1 /* 2 * Copyright (c) 2016-2018, The Linux Foundation. All rights reserved. 3 * Copyright (C) 2013 Red Hat 4 * Author: Rob Clark <robdclark@gmail.com> 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published by 8 * the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program. If not, see <http://www.gnu.org/licenses/>. 17 */ 18 19 #include <linux/kthread.h> 20 #include <uapi/linux/sched/types.h> 21 #include <drm/drm_of.h> 22 23 #include "msm_drv.h" 24 #include "msm_debugfs.h" 25 #include "msm_fence.h" 26 #include "msm_gpu.h" 27 #include "msm_kms.h" 28 29 30 /* 31 * MSM driver version: 32 * - 1.0.0 - initial interface 33 * - 1.1.0 - adds madvise, and support for submits with > 4 cmd buffers 34 * - 1.2.0 - adds explicit fence support for submit ioctl 35 * - 1.3.0 - adds GMEM_BASE + NR_RINGS params, SUBMITQUEUE_NEW + 36 * SUBMITQUEUE_CLOSE ioctls, and MSM_INFO_IOVA flag for 37 * MSM_GEM_INFO ioctl. 38 */ 39 #define MSM_VERSION_MAJOR 1 40 #define MSM_VERSION_MINOR 3 41 #define MSM_VERSION_PATCHLEVEL 0 42 43 static const struct drm_mode_config_funcs mode_config_funcs = { 44 .fb_create = msm_framebuffer_create, 45 .output_poll_changed = drm_fb_helper_output_poll_changed, 46 .atomic_check = drm_atomic_helper_check, 47 .atomic_commit = drm_atomic_helper_commit, 48 }; 49 50 static const struct drm_mode_config_helper_funcs mode_config_helper_funcs = { 51 .atomic_commit_tail = msm_atomic_commit_tail, 52 }; 53 54 #ifdef CONFIG_DRM_MSM_REGISTER_LOGGING 55 static bool reglog = false; 56 MODULE_PARM_DESC(reglog, "Enable register read/write logging"); 57 module_param(reglog, bool, 0600); 58 #else 59 #define reglog 0 60 #endif 61 62 #ifdef CONFIG_DRM_FBDEV_EMULATION 63 static bool fbdev = true; 64 MODULE_PARM_DESC(fbdev, "Enable fbdev compat layer"); 65 module_param(fbdev, bool, 0600); 66 #endif 67 68 static char *vram = "16m"; 69 MODULE_PARM_DESC(vram, "Configure VRAM size (for devices without IOMMU/GPUMMU)"); 70 module_param(vram, charp, 0); 71 72 bool dumpstate = false; 73 MODULE_PARM_DESC(dumpstate, "Dump KMS state on errors"); 74 module_param(dumpstate, bool, 0600); 75 76 static bool modeset = true; 77 MODULE_PARM_DESC(modeset, "Use kernel modesetting [KMS] (1=on (default), 0=disable)"); 78 module_param(modeset, bool, 0600); 79 80 /* 81 * Util/helpers: 82 */ 83 84 int msm_clk_bulk_get(struct device *dev, struct clk_bulk_data **bulk) 85 { 86 struct property *prop; 87 const char *name; 88 struct clk_bulk_data *local; 89 int i = 0, ret, count; 90 91 count = of_property_count_strings(dev->of_node, "clock-names"); 92 if (count < 1) 93 return 0; 94 95 local = devm_kcalloc(dev, sizeof(struct clk_bulk_data *), 96 count, GFP_KERNEL); 97 if (!local) 98 return -ENOMEM; 99 100 of_property_for_each_string(dev->of_node, "clock-names", prop, name) { 101 local[i].id = devm_kstrdup(dev, name, GFP_KERNEL); 102 if (!local[i].id) { 103 devm_kfree(dev, local); 104 return -ENOMEM; 105 } 106 107 i++; 108 } 109 110 ret = devm_clk_bulk_get(dev, count, local); 111 112 if (ret) { 113 for (i = 0; i < count; i++) 114 devm_kfree(dev, (void *) local[i].id); 115 devm_kfree(dev, local); 116 117 return ret; 118 } 119 120 *bulk = local; 121 return count; 122 } 123 124 struct clk *msm_clk_bulk_get_clock(struct clk_bulk_data *bulk, int count, 125 const char *name) 126 { 127 int i; 128 char n[32]; 129 130 snprintf(n, sizeof(n), "%s_clk", name); 131 132 for (i = 0; bulk && i < count; i++) { 133 if (!strcmp(bulk[i].id, name) || !strcmp(bulk[i].id, n)) 134 return bulk[i].clk; 135 } 136 137 138 return NULL; 139 } 140 141 struct clk *msm_clk_get(struct platform_device *pdev, const char *name) 142 { 143 struct clk *clk; 144 char name2[32]; 145 146 clk = devm_clk_get(&pdev->dev, name); 147 if (!IS_ERR(clk) || PTR_ERR(clk) == -EPROBE_DEFER) 148 return clk; 149 150 snprintf(name2, sizeof(name2), "%s_clk", name); 151 152 clk = devm_clk_get(&pdev->dev, name2); 153 if (!IS_ERR(clk)) 154 dev_warn(&pdev->dev, "Using legacy clk name binding. Use " 155 "\"%s\" instead of \"%s\"\n", name, name2); 156 157 return clk; 158 } 159 160 void __iomem *msm_ioremap(struct platform_device *pdev, const char *name, 161 const char *dbgname) 162 { 163 struct resource *res; 164 unsigned long size; 165 void __iomem *ptr; 166 167 if (name) 168 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, name); 169 else 170 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 171 172 if (!res) { 173 dev_err(&pdev->dev, "failed to get memory resource: %s\n", name); 174 return ERR_PTR(-EINVAL); 175 } 176 177 size = resource_size(res); 178 179 ptr = devm_ioremap_nocache(&pdev->dev, res->start, size); 180 if (!ptr) { 181 dev_err(&pdev->dev, "failed to ioremap: %s\n", name); 182 return ERR_PTR(-ENOMEM); 183 } 184 185 if (reglog) 186 printk(KERN_DEBUG "IO:region %s %p %08lx\n", dbgname, ptr, size); 187 188 return ptr; 189 } 190 191 void msm_writel(u32 data, void __iomem *addr) 192 { 193 if (reglog) 194 printk(KERN_DEBUG "IO:W %p %08x\n", addr, data); 195 writel(data, addr); 196 } 197 198 u32 msm_readl(const void __iomem *addr) 199 { 200 u32 val = readl(addr); 201 if (reglog) 202 pr_err("IO:R %p %08x\n", addr, val); 203 return val; 204 } 205 206 struct vblank_event { 207 struct list_head node; 208 int crtc_id; 209 bool enable; 210 }; 211 212 static void vblank_ctrl_worker(struct kthread_work *work) 213 { 214 struct msm_vblank_ctrl *vbl_ctrl = container_of(work, 215 struct msm_vblank_ctrl, work); 216 struct msm_drm_private *priv = container_of(vbl_ctrl, 217 struct msm_drm_private, vblank_ctrl); 218 struct msm_kms *kms = priv->kms; 219 struct vblank_event *vbl_ev, *tmp; 220 unsigned long flags; 221 222 spin_lock_irqsave(&vbl_ctrl->lock, flags); 223 list_for_each_entry_safe(vbl_ev, tmp, &vbl_ctrl->event_list, node) { 224 list_del(&vbl_ev->node); 225 spin_unlock_irqrestore(&vbl_ctrl->lock, flags); 226 227 if (vbl_ev->enable) 228 kms->funcs->enable_vblank(kms, 229 priv->crtcs[vbl_ev->crtc_id]); 230 else 231 kms->funcs->disable_vblank(kms, 232 priv->crtcs[vbl_ev->crtc_id]); 233 234 kfree(vbl_ev); 235 236 spin_lock_irqsave(&vbl_ctrl->lock, flags); 237 } 238 239 spin_unlock_irqrestore(&vbl_ctrl->lock, flags); 240 } 241 242 static int vblank_ctrl_queue_work(struct msm_drm_private *priv, 243 int crtc_id, bool enable) 244 { 245 struct msm_vblank_ctrl *vbl_ctrl = &priv->vblank_ctrl; 246 struct vblank_event *vbl_ev; 247 unsigned long flags; 248 249 vbl_ev = kzalloc(sizeof(*vbl_ev), GFP_ATOMIC); 250 if (!vbl_ev) 251 return -ENOMEM; 252 253 vbl_ev->crtc_id = crtc_id; 254 vbl_ev->enable = enable; 255 256 spin_lock_irqsave(&vbl_ctrl->lock, flags); 257 list_add_tail(&vbl_ev->node, &vbl_ctrl->event_list); 258 spin_unlock_irqrestore(&vbl_ctrl->lock, flags); 259 260 kthread_queue_work(&priv->disp_thread[crtc_id].worker, 261 &vbl_ctrl->work); 262 263 return 0; 264 } 265 266 static int msm_drm_uninit(struct device *dev) 267 { 268 struct platform_device *pdev = to_platform_device(dev); 269 struct drm_device *ddev = platform_get_drvdata(pdev); 270 struct msm_drm_private *priv = ddev->dev_private; 271 struct msm_kms *kms = priv->kms; 272 struct msm_mdss *mdss = priv->mdss; 273 struct msm_vblank_ctrl *vbl_ctrl = &priv->vblank_ctrl; 274 struct vblank_event *vbl_ev, *tmp; 275 int i; 276 277 /* We must cancel and cleanup any pending vblank enable/disable 278 * work before drm_irq_uninstall() to avoid work re-enabling an 279 * irq after uninstall has disabled it. 280 */ 281 kthread_flush_work(&vbl_ctrl->work); 282 list_for_each_entry_safe(vbl_ev, tmp, &vbl_ctrl->event_list, node) { 283 list_del(&vbl_ev->node); 284 kfree(vbl_ev); 285 } 286 287 /* clean up display commit/event worker threads */ 288 for (i = 0; i < priv->num_crtcs; i++) { 289 if (priv->disp_thread[i].thread) { 290 kthread_flush_worker(&priv->disp_thread[i].worker); 291 kthread_stop(priv->disp_thread[i].thread); 292 priv->disp_thread[i].thread = NULL; 293 } 294 295 if (priv->event_thread[i].thread) { 296 kthread_flush_worker(&priv->event_thread[i].worker); 297 kthread_stop(priv->event_thread[i].thread); 298 priv->event_thread[i].thread = NULL; 299 } 300 } 301 302 msm_gem_shrinker_cleanup(ddev); 303 304 drm_kms_helper_poll_fini(ddev); 305 306 drm_dev_unregister(ddev); 307 308 msm_perf_debugfs_cleanup(priv); 309 msm_rd_debugfs_cleanup(priv); 310 311 #ifdef CONFIG_DRM_FBDEV_EMULATION 312 if (fbdev && priv->fbdev) 313 msm_fbdev_free(ddev); 314 #endif 315 drm_mode_config_cleanup(ddev); 316 317 pm_runtime_get_sync(dev); 318 drm_irq_uninstall(ddev); 319 pm_runtime_put_sync(dev); 320 321 flush_workqueue(priv->wq); 322 destroy_workqueue(priv->wq); 323 324 if (kms && kms->funcs) 325 kms->funcs->destroy(kms); 326 327 if (priv->vram.paddr) { 328 unsigned long attrs = DMA_ATTR_NO_KERNEL_MAPPING; 329 drm_mm_takedown(&priv->vram.mm); 330 dma_free_attrs(dev, priv->vram.size, NULL, 331 priv->vram.paddr, attrs); 332 } 333 334 component_unbind_all(dev, ddev); 335 336 if (mdss && mdss->funcs) 337 mdss->funcs->destroy(ddev); 338 339 ddev->dev_private = NULL; 340 drm_dev_put(ddev); 341 342 kfree(priv); 343 344 return 0; 345 } 346 347 #define KMS_MDP4 4 348 #define KMS_MDP5 5 349 #define KMS_DPU 3 350 351 static int get_mdp_ver(struct platform_device *pdev) 352 { 353 struct device *dev = &pdev->dev; 354 355 return (int) (unsigned long) of_device_get_match_data(dev); 356 } 357 358 #include <linux/of_address.h> 359 360 static int msm_init_vram(struct drm_device *dev) 361 { 362 struct msm_drm_private *priv = dev->dev_private; 363 struct device_node *node; 364 unsigned long size = 0; 365 int ret = 0; 366 367 /* In the device-tree world, we could have a 'memory-region' 368 * phandle, which gives us a link to our "vram". Allocating 369 * is all nicely abstracted behind the dma api, but we need 370 * to know the entire size to allocate it all in one go. There 371 * are two cases: 372 * 1) device with no IOMMU, in which case we need exclusive 373 * access to a VRAM carveout big enough for all gpu 374 * buffers 375 * 2) device with IOMMU, but where the bootloader puts up 376 * a splash screen. In this case, the VRAM carveout 377 * need only be large enough for fbdev fb. But we need 378 * exclusive access to the buffer to avoid the kernel 379 * using those pages for other purposes (which appears 380 * as corruption on screen before we have a chance to 381 * load and do initial modeset) 382 */ 383 384 node = of_parse_phandle(dev->dev->of_node, "memory-region", 0); 385 if (node) { 386 struct resource r; 387 ret = of_address_to_resource(node, 0, &r); 388 of_node_put(node); 389 if (ret) 390 return ret; 391 size = r.end - r.start; 392 DRM_INFO("using VRAM carveout: %lx@%pa\n", size, &r.start); 393 394 /* if we have no IOMMU, then we need to use carveout allocator. 395 * Grab the entire CMA chunk carved out in early startup in 396 * mach-msm: 397 */ 398 } else if (!iommu_present(&platform_bus_type)) { 399 DRM_INFO("using %s VRAM carveout\n", vram); 400 size = memparse(vram, NULL); 401 } 402 403 if (size) { 404 unsigned long attrs = 0; 405 void *p; 406 407 priv->vram.size = size; 408 409 drm_mm_init(&priv->vram.mm, 0, (size >> PAGE_SHIFT) - 1); 410 spin_lock_init(&priv->vram.lock); 411 412 attrs |= DMA_ATTR_NO_KERNEL_MAPPING; 413 attrs |= DMA_ATTR_WRITE_COMBINE; 414 415 /* note that for no-kernel-mapping, the vaddr returned 416 * is bogus, but non-null if allocation succeeded: 417 */ 418 p = dma_alloc_attrs(dev->dev, size, 419 &priv->vram.paddr, GFP_KERNEL, attrs); 420 if (!p) { 421 dev_err(dev->dev, "failed to allocate VRAM\n"); 422 priv->vram.paddr = 0; 423 return -ENOMEM; 424 } 425 426 dev_info(dev->dev, "VRAM: %08x->%08x\n", 427 (uint32_t)priv->vram.paddr, 428 (uint32_t)(priv->vram.paddr + size)); 429 } 430 431 return ret; 432 } 433 434 static int msm_drm_init(struct device *dev, struct drm_driver *drv) 435 { 436 struct platform_device *pdev = to_platform_device(dev); 437 struct drm_device *ddev; 438 struct msm_drm_private *priv; 439 struct msm_kms *kms; 440 struct msm_mdss *mdss; 441 int ret, i; 442 struct sched_param param; 443 444 ddev = drm_dev_alloc(drv, dev); 445 if (IS_ERR(ddev)) { 446 dev_err(dev, "failed to allocate drm_device\n"); 447 return PTR_ERR(ddev); 448 } 449 450 platform_set_drvdata(pdev, ddev); 451 452 priv = kzalloc(sizeof(*priv), GFP_KERNEL); 453 if (!priv) { 454 ret = -ENOMEM; 455 goto err_put_drm_dev; 456 } 457 458 ddev->dev_private = priv; 459 priv->dev = ddev; 460 461 switch (get_mdp_ver(pdev)) { 462 case KMS_MDP5: 463 ret = mdp5_mdss_init(ddev); 464 break; 465 case KMS_DPU: 466 ret = dpu_mdss_init(ddev); 467 break; 468 default: 469 ret = 0; 470 break; 471 } 472 if (ret) 473 goto err_free_priv; 474 475 mdss = priv->mdss; 476 477 priv->wq = alloc_ordered_workqueue("msm", 0); 478 479 INIT_LIST_HEAD(&priv->inactive_list); 480 INIT_LIST_HEAD(&priv->vblank_ctrl.event_list); 481 kthread_init_work(&priv->vblank_ctrl.work, vblank_ctrl_worker); 482 spin_lock_init(&priv->vblank_ctrl.lock); 483 484 drm_mode_config_init(ddev); 485 486 /* Bind all our sub-components: */ 487 ret = component_bind_all(dev, ddev); 488 if (ret) 489 goto err_destroy_mdss; 490 491 ret = msm_init_vram(ddev); 492 if (ret) 493 goto err_msm_uninit; 494 495 msm_gem_shrinker_init(ddev); 496 497 switch (get_mdp_ver(pdev)) { 498 case KMS_MDP4: 499 kms = mdp4_kms_init(ddev); 500 priv->kms = kms; 501 break; 502 case KMS_MDP5: 503 kms = mdp5_kms_init(ddev); 504 break; 505 case KMS_DPU: 506 kms = dpu_kms_init(ddev); 507 priv->kms = kms; 508 break; 509 default: 510 kms = ERR_PTR(-ENODEV); 511 break; 512 } 513 514 if (IS_ERR(kms)) { 515 /* 516 * NOTE: once we have GPU support, having no kms should not 517 * be considered fatal.. ideally we would still support gpu 518 * and (for example) use dmabuf/prime to share buffers with 519 * imx drm driver on iMX5 520 */ 521 dev_err(dev, "failed to load kms\n"); 522 ret = PTR_ERR(kms); 523 goto err_msm_uninit; 524 } 525 526 /* Enable normalization of plane zpos */ 527 ddev->mode_config.normalize_zpos = true; 528 529 if (kms) { 530 ret = kms->funcs->hw_init(kms); 531 if (ret) { 532 dev_err(dev, "kms hw init failed: %d\n", ret); 533 goto err_msm_uninit; 534 } 535 } 536 537 ddev->mode_config.funcs = &mode_config_funcs; 538 ddev->mode_config.helper_private = &mode_config_helper_funcs; 539 540 /** 541 * this priority was found during empiric testing to have appropriate 542 * realtime scheduling to process display updates and interact with 543 * other real time and normal priority task 544 */ 545 param.sched_priority = 16; 546 for (i = 0; i < priv->num_crtcs; i++) { 547 548 /* initialize display thread */ 549 priv->disp_thread[i].crtc_id = priv->crtcs[i]->base.id; 550 kthread_init_worker(&priv->disp_thread[i].worker); 551 priv->disp_thread[i].dev = ddev; 552 priv->disp_thread[i].thread = 553 kthread_run(kthread_worker_fn, 554 &priv->disp_thread[i].worker, 555 "crtc_commit:%d", priv->disp_thread[i].crtc_id); 556 if (IS_ERR(priv->disp_thread[i].thread)) { 557 dev_err(dev, "failed to create crtc_commit kthread\n"); 558 priv->disp_thread[i].thread = NULL; 559 goto err_msm_uninit; 560 } 561 562 ret = sched_setscheduler(priv->disp_thread[i].thread, 563 SCHED_FIFO, ¶m); 564 if (ret) 565 dev_warn(dev, "disp_thread set priority failed: %d\n", 566 ret); 567 568 /* initialize event thread */ 569 priv->event_thread[i].crtc_id = priv->crtcs[i]->base.id; 570 kthread_init_worker(&priv->event_thread[i].worker); 571 priv->event_thread[i].dev = ddev; 572 priv->event_thread[i].thread = 573 kthread_run(kthread_worker_fn, 574 &priv->event_thread[i].worker, 575 "crtc_event:%d", priv->event_thread[i].crtc_id); 576 if (IS_ERR(priv->event_thread[i].thread)) { 577 dev_err(dev, "failed to create crtc_event kthread\n"); 578 priv->event_thread[i].thread = NULL; 579 goto err_msm_uninit; 580 } 581 582 /** 583 * event thread should also run at same priority as disp_thread 584 * because it is handling frame_done events. A lower priority 585 * event thread and higher priority disp_thread can causes 586 * frame_pending counters beyond 2. This can lead to commit 587 * failure at crtc commit level. 588 */ 589 ret = sched_setscheduler(priv->event_thread[i].thread, 590 SCHED_FIFO, ¶m); 591 if (ret) 592 dev_warn(dev, "event_thread set priority failed:%d\n", 593 ret); 594 } 595 596 ret = drm_vblank_init(ddev, priv->num_crtcs); 597 if (ret < 0) { 598 dev_err(dev, "failed to initialize vblank\n"); 599 goto err_msm_uninit; 600 } 601 602 if (kms) { 603 pm_runtime_get_sync(dev); 604 ret = drm_irq_install(ddev, kms->irq); 605 pm_runtime_put_sync(dev); 606 if (ret < 0) { 607 dev_err(dev, "failed to install IRQ handler\n"); 608 goto err_msm_uninit; 609 } 610 } 611 612 ret = drm_dev_register(ddev, 0); 613 if (ret) 614 goto err_msm_uninit; 615 616 drm_mode_config_reset(ddev); 617 618 #ifdef CONFIG_DRM_FBDEV_EMULATION 619 if (fbdev) 620 priv->fbdev = msm_fbdev_init(ddev); 621 #endif 622 623 ret = msm_debugfs_late_init(ddev); 624 if (ret) 625 goto err_msm_uninit; 626 627 drm_kms_helper_poll_init(ddev); 628 629 return 0; 630 631 err_msm_uninit: 632 msm_drm_uninit(dev); 633 return ret; 634 err_destroy_mdss: 635 if (mdss && mdss->funcs) 636 mdss->funcs->destroy(ddev); 637 err_free_priv: 638 kfree(priv); 639 err_put_drm_dev: 640 drm_dev_put(ddev); 641 return ret; 642 } 643 644 /* 645 * DRM operations: 646 */ 647 648 static void load_gpu(struct drm_device *dev) 649 { 650 static DEFINE_MUTEX(init_lock); 651 struct msm_drm_private *priv = dev->dev_private; 652 653 mutex_lock(&init_lock); 654 655 if (!priv->gpu) 656 priv->gpu = adreno_load_gpu(dev); 657 658 mutex_unlock(&init_lock); 659 } 660 661 static int context_init(struct drm_device *dev, struct drm_file *file) 662 { 663 struct msm_file_private *ctx; 664 665 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 666 if (!ctx) 667 return -ENOMEM; 668 669 msm_submitqueue_init(dev, ctx); 670 671 file->driver_priv = ctx; 672 673 return 0; 674 } 675 676 static int msm_open(struct drm_device *dev, struct drm_file *file) 677 { 678 /* For now, load gpu on open.. to avoid the requirement of having 679 * firmware in the initrd. 680 */ 681 load_gpu(dev); 682 683 return context_init(dev, file); 684 } 685 686 static void context_close(struct msm_file_private *ctx) 687 { 688 msm_submitqueue_close(ctx); 689 kfree(ctx); 690 } 691 692 static void msm_postclose(struct drm_device *dev, struct drm_file *file) 693 { 694 struct msm_drm_private *priv = dev->dev_private; 695 struct msm_file_private *ctx = file->driver_priv; 696 697 mutex_lock(&dev->struct_mutex); 698 if (ctx == priv->lastctx) 699 priv->lastctx = NULL; 700 mutex_unlock(&dev->struct_mutex); 701 702 context_close(ctx); 703 } 704 705 static irqreturn_t msm_irq(int irq, void *arg) 706 { 707 struct drm_device *dev = arg; 708 struct msm_drm_private *priv = dev->dev_private; 709 struct msm_kms *kms = priv->kms; 710 BUG_ON(!kms); 711 return kms->funcs->irq(kms); 712 } 713 714 static void msm_irq_preinstall(struct drm_device *dev) 715 { 716 struct msm_drm_private *priv = dev->dev_private; 717 struct msm_kms *kms = priv->kms; 718 BUG_ON(!kms); 719 kms->funcs->irq_preinstall(kms); 720 } 721 722 static int msm_irq_postinstall(struct drm_device *dev) 723 { 724 struct msm_drm_private *priv = dev->dev_private; 725 struct msm_kms *kms = priv->kms; 726 BUG_ON(!kms); 727 return kms->funcs->irq_postinstall(kms); 728 } 729 730 static void msm_irq_uninstall(struct drm_device *dev) 731 { 732 struct msm_drm_private *priv = dev->dev_private; 733 struct msm_kms *kms = priv->kms; 734 BUG_ON(!kms); 735 kms->funcs->irq_uninstall(kms); 736 } 737 738 static int msm_enable_vblank(struct drm_device *dev, unsigned int pipe) 739 { 740 struct msm_drm_private *priv = dev->dev_private; 741 struct msm_kms *kms = priv->kms; 742 if (!kms) 743 return -ENXIO; 744 DBG("dev=%p, crtc=%u", dev, pipe); 745 return vblank_ctrl_queue_work(priv, pipe, true); 746 } 747 748 static void msm_disable_vblank(struct drm_device *dev, unsigned int pipe) 749 { 750 struct msm_drm_private *priv = dev->dev_private; 751 struct msm_kms *kms = priv->kms; 752 if (!kms) 753 return; 754 DBG("dev=%p, crtc=%u", dev, pipe); 755 vblank_ctrl_queue_work(priv, pipe, false); 756 } 757 758 /* 759 * DRM ioctls: 760 */ 761 762 static int msm_ioctl_get_param(struct drm_device *dev, void *data, 763 struct drm_file *file) 764 { 765 struct msm_drm_private *priv = dev->dev_private; 766 struct drm_msm_param *args = data; 767 struct msm_gpu *gpu; 768 769 /* for now, we just have 3d pipe.. eventually this would need to 770 * be more clever to dispatch to appropriate gpu module: 771 */ 772 if (args->pipe != MSM_PIPE_3D0) 773 return -EINVAL; 774 775 gpu = priv->gpu; 776 777 if (!gpu) 778 return -ENXIO; 779 780 return gpu->funcs->get_param(gpu, args->param, &args->value); 781 } 782 783 static int msm_ioctl_gem_new(struct drm_device *dev, void *data, 784 struct drm_file *file) 785 { 786 struct drm_msm_gem_new *args = data; 787 788 if (args->flags & ~MSM_BO_FLAGS) { 789 DRM_ERROR("invalid flags: %08x\n", args->flags); 790 return -EINVAL; 791 } 792 793 return msm_gem_new_handle(dev, file, args->size, 794 args->flags, &args->handle); 795 } 796 797 static inline ktime_t to_ktime(struct drm_msm_timespec timeout) 798 { 799 return ktime_set(timeout.tv_sec, timeout.tv_nsec); 800 } 801 802 static int msm_ioctl_gem_cpu_prep(struct drm_device *dev, void *data, 803 struct drm_file *file) 804 { 805 struct drm_msm_gem_cpu_prep *args = data; 806 struct drm_gem_object *obj; 807 ktime_t timeout = to_ktime(args->timeout); 808 int ret; 809 810 if (args->op & ~MSM_PREP_FLAGS) { 811 DRM_ERROR("invalid op: %08x\n", args->op); 812 return -EINVAL; 813 } 814 815 obj = drm_gem_object_lookup(file, args->handle); 816 if (!obj) 817 return -ENOENT; 818 819 ret = msm_gem_cpu_prep(obj, args->op, &timeout); 820 821 drm_gem_object_put_unlocked(obj); 822 823 return ret; 824 } 825 826 static int msm_ioctl_gem_cpu_fini(struct drm_device *dev, void *data, 827 struct drm_file *file) 828 { 829 struct drm_msm_gem_cpu_fini *args = data; 830 struct drm_gem_object *obj; 831 int ret; 832 833 obj = drm_gem_object_lookup(file, args->handle); 834 if (!obj) 835 return -ENOENT; 836 837 ret = msm_gem_cpu_fini(obj); 838 839 drm_gem_object_put_unlocked(obj); 840 841 return ret; 842 } 843 844 static int msm_ioctl_gem_info_iova(struct drm_device *dev, 845 struct drm_gem_object *obj, uint64_t *iova) 846 { 847 struct msm_drm_private *priv = dev->dev_private; 848 849 if (!priv->gpu) 850 return -EINVAL; 851 852 return msm_gem_get_iova(obj, priv->gpu->aspace, iova); 853 } 854 855 static int msm_ioctl_gem_info(struct drm_device *dev, void *data, 856 struct drm_file *file) 857 { 858 struct drm_msm_gem_info *args = data; 859 struct drm_gem_object *obj; 860 int ret = 0; 861 862 if (args->flags & ~MSM_INFO_FLAGS) 863 return -EINVAL; 864 865 obj = drm_gem_object_lookup(file, args->handle); 866 if (!obj) 867 return -ENOENT; 868 869 if (args->flags & MSM_INFO_IOVA) { 870 uint64_t iova; 871 872 ret = msm_ioctl_gem_info_iova(dev, obj, &iova); 873 if (!ret) 874 args->offset = iova; 875 } else { 876 args->offset = msm_gem_mmap_offset(obj); 877 } 878 879 drm_gem_object_put_unlocked(obj); 880 881 return ret; 882 } 883 884 static int msm_ioctl_wait_fence(struct drm_device *dev, void *data, 885 struct drm_file *file) 886 { 887 struct msm_drm_private *priv = dev->dev_private; 888 struct drm_msm_wait_fence *args = data; 889 ktime_t timeout = to_ktime(args->timeout); 890 struct msm_gpu_submitqueue *queue; 891 struct msm_gpu *gpu = priv->gpu; 892 int ret; 893 894 if (args->pad) { 895 DRM_ERROR("invalid pad: %08x\n", args->pad); 896 return -EINVAL; 897 } 898 899 if (!gpu) 900 return 0; 901 902 queue = msm_submitqueue_get(file->driver_priv, args->queueid); 903 if (!queue) 904 return -ENOENT; 905 906 ret = msm_wait_fence(gpu->rb[queue->prio]->fctx, args->fence, &timeout, 907 true); 908 909 msm_submitqueue_put(queue); 910 return ret; 911 } 912 913 static int msm_ioctl_gem_madvise(struct drm_device *dev, void *data, 914 struct drm_file *file) 915 { 916 struct drm_msm_gem_madvise *args = data; 917 struct drm_gem_object *obj; 918 int ret; 919 920 switch (args->madv) { 921 case MSM_MADV_DONTNEED: 922 case MSM_MADV_WILLNEED: 923 break; 924 default: 925 return -EINVAL; 926 } 927 928 ret = mutex_lock_interruptible(&dev->struct_mutex); 929 if (ret) 930 return ret; 931 932 obj = drm_gem_object_lookup(file, args->handle); 933 if (!obj) { 934 ret = -ENOENT; 935 goto unlock; 936 } 937 938 ret = msm_gem_madvise(obj, args->madv); 939 if (ret >= 0) { 940 args->retained = ret; 941 ret = 0; 942 } 943 944 drm_gem_object_put(obj); 945 946 unlock: 947 mutex_unlock(&dev->struct_mutex); 948 return ret; 949 } 950 951 952 static int msm_ioctl_submitqueue_new(struct drm_device *dev, void *data, 953 struct drm_file *file) 954 { 955 struct drm_msm_submitqueue *args = data; 956 957 if (args->flags & ~MSM_SUBMITQUEUE_FLAGS) 958 return -EINVAL; 959 960 return msm_submitqueue_create(dev, file->driver_priv, args->prio, 961 args->flags, &args->id); 962 } 963 964 965 static int msm_ioctl_submitqueue_close(struct drm_device *dev, void *data, 966 struct drm_file *file) 967 { 968 u32 id = *(u32 *) data; 969 970 return msm_submitqueue_remove(file->driver_priv, id); 971 } 972 973 static const struct drm_ioctl_desc msm_ioctls[] = { 974 DRM_IOCTL_DEF_DRV(MSM_GET_PARAM, msm_ioctl_get_param, DRM_AUTH|DRM_RENDER_ALLOW), 975 DRM_IOCTL_DEF_DRV(MSM_GEM_NEW, msm_ioctl_gem_new, DRM_AUTH|DRM_RENDER_ALLOW), 976 DRM_IOCTL_DEF_DRV(MSM_GEM_INFO, msm_ioctl_gem_info, DRM_AUTH|DRM_RENDER_ALLOW), 977 DRM_IOCTL_DEF_DRV(MSM_GEM_CPU_PREP, msm_ioctl_gem_cpu_prep, DRM_AUTH|DRM_RENDER_ALLOW), 978 DRM_IOCTL_DEF_DRV(MSM_GEM_CPU_FINI, msm_ioctl_gem_cpu_fini, DRM_AUTH|DRM_RENDER_ALLOW), 979 DRM_IOCTL_DEF_DRV(MSM_GEM_SUBMIT, msm_ioctl_gem_submit, DRM_AUTH|DRM_RENDER_ALLOW), 980 DRM_IOCTL_DEF_DRV(MSM_WAIT_FENCE, msm_ioctl_wait_fence, DRM_AUTH|DRM_RENDER_ALLOW), 981 DRM_IOCTL_DEF_DRV(MSM_GEM_MADVISE, msm_ioctl_gem_madvise, DRM_AUTH|DRM_RENDER_ALLOW), 982 DRM_IOCTL_DEF_DRV(MSM_SUBMITQUEUE_NEW, msm_ioctl_submitqueue_new, DRM_AUTH|DRM_RENDER_ALLOW), 983 DRM_IOCTL_DEF_DRV(MSM_SUBMITQUEUE_CLOSE, msm_ioctl_submitqueue_close, DRM_AUTH|DRM_RENDER_ALLOW), 984 }; 985 986 static const struct vm_operations_struct vm_ops = { 987 .fault = msm_gem_fault, 988 .open = drm_gem_vm_open, 989 .close = drm_gem_vm_close, 990 }; 991 992 static const struct file_operations fops = { 993 .owner = THIS_MODULE, 994 .open = drm_open, 995 .release = drm_release, 996 .unlocked_ioctl = drm_ioctl, 997 .compat_ioctl = drm_compat_ioctl, 998 .poll = drm_poll, 999 .read = drm_read, 1000 .llseek = no_llseek, 1001 .mmap = msm_gem_mmap, 1002 }; 1003 1004 static struct drm_driver msm_driver = { 1005 .driver_features = DRIVER_HAVE_IRQ | 1006 DRIVER_GEM | 1007 DRIVER_PRIME | 1008 DRIVER_RENDER | 1009 DRIVER_ATOMIC | 1010 DRIVER_MODESET, 1011 .open = msm_open, 1012 .postclose = msm_postclose, 1013 .lastclose = drm_fb_helper_lastclose, 1014 .irq_handler = msm_irq, 1015 .irq_preinstall = msm_irq_preinstall, 1016 .irq_postinstall = msm_irq_postinstall, 1017 .irq_uninstall = msm_irq_uninstall, 1018 .enable_vblank = msm_enable_vblank, 1019 .disable_vblank = msm_disable_vblank, 1020 .gem_free_object = msm_gem_free_object, 1021 .gem_vm_ops = &vm_ops, 1022 .dumb_create = msm_gem_dumb_create, 1023 .dumb_map_offset = msm_gem_dumb_map_offset, 1024 .prime_handle_to_fd = drm_gem_prime_handle_to_fd, 1025 .prime_fd_to_handle = drm_gem_prime_fd_to_handle, 1026 .gem_prime_export = drm_gem_prime_export, 1027 .gem_prime_import = drm_gem_prime_import, 1028 .gem_prime_res_obj = msm_gem_prime_res_obj, 1029 .gem_prime_pin = msm_gem_prime_pin, 1030 .gem_prime_unpin = msm_gem_prime_unpin, 1031 .gem_prime_get_sg_table = msm_gem_prime_get_sg_table, 1032 .gem_prime_import_sg_table = msm_gem_prime_import_sg_table, 1033 .gem_prime_vmap = msm_gem_prime_vmap, 1034 .gem_prime_vunmap = msm_gem_prime_vunmap, 1035 .gem_prime_mmap = msm_gem_prime_mmap, 1036 #ifdef CONFIG_DEBUG_FS 1037 .debugfs_init = msm_debugfs_init, 1038 #endif 1039 .ioctls = msm_ioctls, 1040 .num_ioctls = ARRAY_SIZE(msm_ioctls), 1041 .fops = &fops, 1042 .name = "msm", 1043 .desc = "MSM Snapdragon DRM", 1044 .date = "20130625", 1045 .major = MSM_VERSION_MAJOR, 1046 .minor = MSM_VERSION_MINOR, 1047 .patchlevel = MSM_VERSION_PATCHLEVEL, 1048 }; 1049 1050 #ifdef CONFIG_PM_SLEEP 1051 static int msm_pm_suspend(struct device *dev) 1052 { 1053 struct drm_device *ddev = dev_get_drvdata(dev); 1054 struct msm_drm_private *priv = ddev->dev_private; 1055 struct msm_kms *kms = priv->kms; 1056 1057 /* TODO: Use atomic helper suspend/resume */ 1058 if (kms && kms->funcs && kms->funcs->pm_suspend) 1059 return kms->funcs->pm_suspend(dev); 1060 1061 drm_kms_helper_poll_disable(ddev); 1062 1063 priv->pm_state = drm_atomic_helper_suspend(ddev); 1064 if (IS_ERR(priv->pm_state)) { 1065 drm_kms_helper_poll_enable(ddev); 1066 return PTR_ERR(priv->pm_state); 1067 } 1068 1069 return 0; 1070 } 1071 1072 static int msm_pm_resume(struct device *dev) 1073 { 1074 struct drm_device *ddev = dev_get_drvdata(dev); 1075 struct msm_drm_private *priv = ddev->dev_private; 1076 struct msm_kms *kms = priv->kms; 1077 1078 /* TODO: Use atomic helper suspend/resume */ 1079 if (kms && kms->funcs && kms->funcs->pm_resume) 1080 return kms->funcs->pm_resume(dev); 1081 1082 drm_atomic_helper_resume(ddev, priv->pm_state); 1083 drm_kms_helper_poll_enable(ddev); 1084 1085 return 0; 1086 } 1087 #endif 1088 1089 #ifdef CONFIG_PM 1090 static int msm_runtime_suspend(struct device *dev) 1091 { 1092 struct drm_device *ddev = dev_get_drvdata(dev); 1093 struct msm_drm_private *priv = ddev->dev_private; 1094 struct msm_mdss *mdss = priv->mdss; 1095 1096 DBG(""); 1097 1098 if (mdss && mdss->funcs) 1099 return mdss->funcs->disable(mdss); 1100 1101 return 0; 1102 } 1103 1104 static int msm_runtime_resume(struct device *dev) 1105 { 1106 struct drm_device *ddev = dev_get_drvdata(dev); 1107 struct msm_drm_private *priv = ddev->dev_private; 1108 struct msm_mdss *mdss = priv->mdss; 1109 1110 DBG(""); 1111 1112 if (mdss && mdss->funcs) 1113 return mdss->funcs->enable(mdss); 1114 1115 return 0; 1116 } 1117 #endif 1118 1119 static const struct dev_pm_ops msm_pm_ops = { 1120 SET_SYSTEM_SLEEP_PM_OPS(msm_pm_suspend, msm_pm_resume) 1121 SET_RUNTIME_PM_OPS(msm_runtime_suspend, msm_runtime_resume, NULL) 1122 }; 1123 1124 /* 1125 * Componentized driver support: 1126 */ 1127 1128 /* 1129 * NOTE: duplication of the same code as exynos or imx (or probably any other). 1130 * so probably some room for some helpers 1131 */ 1132 static int compare_of(struct device *dev, void *data) 1133 { 1134 return dev->of_node == data; 1135 } 1136 1137 /* 1138 * Identify what components need to be added by parsing what remote-endpoints 1139 * our MDP output ports are connected to. In the case of LVDS on MDP4, there 1140 * is no external component that we need to add since LVDS is within MDP4 1141 * itself. 1142 */ 1143 static int add_components_mdp(struct device *mdp_dev, 1144 struct component_match **matchptr) 1145 { 1146 struct device_node *np = mdp_dev->of_node; 1147 struct device_node *ep_node; 1148 struct device *master_dev; 1149 1150 /* 1151 * on MDP4 based platforms, the MDP platform device is the component 1152 * master that adds other display interface components to itself. 1153 * 1154 * on MDP5 based platforms, the MDSS platform device is the component 1155 * master that adds MDP5 and other display interface components to 1156 * itself. 1157 */ 1158 if (of_device_is_compatible(np, "qcom,mdp4")) 1159 master_dev = mdp_dev; 1160 else 1161 master_dev = mdp_dev->parent; 1162 1163 for_each_endpoint_of_node(np, ep_node) { 1164 struct device_node *intf; 1165 struct of_endpoint ep; 1166 int ret; 1167 1168 ret = of_graph_parse_endpoint(ep_node, &ep); 1169 if (ret) { 1170 dev_err(mdp_dev, "unable to parse port endpoint\n"); 1171 of_node_put(ep_node); 1172 return ret; 1173 } 1174 1175 /* 1176 * The LCDC/LVDS port on MDP4 is a speacial case where the 1177 * remote-endpoint isn't a component that we need to add 1178 */ 1179 if (of_device_is_compatible(np, "qcom,mdp4") && 1180 ep.port == 0) 1181 continue; 1182 1183 /* 1184 * It's okay if some of the ports don't have a remote endpoint 1185 * specified. It just means that the port isn't connected to 1186 * any external interface. 1187 */ 1188 intf = of_graph_get_remote_port_parent(ep_node); 1189 if (!intf) 1190 continue; 1191 1192 drm_of_component_match_add(master_dev, matchptr, compare_of, 1193 intf); 1194 of_node_put(intf); 1195 } 1196 1197 return 0; 1198 } 1199 1200 static int compare_name_mdp(struct device *dev, void *data) 1201 { 1202 return (strstr(dev_name(dev), "mdp") != NULL); 1203 } 1204 1205 static int add_display_components(struct device *dev, 1206 struct component_match **matchptr) 1207 { 1208 struct device *mdp_dev; 1209 int ret; 1210 1211 /* 1212 * MDP5/DPU based devices don't have a flat hierarchy. There is a top 1213 * level parent: MDSS, and children: MDP5/DPU, DSI, HDMI, eDP etc. 1214 * Populate the children devices, find the MDP5/DPU node, and then add 1215 * the interfaces to our components list. 1216 */ 1217 if (of_device_is_compatible(dev->of_node, "qcom,mdss") || 1218 of_device_is_compatible(dev->of_node, "qcom,sdm845-mdss")) { 1219 ret = of_platform_populate(dev->of_node, NULL, NULL, dev); 1220 if (ret) { 1221 dev_err(dev, "failed to populate children devices\n"); 1222 return ret; 1223 } 1224 1225 mdp_dev = device_find_child(dev, NULL, compare_name_mdp); 1226 if (!mdp_dev) { 1227 dev_err(dev, "failed to find MDSS MDP node\n"); 1228 of_platform_depopulate(dev); 1229 return -ENODEV; 1230 } 1231 1232 put_device(mdp_dev); 1233 1234 /* add the MDP component itself */ 1235 drm_of_component_match_add(dev, matchptr, compare_of, 1236 mdp_dev->of_node); 1237 } else { 1238 /* MDP4 */ 1239 mdp_dev = dev; 1240 } 1241 1242 ret = add_components_mdp(mdp_dev, matchptr); 1243 if (ret) 1244 of_platform_depopulate(dev); 1245 1246 return ret; 1247 } 1248 1249 /* 1250 * We don't know what's the best binding to link the gpu with the drm device. 1251 * Fow now, we just hunt for all the possible gpus that we support, and add them 1252 * as components. 1253 */ 1254 static const struct of_device_id msm_gpu_match[] = { 1255 { .compatible = "qcom,adreno" }, 1256 { .compatible = "qcom,adreno-3xx" }, 1257 { .compatible = "qcom,kgsl-3d0" }, 1258 { }, 1259 }; 1260 1261 static int add_gpu_components(struct device *dev, 1262 struct component_match **matchptr) 1263 { 1264 struct device_node *np; 1265 1266 np = of_find_matching_node(NULL, msm_gpu_match); 1267 if (!np) 1268 return 0; 1269 1270 drm_of_component_match_add(dev, matchptr, compare_of, np); 1271 1272 of_node_put(np); 1273 1274 return 0; 1275 } 1276 1277 static int msm_drm_bind(struct device *dev) 1278 { 1279 return msm_drm_init(dev, &msm_driver); 1280 } 1281 1282 static void msm_drm_unbind(struct device *dev) 1283 { 1284 msm_drm_uninit(dev); 1285 } 1286 1287 static const struct component_master_ops msm_drm_ops = { 1288 .bind = msm_drm_bind, 1289 .unbind = msm_drm_unbind, 1290 }; 1291 1292 /* 1293 * Platform driver: 1294 */ 1295 1296 static int msm_pdev_probe(struct platform_device *pdev) 1297 { 1298 struct component_match *match = NULL; 1299 int ret; 1300 1301 ret = add_display_components(&pdev->dev, &match); 1302 if (ret) 1303 return ret; 1304 1305 ret = add_gpu_components(&pdev->dev, &match); 1306 if (ret) 1307 return ret; 1308 1309 /* on all devices that I am aware of, iommu's which can map 1310 * any address the cpu can see are used: 1311 */ 1312 ret = dma_set_mask_and_coherent(&pdev->dev, ~0); 1313 if (ret) 1314 return ret; 1315 1316 return component_master_add_with_match(&pdev->dev, &msm_drm_ops, match); 1317 } 1318 1319 static int msm_pdev_remove(struct platform_device *pdev) 1320 { 1321 component_master_del(&pdev->dev, &msm_drm_ops); 1322 of_platform_depopulate(&pdev->dev); 1323 1324 return 0; 1325 } 1326 1327 static const struct of_device_id dt_match[] = { 1328 { .compatible = "qcom,mdp4", .data = (void *)KMS_MDP4 }, 1329 { .compatible = "qcom,mdss", .data = (void *)KMS_MDP5 }, 1330 { .compatible = "qcom,sdm845-mdss", .data = (void *)KMS_DPU }, 1331 {} 1332 }; 1333 MODULE_DEVICE_TABLE(of, dt_match); 1334 1335 static struct platform_driver msm_platform_driver = { 1336 .probe = msm_pdev_probe, 1337 .remove = msm_pdev_remove, 1338 .driver = { 1339 .name = "msm", 1340 .of_match_table = dt_match, 1341 .pm = &msm_pm_ops, 1342 }, 1343 }; 1344 1345 static int __init msm_drm_register(void) 1346 { 1347 if (!modeset) 1348 return -EINVAL; 1349 1350 DBG("init"); 1351 msm_mdp_register(); 1352 msm_dpu_register(); 1353 msm_dsi_register(); 1354 msm_edp_register(); 1355 msm_hdmi_register(); 1356 adreno_register(); 1357 return platform_driver_register(&msm_platform_driver); 1358 } 1359 1360 static void __exit msm_drm_unregister(void) 1361 { 1362 DBG("fini"); 1363 platform_driver_unregister(&msm_platform_driver); 1364 msm_hdmi_unregister(); 1365 adreno_unregister(); 1366 msm_edp_unregister(); 1367 msm_dsi_unregister(); 1368 msm_mdp_unregister(); 1369 msm_dpu_unregister(); 1370 } 1371 1372 module_init(msm_drm_register); 1373 module_exit(msm_drm_unregister); 1374 1375 MODULE_AUTHOR("Rob Clark <robdclark@gmail.com"); 1376 MODULE_DESCRIPTION("MSM DRM Driver"); 1377 MODULE_LICENSE("GPL"); 1378