1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2016, The Linux Foundation. All rights reserved. 4 */ 5 6 #include <linux/clk.h> 7 #include <linux/clk-provider.h> 8 #include <linux/delay.h> 9 10 #include "dsi_phy.h" 11 #include "dsi.xml.h" 12 #include "dsi_phy_14nm.xml.h" 13 14 #define PHY_14NM_CKLN_IDX 4 15 16 /* 17 * DSI PLL 14nm - clock diagram (eg: DSI0): 18 * 19 * dsi0n1_postdiv_clk 20 * | 21 * | 22 * +----+ | +----+ 23 * dsi0vco_clk ---| n1 |--o--| /8 |-- dsi0pllbyte 24 * +----+ | +----+ 25 * | dsi0n1_postdivby2_clk 26 * | +----+ | 27 * o---| /2 |--o--|\ 28 * | +----+ | \ +----+ 29 * | | |--| n2 |-- dsi0pll 30 * o--------------| / +----+ 31 * |/ 32 */ 33 34 #define POLL_MAX_READS 15 35 #define POLL_TIMEOUT_US 1000 36 37 #define VCO_REF_CLK_RATE 19200000 38 #define VCO_MIN_RATE 1300000000UL 39 #define VCO_MAX_RATE 2600000000UL 40 41 struct dsi_pll_config { 42 u64 vco_current_rate; 43 44 u32 ssc_en; /* SSC enable/disable */ 45 46 /* fixed params */ 47 u32 plllock_cnt; 48 u32 ssc_center; 49 u32 ssc_adj_period; 50 u32 ssc_spread; 51 u32 ssc_freq; 52 53 /* calculated */ 54 u32 dec_start; 55 u32 div_frac_start; 56 u32 ssc_period; 57 u32 ssc_step_size; 58 u32 plllock_cmp; 59 u32 pll_vco_div_ref; 60 u32 pll_vco_count; 61 u32 pll_kvco_div_ref; 62 u32 pll_kvco_count; 63 }; 64 65 struct pll_14nm_cached_state { 66 unsigned long vco_rate; 67 u8 n2postdiv; 68 u8 n1postdiv; 69 }; 70 71 struct dsi_pll_14nm { 72 struct clk_hw clk_hw; 73 74 struct msm_dsi_phy *phy; 75 76 /* protects REG_DSI_14nm_PHY_CMN_CLK_CFG0 register */ 77 spinlock_t postdiv_lock; 78 79 struct pll_14nm_cached_state cached_state; 80 81 struct dsi_pll_14nm *slave; 82 }; 83 84 #define to_pll_14nm(x) container_of(x, struct dsi_pll_14nm, clk_hw) 85 86 /* 87 * Private struct for N1/N2 post-divider clocks. These clocks are similar to 88 * the generic clk_divider class of clocks. The only difference is that it 89 * also sets the slave DSI PLL's post-dividers if in bonded DSI mode 90 */ 91 struct dsi_pll_14nm_postdiv { 92 struct clk_hw hw; 93 94 /* divider params */ 95 u8 shift; 96 u8 width; 97 u8 flags; /* same flags as used by clk_divider struct */ 98 99 struct dsi_pll_14nm *pll; 100 }; 101 102 #define to_pll_14nm_postdiv(_hw) container_of(_hw, struct dsi_pll_14nm_postdiv, hw) 103 104 /* 105 * Global list of private DSI PLL struct pointers. We need this for bonded DSI 106 * mode, where the master PLL's clk_ops needs access the slave's private data 107 */ 108 static struct dsi_pll_14nm *pll_14nm_list[DSI_MAX]; 109 110 static bool pll_14nm_poll_for_ready(struct dsi_pll_14nm *pll_14nm, 111 u32 nb_tries, u32 timeout_us) 112 { 113 bool pll_locked = false, pll_ready = false; 114 void __iomem *base = pll_14nm->phy->pll_base; 115 u32 tries, val; 116 117 tries = nb_tries; 118 while (tries--) { 119 val = dsi_phy_read(base + REG_DSI_14nm_PHY_PLL_RESET_SM_READY_STATUS); 120 pll_locked = !!(val & BIT(5)); 121 122 if (pll_locked) 123 break; 124 125 udelay(timeout_us); 126 } 127 128 if (!pll_locked) 129 goto out; 130 131 tries = nb_tries; 132 while (tries--) { 133 val = dsi_phy_read(base + REG_DSI_14nm_PHY_PLL_RESET_SM_READY_STATUS); 134 pll_ready = !!(val & BIT(0)); 135 136 if (pll_ready) 137 break; 138 139 udelay(timeout_us); 140 } 141 142 out: 143 DBG("DSI PLL is %slocked, %sready", pll_locked ? "" : "*not* ", pll_ready ? "" : "*not* "); 144 145 return pll_locked && pll_ready; 146 } 147 148 static void dsi_pll_14nm_config_init(struct dsi_pll_config *pconf) 149 { 150 /* fixed input */ 151 pconf->plllock_cnt = 1; 152 153 /* 154 * SSC is enabled by default. We might need DT props for configuring 155 * some SSC params like PPM and center/down spread etc. 156 */ 157 pconf->ssc_en = 1; 158 pconf->ssc_center = 0; /* down spread by default */ 159 pconf->ssc_spread = 5; /* PPM / 1000 */ 160 pconf->ssc_freq = 31500; /* default recommended */ 161 pconf->ssc_adj_period = 37; 162 } 163 164 #define CEIL(x, y) (((x) + ((y) - 1)) / (y)) 165 166 static void pll_14nm_ssc_calc(struct dsi_pll_14nm *pll, struct dsi_pll_config *pconf) 167 { 168 u32 period, ssc_period; 169 u32 ref, rem; 170 u64 step_size; 171 172 DBG("vco=%lld ref=%d", pconf->vco_current_rate, VCO_REF_CLK_RATE); 173 174 ssc_period = pconf->ssc_freq / 500; 175 period = (u32)VCO_REF_CLK_RATE / 1000; 176 ssc_period = CEIL(period, ssc_period); 177 ssc_period -= 1; 178 pconf->ssc_period = ssc_period; 179 180 DBG("ssc freq=%d spread=%d period=%d", pconf->ssc_freq, 181 pconf->ssc_spread, pconf->ssc_period); 182 183 step_size = (u32)pconf->vco_current_rate; 184 ref = VCO_REF_CLK_RATE; 185 ref /= 1000; 186 step_size = div_u64(step_size, ref); 187 step_size <<= 20; 188 step_size = div_u64(step_size, 1000); 189 step_size *= pconf->ssc_spread; 190 step_size = div_u64(step_size, 1000); 191 step_size *= (pconf->ssc_adj_period + 1); 192 193 rem = 0; 194 step_size = div_u64_rem(step_size, ssc_period + 1, &rem); 195 if (rem) 196 step_size++; 197 198 DBG("step_size=%lld", step_size); 199 200 step_size &= 0x0ffff; /* take lower 16 bits */ 201 202 pconf->ssc_step_size = step_size; 203 } 204 205 static void pll_14nm_dec_frac_calc(struct dsi_pll_14nm *pll, struct dsi_pll_config *pconf) 206 { 207 u64 multiplier = BIT(20); 208 u64 dec_start_multiple, dec_start, pll_comp_val; 209 u32 duration, div_frac_start; 210 u64 vco_clk_rate = pconf->vco_current_rate; 211 u64 fref = VCO_REF_CLK_RATE; 212 213 DBG("vco_clk_rate=%lld ref_clk_rate=%lld", vco_clk_rate, fref); 214 215 dec_start_multiple = div_u64(vco_clk_rate * multiplier, fref); 216 dec_start = div_u64_rem(dec_start_multiple, multiplier, &div_frac_start); 217 218 pconf->dec_start = (u32)dec_start; 219 pconf->div_frac_start = div_frac_start; 220 221 if (pconf->plllock_cnt == 0) 222 duration = 1024; 223 else if (pconf->plllock_cnt == 1) 224 duration = 256; 225 else if (pconf->plllock_cnt == 2) 226 duration = 128; 227 else 228 duration = 32; 229 230 pll_comp_val = duration * dec_start_multiple; 231 pll_comp_val = div_u64(pll_comp_val, multiplier); 232 do_div(pll_comp_val, 10); 233 234 pconf->plllock_cmp = (u32)pll_comp_val; 235 } 236 237 static u32 pll_14nm_kvco_slop(u32 vrate) 238 { 239 u32 slop = 0; 240 241 if (vrate > VCO_MIN_RATE && vrate <= 1800000000UL) 242 slop = 600; 243 else if (vrate > 1800000000UL && vrate < 2300000000UL) 244 slop = 400; 245 else if (vrate > 2300000000UL && vrate < VCO_MAX_RATE) 246 slop = 280; 247 248 return slop; 249 } 250 251 static void pll_14nm_calc_vco_count(struct dsi_pll_14nm *pll, struct dsi_pll_config *pconf) 252 { 253 u64 vco_clk_rate = pconf->vco_current_rate; 254 u64 fref = VCO_REF_CLK_RATE; 255 u32 vco_measure_time = 5; 256 u32 kvco_measure_time = 5; 257 u64 data; 258 u32 cnt; 259 260 data = fref * vco_measure_time; 261 do_div(data, 1000000); 262 data &= 0x03ff; /* 10 bits */ 263 data -= 2; 264 pconf->pll_vco_div_ref = data; 265 266 data = div_u64(vco_clk_rate, 1000000); /* unit is Mhz */ 267 data *= vco_measure_time; 268 do_div(data, 10); 269 pconf->pll_vco_count = data; 270 271 data = fref * kvco_measure_time; 272 do_div(data, 1000000); 273 data &= 0x03ff; /* 10 bits */ 274 data -= 1; 275 pconf->pll_kvco_div_ref = data; 276 277 cnt = pll_14nm_kvco_slop(vco_clk_rate); 278 cnt *= 2; 279 cnt /= 100; 280 cnt *= kvco_measure_time; 281 pconf->pll_kvco_count = cnt; 282 } 283 284 static void pll_db_commit_ssc(struct dsi_pll_14nm *pll, struct dsi_pll_config *pconf) 285 { 286 void __iomem *base = pll->phy->pll_base; 287 u8 data; 288 289 data = pconf->ssc_adj_period; 290 data &= 0x0ff; 291 dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_SSC_ADJ_PER1, data); 292 data = (pconf->ssc_adj_period >> 8); 293 data &= 0x03; 294 dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_SSC_ADJ_PER2, data); 295 296 data = pconf->ssc_period; 297 data &= 0x0ff; 298 dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_SSC_PER1, data); 299 data = (pconf->ssc_period >> 8); 300 data &= 0x0ff; 301 dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_SSC_PER2, data); 302 303 data = pconf->ssc_step_size; 304 data &= 0x0ff; 305 dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_SSC_STEP_SIZE1, data); 306 data = (pconf->ssc_step_size >> 8); 307 data &= 0x0ff; 308 dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_SSC_STEP_SIZE2, data); 309 310 data = (pconf->ssc_center & 0x01); 311 data <<= 1; 312 data |= 0x01; /* enable */ 313 dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_SSC_EN_CENTER, data); 314 315 wmb(); /* make sure register committed */ 316 } 317 318 static void pll_db_commit_common(struct dsi_pll_14nm *pll, 319 struct dsi_pll_config *pconf) 320 { 321 void __iomem *base = pll->phy->pll_base; 322 u8 data; 323 324 /* confgiure the non frequency dependent pll registers */ 325 data = 0; 326 dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_SYSCLK_EN_RESET, data); 327 328 dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_TXCLK_EN, 1); 329 330 dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_RESETSM_CNTRL, 48); 331 dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_RESETSM_CNTRL2, 4 << 3); /* bandgap_timer */ 332 dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_RESETSM_CNTRL5, 5); /* pll_wakeup_timer */ 333 334 data = pconf->pll_vco_div_ref & 0xff; 335 dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_VCO_DIV_REF1, data); 336 data = (pconf->pll_vco_div_ref >> 8) & 0x3; 337 dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_VCO_DIV_REF2, data); 338 339 data = pconf->pll_kvco_div_ref & 0xff; 340 dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_KVCO_DIV_REF1, data); 341 data = (pconf->pll_kvco_div_ref >> 8) & 0x3; 342 dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_KVCO_DIV_REF2, data); 343 344 dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLL_MISC1, 16); 345 346 dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_IE_TRIM, 4); 347 348 dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_IP_TRIM, 4); 349 350 dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_CP_SET_CUR, 1 << 3 | 1); 351 352 dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLL_ICPCSET, 0 << 3 | 0); 353 354 dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLL_ICPMSET, 0 << 3 | 0); 355 356 dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLL_ICP_SET, 4 << 3 | 4); 357 358 dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLL_LPF1, 1 << 4 | 11); 359 360 dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_IPTAT_TRIM, 7); 361 362 dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLL_CRCTRL, 1 << 4 | 2); 363 } 364 365 static void pll_14nm_software_reset(struct dsi_pll_14nm *pll_14nm) 366 { 367 void __iomem *cmn_base = pll_14nm->phy->base; 368 369 /* de assert pll start and apply pll sw reset */ 370 371 /* stop pll */ 372 dsi_phy_write(cmn_base + REG_DSI_14nm_PHY_CMN_PLL_CNTRL, 0); 373 374 /* pll sw reset */ 375 dsi_phy_write_udelay(cmn_base + REG_DSI_14nm_PHY_CMN_CTRL_1, 0x20, 10); 376 wmb(); /* make sure register committed */ 377 378 dsi_phy_write(cmn_base + REG_DSI_14nm_PHY_CMN_CTRL_1, 0); 379 wmb(); /* make sure register committed */ 380 } 381 382 static void pll_db_commit_14nm(struct dsi_pll_14nm *pll, 383 struct dsi_pll_config *pconf) 384 { 385 void __iomem *base = pll->phy->pll_base; 386 void __iomem *cmn_base = pll->phy->base; 387 u8 data; 388 389 DBG("DSI%d PLL", pll->phy->id); 390 391 dsi_phy_write(cmn_base + REG_DSI_14nm_PHY_CMN_LDO_CNTRL, 0x3c); 392 393 pll_db_commit_common(pll, pconf); 394 395 pll_14nm_software_reset(pll); 396 397 /* Use the /2 path in Mux */ 398 dsi_phy_write(cmn_base + REG_DSI_14nm_PHY_CMN_CLK_CFG1, 1); 399 400 data = 0xff; /* data, clk, pll normal operation */ 401 dsi_phy_write(cmn_base + REG_DSI_14nm_PHY_CMN_CTRL_0, data); 402 403 /* configure the frequency dependent pll registers */ 404 data = pconf->dec_start; 405 dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_DEC_START, data); 406 407 data = pconf->div_frac_start & 0xff; 408 dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_DIV_FRAC_START1, data); 409 data = (pconf->div_frac_start >> 8) & 0xff; 410 dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_DIV_FRAC_START2, data); 411 data = (pconf->div_frac_start >> 16) & 0xf; 412 dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_DIV_FRAC_START3, data); 413 414 data = pconf->plllock_cmp & 0xff; 415 dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLLLOCK_CMP1, data); 416 417 data = (pconf->plllock_cmp >> 8) & 0xff; 418 dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLLLOCK_CMP2, data); 419 420 data = (pconf->plllock_cmp >> 16) & 0x3; 421 dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLLLOCK_CMP3, data); 422 423 data = pconf->plllock_cnt << 1 | 0 << 3; /* plllock_rng */ 424 dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLLLOCK_CMP_EN, data); 425 426 data = pconf->pll_vco_count & 0xff; 427 dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_VCO_COUNT1, data); 428 data = (pconf->pll_vco_count >> 8) & 0xff; 429 dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_VCO_COUNT2, data); 430 431 data = pconf->pll_kvco_count & 0xff; 432 dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_KVCO_COUNT1, data); 433 data = (pconf->pll_kvco_count >> 8) & 0x3; 434 dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_KVCO_COUNT2, data); 435 436 /* 437 * High nibble configures the post divider internal to the VCO. It's 438 * fixed to divide by 1 for now. 439 * 440 * 0: divided by 1 441 * 1: divided by 2 442 * 2: divided by 4 443 * 3: divided by 8 444 */ 445 dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLL_LPF2_POSTDIV, 0 << 4 | 3); 446 447 if (pconf->ssc_en) 448 pll_db_commit_ssc(pll, pconf); 449 450 wmb(); /* make sure register committed */ 451 } 452 453 /* 454 * VCO clock Callbacks 455 */ 456 static int dsi_pll_14nm_vco_set_rate(struct clk_hw *hw, unsigned long rate, 457 unsigned long parent_rate) 458 { 459 struct dsi_pll_14nm *pll_14nm = to_pll_14nm(hw); 460 struct dsi_pll_config conf; 461 462 DBG("DSI PLL%d rate=%lu, parent's=%lu", pll_14nm->phy->id, rate, 463 parent_rate); 464 465 dsi_pll_14nm_config_init(&conf); 466 conf.vco_current_rate = rate; 467 468 pll_14nm_dec_frac_calc(pll_14nm, &conf); 469 470 if (conf.ssc_en) 471 pll_14nm_ssc_calc(pll_14nm, &conf); 472 473 pll_14nm_calc_vco_count(pll_14nm, &conf); 474 475 /* commit the slave DSI PLL registers if we're master. Note that we 476 * don't lock the slave PLL. We just ensure that the PLL/PHY registers 477 * of the master and slave are identical 478 */ 479 if (pll_14nm->phy->usecase == MSM_DSI_PHY_MASTER) { 480 struct dsi_pll_14nm *pll_14nm_slave = pll_14nm->slave; 481 482 pll_db_commit_14nm(pll_14nm_slave, &conf); 483 } 484 485 pll_db_commit_14nm(pll_14nm, &conf); 486 487 return 0; 488 } 489 490 static unsigned long dsi_pll_14nm_vco_recalc_rate(struct clk_hw *hw, 491 unsigned long parent_rate) 492 { 493 struct dsi_pll_14nm *pll_14nm = to_pll_14nm(hw); 494 void __iomem *base = pll_14nm->phy->pll_base; 495 u64 vco_rate, multiplier = BIT(20); 496 u32 div_frac_start; 497 u32 dec_start; 498 u64 ref_clk = parent_rate; 499 500 dec_start = dsi_phy_read(base + REG_DSI_14nm_PHY_PLL_DEC_START); 501 dec_start &= 0x0ff; 502 503 DBG("dec_start = %x", dec_start); 504 505 div_frac_start = (dsi_phy_read(base + REG_DSI_14nm_PHY_PLL_DIV_FRAC_START3) 506 & 0xf) << 16; 507 div_frac_start |= (dsi_phy_read(base + REG_DSI_14nm_PHY_PLL_DIV_FRAC_START2) 508 & 0xff) << 8; 509 div_frac_start |= dsi_phy_read(base + REG_DSI_14nm_PHY_PLL_DIV_FRAC_START1) 510 & 0xff; 511 512 DBG("div_frac_start = %x", div_frac_start); 513 514 vco_rate = ref_clk * dec_start; 515 516 vco_rate += ((ref_clk * div_frac_start) / multiplier); 517 518 /* 519 * Recalculating the rate from dec_start and frac_start doesn't end up 520 * the rate we originally set. Convert the freq to KHz, round it up and 521 * convert it back to MHz. 522 */ 523 vco_rate = DIV_ROUND_UP_ULL(vco_rate, 1000) * 1000; 524 525 DBG("returning vco rate = %lu", (unsigned long)vco_rate); 526 527 return (unsigned long)vco_rate; 528 } 529 530 static int dsi_pll_14nm_vco_prepare(struct clk_hw *hw) 531 { 532 struct dsi_pll_14nm *pll_14nm = to_pll_14nm(hw); 533 void __iomem *base = pll_14nm->phy->pll_base; 534 void __iomem *cmn_base = pll_14nm->phy->base; 535 bool locked; 536 537 DBG(""); 538 539 if (unlikely(pll_14nm->phy->pll_on)) 540 return 0; 541 542 if (dsi_pll_14nm_vco_recalc_rate(hw, VCO_REF_CLK_RATE) == 0) 543 dsi_pll_14nm_vco_set_rate(hw, pll_14nm->phy->cfg->min_pll_rate, VCO_REF_CLK_RATE); 544 545 dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_VREF_CFG1, 0x10); 546 dsi_phy_write(cmn_base + REG_DSI_14nm_PHY_CMN_PLL_CNTRL, 1); 547 548 locked = pll_14nm_poll_for_ready(pll_14nm, POLL_MAX_READS, 549 POLL_TIMEOUT_US); 550 551 if (unlikely(!locked)) { 552 DRM_DEV_ERROR(&pll_14nm->phy->pdev->dev, "DSI PLL lock failed\n"); 553 return -EINVAL; 554 } 555 556 DBG("DSI PLL lock success"); 557 pll_14nm->phy->pll_on = true; 558 559 return 0; 560 } 561 562 static void dsi_pll_14nm_vco_unprepare(struct clk_hw *hw) 563 { 564 struct dsi_pll_14nm *pll_14nm = to_pll_14nm(hw); 565 void __iomem *cmn_base = pll_14nm->phy->base; 566 567 DBG(""); 568 569 if (unlikely(!pll_14nm->phy->pll_on)) 570 return; 571 572 dsi_phy_write(cmn_base + REG_DSI_14nm_PHY_CMN_PLL_CNTRL, 0); 573 574 pll_14nm->phy->pll_on = false; 575 } 576 577 static long dsi_pll_14nm_clk_round_rate(struct clk_hw *hw, 578 unsigned long rate, unsigned long *parent_rate) 579 { 580 struct dsi_pll_14nm *pll_14nm = to_pll_14nm(hw); 581 582 if (rate < pll_14nm->phy->cfg->min_pll_rate) 583 return pll_14nm->phy->cfg->min_pll_rate; 584 else if (rate > pll_14nm->phy->cfg->max_pll_rate) 585 return pll_14nm->phy->cfg->max_pll_rate; 586 else 587 return rate; 588 } 589 590 static const struct clk_ops clk_ops_dsi_pll_14nm_vco = { 591 .round_rate = dsi_pll_14nm_clk_round_rate, 592 .set_rate = dsi_pll_14nm_vco_set_rate, 593 .recalc_rate = dsi_pll_14nm_vco_recalc_rate, 594 .prepare = dsi_pll_14nm_vco_prepare, 595 .unprepare = dsi_pll_14nm_vco_unprepare, 596 }; 597 598 /* 599 * N1 and N2 post-divider clock callbacks 600 */ 601 #define div_mask(width) ((1 << (width)) - 1) 602 static unsigned long dsi_pll_14nm_postdiv_recalc_rate(struct clk_hw *hw, 603 unsigned long parent_rate) 604 { 605 struct dsi_pll_14nm_postdiv *postdiv = to_pll_14nm_postdiv(hw); 606 struct dsi_pll_14nm *pll_14nm = postdiv->pll; 607 void __iomem *base = pll_14nm->phy->base; 608 u8 shift = postdiv->shift; 609 u8 width = postdiv->width; 610 u32 val; 611 612 DBG("DSI%d PLL parent rate=%lu", pll_14nm->phy->id, parent_rate); 613 614 val = dsi_phy_read(base + REG_DSI_14nm_PHY_CMN_CLK_CFG0) >> shift; 615 val &= div_mask(width); 616 617 return divider_recalc_rate(hw, parent_rate, val, NULL, 618 postdiv->flags, width); 619 } 620 621 static long dsi_pll_14nm_postdiv_round_rate(struct clk_hw *hw, 622 unsigned long rate, 623 unsigned long *prate) 624 { 625 struct dsi_pll_14nm_postdiv *postdiv = to_pll_14nm_postdiv(hw); 626 struct dsi_pll_14nm *pll_14nm = postdiv->pll; 627 628 DBG("DSI%d PLL parent rate=%lu", pll_14nm->phy->id, rate); 629 630 return divider_round_rate(hw, rate, prate, NULL, 631 postdiv->width, 632 postdiv->flags); 633 } 634 635 static int dsi_pll_14nm_postdiv_set_rate(struct clk_hw *hw, unsigned long rate, 636 unsigned long parent_rate) 637 { 638 struct dsi_pll_14nm_postdiv *postdiv = to_pll_14nm_postdiv(hw); 639 struct dsi_pll_14nm *pll_14nm = postdiv->pll; 640 void __iomem *base = pll_14nm->phy->base; 641 spinlock_t *lock = &pll_14nm->postdiv_lock; 642 u8 shift = postdiv->shift; 643 u8 width = postdiv->width; 644 unsigned int value; 645 unsigned long flags = 0; 646 u32 val; 647 648 DBG("DSI%d PLL parent rate=%lu parent rate %lu", pll_14nm->phy->id, rate, 649 parent_rate); 650 651 value = divider_get_val(rate, parent_rate, NULL, postdiv->width, 652 postdiv->flags); 653 654 spin_lock_irqsave(lock, flags); 655 656 val = dsi_phy_read(base + REG_DSI_14nm_PHY_CMN_CLK_CFG0); 657 val &= ~(div_mask(width) << shift); 658 659 val |= value << shift; 660 dsi_phy_write(base + REG_DSI_14nm_PHY_CMN_CLK_CFG0, val); 661 662 /* If we're master in bonded DSI mode, then the slave PLL's post-dividers 663 * follow the master's post dividers 664 */ 665 if (pll_14nm->phy->usecase == MSM_DSI_PHY_MASTER) { 666 struct dsi_pll_14nm *pll_14nm_slave = pll_14nm->slave; 667 void __iomem *slave_base = pll_14nm_slave->phy->base; 668 669 dsi_phy_write(slave_base + REG_DSI_14nm_PHY_CMN_CLK_CFG0, val); 670 } 671 672 spin_unlock_irqrestore(lock, flags); 673 674 return 0; 675 } 676 677 static const struct clk_ops clk_ops_dsi_pll_14nm_postdiv = { 678 .recalc_rate = dsi_pll_14nm_postdiv_recalc_rate, 679 .round_rate = dsi_pll_14nm_postdiv_round_rate, 680 .set_rate = dsi_pll_14nm_postdiv_set_rate, 681 }; 682 683 /* 684 * PLL Callbacks 685 */ 686 687 static void dsi_14nm_pll_save_state(struct msm_dsi_phy *phy) 688 { 689 struct dsi_pll_14nm *pll_14nm = to_pll_14nm(phy->vco_hw); 690 struct pll_14nm_cached_state *cached_state = &pll_14nm->cached_state; 691 void __iomem *cmn_base = pll_14nm->phy->base; 692 u32 data; 693 694 data = dsi_phy_read(cmn_base + REG_DSI_14nm_PHY_CMN_CLK_CFG0); 695 696 cached_state->n1postdiv = data & 0xf; 697 cached_state->n2postdiv = (data >> 4) & 0xf; 698 699 DBG("DSI%d PLL save state %x %x", pll_14nm->phy->id, 700 cached_state->n1postdiv, cached_state->n2postdiv); 701 702 cached_state->vco_rate = clk_hw_get_rate(phy->vco_hw); 703 } 704 705 static int dsi_14nm_pll_restore_state(struct msm_dsi_phy *phy) 706 { 707 struct dsi_pll_14nm *pll_14nm = to_pll_14nm(phy->vco_hw); 708 struct pll_14nm_cached_state *cached_state = &pll_14nm->cached_state; 709 void __iomem *cmn_base = pll_14nm->phy->base; 710 u32 data; 711 int ret; 712 713 ret = dsi_pll_14nm_vco_set_rate(phy->vco_hw, 714 cached_state->vco_rate, 0); 715 if (ret) { 716 DRM_DEV_ERROR(&pll_14nm->phy->pdev->dev, 717 "restore vco rate failed. ret=%d\n", ret); 718 return ret; 719 } 720 721 data = cached_state->n1postdiv | (cached_state->n2postdiv << 4); 722 723 DBG("DSI%d PLL restore state %x %x", pll_14nm->phy->id, 724 cached_state->n1postdiv, cached_state->n2postdiv); 725 726 dsi_phy_write(cmn_base + REG_DSI_14nm_PHY_CMN_CLK_CFG0, data); 727 728 /* also restore post-dividers for slave DSI PLL */ 729 if (phy->usecase == MSM_DSI_PHY_MASTER) { 730 struct dsi_pll_14nm *pll_14nm_slave = pll_14nm->slave; 731 void __iomem *slave_base = pll_14nm_slave->phy->base; 732 733 dsi_phy_write(slave_base + REG_DSI_14nm_PHY_CMN_CLK_CFG0, data); 734 } 735 736 return 0; 737 } 738 739 static int dsi_14nm_set_usecase(struct msm_dsi_phy *phy) 740 { 741 struct dsi_pll_14nm *pll_14nm = to_pll_14nm(phy->vco_hw); 742 void __iomem *base = phy->pll_base; 743 u32 clkbuflr_en, bandgap = 0; 744 745 switch (phy->usecase) { 746 case MSM_DSI_PHY_STANDALONE: 747 clkbuflr_en = 0x1; 748 break; 749 case MSM_DSI_PHY_MASTER: 750 clkbuflr_en = 0x3; 751 pll_14nm->slave = pll_14nm_list[(pll_14nm->phy->id + 1) % DSI_MAX]; 752 break; 753 case MSM_DSI_PHY_SLAVE: 754 clkbuflr_en = 0x0; 755 bandgap = 0x3; 756 break; 757 default: 758 return -EINVAL; 759 } 760 761 dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_CLKBUFLR_EN, clkbuflr_en); 762 if (bandgap) 763 dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLL_BANDGAP, bandgap); 764 765 return 0; 766 } 767 768 static struct clk_hw *pll_14nm_postdiv_register(struct dsi_pll_14nm *pll_14nm, 769 const char *name, 770 const struct clk_hw *parent_hw, 771 unsigned long flags, 772 u8 shift) 773 { 774 struct dsi_pll_14nm_postdiv *pll_postdiv; 775 struct device *dev = &pll_14nm->phy->pdev->dev; 776 struct clk_init_data postdiv_init = { 777 .parent_hws = (const struct clk_hw *[]) { parent_hw }, 778 .num_parents = 1, 779 .name = name, 780 .flags = flags, 781 .ops = &clk_ops_dsi_pll_14nm_postdiv, 782 }; 783 int ret; 784 785 pll_postdiv = devm_kzalloc(dev, sizeof(*pll_postdiv), GFP_KERNEL); 786 if (!pll_postdiv) 787 return ERR_PTR(-ENOMEM); 788 789 pll_postdiv->pll = pll_14nm; 790 pll_postdiv->shift = shift; 791 /* both N1 and N2 postdividers are 4 bits wide */ 792 pll_postdiv->width = 4; 793 /* range of each divider is from 1 to 15 */ 794 pll_postdiv->flags = CLK_DIVIDER_ONE_BASED; 795 pll_postdiv->hw.init = &postdiv_init; 796 797 ret = devm_clk_hw_register(dev, &pll_postdiv->hw); 798 if (ret) 799 return ERR_PTR(ret); 800 801 return &pll_postdiv->hw; 802 } 803 804 static int pll_14nm_register(struct dsi_pll_14nm *pll_14nm, struct clk_hw **provided_clocks) 805 { 806 char clk_name[32]; 807 struct clk_init_data vco_init = { 808 .parent_data = &(const struct clk_parent_data) { 809 .fw_name = "ref", 810 }, 811 .num_parents = 1, 812 .name = clk_name, 813 .flags = CLK_IGNORE_UNUSED, 814 .ops = &clk_ops_dsi_pll_14nm_vco, 815 }; 816 struct device *dev = &pll_14nm->phy->pdev->dev; 817 struct clk_hw *hw, *n1_postdiv, *n1_postdivby2; 818 int ret; 819 820 DBG("DSI%d", pll_14nm->phy->id); 821 822 snprintf(clk_name, sizeof(clk_name), "dsi%dvco_clk", pll_14nm->phy->id); 823 pll_14nm->clk_hw.init = &vco_init; 824 825 ret = devm_clk_hw_register(dev, &pll_14nm->clk_hw); 826 if (ret) 827 return ret; 828 829 snprintf(clk_name, sizeof(clk_name), "dsi%dn1_postdiv_clk", pll_14nm->phy->id); 830 831 /* N1 postdiv, bits 0-3 in REG_DSI_14nm_PHY_CMN_CLK_CFG0 */ 832 n1_postdiv = pll_14nm_postdiv_register(pll_14nm, clk_name, 833 &pll_14nm->clk_hw, CLK_SET_RATE_PARENT, 0); 834 if (IS_ERR(n1_postdiv)) 835 return PTR_ERR(n1_postdiv); 836 837 snprintf(clk_name, sizeof(clk_name), "dsi%dpllbyte", pll_14nm->phy->id); 838 839 /* DSI Byte clock = VCO_CLK / N1 / 8 */ 840 hw = devm_clk_hw_register_fixed_factor_parent_hw(dev, clk_name, 841 n1_postdiv, CLK_SET_RATE_PARENT, 1, 8); 842 if (IS_ERR(hw)) 843 return PTR_ERR(hw); 844 845 provided_clocks[DSI_BYTE_PLL_CLK] = hw; 846 847 snprintf(clk_name, sizeof(clk_name), "dsi%dn1_postdivby2_clk", pll_14nm->phy->id); 848 849 /* 850 * Skip the mux for now, force DSICLK_SEL to 1, Add a /2 divider 851 * on the way. Don't let it set parent. 852 */ 853 n1_postdivby2 = devm_clk_hw_register_fixed_factor_parent_hw(dev, 854 clk_name, n1_postdiv, 0, 1, 2); 855 if (IS_ERR(n1_postdivby2)) 856 return PTR_ERR(n1_postdivby2); 857 858 snprintf(clk_name, sizeof(clk_name), "dsi%dpll", pll_14nm->phy->id); 859 860 /* DSI pixel clock = VCO_CLK / N1 / 2 / N2 861 * This is the output of N2 post-divider, bits 4-7 in 862 * REG_DSI_14nm_PHY_CMN_CLK_CFG0. Don't let it set parent. 863 */ 864 hw = pll_14nm_postdiv_register(pll_14nm, clk_name, n1_postdivby2, 865 0, 4); 866 if (IS_ERR(hw)) 867 return PTR_ERR(hw); 868 869 provided_clocks[DSI_PIXEL_PLL_CLK] = hw; 870 871 return 0; 872 } 873 874 static int dsi_pll_14nm_init(struct msm_dsi_phy *phy) 875 { 876 struct platform_device *pdev = phy->pdev; 877 struct dsi_pll_14nm *pll_14nm; 878 int ret; 879 880 if (!pdev) 881 return -ENODEV; 882 883 pll_14nm = devm_kzalloc(&pdev->dev, sizeof(*pll_14nm), GFP_KERNEL); 884 if (!pll_14nm) 885 return -ENOMEM; 886 887 DBG("PLL%d", phy->id); 888 889 pll_14nm_list[phy->id] = pll_14nm; 890 891 spin_lock_init(&pll_14nm->postdiv_lock); 892 893 pll_14nm->phy = phy; 894 895 ret = pll_14nm_register(pll_14nm, phy->provided_clocks->hws); 896 if (ret) { 897 DRM_DEV_ERROR(&pdev->dev, "failed to register PLL: %d\n", ret); 898 return ret; 899 } 900 901 phy->vco_hw = &pll_14nm->clk_hw; 902 903 return 0; 904 } 905 906 static void dsi_14nm_dphy_set_timing(struct msm_dsi_phy *phy, 907 struct msm_dsi_dphy_timing *timing, 908 int lane_idx) 909 { 910 void __iomem *base = phy->lane_base; 911 bool clk_ln = (lane_idx == PHY_14NM_CKLN_IDX); 912 u32 zero = clk_ln ? timing->clk_zero : timing->hs_zero; 913 u32 prepare = clk_ln ? timing->clk_prepare : timing->hs_prepare; 914 u32 trail = clk_ln ? timing->clk_trail : timing->hs_trail; 915 u32 rqst = clk_ln ? timing->hs_rqst_ckln : timing->hs_rqst; 916 u32 prep_dly = clk_ln ? timing->hs_prep_dly_ckln : timing->hs_prep_dly; 917 u32 halfbyte_en = clk_ln ? timing->hs_halfbyte_en_ckln : 918 timing->hs_halfbyte_en; 919 920 dsi_phy_write(base + REG_DSI_14nm_PHY_LN_TIMING_CTRL_4(lane_idx), 921 DSI_14nm_PHY_LN_TIMING_CTRL_4_HS_EXIT(timing->hs_exit)); 922 dsi_phy_write(base + REG_DSI_14nm_PHY_LN_TIMING_CTRL_5(lane_idx), 923 DSI_14nm_PHY_LN_TIMING_CTRL_5_HS_ZERO(zero)); 924 dsi_phy_write(base + REG_DSI_14nm_PHY_LN_TIMING_CTRL_6(lane_idx), 925 DSI_14nm_PHY_LN_TIMING_CTRL_6_HS_PREPARE(prepare)); 926 dsi_phy_write(base + REG_DSI_14nm_PHY_LN_TIMING_CTRL_7(lane_idx), 927 DSI_14nm_PHY_LN_TIMING_CTRL_7_HS_TRAIL(trail)); 928 dsi_phy_write(base + REG_DSI_14nm_PHY_LN_TIMING_CTRL_8(lane_idx), 929 DSI_14nm_PHY_LN_TIMING_CTRL_8_HS_RQST(rqst)); 930 dsi_phy_write(base + REG_DSI_14nm_PHY_LN_CFG0(lane_idx), 931 DSI_14nm_PHY_LN_CFG0_PREPARE_DLY(prep_dly)); 932 dsi_phy_write(base + REG_DSI_14nm_PHY_LN_CFG1(lane_idx), 933 halfbyte_en ? DSI_14nm_PHY_LN_CFG1_HALFBYTECLK_EN : 0); 934 dsi_phy_write(base + REG_DSI_14nm_PHY_LN_TIMING_CTRL_9(lane_idx), 935 DSI_14nm_PHY_LN_TIMING_CTRL_9_TA_GO(timing->ta_go) | 936 DSI_14nm_PHY_LN_TIMING_CTRL_9_TA_SURE(timing->ta_sure)); 937 dsi_phy_write(base + REG_DSI_14nm_PHY_LN_TIMING_CTRL_10(lane_idx), 938 DSI_14nm_PHY_LN_TIMING_CTRL_10_TA_GET(timing->ta_get)); 939 dsi_phy_write(base + REG_DSI_14nm_PHY_LN_TIMING_CTRL_11(lane_idx), 940 DSI_14nm_PHY_LN_TIMING_CTRL_11_TRIG3_CMD(0xa0)); 941 } 942 943 static int dsi_14nm_phy_enable(struct msm_dsi_phy *phy, 944 struct msm_dsi_phy_clk_request *clk_req) 945 { 946 struct msm_dsi_dphy_timing *timing = &phy->timing; 947 u32 data; 948 int i; 949 int ret; 950 void __iomem *base = phy->base; 951 void __iomem *lane_base = phy->lane_base; 952 u32 glbl_test_ctrl; 953 954 if (msm_dsi_dphy_timing_calc_v2(timing, clk_req)) { 955 DRM_DEV_ERROR(&phy->pdev->dev, 956 "%s: D-PHY timing calculation failed\n", 957 __func__); 958 return -EINVAL; 959 } 960 961 data = 0x1c; 962 if (phy->usecase != MSM_DSI_PHY_STANDALONE) 963 data |= DSI_14nm_PHY_CMN_LDO_CNTRL_VREG_CTRL(32); 964 dsi_phy_write(base + REG_DSI_14nm_PHY_CMN_LDO_CNTRL, data); 965 966 dsi_phy_write(base + REG_DSI_14nm_PHY_CMN_GLBL_TEST_CTRL, 0x1); 967 968 /* 4 data lanes + 1 clk lane configuration */ 969 for (i = 0; i < 5; i++) { 970 dsi_phy_write(lane_base + REG_DSI_14nm_PHY_LN_VREG_CNTRL(i), 971 0x1d); 972 973 dsi_phy_write(lane_base + 974 REG_DSI_14nm_PHY_LN_STRENGTH_CTRL_0(i), 0xff); 975 dsi_phy_write(lane_base + 976 REG_DSI_14nm_PHY_LN_STRENGTH_CTRL_1(i), 977 (i == PHY_14NM_CKLN_IDX) ? 0x00 : 0x06); 978 979 dsi_phy_write(lane_base + REG_DSI_14nm_PHY_LN_CFG3(i), 980 (i == PHY_14NM_CKLN_IDX) ? 0x8f : 0x0f); 981 dsi_phy_write(lane_base + REG_DSI_14nm_PHY_LN_CFG2(i), 0x10); 982 dsi_phy_write(lane_base + REG_DSI_14nm_PHY_LN_TEST_DATAPATH(i), 983 0); 984 dsi_phy_write(lane_base + REG_DSI_14nm_PHY_LN_TEST_STR(i), 985 0x88); 986 987 dsi_14nm_dphy_set_timing(phy, timing, i); 988 } 989 990 /* Make sure PLL is not start */ 991 dsi_phy_write(base + REG_DSI_14nm_PHY_CMN_PLL_CNTRL, 0x00); 992 993 wmb(); /* make sure everything is written before reset and enable */ 994 995 /* reset digital block */ 996 dsi_phy_write(base + REG_DSI_14nm_PHY_CMN_CTRL_1, 0x80); 997 wmb(); /* ensure reset is asserted */ 998 udelay(100); 999 dsi_phy_write(base + REG_DSI_14nm_PHY_CMN_CTRL_1, 0x00); 1000 1001 glbl_test_ctrl = dsi_phy_read(base + REG_DSI_14nm_PHY_CMN_GLBL_TEST_CTRL); 1002 if (phy->id == DSI_1 && phy->usecase == MSM_DSI_PHY_SLAVE) 1003 glbl_test_ctrl |= DSI_14nm_PHY_CMN_GLBL_TEST_CTRL_BITCLK_HS_SEL; 1004 else 1005 glbl_test_ctrl &= ~DSI_14nm_PHY_CMN_GLBL_TEST_CTRL_BITCLK_HS_SEL; 1006 dsi_phy_write(base + REG_DSI_14nm_PHY_CMN_GLBL_TEST_CTRL, glbl_test_ctrl); 1007 ret = dsi_14nm_set_usecase(phy); 1008 if (ret) { 1009 DRM_DEV_ERROR(&phy->pdev->dev, "%s: set pll usecase failed, %d\n", 1010 __func__, ret); 1011 return ret; 1012 } 1013 1014 /* Remove power down from PLL and all lanes */ 1015 dsi_phy_write(base + REG_DSI_14nm_PHY_CMN_CTRL_0, 0xff); 1016 1017 return 0; 1018 } 1019 1020 static void dsi_14nm_phy_disable(struct msm_dsi_phy *phy) 1021 { 1022 dsi_phy_write(phy->base + REG_DSI_14nm_PHY_CMN_GLBL_TEST_CTRL, 0); 1023 dsi_phy_write(phy->base + REG_DSI_14nm_PHY_CMN_CTRL_0, 0); 1024 1025 /* ensure that the phy is completely disabled */ 1026 wmb(); 1027 } 1028 1029 static const struct regulator_bulk_data dsi_phy_14nm_17mA_regulators[] = { 1030 { .supply = "vcca", .init_load_uA = 17000 }, 1031 }; 1032 1033 static const struct regulator_bulk_data dsi_phy_14nm_73p4mA_regulators[] = { 1034 { .supply = "vcca", .init_load_uA = 73400 }, 1035 }; 1036 1037 const struct msm_dsi_phy_cfg dsi_phy_14nm_cfgs = { 1038 .has_phy_lane = true, 1039 .regulator_data = dsi_phy_14nm_17mA_regulators, 1040 .num_regulators = ARRAY_SIZE(dsi_phy_14nm_17mA_regulators), 1041 .ops = { 1042 .enable = dsi_14nm_phy_enable, 1043 .disable = dsi_14nm_phy_disable, 1044 .pll_init = dsi_pll_14nm_init, 1045 .save_pll_state = dsi_14nm_pll_save_state, 1046 .restore_pll_state = dsi_14nm_pll_restore_state, 1047 }, 1048 .min_pll_rate = VCO_MIN_RATE, 1049 .max_pll_rate = VCO_MAX_RATE, 1050 .io_start = { 0x994400, 0x996400 }, 1051 .num_dsi_phy = 2, 1052 }; 1053 1054 const struct msm_dsi_phy_cfg dsi_phy_14nm_660_cfgs = { 1055 .has_phy_lane = true, 1056 .regulator_data = dsi_phy_14nm_73p4mA_regulators, 1057 .num_regulators = ARRAY_SIZE(dsi_phy_14nm_73p4mA_regulators), 1058 .ops = { 1059 .enable = dsi_14nm_phy_enable, 1060 .disable = dsi_14nm_phy_disable, 1061 .pll_init = dsi_pll_14nm_init, 1062 .save_pll_state = dsi_14nm_pll_save_state, 1063 .restore_pll_state = dsi_14nm_pll_restore_state, 1064 }, 1065 .min_pll_rate = VCO_MIN_RATE, 1066 .max_pll_rate = VCO_MAX_RATE, 1067 .io_start = { 0xc994400, 0xc996400 }, 1068 .num_dsi_phy = 2, 1069 }; 1070 1071 const struct msm_dsi_phy_cfg dsi_phy_14nm_8953_cfgs = { 1072 .has_phy_lane = true, 1073 .regulator_data = dsi_phy_14nm_17mA_regulators, 1074 .num_regulators = ARRAY_SIZE(dsi_phy_14nm_17mA_regulators), 1075 .ops = { 1076 .enable = dsi_14nm_phy_enable, 1077 .disable = dsi_14nm_phy_disable, 1078 .pll_init = dsi_pll_14nm_init, 1079 .save_pll_state = dsi_14nm_pll_save_state, 1080 .restore_pll_state = dsi_14nm_pll_restore_state, 1081 }, 1082 .min_pll_rate = VCO_MIN_RATE, 1083 .max_pll_rate = VCO_MAX_RATE, 1084 .io_start = { 0x1a94400, 0x1a96400 }, 1085 .num_dsi_phy = 2, 1086 }; 1087 1088 const struct msm_dsi_phy_cfg dsi_phy_14nm_2290_cfgs = { 1089 .has_phy_lane = true, 1090 .ops = { 1091 .enable = dsi_14nm_phy_enable, 1092 .disable = dsi_14nm_phy_disable, 1093 .pll_init = dsi_pll_14nm_init, 1094 .save_pll_state = dsi_14nm_pll_save_state, 1095 .restore_pll_state = dsi_14nm_pll_restore_state, 1096 }, 1097 .min_pll_rate = VCO_MIN_RATE, 1098 .max_pll_rate = VCO_MAX_RATE, 1099 .io_start = { 0x5e94400 }, 1100 .num_dsi_phy = 1, 1101 }; 1102