .dev = drm->dev, 792 }; 793 794 ret = drm_sched_init(&vm->sched, &args); 795 if (ret) 796 goto err_free_dummy; 797 798 init_waitqueue_head(&vm->prealloc_throttle.wait); 799 } 800 801 drm_gpuvm_init(&vm->base, name, flags, drm, dummy_gem, 802 va_start, va_size, 0, 0, &msm_gpuvm_ops); 803 drm_gem_object_put(dummy_gem); 804 805 vm->mmu = mmu; 806 mutex_init(&vm->mmu_lock); 807 vm->managed = managed; 808 809 drm_mm_init(&vm->mm, va_start, va_size); 810 811 /* 812 * We don't really need vm log for kernel managed VMs, as the kernel 813 * is responsible for ensuring that GEM objs are mapped if they are 814 * used by a submit. Furthermore we piggyback on mmu_lock to serialize 815 * access to the log. 816 * 817 * Limit the max log_shift to 8 to prevent userspace from asking us 818 * for an unreasonable log size. 819 */ 820 if (!managed) 821 vm->log_shift = MIN(vm_log_shift, 8); 822 823 if (vm->log_shift) { 824 vm->log = kmalloc_array(1 << vm->log_shift, sizeof(vm->log[0]), 825 GFP_KERNEL | __GFP_ZERO); 826 } 827 828 return &vm->base; 829 830 err_free_dummy: 831 drm_gem_object_put(dummy_gem); 832 833 err_free_vm: 834 kfree(vm); 835 return ERR_PTR(ret); 836 } 837 838 /** 839 * msm_gem_vm_close() - Close a VM 840 * @gpuvm: The VM to close 841 * 842 * Called when the drm device file is closed, to tear down VM related resources 843 * (which will drop refcounts to GEM objects that were still mapped into the 844 * VM at the time). 845 */ 846 void 847 msm_gem_vm_close(struct drm_gpuvm *gpuvm) 848 { 849 struct msm_gem_vm *vm = to_msm_vm(gpuvm); 850 struct drm_gpuva *vma, *tmp; 851 struct drm_exec exec; 852 853 /* 854 * For kernel managed VMs, the VMAs are torn down when the handle is 855 * closed, so nothing more to do. 856 */ 857 if (vm->managed) 858 return; 859 860 if (vm->last_fence) 861 dma_fence_wait(vm->last_fence, false); 862 863 /* Kill the scheduler now, so we aren't racing with it for cleanup: */ 864 drm_sched_stop(&vm->sched, NULL); 865 drm_sched_fini(&vm->sched); 866 867 /* Tear down any remaining mappings: */ 868 drm_exec_init(&exec, 0, 2); 869 drm_exec_until_all_locked (&exec) { 870 drm_exec_lock_obj(&exec, drm_gpuvm_resv_obj(gpuvm)); 871 drm_exec_retry_on_contention(&exec); 872 873 drm_gpuvm_for_each_va_safe (vma, tmp, gpuvm) { 874 struct drm_gem_object *obj = vma->gem.obj; 875 876 /* 877 * MSM_BO_NO_SHARE objects share the same resv as the 878 * VM, in which case the obj is already locked: 879 */ 880 if (obj && (obj->resv == drm_gpuvm_resv(gpuvm))) 881 obj = NULL; 882 883 if (obj) { 884 drm_exec_lock_obj(&exec, obj); 885 drm_exec_retry_on_contention(&exec); 886 } 887 888 msm_gem_vma_unmap(vma, "close"); 889 msm_gem_vma_close(vma); 890 891 if (obj) { 892 drm_exec_unlock_obj(&exec, obj); 893 } 894 } 895 } 896 drm_exec_fini(&exec); 897 } 898 899 900 static struct msm_vm_bind_job * 901 vm_bind_job_create(struct drm_device *dev, struct drm_file *file, 902 struct msm_gpu_submitqueue *queue, uint32_t nr_ops) 903 { 904 struct msm_vm_bind_job *job; 905 uint64_t sz; 906 int ret; 907 908 sz = struct_size(job, ops, nr_ops); 909 910 if (sz > SIZE_MAX) 911 return ERR_PTR(-ENOMEM); 912 913 job = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN); 914 if (!job) 915 return ERR_PTR(-ENOMEM); 916 917 ret = drm_sched_job_init(&job->base, queue->entity, 1, queue, 918 file->client_id); 919 if (ret) { 920 kfree(job); 921 return ERR_PTR(ret); 922 } 923 924 job->vm = msm_context_vm(dev, queue->ctx); 925 job->queue = queue; 926 INIT_LIST_HEAD(&job->vm_ops); 927 928 return job; 929 } 930 931 static bool invalid_alignment(uint64_t addr) 932 { 933 /* 934 * Technically this is about GPU alignment, not CPU alignment. But 935 * I've not seen any qcom SoC where the SMMU does not support the 936 * CPU's smallest page size. 937 */ 938 return !PAGE_ALIGNED(addr); 939 } 940 941 static int 942 lookup_op(struct msm_vm_bind_job *job, const struct drm_msm_vm_bind_op *op) 943 { 944 struct drm_device *dev = job->vm->drm; 945 int i = job->nr_ops++; 946 int ret = 0; 947 948 job->ops[i].op = op->op; 949 job->ops[i].handle = op->handle; 950 job->ops[i].obj_offset = op->obj_offset; 951 job->ops[i].iova = op->iova; 952 job->ops[i].range = op->range; 953 job->ops[i].flags = op->flags; 954 955 if (op->flags & ~MSM_VM_BIND_OP_FLAGS) 956 ret = UERR(EINVAL, dev, "invalid flags: %x\n", op->flags); 957 958 if (invalid_alignment(op->iova)) 959 ret = UERR(EINVAL, dev, "invalid address: %016llx\n", op->iova); 960 961 if (invalid_alignment(op->obj_offset)) 962 ret = UERR(EINVAL, dev, "invalid bo_offset: %016llx\n", op->obj_offset); 963 964 if (invalid_alignment(op->range)) 965 ret = UERR(EINVAL, dev, "invalid range: %016llx\n", op->range); 966 967 if (!drm_gpuvm_range_valid(job->vm, op->iova, op->range)) 968 ret = UERR(EINVAL, dev, "invalid range: %016llx, %016llx\n", op->iova, op->range); 969 970 /* 971 * MAP must specify a valid handle. But the handle MBZ for 972 * UNMAP or MAP_NULL. 973 */ 974 if (op->op == MSM_VM_BIND_OP_MAP) { 975 if (!op->handle) 976 ret = UERR(EINVAL, dev, "invalid handle\n"); 977 } else if (op->handle) { 978 ret = UERR(EINVAL, dev, "handle must be zero\n"); 979 } 980 981 switch (op->op) { 982 case MSM_VM_BIND_OP_MAP: 983 case MSM_VM_BIND_OP_MAP_NULL: 984 case MSM_VM_BIND_OP_UNMAP: 985 break; 986 default: 987 ret = UERR(EINVAL, dev, "invalid op: %u\n", op->op); 988 break; 989 } 990 991 return ret; 992 } 993 994 /* 995 * ioctl parsing, parameter validation, and GEM handle lookup 996 */ 997 static int 998 vm_bind_job_lookup_ops(struct msm_vm_bind_job *job, struct drm_msm_vm_bind *args, 999 struct drm_file *file, int *nr_bos) 1000 { 1001 struct drm_device *dev = job->vm->drm; 1002 int ret = 0; 1003 int cnt = 0; 1004 1005 if (args->nr_ops == 1) { 1006 /* Single op case, the op is inlined: */ 1007 ret = lookup_op(job, &args->op); 1008 } else { 1009 for (unsigned i = 0; i < args->nr_ops; i++) { 1010 struct drm_msm_vm_bind_op op; 1011 void __user *userptr = 1012 u64_to_user_ptr(args->ops + (i * sizeof(op))); 1013 1014 /* make sure we don't have garbage flags, in case we hit 1015 * error path before flags is initialized: 1016 */ 1017 job->ops[i].flags = 0; 1018 1019 if (copy_from_user(&op, userptr, sizeof(op))) { 1020 ret = -EFAULT; 1021 break; 1022 } 1023 1024 ret = lookup_op(job, &op); 1025 if (ret) 1026 break; 1027 } 1028 } 1029 1030 if (ret) { 1031 job->nr_ops = 0; 1032 goto out; 1033 } 1034 1035 spin_lock(&file->table_lock); 1036 1037 for (unsigned i = 0; i < args->nr_ops; i++) { 1038 struct drm_gem_object *obj; 1039 1040 if (!job->ops[i].handle) { 1041 job->ops[i].obj = NULL; 1042 continue; 1043 } 1044 1045 /* 1046 * normally use drm_gem_object_lookup(), but for bulk lookup 1047 * all under single table_lock just hit object_idr directly: 1048 */ 1049 obj = idr_find(&file->object_idr, job->ops[i].handle); 1050 if (!obj) { 1051 ret = UERR(EINVAL, dev, "invalid handle %u at index %u\n", job->ops[i].handle, i); 1052 goto out_unlock; 1053 } 1054 1055 drm_gem_object_get(obj); 1056 1057 job->ops[i].obj = obj; 1058 cnt++; 1059 } 1060 1061 *nr_bos = cnt; 1062 1063 out_unlock: 1064 spin_unlock(&file->table_lock); 1065 1066 out: 1067 return ret; 1068 } 1069 1070 static void 1071 prealloc_count(struct msm_vm_bind_job *job, 1072 struct msm_vm_bind_op *first, 1073 struct msm_vm_bind_op *last) 1074 { 1075 struct msm_mmu *mmu = to_msm_vm(job->vm)->mmu; 1076 1077 if (!first) 1078 return; 1079 1080 uint64_t start_iova = first->iova; 1081 uint64_t end_iova = last->iova + last->range; 1082 1083 mmu->funcs->prealloc_count(mmu, &job->prealloc, start_iova, end_iova - start_iova); 1084 } 1085 1086 static bool 1087 ops_are_same_pte(struct msm_vm_bind_op *first, struct msm_vm_bind_op *next) 1088 { 1089 /* 1090 * Last level pte covers 2MB.. so we should merge two ops, from 1091 * the PoV of figuring out how much pgtable pages to pre-allocate 1092 * if they land in the same 2MB range: 1093 */ 1094 uint64_t pte_mask = ~(SZ_2M - 1); 1095 return ((first->iova + first->range) & pte_mask) == (next->iova & pte_mask); 1096 } 1097 1098 /* 1099 * Determine the amount of memory to prealloc for pgtables. For sparse images, 1100 * in particular, userspace plays some tricks with the order of page mappings 1101 * to get the desired swizzle pattern, resulting in a large # of tiny MAP ops. 1102 * So detect when multiple MAP operations are physically contiguous, and count 1103 * them as a single mapping. Otherwise the prealloc_count() will not realize 1104 * they can share pagetable pages and vastly overcount. 1105 */ 1106 static int 1107 vm_bind_prealloc_count(struct msm_vm_bind_job *job) 1108 { 1109 struct msm_vm_bind_op *first = NULL, *last = NULL; 1110 struct msm_gem_vm *vm = to_msm_vm(job->vm); 1111 int ret; 1112 1113 for (int i = 0; i < job->nr_ops; i++) { 1114 struct msm_vm_bind_op *op = &job->ops[i]; 1115 1116 /* We only care about MAP/MAP_NULL: */ 1117 if (op->op == MSM_VM_BIND_OP_UNMAP) 1118 continue; 1119 1120 /* 1121 * If op is contiguous with last in the current range, then 1122 * it becomes the new last in the range and we continue 1123 * looping: 1124 */ 1125 if (last && ops_are_same_pte(last, op)) { 1126 last = op; 1127 continue; 1128 } 1129 1130 /* 1131 * If op is not contiguous with the current range, flush 1132 * the current range and start anew: 1133 */ 1134 prealloc_count(job, first, last); 1135 first = last = op; 1136 } 1137 1138 /* Flush the remaining range: */ 1139 prealloc_count(job, first, last); 1140 1141 /* 1142 * Now that we know the needed amount to pre-alloc, throttle on pending 1143 * VM_BIND jobs if we already have too much pre-alloc memory in flight 1144 */ 1145 ret = wait_event_interruptible( 1146 vm->prealloc_throttle.wait, 1147 atomic_read(&vm->prealloc_throttle.in_flight) <= 1024); 1148 if (ret) 1149 return ret; 1150 1151 atomic_add(job->prealloc.count, &vm->prealloc_throttle.in_flight); 1152 1153 return 0; 1154 } 1155 1156 /* 1157 * Lock VM and GEM objects 1158 */ 1159 static int 1160 vm_bind_job_lock_objects(struct msm_vm_bind_job *job, struct drm_exec *exec) 1161 { 1162 int ret; 1163 1164 /* Lock VM and objects: */ 1165 drm_exec_until_all_locked (exec) { 1166 ret = drm_exec_lock_obj(exec, drm_gpuvm_resv_obj(job->vm)); 1167 drm_exec_retry_on_contention(exec); 1168 if (ret) 1169 return ret; 1170 1171 for (unsigned i = 0; i < job->nr_ops; i++) { 1172 const struct msm_vm_bind_op *op = &job->ops[i]; 1173 1174 switch (op->op) { 1175 case MSM_VM_BIND_OP_UNMAP: 1176 ret = drm_gpuvm_sm_unmap_exec_lock(job->vm, exec, 1177 op->iova, 1178 op->obj_offset); 1179 break; 1180 case MSM_VM_BIND_OP_MAP: 1181 case MSM_VM_BIND_OP_MAP_NULL: { 1182 struct drm_gpuvm_map_req map_req = { 1183 .map.va.addr = op->iova, 1184 .map.va.range = op->range, 1185 .map.gem.obj = op->obj, 1186 .map.gem.offset = op->obj_offset, 1187 }; 1188 1189 ret = drm_gpuvm_sm_map_exec_lock(job->vm, exec, 1, &map_req); 1190 break; 1191 } 1192 default: 1193 /* 1194 * lookup_op() should have already thrown an error for 1195 * invalid ops 1196 */ 1197 WARN_ON("unreachable"); 1198 } 1199 1200 drm_exec_retry_on_contention(exec); 1201 if (ret) 1202 return ret; 1203 } 1204 } 1205 1206 return 0; 1207 } 1208 1209 /* 1210 * Pin GEM objects, ensuring that we have backing pages. Pinning will move 1211 * the object to the pinned LRU so that the shrinker knows to first consider 1212 * other objects for evicting. 1213 */ 1214 static int 1215 vm_bind_job_pin_objects(struct msm_vm_bind_job *job) 1216 { 1217 struct drm_gem_object *obj; 1218 1219 /* 1220 * First loop, before holding the LRU lock, avoids holding the 1221 * LRU lock while calling msm_gem_pin_vma_locked (which could 1222 * trigger get_pages()) 1223 */ 1224 job_foreach_bo (obj, job) { 1225 struct page **pages; 1226 1227 pages = msm_gem_get_pages_locked(obj, MSM_MADV_WILLNEED); 1228 if (IS_ERR(pages)) 1229 return PTR_ERR(pages); 1230 } 1231 1232 struct msm_drm_private *priv = job->vm->drm->dev_private; 1233 1234 /* 1235 * A second loop while holding the LRU lock (a) avoids acquiring/dropping 1236 * the LRU lock for each individual bo, while (b) avoiding holding the 1237 * LRU lock while calling msm_gem_pin_vma_locked() (which could trigger 1238 * get_pages() which could trigger reclaim.. and if we held the LRU lock 1239 * could trigger deadlock with the shrinker). 1240 */ 1241 mutex_lock(&priv->lru.lock); 1242 job_foreach_bo (obj, job) 1243 msm_gem_pin_obj_locked(obj); 1244 mutex_unlock(&priv->lru.lock); 1245 1246 job->bos_pinned = true; 1247 1248 return 0; 1249 } 1250 1251 /* 1252 * Unpin GEM objects. Normally this is done after the bind job is run. 1253 */ 1254 static void 1255 vm_bind_job_unpin_objects(struct msm_vm_bind_job *job) 1256 { 1257 struct drm_gem_object *obj; 1258 1259 if (!job->bos_pinned) 1260 return; 1261 1262 job_foreach_bo (obj, job) 1263 msm_gem_unpin_locked(obj); 1264 1265 job->bos_pinned = false; 1266 } 1267 1268 /* 1269 * Pre-allocate pgtable memory, and translate the VM bind requests into a 1270 * sequence of pgtable updates to be applied asynchronously. 1271 */ 1272 static int 1273 vm_bind_job_prepare(struct msm_vm_bind_job *job) 1274 { 1275 struct msm_gem_vm *vm = to_msm_vm(job->vm); 1276 struct msm_mmu *mmu = vm->mmu; 1277 int ret; 1278 1279 ret = mmu->funcs->prealloc_allocate(mmu, &job->prealloc); 1280 if (ret) 1281 return ret; 1282 1283 for (unsigned i = 0; i < job->nr_ops; i++) { 1284 const struct msm_vm_bind_op *op = &job->ops[i]; 1285 struct op_arg arg = { 1286 .job = job, 1287 }; 1288 1289 switch (op->op) { 1290 case MSM_VM_BIND_OP_UNMAP: 1291 ret = drm_gpuvm_sm_unmap(job->vm, &arg, op->iova, 1292 op->range); 1293 break; 1294 case MSM_VM_BIND_OP_MAP: 1295 if (op->flags & MSM_VM_BIND_OP_DUMP) 1296 arg.flags |= MSM_VMA_DUMP; 1297 fallthrough; 1298 case MSM_VM_BIND_OP_MAP_NULL: { 1299 struct drm_gpuvm_map_req map_req = { 1300 .map.va.addr = op->iova, 1301 .map.va.range = op->range, 1302 .map.gem.obj = op->obj, 1303 .map.gem.offset = op->obj_offset, 1304 }; 1305 1306 ret = drm_gpuvm_sm_map(job->vm, &arg, &map_req); 1307 break; 1308 } 1309 default: 1310 /* 1311 * lookup_op() should have already thrown an error for 1312 * invalid ops 1313 */ 1314 BUG_ON("unreachable"); 1315 } 1316 1317 if (ret) { 1318 /* 1319 * If we've already started modifying the vm, we can't 1320 * adequetly describe to userspace the intermediate 1321 * state the vm is in. So throw up our hands! 1322 */ 1323 if (i > 0) 1324 msm_gem_vm_unusable(job->vm); 1325 return ret; 1326 } 1327 } 1328 1329 return 0; 1330 } 1331 1332 /* 1333 * Attach fences to the GEM objects being bound. This will signify to 1334 * the shrinker that they are busy even after dropping the locks (ie. 1335 * drm_exec_fini()) 1336 */ 1337 static void 1338 vm_bind_job_attach_fences(struct msm_vm_bind_job *job) 1339 { 1340 for (unsigned i = 0; i < job->nr_ops; i++) { 1341 struct drm_gem_object *obj = job->ops[i].obj; 1342 1343 if (!obj) 1344 continue; 1345 1346 dma_resv_add_fence(obj->resv, job->fence, 1347 DMA_RESV_USAGE_KERNEL); 1348 } 1349 } 1350 1351 int 1352 msm_ioctl_vm_bind(struct drm_device *dev, void *data, struct drm_file *file) 1353 { 1354 struct msm_drm_private *priv = dev->dev_private; 1355 struct drm_msm_vm_bind *args = data; 1356 struct msm_context *ctx = file->driver_priv; 1357 struct msm_vm_bind_job *job = NULL; 1358 struct msm_gpu *gpu = priv->gpu; 1359 struct msm_gpu_submitqueue *queue; 1360 struct msm_syncobj_post_dep *post_deps = NULL; 1361 struct drm_syncobj **syncobjs_to_reset = NULL; 1362 struct sync_file *sync_file = NULL; 1363 struct dma_fence *fence; 1364 int out_fence_fd = -1; 1365 int ret, nr_bos = 0; 1366 unsigned i; 1367 1368 if (!gpu) 1369 return -ENXIO; 1370 1371 /* 1372 * Maybe we could allow just UNMAP ops? OTOH userspace should just 1373 * immediately close the device file and all will be torn down. 1374 */ 1375 if (to_msm_vm(ctx->vm)->unusable) 1376 return UERR(EPIPE, dev, "context is unusable"); 1377 1378 /* 1379 * Technically, you cannot create a VM_BIND submitqueue in the first 1380 * place, if you haven't opted in to VM_BIND context. But it is 1381 * cleaner / less confusing, to check this case directly. 1382 */ 1383 if (!msm_context_is_vmbind(ctx)) 1384 return UERR(EINVAL, dev, "context does not support vmbind"); 1385 1386 if (args->flags & ~MSM_VM_BIND_FLAGS) 1387 return UERR(EINVAL, dev, "invalid flags"); 1388 1389 queue = msm_submitqueue_get(ctx, args->queue_id); 1390 if (!queue) 1391 return -ENOENT; 1392 1393 if (!(queue->flags & MSM_SUBMITQUEUE_VM_BIND)) { 1394 ret = UERR(EINVAL, dev, "Invalid queue type"); 1395 goto out_post_unlock; 1396 } 1397 1398 if (args->flags & MSM_VM_BIND_FENCE_FD_OUT) { 1399 out_fence_fd = get_unused_fd_flags(O_CLOEXEC); 1400 if (out_fence_fd < 0) { 1401 ret = out_fence_fd; 1402 goto out_post_unlock; 1403 } 1404 } 1405 1406 job = vm_bind_job_create(dev, file, queue, args->nr_ops); 1407 if (IS_ERR(job)) { 1408 ret = PTR_ERR(job); 1409 goto out_post_unlock; 1410 } 1411 1412 ret = mutex_lock_interruptible(&queue->lock); 1413 if (ret) 1414 goto out_post_unlock; 1415 1416 if (args->flags & MSM_VM_BIND_FENCE_FD_IN) { 1417 struct dma_fence *in_fence; 1418 1419 in_fence = sync_file_get_fence(args->fence_fd); 1420 1421 if (!in_fence) { 1422 ret = UERR(EINVAL, dev, "invalid in-fence"); 1423 goto out_unlock; 1424 } 1425 1426 ret = drm_sched_job_add_dependency(&job->base, in_fence); 1427 if (ret) 1428 goto out_unlock; 1429 } 1430 1431 if (args->in_syncobjs > 0) { 1432 syncobjs_to_reset = msm_syncobj_parse_deps(dev, &job->base, 1433 file, args->in_syncobjs, 1434 args->nr_in_syncobjs, 1435 args->syncobj_stride); 1436 if (IS_ERR(syncobjs_to_reset)) { 1437 ret = PTR_ERR(syncobjs_to_reset); 1438 goto out_unlock; 1439 } 1440 } 1441 1442 if (args->out_syncobjs > 0) { 1443 post_deps = msm_syncobj_parse_post_deps(dev, file, 1444 args->out_syncobjs, 1445 args->nr_out_syncobjs, 1446 args->syncobj_stride); 1447 if (IS_ERR(post_deps)) { 1448 ret = PTR_ERR(post_deps); 1449 goto out_unlock; 1450 } 1451 } 1452 1453 ret = vm_bind_job_lookup_ops(job, args, file, &nr_bos); 1454 if (ret) 1455 goto out_unlock; 1456 1457 ret = vm_bind_prealloc_count(job); 1458 if (ret) 1459 goto out_unlock; 1460 1461 struct drm_exec exec; 1462 unsigned flags = DRM_EXEC_IGNORE_DUPLICATES | DRM_EXEC_INTERRUPTIBLE_WAIT; 1463 drm_exec_init(&exec, flags, nr_bos + 1); 1464 1465 ret = vm_bind_job_lock_objects(job, &exec); 1466 if (ret) 1467 goto out; 1468 1469 ret = vm_bind_job_pin_objects(job); 1470 if (ret) 1471 goto out; 1472 1473 ret = vm_bind_job_prepare(job); 1474 if (ret) 1475 goto out; 1476 1477 drm_sched_job_arm(&job->base); 1478 1479 job->fence = dma_fence_get(&job->base.s_fence->finished); 1480 1481 if (args->flags & MSM_VM_BIND_FENCE_FD_OUT) { 1482 sync_file = sync_file_create(job->fence); 1483 if (!sync_file) { 1484 ret = -ENOMEM; 1485 } else { 1486 fd_install(out_fence_fd, sync_file->file); 1487 args->fence_fd = out_fence_fd; 1488 } 1489 } 1490 1491 if (ret) 1492 goto out; 1493 1494 vm_bind_job_attach_fences(job); 1495 1496 /* 1497 * The job can be free'd (and fence unref'd) at any point after 1498 * drm_sched_entity_push_job(), so we need to hold our own ref 1499 */ 1500 fence = dma_fence_get(job->fence); 1501 1502 drm_sched_entity_push_job(&job->base); 1503 1504 msm_syncobj_reset(syncobjs_to_reset, args->nr_in_syncobjs); 1505 msm_syncobj_process_post_deps(post_deps, args->nr_out_syncobjs, fence); 1506 1507 dma_fence_put(fence); 1508 1509 out: 1510 if (ret) 1511 vm_bind_job_unpin_objects(job); 1512 1513 drm_exec_fini(&exec); 1514 out_unlock: 1515 mutex_unlock(&queue->lock); 1516 out_post_unlock: 1517 if (ret && (out_fence_fd >= 0)) { 1518 put_unused_fd(out_fence_fd); 1519 if (sync_file) 1520 fput(sync_file->file); 1521 } 1522 1523 if (!IS_ERR_OR_NULL(job)) { 1524 if (ret) 1525 msm_vma_job_free(&job->base); 1526 } else { 1527 /* 1528 * If the submit hasn't yet taken ownership of the queue 1529 * then we need to drop the reference ourself: 1530 */ 1531 msm_submitqueue_put(queue); 1532 } 1533 1534 if (!IS_ERR_OR_NULL(post_deps)) { 1535 for (i = 0; i < args->nr_out_syncobjs; ++i) { 1536 kfree(post_deps[i].chain); 1537 drm_syncobj_put(post_deps[i].syncobj); 1538 } 1539 kfree(post_deps); 1540 } 1541 1542 if (!IS_ERR_OR_NULL(syncobjs_to_reset)) { 1543 for (i = 0; i < args->nr_in_syncobjs; ++i) { 1544 if (syncobjs_to_reset[i]) 1545 drm_syncobj_put(syncobjs_to_reset[i]); 1546 } 1547 kfree(syncobjs_to_reset); 1548 } 1549 1550 return ret; 1551 } 1552