1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2016 Red Hat 4 * Author: Rob Clark <robdclark@gmail.com> 5 */ 6 7 #include "drm/drm_file.h" 8 #include "drm/msm_drm.h" 9 #include "linux/file.h" 10 #include "linux/sync_file.h" 11 12 #include "msm_drv.h" 13 #include "msm_gem.h" 14 #include "msm_gpu.h" 15 #include "msm_mmu.h" 16 #include "msm_syncobj.h" 17 18 #define vm_dbg(fmt, ...) pr_debug("%s:%d: "fmt"\n", __func__, __LINE__, ##__VA_ARGS__) 19 20 static uint vm_log_shift = 0; 21 MODULE_PARM_DESC(vm_log_shift, "Length of VM op log"); 22 module_param_named(vm_log_shift, vm_log_shift, uint, 0600); 23 24 /** 25 * struct msm_vm_map_op - create new pgtable mapping 26 */ 27 struct msm_vm_map_op { 28 /** @iova: start address for mapping */ 29 uint64_t iova; 30 /** @range: size of the region to map */ 31 uint64_t range; 32 /** @offset: offset into @sgt to map */ 33 uint64_t offset; 34 /** @sgt: pages to map, or NULL for a PRR mapping */ 35 struct sg_table *sgt; 36 /** @prot: the mapping protection flags */ 37 int prot; 38 39 /** 40 * @queue_id: The id of the submitqueue the operation is performed 41 * on, or zero for (in particular) UNMAP ops triggered outside of 42 * a submitqueue (ie. process cleanup) 43 */ 44 int queue_id; 45 }; 46 47 /** 48 * struct msm_vm_unmap_op - unmap a range of pages from pgtable 49 */ 50 struct msm_vm_unmap_op { 51 /** @iova: start address for unmap */ 52 uint64_t iova; 53 /** @range: size of region to unmap */ 54 uint64_t range; 55 56 /** @reason: The reason for the unmap */ 57 const char *reason; 58 59 /** 60 * @queue_id: The id of the submitqueue the operation is performed 61 * on, or zero for (in particular) UNMAP ops triggered outside of 62 * a submitqueue (ie. process cleanup) 63 */ 64 int queue_id; 65 }; 66 67 /** 68 * struct msm_vma_op - A MAP or UNMAP operation 69 */ 70 struct msm_vm_op { 71 /** @op: The operation type */ 72 enum { 73 MSM_VM_OP_MAP = 1, 74 MSM_VM_OP_UNMAP, 75 } op; 76 union { 77 /** @map: Parameters used if op == MSM_VMA_OP_MAP */ 78 struct msm_vm_map_op map; 79 /** @unmap: Parameters used if op == MSM_VMA_OP_UNMAP */ 80 struct msm_vm_unmap_op unmap; 81 }; 82 /** @node: list head in msm_vm_bind_job::vm_ops */ 83 struct list_head node; 84 85 /** 86 * @obj: backing object for pages to be mapped/unmapped 87 * 88 * Async unmap ops, in particular, must hold a reference to the 89 * original GEM object backing the mapping that will be unmapped. 90 * But the same can be required in the map path, for example if 91 * there is not a corresponding unmap op, such as process exit. 92 * 93 * This ensures that the pages backing the mapping are not freed 94 * before the mapping is torn down. 95 */ 96 struct drm_gem_object *obj; 97 }; 98 99 /** 100 * struct msm_vm_bind_job - Tracking for a VM_BIND ioctl 101 * 102 * A table of userspace requested VM updates (MSM_VM_BIND_OP_UNMAP/MAP/MAP_NULL) 103 * gets applied to the vm, generating a list of VM ops (MSM_VM_OP_MAP/UNMAP) 104 * which are applied to the pgtables asynchronously. For example a userspace 105 * requested MSM_VM_BIND_OP_MAP could end up generating both an MSM_VM_OP_UNMAP 106 * to unmap an existing mapping, and a MSM_VM_OP_MAP to apply the new mapping. 107 */ 108 struct msm_vm_bind_job { 109 /** @base: base class for drm_sched jobs */ 110 struct drm_sched_job base; 111 /** @vm: The VM being operated on */ 112 struct drm_gpuvm *vm; 113 /** @fence: The fence that is signaled when job completes */ 114 struct dma_fence *fence; 115 /** @queue: The queue that the job runs on */ 116 struct msm_gpu_submitqueue *queue; 117 /** @prealloc: Tracking for pre-allocated MMU pgtable pages */ 118 struct msm_mmu_prealloc prealloc; 119 /** @vm_ops: a list of struct msm_vm_op */ 120 struct list_head vm_ops; 121 /** @bos_pinned: are the GEM objects being bound pinned? */ 122 bool bos_pinned; 123 /** @nr_ops: the number of userspace requested ops */ 124 unsigned int nr_ops; 125 /** 126 * @ops: the userspace requested ops 127 * 128 * The userspace requested ops are copied/parsed and validated 129 * before we start applying the updates to try to do as much up- 130 * front error checking as possible, to avoid the VM being in an 131 * undefined state due to partially executed VM_BIND. 132 * 133 * This table also serves to hold a reference to the backing GEM 134 * objects. 135 */ 136 struct msm_vm_bind_op { 137 uint32_t op; 138 uint32_t flags; 139 union { 140 struct drm_gem_object *obj; 141 uint32_t handle; 142 }; 143 uint64_t obj_offset; 144 uint64_t iova; 145 uint64_t range; 146 } ops[]; 147 }; 148 149 #define job_foreach_bo(obj, _job) \ 150 for (unsigned i = 0; i < (_job)->nr_ops; i++) \ 151 if ((obj = (_job)->ops[i].obj)) 152 153 static inline struct msm_vm_bind_job *to_msm_vm_bind_job(struct drm_sched_job *job) 154 { 155 return container_of(job, struct msm_vm_bind_job, base); 156 } 157 158 static void 159 msm_gem_vm_free(struct drm_gpuvm *gpuvm) 160 { 161 struct msm_gem_vm *vm = container_of(gpuvm, struct msm_gem_vm, base); 162 163 drm_mm_takedown(&vm->mm); 164 if (vm->mmu) 165 vm->mmu->funcs->destroy(vm->mmu); 166 dma_fence_put(vm->last_fence); 167 put_pid(vm->pid); 168 kfree(vm->log); 169 kfree(vm); 170 } 171 172 /** 173 * msm_gem_vm_unusable() - Mark a VM as unusable 174 * @gpuvm: the VM to mark unusable 175 */ 176 void 177 msm_gem_vm_unusable(struct drm_gpuvm *gpuvm) 178 { 179 struct msm_gem_vm *vm = to_msm_vm(gpuvm); 180 uint32_t vm_log_len = (1 << vm->log_shift); 181 uint32_t vm_log_mask = vm_log_len - 1; 182 uint32_t nr_vm_logs; 183 int first; 184 185 vm->unusable = true; 186 187 /* Bail if no log, or empty log: */ 188 if (!vm->log || !vm->log[0].op) 189 return; 190 191 mutex_lock(&vm->mmu_lock); 192 193 /* 194 * log_idx is the next entry to overwrite, meaning it is the oldest, or 195 * first, entry (other than the special case handled below where the 196 * log hasn't wrapped around yet) 197 */ 198 first = vm->log_idx; 199 200 if (!vm->log[first].op) { 201 /* 202 * If the next log entry has not been written yet, then only 203 * entries 0 to idx-1 are valid (ie. we haven't wrapped around 204 * yet) 205 */ 206 nr_vm_logs = MAX(0, first - 1); 207 first = 0; 208 } else { 209 nr_vm_logs = vm_log_len; 210 } 211 212 pr_err("vm-log:\n"); 213 for (int i = 0; i < nr_vm_logs; i++) { 214 int idx = (i + first) & vm_log_mask; 215 struct msm_gem_vm_log_entry *e = &vm->log[idx]; 216 pr_err(" - %s:%d: 0x%016llx-0x%016llx\n", 217 e->op, e->queue_id, e->iova, 218 e->iova + e->range); 219 } 220 221 mutex_unlock(&vm->mmu_lock); 222 } 223 224 static void 225 vm_log(struct msm_gem_vm *vm, const char *op, uint64_t iova, uint64_t range, int queue_id) 226 { 227 int idx; 228 229 if (!vm->managed) 230 lockdep_assert_held(&vm->mmu_lock); 231 232 vm_dbg("%s:%p:%d: %016llx %016llx", op, vm, queue_id, iova, iova + range); 233 234 if (!vm->log) 235 return; 236 237 idx = vm->log_idx; 238 vm->log[idx].op = op; 239 vm->log[idx].iova = iova; 240 vm->log[idx].range = range; 241 vm->log[idx].queue_id = queue_id; 242 vm->log_idx = (vm->log_idx + 1) & ((1 << vm->log_shift) - 1); 243 } 244 245 static void 246 vm_unmap_op(struct msm_gem_vm *vm, const struct msm_vm_unmap_op *op) 247 { 248 const char *reason = op->reason; 249 250 if (!reason) 251 reason = "unmap"; 252 253 vm_log(vm, reason, op->iova, op->range, op->queue_id); 254 255 vm->mmu->funcs->unmap(vm->mmu, op->iova, op->range); 256 } 257 258 static int 259 vm_map_op(struct msm_gem_vm *vm, const struct msm_vm_map_op *op) 260 { 261 vm_log(vm, "map", op->iova, op->range, op->queue_id); 262 263 return vm->mmu->funcs->map(vm->mmu, op->iova, op->sgt, op->offset, 264 op->range, op->prot); 265 } 266 267 /* Actually unmap memory for the vma */ 268 void msm_gem_vma_unmap(struct drm_gpuva *vma, const char *reason) 269 { 270 struct msm_gem_vm *vm = to_msm_vm(vma->vm); 271 struct msm_gem_vma *msm_vma = to_msm_vma(vma); 272 273 /* Don't do anything if the memory isn't mapped */ 274 if (!msm_vma->mapped) 275 return; 276 277 /* 278 * The mmu_lock is only needed when preallocation is used. But 279 * in that case we don't need to worry about recursion into 280 * shrinker 281 */ 282 if (!vm->managed) 283 mutex_lock(&vm->mmu_lock); 284 285 vm_unmap_op(vm, &(struct msm_vm_unmap_op){ 286 .iova = vma->va.addr, 287 .range = vma->va.range, 288 .reason = reason, 289 }); 290 291 if (!vm->managed) 292 mutex_unlock(&vm->mmu_lock); 293 294 msm_vma->mapped = false; 295 } 296 297 /* Map and pin vma: */ 298 int 299 msm_gem_vma_map(struct drm_gpuva *vma, int prot, struct sg_table *sgt) 300 { 301 struct msm_gem_vm *vm = to_msm_vm(vma->vm); 302 struct msm_gem_vma *msm_vma = to_msm_vma(vma); 303 int ret; 304 305 if (GEM_WARN_ON(!vma->va.addr)) 306 return -EINVAL; 307 308 if (msm_vma->mapped) 309 return 0; 310 311 msm_vma->mapped = true; 312 313 /* 314 * The mmu_lock is only needed when preallocation is used. But 315 * in that case we don't need to worry about recursion into 316 * shrinker 317 */ 318 if (!vm->managed) 319 mutex_lock(&vm->mmu_lock); 320 321 /* 322 * NOTE: if not using pgtable preallocation, we cannot hold 323 * a lock across map/unmap which is also used in the job_run() 324 * path, as this can cause deadlock in job_run() vs shrinker/ 325 * reclaim. 326 */ 327 ret = vm_map_op(vm, &(struct msm_vm_map_op){ 328 .iova = vma->va.addr, 329 .range = vma->va.range, 330 .offset = vma->gem.offset, 331 .sgt = sgt, 332 .prot = prot, 333 }); 334 335 if (!vm->managed) 336 mutex_unlock(&vm->mmu_lock); 337 338 if (ret) 339 msm_vma->mapped = false; 340 341 return ret; 342 } 343 344 /* Close an iova. Warn if it is still in use */ 345 void msm_gem_vma_close(struct drm_gpuva *vma) 346 { 347 struct msm_gem_vm *vm = to_msm_vm(vma->vm); 348 struct msm_gem_vma *msm_vma = to_msm_vma(vma); 349 350 GEM_WARN_ON(msm_vma->mapped); 351 352 drm_gpuvm_resv_assert_held(&vm->base); 353 354 if (vma->gem.obj) 355 msm_gem_assert_locked(vma->gem.obj); 356 357 if (vma->va.addr && vm->managed) 358 drm_mm_remove_node(&msm_vma->node); 359 360 drm_gpuva_remove(vma); 361 drm_gpuva_unlink(vma); 362 363 kfree(vma); 364 } 365 366 /* Create a new vma and allocate an iova for it */ 367 struct drm_gpuva * 368 msm_gem_vma_new(struct drm_gpuvm *gpuvm, struct drm_gem_object *obj, 369 u64 offset, u64 range_start, u64 range_end) 370 { 371 struct msm_gem_vm *vm = to_msm_vm(gpuvm); 372 struct drm_gpuvm_bo *vm_bo; 373 struct msm_gem_vma *vma; 374 int ret; 375 376 drm_gpuvm_resv_assert_held(&vm->base); 377 378 vma = kzalloc(sizeof(*vma), GFP_KERNEL); 379 if (!vma) 380 return ERR_PTR(-ENOMEM); 381 382 if (vm->managed) { 383 BUG_ON(offset != 0); 384 BUG_ON(!obj); /* NULL mappings not valid for kernel managed VM */ 385 ret = drm_mm_insert_node_in_range(&vm->mm, &vma->node, 386 obj->size, PAGE_SIZE, 0, 387 range_start, range_end, 0); 388 389 if (ret) 390 goto err_free_vma; 391 392 range_start = vma->node.start; 393 range_end = range_start + obj->size; 394 } 395 396 if (obj) 397 GEM_WARN_ON((range_end - range_start) > obj->size); 398 399 struct drm_gpuva_op_map op_map = { 400 .va.addr = range_start, 401 .va.range = range_end - range_start, 402 .gem.obj = obj, 403 .gem.offset = offset, 404 }; 405 406 drm_gpuva_init_from_op(&vma->base, &op_map); 407 vma->mapped = false; 408 409 ret = drm_gpuva_insert(&vm->base, &vma->base); 410 if (ret) 411 goto err_free_range; 412 413 if (!obj) 414 return &vma->base; 415 416 vm_bo = drm_gpuvm_bo_obtain(&vm->base, obj); 417 if (IS_ERR(vm_bo)) { 418 ret = PTR_ERR(vm_bo); 419 goto err_va_remove; 420 } 421 422 drm_gpuvm_bo_extobj_add(vm_bo); 423 drm_gpuva_link(&vma->base, vm_bo); 424 GEM_WARN_ON(drm_gpuvm_bo_put(vm_bo)); 425 426 return &vma->base; 427 428 err_va_remove: 429 drm_gpuva_remove(&vma->base); 430 err_free_range: 431 if (vm->managed) 432 drm_mm_remove_node(&vma->node); 433 err_free_vma: 434 kfree(vma); 435 return ERR_PTR(ret); 436 } 437 438 static int 439 msm_gem_vm_bo_validate(struct drm_gpuvm_bo *vm_bo, struct drm_exec *exec) 440 { 441 struct drm_gem_object *obj = vm_bo->obj; 442 struct drm_gpuva *vma; 443 int ret; 444 445 vm_dbg("validate: %p", obj); 446 447 msm_gem_assert_locked(obj); 448 449 drm_gpuvm_bo_for_each_va (vma, vm_bo) { 450 ret = msm_gem_pin_vma_locked(obj, vma); 451 if (ret) 452 return ret; 453 } 454 455 return 0; 456 } 457 458 struct op_arg { 459 unsigned flags; 460 struct msm_vm_bind_job *job; 461 const struct msm_vm_bind_op *op; 462 bool kept; 463 }; 464 465 static void 466 vm_op_enqueue(struct op_arg *arg, struct msm_vm_op _op) 467 { 468 struct msm_vm_op *op = kmalloc(sizeof(*op), GFP_KERNEL); 469 *op = _op; 470 list_add_tail(&op->node, &arg->job->vm_ops); 471 472 if (op->obj) 473 drm_gem_object_get(op->obj); 474 } 475 476 static struct drm_gpuva * 477 vma_from_op(struct op_arg *arg, struct drm_gpuva_op_map *op) 478 { 479 return msm_gem_vma_new(arg->job->vm, op->gem.obj, op->gem.offset, 480 op->va.addr, op->va.addr + op->va.range); 481 } 482 483 static int 484 msm_gem_vm_sm_step_map(struct drm_gpuva_op *op, void *_arg) 485 { 486 struct op_arg *arg = _arg; 487 struct msm_vm_bind_job *job = arg->job; 488 struct drm_gem_object *obj = op->map.gem.obj; 489 struct drm_gpuva *vma; 490 struct sg_table *sgt; 491 unsigned prot; 492 493 if (arg->kept) 494 return 0; 495 496 vma = vma_from_op(arg, &op->map); 497 if (WARN_ON(IS_ERR(vma))) 498 return PTR_ERR(vma); 499 500 vm_dbg("%p:%p:%p: %016llx %016llx", vma->vm, vma, vma->gem.obj, 501 vma->va.addr, vma->va.range); 502 503 vma->flags = ((struct op_arg *)arg)->flags; 504 505 if (obj) { 506 sgt = to_msm_bo(obj)->sgt; 507 prot = msm_gem_prot(obj); 508 } else { 509 sgt = NULL; 510 prot = IOMMU_READ | IOMMU_WRITE; 511 } 512 513 vm_op_enqueue(arg, (struct msm_vm_op){ 514 .op = MSM_VM_OP_MAP, 515 .map = { 516 .sgt = sgt, 517 .iova = vma->va.addr, 518 .range = vma->va.range, 519 .offset = vma->gem.offset, 520 .prot = prot, 521 .queue_id = job->queue->id, 522 }, 523 .obj = vma->gem.obj, 524 }); 525 526 to_msm_vma(vma)->mapped = true; 527 528 return 0; 529 } 530 531 static int 532 msm_gem_vm_sm_step_remap(struct drm_gpuva_op *op, void *arg) 533 { 534 struct msm_vm_bind_job *job = ((struct op_arg *)arg)->job; 535 struct drm_gpuvm *vm = job->vm; 536 struct drm_gpuva *orig_vma = op->remap.unmap->va; 537 struct drm_gpuva *prev_vma = NULL, *next_vma = NULL; 538 struct drm_gpuvm_bo *vm_bo = orig_vma->vm_bo; 539 bool mapped = to_msm_vma(orig_vma)->mapped; 540 unsigned flags; 541 542 vm_dbg("orig_vma: %p:%p:%p: %016llx %016llx", vm, orig_vma, 543 orig_vma->gem.obj, orig_vma->va.addr, orig_vma->va.range); 544 545 if (mapped) { 546 uint64_t unmap_start, unmap_range; 547 548 drm_gpuva_op_remap_to_unmap_range(&op->remap, &unmap_start, &unmap_range); 549 550 vm_op_enqueue(arg, (struct msm_vm_op){ 551 .op = MSM_VM_OP_UNMAP, 552 .unmap = { 553 .iova = unmap_start, 554 .range = unmap_range, 555 .queue_id = job->queue->id, 556 }, 557 .obj = orig_vma->gem.obj, 558 }); 559 560 /* 561 * Part of this GEM obj is still mapped, but we're going to kill the 562 * existing VMA and replace it with one or two new ones (ie. two if 563 * the unmapped range is in the middle of the existing (unmap) VMA). 564 * So just set the state to unmapped: 565 */ 566 to_msm_vma(orig_vma)->mapped = false; 567 } 568 569 /* 570 * Hold a ref to the vm_bo between the msm_gem_vma_close() and the 571 * creation of the new prev/next vma's, in case the vm_bo is tracked 572 * in the VM's evict list: 573 */ 574 if (vm_bo) 575 drm_gpuvm_bo_get(vm_bo); 576 577 /* 578 * The prev_vma and/or next_vma are replacing the unmapped vma, and 579 * therefore should preserve it's flags: 580 */ 581 flags = orig_vma->flags; 582 583 msm_gem_vma_close(orig_vma); 584 585 if (op->remap.prev) { 586 prev_vma = vma_from_op(arg, op->remap.prev); 587 if (WARN_ON(IS_ERR(prev_vma))) 588 return PTR_ERR(prev_vma); 589 590 vm_dbg("prev_vma: %p:%p: %016llx %016llx", vm, prev_vma, prev_vma->va.addr, prev_vma->va.range); 591 to_msm_vma(prev_vma)->mapped = mapped; 592 prev_vma->flags = flags; 593 } 594 595 if (op->remap.next) { 596 next_vma = vma_from_op(arg, op->remap.next); 597 if (WARN_ON(IS_ERR(next_vma))) 598 return PTR_ERR(next_vma); 599 600 vm_dbg("next_vma: %p:%p: %016llx %016llx", vm, next_vma, next_vma->va.addr, next_vma->va.range); 601 to_msm_vma(next_vma)->mapped = mapped; 602 next_vma->flags = flags; 603 } 604 605 if (!mapped) 606 drm_gpuvm_bo_evict(vm_bo, true); 607 608 /* Drop the previous ref: */ 609 drm_gpuvm_bo_put(vm_bo); 610 611 return 0; 612 } 613 614 static int 615 msm_gem_vm_sm_step_unmap(struct drm_gpuva_op *op, void *_arg) 616 { 617 struct op_arg *arg = _arg; 618 struct msm_vm_bind_job *job = arg->job; 619 struct drm_gpuva *vma = op->unmap.va; 620 struct msm_gem_vma *msm_vma = to_msm_vma(vma); 621 622 vm_dbg("%p:%p:%p: %016llx %016llx", vma->vm, vma, vma->gem.obj, 623 vma->va.addr, vma->va.range); 624 625 /* 626 * Detect in-place remap. Turnip does this to change the vma flags, 627 * in particular MSM_VMA_DUMP. In this case we want to avoid actually 628 * touching the page tables, as that would require synchronization 629 * against SUBMIT jobs running on the GPU. 630 */ 631 if (op->unmap.keep && 632 (arg->op->op == MSM_VM_BIND_OP_MAP) && 633 (vma->gem.obj == arg->op->obj) && 634 (vma->gem.offset == arg->op->obj_offset) && 635 (vma->va.addr == arg->op->iova) && 636 (vma->va.range == arg->op->range)) { 637 /* We are only expecting a single in-place unmap+map cb pair: */ 638 WARN_ON(arg->kept); 639 640 /* Leave the existing VMA in place, but signal that to the map cb: */ 641 arg->kept = true; 642 643 /* Only flags are changing, so update that in-place: */ 644 unsigned orig_flags = vma->flags & (DRM_GPUVA_USERBITS - 1); 645 vma->flags = orig_flags | arg->flags; 646 647 return 0; 648 } 649 650 if (!msm_vma->mapped) 651 goto out_close; 652 653 vm_op_enqueue(arg, (struct msm_vm_op){ 654 .op = MSM_VM_OP_UNMAP, 655 .unmap = { 656 .iova = vma->va.addr, 657 .range = vma->va.range, 658 .queue_id = job->queue->id, 659 }, 660 .obj = vma->gem.obj, 661 }); 662 663 msm_vma->mapped = false; 664 665 out_close: 666 msm_gem_vma_close(vma); 667 668 return 0; 669 } 670 671 static const struct drm_gpuvm_ops msm_gpuvm_ops = { 672 .vm_free = msm_gem_vm_free, 673 .vm_bo_validate = msm_gem_vm_bo_validate, 674 .sm_step_map = msm_gem_vm_sm_step_map, 675 .sm_step_remap = msm_gem_vm_sm_step_remap, 676 .sm_step_unmap = msm_gem_vm_sm_step_unmap, 677 }; 678 679 static struct dma_fence * 680 msm_vma_job_run(struct drm_sched_job *_job) 681 { 682 struct msm_vm_bind_job *job = to_msm_vm_bind_job(_job); 683 struct msm_gem_vm *vm = to_msm_vm(job->vm); 684 struct drm_gem_object *obj; 685 int ret = vm->unusable ? -EINVAL : 0; 686 687 vm_dbg(""); 688 689 mutex_lock(&vm->mmu_lock); 690 vm->mmu->prealloc = &job->prealloc; 691 692 while (!list_empty(&job->vm_ops)) { 693 struct msm_vm_op *op = 694 list_first_entry(&job->vm_ops, struct msm_vm_op, node); 695 696 switch (op->op) { 697 case MSM_VM_OP_MAP: 698 /* 699 * On error, stop trying to map new things.. but we 700 * still want to process the unmaps (or in particular, 701 * the drm_gem_object_put()s) 702 */ 703 if (!ret) 704 ret = vm_map_op(vm, &op->map); 705 break; 706 case MSM_VM_OP_UNMAP: 707 vm_unmap_op(vm, &op->unmap); 708 break; 709 } 710 drm_gem_object_put(op->obj); 711 list_del(&op->node); 712 kfree(op); 713 } 714 715 vm->mmu->prealloc = NULL; 716 mutex_unlock(&vm->mmu_lock); 717 718 /* 719 * We failed to perform at least _some_ of the pgtable updates, so 720 * now the VM is in an undefined state. Game over! 721 */ 722 if (ret) 723 msm_gem_vm_unusable(job->vm); 724 725 job_foreach_bo (obj, job) { 726 msm_gem_lock(obj); 727 msm_gem_unpin_locked(obj); 728 msm_gem_unlock(obj); 729 } 730 731 /* VM_BIND ops are synchronous, so no fence to wait on: */ 732 return NULL; 733 } 734 735 static void 736 msm_vma_job_free(struct drm_sched_job *_job) 737 { 738 struct msm_vm_bind_job *job = to_msm_vm_bind_job(_job); 739 struct msm_gem_vm *vm = to_msm_vm(job->vm); 740 struct drm_gem_object *obj; 741 742 vm->mmu->funcs->prealloc_cleanup(vm->mmu, &job->prealloc); 743 744 atomic_sub(job->prealloc.count, &vm->prealloc_throttle.in_flight); 745 746 drm_sched_job_cleanup(_job); 747 748 job_foreach_bo (obj, job) 749 drm_gem_object_put(obj); 750 751 msm_submitqueue_put(job->queue); 752 dma_fence_put(job->fence); 753 754 /* In error paths, we could have unexecuted ops: */ 755 while (!list_empty(&job->vm_ops)) { 756 struct msm_vm_op *op = 757 list_first_entry(&job->vm_ops, struct msm_vm_op, node); 758 list_del(&op->node); 759 kfree(op); 760 } 761 762 wake_up(&vm->prealloc_throttle.wait); 763 764 kfree(job); 765 } 766 767 static const struct drm_sched_backend_ops msm_vm_bind_ops = { 768 .run_job = msm_vma_job_run, 769 .free_job = msm_vma_job_free 770 }; 771 772 /** 773 * msm_gem_vm_create() - Create and initialize a &msm_gem_vm 774 * @drm: the drm device 775 * @mmu: the backing MMU objects handling mapping/unmapping 776 * @name: the name of the VM 777 * @va_start: the start offset of the VA space 778 * @va_size: the size of the VA space 779 * @managed: is it a kernel managed VM? 780 * 781 * In a kernel managed VM, the kernel handles address allocation, and only 782 * synchronous operations are supported. In a user managed VM, userspace 783 * handles virtual address allocation, and both async and sync operations 784 * are supported. 785 */ 786 struct drm_gpuvm * 787 msm_gem_vm_create(struct drm_device *drm, struct msm_mmu *mmu, const char *name, 788 u64 va_start, u64 va_size, bool managed) 789 { 790 /* 791 * We mostly want to use DRM_GPUVM_RESV_PROTECTED, except that 792 * makes drm_gpuvm_bo_evict() a no-op for extobjs (ie. we loose 793 * tracking that an extobj is evicted) :facepalm: 794 */ 795 enum drm_gpuvm_flags flags = 0; 796 struct msm_gem_vm *vm; 797 struct drm_gem_object *dummy_gem; 798 int ret = 0; 799 800 if (IS_ERR(mmu)) 801 return ERR_CAST(mmu); 802 803 vm = kzalloc(sizeof(*vm), GFP_KERNEL); 804 if (!vm) 805 return ERR_PTR(-ENOMEM); 806 807 dummy_gem = drm_gpuvm_resv_object_alloc(drm); 808 if (!dummy_gem) { 809 ret = -ENOMEM; 810 goto err_free_vm; 811 } 812 813 if (!managed) { 814 struct drm_sched_init_args args = { 815 .ops = &msm_vm_bind_ops, 816 .num_rqs = 1, 817 .credit_limit = 1, 818 .timeout = MAX_SCHEDULE_TIMEOUT, 819 .name = "msm-vm-bind", 820 .dev = drm->dev, 821 }; 822 823 ret = drm_sched_init(&vm->sched, &args); 824 if (ret) 825 goto err_free_dummy; 826 827 init_waitqueue_head(&vm->prealloc_throttle.wait); 828 } 829 830 drm_gpuvm_init(&vm->base, name, flags, drm, dummy_gem, 831 va_start, va_size, 0, 0, &msm_gpuvm_ops); 832 drm_gem_object_put(dummy_gem); 833 834 vm->mmu = mmu; 835 mutex_init(&vm->mmu_lock); 836 vm->managed = managed; 837 838 drm_mm_init(&vm->mm, va_start, va_size); 839 840 /* 841 * We don't really need vm log for kernel managed VMs, as the kernel 842 * is responsible for ensuring that GEM objs are mapped if they are 843 * used by a submit. Furthermore we piggyback on mmu_lock to serialize 844 * access to the log. 845 * 846 * Limit the max log_shift to 8 to prevent userspace from asking us 847 * for an unreasonable log size. 848 */ 849 if (!managed) 850 vm->log_shift = MIN(vm_log_shift, 8); 851 852 if (vm->log_shift) { 853 vm->log = kmalloc_array(1 << vm->log_shift, sizeof(vm->log[0]), 854 GFP_KERNEL | __GFP_ZERO); 855 } 856 857 return &vm->base; 858 859 err_free_dummy: 860 drm_gem_object_put(dummy_gem); 861 862 err_free_vm: 863 kfree(vm); 864 return ERR_PTR(ret); 865 } 866 867 /** 868 * msm_gem_vm_close() - Close a VM 869 * @gpuvm: The VM to close 870 * 871 * Called when the drm device file is closed, to tear down VM related resources 872 * (which will drop refcounts to GEM objects that were still mapped into the 873 * VM at the time). 874 */ 875 void 876 msm_gem_vm_close(struct drm_gpuvm *gpuvm) 877 { 878 struct msm_gem_vm *vm = to_msm_vm(gpuvm); 879 struct drm_gpuva *vma, *tmp; 880 struct drm_exec exec; 881 882 /* 883 * For kernel managed VMs, the VMAs are torn down when the handle is 884 * closed, so nothing more to do. 885 */ 886 if (vm->managed) 887 return; 888 889 if (vm->last_fence) 890 dma_fence_wait(vm->last_fence, false); 891 892 /* Kill the scheduler now, so we aren't racing with it for cleanup: */ 893 drm_sched_stop(&vm->sched, NULL); 894 drm_sched_fini(&vm->sched); 895 896 /* Tear down any remaining mappings: */ 897 drm_exec_init(&exec, 0, 2); 898 drm_exec_until_all_locked (&exec) { 899 drm_exec_lock_obj(&exec, drm_gpuvm_resv_obj(gpuvm)); 900 drm_exec_retry_on_contention(&exec); 901 902 drm_gpuvm_for_each_va_safe (vma, tmp, gpuvm) { 903 struct drm_gem_object *obj = vma->gem.obj; 904 905 /* 906 * MSM_BO_NO_SHARE objects share the same resv as the 907 * VM, in which case the obj is already locked: 908 */ 909 if (obj && (obj->resv == drm_gpuvm_resv(gpuvm))) 910 obj = NULL; 911 912 if (obj) { 913 drm_exec_lock_obj(&exec, obj); 914 drm_exec_retry_on_contention(&exec); 915 } 916 917 msm_gem_vma_unmap(vma, "close"); 918 msm_gem_vma_close(vma); 919 920 if (obj) { 921 drm_exec_unlock_obj(&exec, obj); 922 } 923 } 924 } 925 drm_exec_fini(&exec); 926 } 927 928 929 static struct msm_vm_bind_job * 930 vm_bind_job_create(struct drm_device *dev, struct drm_file *file, 931 struct msm_gpu_submitqueue *queue, uint32_t nr_ops) 932 { 933 struct msm_vm_bind_job *job; 934 uint64_t sz; 935 int ret; 936 937 sz = struct_size(job, ops, nr_ops); 938 939 if (sz > SIZE_MAX) 940 return ERR_PTR(-ENOMEM); 941 942 job = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN); 943 if (!job) 944 return ERR_PTR(-ENOMEM); 945 946 ret = drm_sched_job_init(&job->base, queue->entity, 1, queue, 947 file->client_id); 948 if (ret) { 949 kfree(job); 950 return ERR_PTR(ret); 951 } 952 953 job->vm = msm_context_vm(dev, queue->ctx); 954 job->queue = queue; 955 INIT_LIST_HEAD(&job->vm_ops); 956 957 return job; 958 } 959 960 static bool invalid_alignment(uint64_t addr) 961 { 962 /* 963 * Technically this is about GPU alignment, not CPU alignment. But 964 * I've not seen any qcom SoC where the SMMU does not support the 965 * CPU's smallest page size. 966 */ 967 return !PAGE_ALIGNED(addr); 968 } 969 970 static int 971 lookup_op(struct msm_vm_bind_job *job, const struct drm_msm_vm_bind_op *op) 972 { 973 struct drm_device *dev = job->vm->drm; 974 int i = job->nr_ops++; 975 int ret = 0; 976 977 job->ops[i].op = op->op; 978 job->ops[i].handle = op->handle; 979 job->ops[i].obj_offset = op->obj_offset; 980 job->ops[i].iova = op->iova; 981 job->ops[i].range = op->range; 982 job->ops[i].flags = op->flags; 983 984 if (op->flags & ~MSM_VM_BIND_OP_FLAGS) 985 ret = UERR(EINVAL, dev, "invalid flags: %x\n", op->flags); 986 987 if (invalid_alignment(op->iova)) 988 ret = UERR(EINVAL, dev, "invalid address: %016llx\n", op->iova); 989 990 if (invalid_alignment(op->obj_offset)) 991 ret = UERR(EINVAL, dev, "invalid bo_offset: %016llx\n", op->obj_offset); 992 993 if (invalid_alignment(op->range)) 994 ret = UERR(EINVAL, dev, "invalid range: %016llx\n", op->range); 995 996 if (!drm_gpuvm_range_valid(job->vm, op->iova, op->range)) 997 ret = UERR(EINVAL, dev, "invalid range: %016llx, %016llx\n", op->iova, op->range); 998 999 /* 1000 * MAP must specify a valid handle. But the handle MBZ for 1001 * UNMAP or MAP_NULL. 1002 */ 1003 if (op->op == MSM_VM_BIND_OP_MAP) { 1004 if (!op->handle) 1005 ret = UERR(EINVAL, dev, "invalid handle\n"); 1006 } else if (op->handle) { 1007 ret = UERR(EINVAL, dev, "handle must be zero\n"); 1008 } 1009 1010 switch (op->op) { 1011 case MSM_VM_BIND_OP_MAP: 1012 case MSM_VM_BIND_OP_MAP_NULL: 1013 case MSM_VM_BIND_OP_UNMAP: 1014 break; 1015 default: 1016 ret = UERR(EINVAL, dev, "invalid op: %u\n", op->op); 1017 break; 1018 } 1019 1020 return ret; 1021 } 1022 1023 /* 1024 * ioctl parsing, parameter validation, and GEM handle lookup 1025 */ 1026 static int 1027 vm_bind_job_lookup_ops(struct msm_vm_bind_job *job, struct drm_msm_vm_bind *args, 1028 struct drm_file *file, int *nr_bos) 1029 { 1030 struct drm_device *dev = job->vm->drm; 1031 int ret = 0; 1032 int cnt = 0; 1033 int i = -1; 1034 1035 if (args->nr_ops == 1) { 1036 /* Single op case, the op is inlined: */ 1037 ret = lookup_op(job, &args->op); 1038 } else { 1039 for (unsigned i = 0; i < args->nr_ops; i++) { 1040 struct drm_msm_vm_bind_op op; 1041 void __user *userptr = 1042 u64_to_user_ptr(args->ops + (i * sizeof(op))); 1043 1044 /* make sure we don't have garbage flags, in case we hit 1045 * error path before flags is initialized: 1046 */ 1047 job->ops[i].flags = 0; 1048 1049 if (copy_from_user(&op, userptr, sizeof(op))) { 1050 ret = -EFAULT; 1051 break; 1052 } 1053 1054 ret = lookup_op(job, &op); 1055 if (ret) 1056 break; 1057 } 1058 } 1059 1060 if (ret) { 1061 job->nr_ops = 0; 1062 goto out; 1063 } 1064 1065 spin_lock(&file->table_lock); 1066 1067 for (i = 0; i < args->nr_ops; i++) { 1068 struct msm_vm_bind_op *op = &job->ops[i]; 1069 struct drm_gem_object *obj; 1070 1071 if (!op->handle) { 1072 op->obj = NULL; 1073 continue; 1074 } 1075 1076 /* 1077 * normally use drm_gem_object_lookup(), but for bulk lookup 1078 * all under single table_lock just hit object_idr directly: 1079 */ 1080 obj = idr_find(&file->object_idr, op->handle); 1081 if (!obj) { 1082 ret = UERR(EINVAL, dev, "invalid handle %u at index %u\n", op->handle, i); 1083 goto out_unlock; 1084 } 1085 1086 drm_gem_object_get(obj); 1087 1088 op->obj = obj; 1089 cnt++; 1090 1091 if ((op->range + op->obj_offset) > obj->size) { 1092 ret = UERR(EINVAL, dev, "invalid range: %016llx + %016llx > %016zx\n", 1093 op->range, op->obj_offset, obj->size); 1094 goto out_unlock; 1095 } 1096 } 1097 1098 *nr_bos = cnt; 1099 1100 out_unlock: 1101 spin_unlock(&file->table_lock); 1102 1103 if (ret) { 1104 for (; i >= 0; i--) { 1105 struct msm_vm_bind_op *op = &job->ops[i]; 1106 1107 if (!op->obj) 1108 continue; 1109 1110 drm_gem_object_put(op->obj); 1111 op->obj = NULL; 1112 } 1113 } 1114 out: 1115 return ret; 1116 } 1117 1118 static void 1119 prealloc_count(struct msm_vm_bind_job *job, 1120 struct msm_vm_bind_op *first, 1121 struct msm_vm_bind_op *last) 1122 { 1123 struct msm_mmu *mmu = to_msm_vm(job->vm)->mmu; 1124 1125 if (!first) 1126 return; 1127 1128 uint64_t start_iova = first->iova; 1129 uint64_t end_iova = last->iova + last->range; 1130 1131 mmu->funcs->prealloc_count(mmu, &job->prealloc, start_iova, end_iova - start_iova); 1132 } 1133 1134 static bool 1135 ops_are_same_pte(struct msm_vm_bind_op *first, struct msm_vm_bind_op *next) 1136 { 1137 /* 1138 * Last level pte covers 2MB.. so we should merge two ops, from 1139 * the PoV of figuring out how much pgtable pages to pre-allocate 1140 * if they land in the same 2MB range: 1141 */ 1142 uint64_t pte_mask = ~(SZ_2M - 1); 1143 return ((first->iova + first->range) & pte_mask) == (next->iova & pte_mask); 1144 } 1145 1146 /* 1147 * Determine the amount of memory to prealloc for pgtables. For sparse images, 1148 * in particular, userspace plays some tricks with the order of page mappings 1149 * to get the desired swizzle pattern, resulting in a large # of tiny MAP ops. 1150 * So detect when multiple MAP operations are physically contiguous, and count 1151 * them as a single mapping. Otherwise the prealloc_count() will not realize 1152 * they can share pagetable pages and vastly overcount. 1153 */ 1154 static int 1155 vm_bind_prealloc_count(struct msm_vm_bind_job *job) 1156 { 1157 struct msm_vm_bind_op *first = NULL, *last = NULL; 1158 struct msm_gem_vm *vm = to_msm_vm(job->vm); 1159 int ret; 1160 1161 for (int i = 0; i < job->nr_ops; i++) { 1162 struct msm_vm_bind_op *op = &job->ops[i]; 1163 1164 /* We only care about MAP/MAP_NULL: */ 1165 if (op->op == MSM_VM_BIND_OP_UNMAP) 1166 continue; 1167 1168 /* 1169 * If op is contiguous with last in the current range, then 1170 * it becomes the new last in the range and we continue 1171 * looping: 1172 */ 1173 if (last && ops_are_same_pte(last, op)) { 1174 last = op; 1175 continue; 1176 } 1177 1178 /* 1179 * If op is not contiguous with the current range, flush 1180 * the current range and start anew: 1181 */ 1182 prealloc_count(job, first, last); 1183 first = last = op; 1184 } 1185 1186 /* Flush the remaining range: */ 1187 prealloc_count(job, first, last); 1188 1189 /* 1190 * Now that we know the needed amount to pre-alloc, throttle on pending 1191 * VM_BIND jobs if we already have too much pre-alloc memory in flight 1192 */ 1193 ret = wait_event_interruptible( 1194 vm->prealloc_throttle.wait, 1195 atomic_read(&vm->prealloc_throttle.in_flight) <= 1024); 1196 if (ret) 1197 return ret; 1198 1199 atomic_add(job->prealloc.count, &vm->prealloc_throttle.in_flight); 1200 1201 return 0; 1202 } 1203 1204 /* 1205 * Lock VM and GEM objects 1206 */ 1207 static int 1208 vm_bind_job_lock_objects(struct msm_vm_bind_job *job, struct drm_exec *exec) 1209 { 1210 int ret; 1211 1212 /* Lock VM and objects: */ 1213 drm_exec_until_all_locked (exec) { 1214 ret = drm_exec_lock_obj(exec, drm_gpuvm_resv_obj(job->vm)); 1215 drm_exec_retry_on_contention(exec); 1216 if (ret) 1217 return ret; 1218 1219 for (unsigned i = 0; i < job->nr_ops; i++) { 1220 const struct msm_vm_bind_op *op = &job->ops[i]; 1221 1222 switch (op->op) { 1223 case MSM_VM_BIND_OP_UNMAP: 1224 ret = drm_gpuvm_sm_unmap_exec_lock(job->vm, exec, 1225 op->iova, 1226 op->obj_offset); 1227 break; 1228 case MSM_VM_BIND_OP_MAP: 1229 case MSM_VM_BIND_OP_MAP_NULL: { 1230 struct drm_gpuvm_map_req map_req = { 1231 .map.va.addr = op->iova, 1232 .map.va.range = op->range, 1233 .map.gem.obj = op->obj, 1234 .map.gem.offset = op->obj_offset, 1235 }; 1236 1237 ret = drm_gpuvm_sm_map_exec_lock(job->vm, exec, 1, &map_req); 1238 break; 1239 } 1240 default: 1241 /* 1242 * lookup_op() should have already thrown an error for 1243 * invalid ops 1244 */ 1245 WARN_ON("unreachable"); 1246 } 1247 1248 drm_exec_retry_on_contention(exec); 1249 if (ret) 1250 return ret; 1251 } 1252 } 1253 1254 return 0; 1255 } 1256 1257 /* 1258 * Pin GEM objects, ensuring that we have backing pages. Pinning will move 1259 * the object to the pinned LRU so that the shrinker knows to first consider 1260 * other objects for evicting. 1261 */ 1262 static int 1263 vm_bind_job_pin_objects(struct msm_vm_bind_job *job) 1264 { 1265 struct drm_gem_object *obj; 1266 1267 /* 1268 * First loop, before holding the LRU lock, avoids holding the 1269 * LRU lock while calling msm_gem_pin_vma_locked (which could 1270 * trigger get_pages()) 1271 */ 1272 job_foreach_bo (obj, job) { 1273 struct page **pages; 1274 1275 pages = msm_gem_get_pages_locked(obj, MSM_MADV_WILLNEED); 1276 if (IS_ERR(pages)) 1277 return PTR_ERR(pages); 1278 } 1279 1280 struct msm_drm_private *priv = job->vm->drm->dev_private; 1281 1282 /* 1283 * A second loop while holding the LRU lock (a) avoids acquiring/dropping 1284 * the LRU lock for each individual bo, while (b) avoiding holding the 1285 * LRU lock while calling msm_gem_pin_vma_locked() (which could trigger 1286 * get_pages() which could trigger reclaim.. and if we held the LRU lock 1287 * could trigger deadlock with the shrinker). 1288 */ 1289 mutex_lock(&priv->lru.lock); 1290 job_foreach_bo (obj, job) 1291 msm_gem_pin_obj_locked(obj); 1292 mutex_unlock(&priv->lru.lock); 1293 1294 job->bos_pinned = true; 1295 1296 return 0; 1297 } 1298 1299 /* 1300 * Unpin GEM objects. Normally this is done after the bind job is run. 1301 */ 1302 static void 1303 vm_bind_job_unpin_objects(struct msm_vm_bind_job *job) 1304 { 1305 struct drm_gem_object *obj; 1306 1307 if (!job->bos_pinned) 1308 return; 1309 1310 job_foreach_bo (obj, job) 1311 msm_gem_unpin_locked(obj); 1312 1313 job->bos_pinned = false; 1314 } 1315 1316 /* 1317 * Pre-allocate pgtable memory, and translate the VM bind requests into a 1318 * sequence of pgtable updates to be applied asynchronously. 1319 */ 1320 static int 1321 vm_bind_job_prepare(struct msm_vm_bind_job *job) 1322 { 1323 struct msm_gem_vm *vm = to_msm_vm(job->vm); 1324 struct msm_mmu *mmu = vm->mmu; 1325 int ret; 1326 1327 ret = mmu->funcs->prealloc_allocate(mmu, &job->prealloc); 1328 if (ret) 1329 return ret; 1330 1331 for (unsigned i = 0; i < job->nr_ops; i++) { 1332 const struct msm_vm_bind_op *op = &job->ops[i]; 1333 struct op_arg arg = { 1334 .job = job, 1335 .op = op, 1336 }; 1337 1338 switch (op->op) { 1339 case MSM_VM_BIND_OP_UNMAP: 1340 ret = drm_gpuvm_sm_unmap(job->vm, &arg, op->iova, 1341 op->range); 1342 break; 1343 case MSM_VM_BIND_OP_MAP: 1344 if (op->flags & MSM_VM_BIND_OP_DUMP) 1345 arg.flags |= MSM_VMA_DUMP; 1346 fallthrough; 1347 case MSM_VM_BIND_OP_MAP_NULL: { 1348 struct drm_gpuvm_map_req map_req = { 1349 .map.va.addr = op->iova, 1350 .map.va.range = op->range, 1351 .map.gem.obj = op->obj, 1352 .map.gem.offset = op->obj_offset, 1353 }; 1354 1355 ret = drm_gpuvm_sm_map(job->vm, &arg, &map_req); 1356 break; 1357 } 1358 default: 1359 /* 1360 * lookup_op() should have already thrown an error for 1361 * invalid ops 1362 */ 1363 BUG_ON("unreachable"); 1364 } 1365 1366 if (ret) { 1367 /* 1368 * If we've already started modifying the vm, we can't 1369 * adequetly describe to userspace the intermediate 1370 * state the vm is in. So throw up our hands! 1371 */ 1372 if (i > 0) 1373 msm_gem_vm_unusable(job->vm); 1374 return ret; 1375 } 1376 } 1377 1378 return 0; 1379 } 1380 1381 /* 1382 * Attach fences to the GEM objects being bound. This will signify to 1383 * the shrinker that they are busy even after dropping the locks (ie. 1384 * drm_exec_fini()) 1385 */ 1386 static void 1387 vm_bind_job_attach_fences(struct msm_vm_bind_job *job) 1388 { 1389 for (unsigned i = 0; i < job->nr_ops; i++) { 1390 struct drm_gem_object *obj = job->ops[i].obj; 1391 1392 if (!obj) 1393 continue; 1394 1395 dma_resv_add_fence(obj->resv, job->fence, 1396 DMA_RESV_USAGE_KERNEL); 1397 } 1398 } 1399 1400 int 1401 msm_ioctl_vm_bind(struct drm_device *dev, void *data, struct drm_file *file) 1402 { 1403 struct msm_drm_private *priv = dev->dev_private; 1404 struct drm_msm_vm_bind *args = data; 1405 struct msm_context *ctx = file->driver_priv; 1406 struct msm_vm_bind_job *job = NULL; 1407 struct msm_gpu *gpu = priv->gpu; 1408 struct msm_gpu_submitqueue *queue; 1409 struct msm_syncobj_post_dep *post_deps = NULL; 1410 struct drm_syncobj **syncobjs_to_reset = NULL; 1411 struct sync_file *sync_file = NULL; 1412 struct dma_fence *fence; 1413 int out_fence_fd = -1; 1414 int ret, nr_bos = 0; 1415 unsigned i; 1416 1417 if (!gpu) 1418 return -ENXIO; 1419 1420 /* 1421 * Maybe we could allow just UNMAP ops? OTOH userspace should just 1422 * immediately close the device file and all will be torn down. 1423 */ 1424 if (to_msm_vm(ctx->vm)->unusable) 1425 return UERR(EPIPE, dev, "context is unusable"); 1426 1427 /* 1428 * Technically, you cannot create a VM_BIND submitqueue in the first 1429 * place, if you haven't opted in to VM_BIND context. But it is 1430 * cleaner / less confusing, to check this case directly. 1431 */ 1432 if (!msm_context_is_vmbind(ctx)) 1433 return UERR(EINVAL, dev, "context does not support vmbind"); 1434 1435 if (args->flags & ~MSM_VM_BIND_FLAGS) 1436 return UERR(EINVAL, dev, "invalid flags"); 1437 1438 queue = msm_submitqueue_get(ctx, args->queue_id); 1439 if (!queue) 1440 return -ENOENT; 1441 1442 if (!(queue->flags & MSM_SUBMITQUEUE_VM_BIND)) { 1443 ret = UERR(EINVAL, dev, "Invalid queue type"); 1444 goto out_post_unlock; 1445 } 1446 1447 if (args->flags & MSM_VM_BIND_FENCE_FD_OUT) { 1448 out_fence_fd = get_unused_fd_flags(O_CLOEXEC); 1449 if (out_fence_fd < 0) { 1450 ret = out_fence_fd; 1451 goto out_post_unlock; 1452 } 1453 } 1454 1455 job = vm_bind_job_create(dev, file, queue, args->nr_ops); 1456 if (IS_ERR(job)) { 1457 ret = PTR_ERR(job); 1458 goto out_post_unlock; 1459 } 1460 1461 ret = mutex_lock_interruptible(&queue->lock); 1462 if (ret) 1463 goto out_post_unlock; 1464 1465 if (args->flags & MSM_VM_BIND_FENCE_FD_IN) { 1466 struct dma_fence *in_fence; 1467 1468 in_fence = sync_file_get_fence(args->fence_fd); 1469 1470 if (!in_fence) { 1471 ret = UERR(EINVAL, dev, "invalid in-fence"); 1472 goto out_unlock; 1473 } 1474 1475 ret = drm_sched_job_add_dependency(&job->base, in_fence); 1476 if (ret) 1477 goto out_unlock; 1478 } 1479 1480 if (args->in_syncobjs > 0) { 1481 syncobjs_to_reset = msm_syncobj_parse_deps(dev, &job->base, 1482 file, args->in_syncobjs, 1483 args->nr_in_syncobjs, 1484 args->syncobj_stride); 1485 if (IS_ERR(syncobjs_to_reset)) { 1486 ret = PTR_ERR(syncobjs_to_reset); 1487 goto out_unlock; 1488 } 1489 } 1490 1491 if (args->out_syncobjs > 0) { 1492 post_deps = msm_syncobj_parse_post_deps(dev, file, 1493 args->out_syncobjs, 1494 args->nr_out_syncobjs, 1495 args->syncobj_stride); 1496 if (IS_ERR(post_deps)) { 1497 ret = PTR_ERR(post_deps); 1498 goto out_unlock; 1499 } 1500 } 1501 1502 ret = vm_bind_job_lookup_ops(job, args, file, &nr_bos); 1503 if (ret) 1504 goto out_unlock; 1505 1506 ret = vm_bind_prealloc_count(job); 1507 if (ret) 1508 goto out_unlock; 1509 1510 struct drm_exec exec; 1511 unsigned flags = DRM_EXEC_IGNORE_DUPLICATES | DRM_EXEC_INTERRUPTIBLE_WAIT; 1512 drm_exec_init(&exec, flags, nr_bos + 1); 1513 1514 ret = vm_bind_job_lock_objects(job, &exec); 1515 if (ret) 1516 goto out; 1517 1518 ret = vm_bind_job_pin_objects(job); 1519 if (ret) 1520 goto out; 1521 1522 ret = vm_bind_job_prepare(job); 1523 if (ret) 1524 goto out; 1525 1526 drm_sched_job_arm(&job->base); 1527 1528 job->fence = dma_fence_get(&job->base.s_fence->finished); 1529 1530 if (args->flags & MSM_VM_BIND_FENCE_FD_OUT) { 1531 sync_file = sync_file_create(job->fence); 1532 if (!sync_file) 1533 ret = -ENOMEM; 1534 } 1535 1536 if (ret) 1537 goto out; 1538 1539 vm_bind_job_attach_fences(job); 1540 1541 /* 1542 * The job can be free'd (and fence unref'd) at any point after 1543 * drm_sched_entity_push_job(), so we need to hold our own ref 1544 */ 1545 fence = dma_fence_get(job->fence); 1546 1547 drm_sched_entity_push_job(&job->base); 1548 1549 msm_syncobj_reset(syncobjs_to_reset, args->nr_in_syncobjs); 1550 msm_syncobj_process_post_deps(post_deps, args->nr_out_syncobjs, fence); 1551 1552 dma_fence_put(fence); 1553 1554 out: 1555 if (ret) 1556 vm_bind_job_unpin_objects(job); 1557 1558 drm_exec_fini(&exec); 1559 out_unlock: 1560 mutex_unlock(&queue->lock); 1561 out_post_unlock: 1562 if (ret) { 1563 if (out_fence_fd >= 0) 1564 put_unused_fd(out_fence_fd); 1565 if (sync_file) 1566 fput(sync_file->file); 1567 } else if (sync_file) { 1568 fd_install(out_fence_fd, sync_file->file); 1569 args->fence_fd = out_fence_fd; 1570 } 1571 1572 if (!IS_ERR_OR_NULL(job)) { 1573 if (ret) 1574 msm_vma_job_free(&job->base); 1575 } else { 1576 /* 1577 * If the submit hasn't yet taken ownership of the queue 1578 * then we need to drop the reference ourself: 1579 */ 1580 msm_submitqueue_put(queue); 1581 } 1582 1583 if (!IS_ERR_OR_NULL(post_deps)) { 1584 for (i = 0; i < args->nr_out_syncobjs; ++i) { 1585 kfree(post_deps[i].chain); 1586 drm_syncobj_put(post_deps[i].syncobj); 1587 } 1588 kfree(post_deps); 1589 } 1590 1591 if (!IS_ERR_OR_NULL(syncobjs_to_reset)) { 1592 for (i = 0; i < args->nr_in_syncobjs; ++i) { 1593 if (syncobjs_to_reset[i]) 1594 drm_syncobj_put(syncobjs_to_reset[i]); 1595 } 1596 kfree(syncobjs_to_reset); 1597 } 1598 1599 return ret; 1600 } 1601