1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2015, The Linux Foundation. All rights reserved. 4 */ 5 6 #include <linux/clk-provider.h> 7 #include <linux/platform_device.h> 8 #include <dt-bindings/phy/phy.h> 9 10 #include "dsi_phy.h" 11 12 #define S_DIV_ROUND_UP(n, d) \ 13 (((n) >= 0) ? (((n) + (d) - 1) / (d)) : (((n) - (d) + 1) / (d))) 14 15 static inline s32 linear_inter(s32 tmax, s32 tmin, s32 percent, 16 s32 min_result, bool even) 17 { 18 s32 v; 19 20 v = (tmax - tmin) * percent; 21 v = S_DIV_ROUND_UP(v, 100) + tmin; 22 if (even && (v & 0x1)) 23 return max_t(s32, min_result, v - 1); 24 else 25 return max_t(s32, min_result, v); 26 } 27 28 static void dsi_dphy_timing_calc_clk_zero(struct msm_dsi_dphy_timing *timing, 29 s32 ui, s32 coeff, s32 pcnt) 30 { 31 s32 tmax, tmin, clk_z; 32 s32 temp; 33 34 /* reset */ 35 temp = 300 * coeff - ((timing->clk_prepare >> 1) + 1) * 2 * ui; 36 tmin = S_DIV_ROUND_UP(temp, ui) - 2; 37 if (tmin > 255) { 38 tmax = 511; 39 clk_z = linear_inter(2 * tmin, tmin, pcnt, 0, true); 40 } else { 41 tmax = 255; 42 clk_z = linear_inter(tmax, tmin, pcnt, 0, true); 43 } 44 45 /* adjust */ 46 temp = (timing->hs_rqst + timing->clk_prepare + clk_z) & 0x7; 47 timing->clk_zero = clk_z + 8 - temp; 48 } 49 50 int msm_dsi_dphy_timing_calc(struct msm_dsi_dphy_timing *timing, 51 struct msm_dsi_phy_clk_request *clk_req) 52 { 53 const unsigned long bit_rate = clk_req->bitclk_rate; 54 const unsigned long esc_rate = clk_req->escclk_rate; 55 s32 ui, lpx; 56 s32 tmax, tmin; 57 s32 pcnt0 = 10; 58 s32 pcnt1 = (bit_rate > 1200000000) ? 15 : 10; 59 s32 pcnt2 = 10; 60 s32 pcnt3 = (bit_rate > 180000000) ? 10 : 40; 61 s32 coeff = 1000; /* Precision, should avoid overflow */ 62 s32 temp; 63 64 if (!bit_rate || !esc_rate) 65 return -EINVAL; 66 67 ui = mult_frac(NSEC_PER_MSEC, coeff, bit_rate / 1000); 68 lpx = mult_frac(NSEC_PER_MSEC, coeff, esc_rate / 1000); 69 70 tmax = S_DIV_ROUND_UP(95 * coeff, ui) - 2; 71 tmin = S_DIV_ROUND_UP(38 * coeff, ui) - 2; 72 timing->clk_prepare = linear_inter(tmax, tmin, pcnt0, 0, true); 73 74 temp = lpx / ui; 75 if (temp & 0x1) 76 timing->hs_rqst = temp; 77 else 78 timing->hs_rqst = max_t(s32, 0, temp - 2); 79 80 /* Calculate clk_zero after clk_prepare and hs_rqst */ 81 dsi_dphy_timing_calc_clk_zero(timing, ui, coeff, pcnt2); 82 83 temp = 105 * coeff + 12 * ui - 20 * coeff; 84 tmax = S_DIV_ROUND_UP(temp, ui) - 2; 85 tmin = S_DIV_ROUND_UP(60 * coeff, ui) - 2; 86 timing->clk_trail = linear_inter(tmax, tmin, pcnt3, 0, true); 87 88 temp = 85 * coeff + 6 * ui; 89 tmax = S_DIV_ROUND_UP(temp, ui) - 2; 90 temp = 40 * coeff + 4 * ui; 91 tmin = S_DIV_ROUND_UP(temp, ui) - 2; 92 timing->hs_prepare = linear_inter(tmax, tmin, pcnt1, 0, true); 93 94 tmax = 255; 95 temp = ((timing->hs_prepare >> 1) + 1) * 2 * ui + 2 * ui; 96 temp = 145 * coeff + 10 * ui - temp; 97 tmin = S_DIV_ROUND_UP(temp, ui) - 2; 98 timing->hs_zero = linear_inter(tmax, tmin, pcnt2, 24, true); 99 100 temp = 105 * coeff + 12 * ui - 20 * coeff; 101 tmax = S_DIV_ROUND_UP(temp, ui) - 2; 102 temp = 60 * coeff + 4 * ui; 103 tmin = DIV_ROUND_UP(temp, ui) - 2; 104 timing->hs_trail = linear_inter(tmax, tmin, pcnt3, 0, true); 105 106 tmax = 255; 107 tmin = S_DIV_ROUND_UP(100 * coeff, ui) - 2; 108 timing->hs_exit = linear_inter(tmax, tmin, pcnt2, 0, true); 109 110 tmax = 63; 111 temp = ((timing->hs_exit >> 1) + 1) * 2 * ui; 112 temp = 60 * coeff + 52 * ui - 24 * ui - temp; 113 tmin = S_DIV_ROUND_UP(temp, 8 * ui) - 1; 114 timing->shared_timings.clk_post = linear_inter(tmax, tmin, pcnt2, 0, 115 false); 116 tmax = 63; 117 temp = ((timing->clk_prepare >> 1) + 1) * 2 * ui; 118 temp += ((timing->clk_zero >> 1) + 1) * 2 * ui; 119 temp += 8 * ui + lpx; 120 tmin = S_DIV_ROUND_UP(temp, 8 * ui) - 1; 121 if (tmin > tmax) { 122 temp = linear_inter(2 * tmax, tmin, pcnt2, 0, false); 123 timing->shared_timings.clk_pre = temp >> 1; 124 timing->shared_timings.clk_pre_inc_by_2 = true; 125 } else { 126 timing->shared_timings.clk_pre = 127 linear_inter(tmax, tmin, pcnt2, 0, false); 128 timing->shared_timings.clk_pre_inc_by_2 = false; 129 } 130 131 timing->ta_go = 3; 132 timing->ta_sure = 0; 133 timing->ta_get = 4; 134 135 DBG("PHY timings: %d, %d, %d, %d, %d, %d, %d, %d, %d, %d, %d", 136 timing->shared_timings.clk_pre, timing->shared_timings.clk_post, 137 timing->shared_timings.clk_pre_inc_by_2, timing->clk_zero, 138 timing->clk_trail, timing->clk_prepare, timing->hs_exit, 139 timing->hs_zero, timing->hs_prepare, timing->hs_trail, 140 timing->hs_rqst); 141 142 return 0; 143 } 144 145 int msm_dsi_dphy_timing_calc_v2(struct msm_dsi_dphy_timing *timing, 146 struct msm_dsi_phy_clk_request *clk_req) 147 { 148 const unsigned long bit_rate = clk_req->bitclk_rate; 149 const unsigned long esc_rate = clk_req->escclk_rate; 150 s32 ui, ui_x8; 151 s32 tmax, tmin; 152 s32 pcnt0 = 50; 153 s32 pcnt1 = 50; 154 s32 pcnt2 = 10; 155 s32 pcnt3 = 30; 156 s32 pcnt4 = 10; 157 s32 pcnt5 = 2; 158 s32 coeff = 1000; /* Precision, should avoid overflow */ 159 s32 hb_en, hb_en_ckln, pd_ckln, pd; 160 s32 val, val_ckln; 161 s32 temp; 162 163 if (!bit_rate || !esc_rate) 164 return -EINVAL; 165 166 timing->hs_halfbyte_en = 0; 167 hb_en = 0; 168 timing->hs_halfbyte_en_ckln = 0; 169 hb_en_ckln = 0; 170 timing->hs_prep_dly_ckln = (bit_rate > 100000000) ? 0 : 3; 171 pd_ckln = timing->hs_prep_dly_ckln; 172 timing->hs_prep_dly = (bit_rate > 120000000) ? 0 : 1; 173 pd = timing->hs_prep_dly; 174 175 val = (hb_en << 2) + (pd << 1); 176 val_ckln = (hb_en_ckln << 2) + (pd_ckln << 1); 177 178 ui = mult_frac(NSEC_PER_MSEC, coeff, bit_rate / 1000); 179 ui_x8 = ui << 3; 180 181 temp = S_DIV_ROUND_UP(38 * coeff - val_ckln * ui, ui_x8); 182 tmin = max_t(s32, temp, 0); 183 temp = (95 * coeff - val_ckln * ui) / ui_x8; 184 tmax = max_t(s32, temp, 0); 185 timing->clk_prepare = linear_inter(tmax, tmin, pcnt0, 0, false); 186 187 temp = 300 * coeff - ((timing->clk_prepare << 3) + val_ckln) * ui; 188 tmin = S_DIV_ROUND_UP(temp - 11 * ui, ui_x8) - 3; 189 tmax = (tmin > 255) ? 511 : 255; 190 timing->clk_zero = linear_inter(tmax, tmin, pcnt5, 0, false); 191 192 tmin = DIV_ROUND_UP(60 * coeff + 3 * ui, ui_x8); 193 temp = 105 * coeff + 12 * ui - 20 * coeff; 194 tmax = (temp + 3 * ui) / ui_x8; 195 timing->clk_trail = linear_inter(tmax, tmin, pcnt3, 0, false); 196 197 temp = S_DIV_ROUND_UP(40 * coeff + 4 * ui - val * ui, ui_x8); 198 tmin = max_t(s32, temp, 0); 199 temp = (85 * coeff + 6 * ui - val * ui) / ui_x8; 200 tmax = max_t(s32, temp, 0); 201 timing->hs_prepare = linear_inter(tmax, tmin, pcnt1, 0, false); 202 203 temp = 145 * coeff + 10 * ui - ((timing->hs_prepare << 3) + val) * ui; 204 tmin = S_DIV_ROUND_UP(temp - 11 * ui, ui_x8) - 3; 205 tmax = 255; 206 timing->hs_zero = linear_inter(tmax, tmin, pcnt4, 0, false); 207 208 tmin = DIV_ROUND_UP(60 * coeff + 4 * ui + 3 * ui, ui_x8); 209 temp = 105 * coeff + 12 * ui - 20 * coeff; 210 tmax = (temp + 3 * ui) / ui_x8; 211 timing->hs_trail = linear_inter(tmax, tmin, pcnt3, 0, false); 212 213 temp = 50 * coeff + ((hb_en << 2) - 8) * ui; 214 timing->hs_rqst = S_DIV_ROUND_UP(temp, ui_x8); 215 216 tmin = DIV_ROUND_UP(100 * coeff, ui_x8) - 1; 217 tmax = 255; 218 timing->hs_exit = linear_inter(tmax, tmin, pcnt2, 0, false); 219 220 temp = 50 * coeff + ((hb_en_ckln << 2) - 8) * ui; 221 timing->hs_rqst_ckln = S_DIV_ROUND_UP(temp, ui_x8); 222 223 temp = 60 * coeff + 52 * ui - 43 * ui; 224 tmin = DIV_ROUND_UP(temp, ui_x8) - 1; 225 tmax = 63; 226 timing->shared_timings.clk_post = 227 linear_inter(tmax, tmin, pcnt2, 0, false); 228 229 temp = 8 * ui + ((timing->clk_prepare << 3) + val_ckln) * ui; 230 temp += (((timing->clk_zero + 3) << 3) + 11 - (pd_ckln << 1)) * ui; 231 temp += hb_en_ckln ? (((timing->hs_rqst_ckln << 3) + 4) * ui) : 232 (((timing->hs_rqst_ckln << 3) + 8) * ui); 233 tmin = S_DIV_ROUND_UP(temp, ui_x8) - 1; 234 tmax = 63; 235 if (tmin > tmax) { 236 temp = linear_inter(tmax << 1, tmin, pcnt2, 0, false); 237 timing->shared_timings.clk_pre = temp >> 1; 238 timing->shared_timings.clk_pre_inc_by_2 = 1; 239 } else { 240 timing->shared_timings.clk_pre = 241 linear_inter(tmax, tmin, pcnt2, 0, false); 242 timing->shared_timings.clk_pre_inc_by_2 = 0; 243 } 244 245 timing->ta_go = 3; 246 timing->ta_sure = 0; 247 timing->ta_get = 4; 248 249 DBG("%d, %d, %d, %d, %d, %d, %d, %d, %d, %d, %d, %d, %d, %d, %d, %d", 250 timing->shared_timings.clk_pre, timing->shared_timings.clk_post, 251 timing->shared_timings.clk_pre_inc_by_2, timing->clk_zero, 252 timing->clk_trail, timing->clk_prepare, timing->hs_exit, 253 timing->hs_zero, timing->hs_prepare, timing->hs_trail, 254 timing->hs_rqst, timing->hs_rqst_ckln, timing->hs_halfbyte_en, 255 timing->hs_halfbyte_en_ckln, timing->hs_prep_dly, 256 timing->hs_prep_dly_ckln); 257 258 return 0; 259 } 260 261 int msm_dsi_dphy_timing_calc_v3(struct msm_dsi_dphy_timing *timing, 262 struct msm_dsi_phy_clk_request *clk_req) 263 { 264 const unsigned long bit_rate = clk_req->bitclk_rate; 265 const unsigned long esc_rate = clk_req->escclk_rate; 266 s32 ui, ui_x8; 267 s32 tmax, tmin; 268 s32 pcnt0 = 50; 269 s32 pcnt1 = 50; 270 s32 pcnt2 = 10; 271 s32 pcnt3 = 30; 272 s32 pcnt4 = 10; 273 s32 pcnt5 = 2; 274 s32 coeff = 1000; /* Precision, should avoid overflow */ 275 s32 hb_en, hb_en_ckln; 276 s32 temp; 277 278 if (!bit_rate || !esc_rate) 279 return -EINVAL; 280 281 timing->hs_halfbyte_en = 0; 282 hb_en = 0; 283 timing->hs_halfbyte_en_ckln = 0; 284 hb_en_ckln = 0; 285 286 ui = mult_frac(NSEC_PER_MSEC, coeff, bit_rate / 1000); 287 ui_x8 = ui << 3; 288 289 temp = S_DIV_ROUND_UP(38 * coeff, ui_x8); 290 tmin = max_t(s32, temp, 0); 291 temp = (95 * coeff) / ui_x8; 292 tmax = max_t(s32, temp, 0); 293 timing->clk_prepare = linear_inter(tmax, tmin, pcnt0, 0, false); 294 295 temp = 300 * coeff - (timing->clk_prepare << 3) * ui; 296 tmin = S_DIV_ROUND_UP(temp, ui_x8) - 1; 297 tmax = (tmin > 255) ? 511 : 255; 298 timing->clk_zero = linear_inter(tmax, tmin, pcnt5, 0, false); 299 300 tmin = DIV_ROUND_UP(60 * coeff + 3 * ui, ui_x8); 301 temp = 105 * coeff + 12 * ui - 20 * coeff; 302 tmax = (temp + 3 * ui) / ui_x8; 303 timing->clk_trail = linear_inter(tmax, tmin, pcnt3, 0, false); 304 305 temp = S_DIV_ROUND_UP(40 * coeff + 4 * ui, ui_x8); 306 tmin = max_t(s32, temp, 0); 307 temp = (85 * coeff + 6 * ui) / ui_x8; 308 tmax = max_t(s32, temp, 0); 309 timing->hs_prepare = linear_inter(tmax, tmin, pcnt1, 0, false); 310 311 temp = 145 * coeff + 10 * ui - (timing->hs_prepare << 3) * ui; 312 tmin = S_DIV_ROUND_UP(temp, ui_x8) - 1; 313 tmax = 255; 314 timing->hs_zero = linear_inter(tmax, tmin, pcnt4, 0, false); 315 316 tmin = DIV_ROUND_UP(60 * coeff + 4 * ui, ui_x8) - 1; 317 temp = 105 * coeff + 12 * ui - 20 * coeff; 318 tmax = (temp / ui_x8) - 1; 319 timing->hs_trail = linear_inter(tmax, tmin, pcnt3, 0, false); 320 321 temp = 50 * coeff + ((hb_en << 2) - 8) * ui; 322 timing->hs_rqst = S_DIV_ROUND_UP(temp, ui_x8); 323 324 tmin = DIV_ROUND_UP(100 * coeff, ui_x8) - 1; 325 tmax = 255; 326 timing->hs_exit = linear_inter(tmax, tmin, pcnt2, 0, false); 327 328 temp = 50 * coeff + ((hb_en_ckln << 2) - 8) * ui; 329 timing->hs_rqst_ckln = S_DIV_ROUND_UP(temp, ui_x8); 330 331 temp = 60 * coeff + 52 * ui - 43 * ui; 332 tmin = DIV_ROUND_UP(temp, ui_x8) - 1; 333 tmax = 63; 334 timing->shared_timings.clk_post = 335 linear_inter(tmax, tmin, pcnt2, 0, false); 336 337 temp = 8 * ui + (timing->clk_prepare << 3) * ui; 338 temp += (((timing->clk_zero + 3) << 3) + 11) * ui; 339 temp += hb_en_ckln ? (((timing->hs_rqst_ckln << 3) + 4) * ui) : 340 (((timing->hs_rqst_ckln << 3) + 8) * ui); 341 tmin = S_DIV_ROUND_UP(temp, ui_x8) - 1; 342 tmax = 63; 343 if (tmin > tmax) { 344 temp = linear_inter(tmax << 1, tmin, pcnt2, 0, false); 345 timing->shared_timings.clk_pre = temp >> 1; 346 timing->shared_timings.clk_pre_inc_by_2 = 1; 347 } else { 348 timing->shared_timings.clk_pre = 349 linear_inter(tmax, tmin, pcnt2, 0, false); 350 timing->shared_timings.clk_pre_inc_by_2 = 0; 351 } 352 353 timing->shared_timings.byte_intf_clk_div_2 = true; 354 355 timing->ta_go = 3; 356 timing->ta_sure = 0; 357 timing->ta_get = 4; 358 359 DBG("%d, %d, %d, %d, %d, %d, %d, %d, %d, %d, %d, %d, %d, %d, %d, %d", 360 timing->shared_timings.clk_pre, timing->shared_timings.clk_post, 361 timing->shared_timings.clk_pre_inc_by_2, timing->clk_zero, 362 timing->clk_trail, timing->clk_prepare, timing->hs_exit, 363 timing->hs_zero, timing->hs_prepare, timing->hs_trail, 364 timing->hs_rqst, timing->hs_rqst_ckln, timing->hs_halfbyte_en, 365 timing->hs_halfbyte_en_ckln, timing->hs_prep_dly, 366 timing->hs_prep_dly_ckln); 367 368 return 0; 369 } 370 371 int msm_dsi_dphy_timing_calc_v4(struct msm_dsi_dphy_timing *timing, 372 struct msm_dsi_phy_clk_request *clk_req) 373 { 374 const unsigned long bit_rate = clk_req->bitclk_rate; 375 const unsigned long esc_rate = clk_req->escclk_rate; 376 s32 ui, ui_x8; 377 s32 tmax, tmin; 378 s32 pcnt_clk_prep = 50; 379 s32 pcnt_clk_zero = 2; 380 s32 pcnt_clk_trail = 30; 381 s32 pcnt_hs_prep = 50; 382 s32 pcnt_hs_zero = 10; 383 s32 pcnt_hs_trail = 30; 384 s32 pcnt_hs_exit = 10; 385 s32 coeff = 1000; /* Precision, should avoid overflow */ 386 s32 hb_en; 387 s32 temp; 388 389 if (!bit_rate || !esc_rate) 390 return -EINVAL; 391 392 hb_en = 0; 393 394 ui = mult_frac(NSEC_PER_MSEC, coeff, bit_rate / 1000); 395 ui_x8 = ui << 3; 396 397 /* TODO: verify these calculations against latest downstream driver 398 * everything except clk_post/clk_pre uses calculations from v3 based 399 * on the downstream driver having the same calculations for v3 and v4 400 */ 401 402 temp = S_DIV_ROUND_UP(38 * coeff, ui_x8); 403 tmin = max_t(s32, temp, 0); 404 temp = (95 * coeff) / ui_x8; 405 tmax = max_t(s32, temp, 0); 406 timing->clk_prepare = linear_inter(tmax, tmin, pcnt_clk_prep, 0, false); 407 408 temp = 300 * coeff - (timing->clk_prepare << 3) * ui; 409 tmin = S_DIV_ROUND_UP(temp, ui_x8) - 1; 410 tmax = (tmin > 255) ? 511 : 255; 411 timing->clk_zero = linear_inter(tmax, tmin, pcnt_clk_zero, 0, false); 412 413 tmin = DIV_ROUND_UP(60 * coeff + 3 * ui, ui_x8); 414 temp = 105 * coeff + 12 * ui - 20 * coeff; 415 tmax = (temp + 3 * ui) / ui_x8; 416 timing->clk_trail = linear_inter(tmax, tmin, pcnt_clk_trail, 0, false); 417 418 temp = S_DIV_ROUND_UP(40 * coeff + 4 * ui, ui_x8); 419 tmin = max_t(s32, temp, 0); 420 temp = (85 * coeff + 6 * ui) / ui_x8; 421 tmax = max_t(s32, temp, 0); 422 timing->hs_prepare = linear_inter(tmax, tmin, pcnt_hs_prep, 0, false); 423 424 temp = 145 * coeff + 10 * ui - (timing->hs_prepare << 3) * ui; 425 tmin = S_DIV_ROUND_UP(temp, ui_x8) - 1; 426 tmax = 255; 427 timing->hs_zero = linear_inter(tmax, tmin, pcnt_hs_zero, 0, false); 428 429 tmin = DIV_ROUND_UP(60 * coeff + 4 * ui, ui_x8) - 1; 430 temp = 105 * coeff + 12 * ui - 20 * coeff; 431 tmax = (temp / ui_x8) - 1; 432 timing->hs_trail = linear_inter(tmax, tmin, pcnt_hs_trail, 0, false); 433 434 temp = 50 * coeff + ((hb_en << 2) - 8) * ui; 435 timing->hs_rqst = S_DIV_ROUND_UP(temp, ui_x8); 436 437 tmin = DIV_ROUND_UP(100 * coeff, ui_x8) - 1; 438 tmax = 255; 439 timing->hs_exit = linear_inter(tmax, tmin, pcnt_hs_exit, 0, false); 440 441 /* recommended min 442 * = roundup((mipi_min_ns + t_hs_trail_ns)/(16*bit_clk_ns), 0) - 1 443 */ 444 temp = 60 * coeff + 52 * ui + + (timing->hs_trail + 1) * ui_x8; 445 tmin = DIV_ROUND_UP(temp, 16 * ui) - 1; 446 tmax = 255; 447 timing->shared_timings.clk_post = linear_inter(tmax, tmin, 5, 0, false); 448 449 /* recommended min 450 * val1 = (tlpx_ns + clk_prepare_ns + clk_zero_ns + hs_rqst_ns) 451 * val2 = (16 * bit_clk_ns) 452 * final = roundup(val1/val2, 0) - 1 453 */ 454 temp = 52 * coeff + (timing->clk_prepare + timing->clk_zero + 1) * ui_x8 + 54 * coeff; 455 tmin = DIV_ROUND_UP(temp, 16 * ui) - 1; 456 tmax = 255; 457 timing->shared_timings.clk_pre = DIV_ROUND_UP((tmax - tmin) * 125, 10000) + tmin; 458 459 timing->shared_timings.byte_intf_clk_div_2 = true; 460 461 DBG("%d, %d, %d, %d, %d, %d, %d, %d, %d, %d", 462 timing->shared_timings.clk_pre, timing->shared_timings.clk_post, 463 timing->clk_zero, timing->clk_trail, timing->clk_prepare, timing->hs_exit, 464 timing->hs_zero, timing->hs_prepare, timing->hs_trail, timing->hs_rqst); 465 466 return 0; 467 } 468 469 int msm_dsi_cphy_timing_calc_v4(struct msm_dsi_dphy_timing *timing, 470 struct msm_dsi_phy_clk_request *clk_req) 471 { 472 const unsigned long bit_rate = clk_req->bitclk_rate; 473 const unsigned long esc_rate = clk_req->escclk_rate; 474 s32 ui, ui_x7; 475 s32 tmax, tmin; 476 s32 coeff = 1000; /* Precision, should avoid overflow */ 477 s32 temp; 478 479 if (!bit_rate || !esc_rate) 480 return -EINVAL; 481 482 ui = mult_frac(NSEC_PER_MSEC, coeff, bit_rate / 1000); 483 ui_x7 = ui * 7; 484 485 temp = S_DIV_ROUND_UP(38 * coeff, ui_x7); 486 tmin = max_t(s32, temp, 0); 487 temp = (95 * coeff) / ui_x7; 488 tmax = max_t(s32, temp, 0); 489 timing->clk_prepare = linear_inter(tmax, tmin, 50, 0, false); 490 491 tmin = DIV_ROUND_UP(50 * coeff, ui_x7); 492 tmax = 255; 493 timing->hs_rqst = linear_inter(tmax, tmin, 1, 0, false); 494 495 tmin = DIV_ROUND_UP(100 * coeff, ui_x7) - 1; 496 tmax = 255; 497 timing->hs_exit = linear_inter(tmax, tmin, 10, 0, false); 498 499 tmin = 1; 500 tmax = 32; 501 timing->shared_timings.clk_post = linear_inter(tmax, tmin, 80, 0, false); 502 503 tmin = min_t(s32, 64, S_DIV_ROUND_UP(262 * coeff, ui_x7) - 1); 504 tmax = 64; 505 timing->shared_timings.clk_pre = linear_inter(tmax, tmin, 20, 0, false); 506 507 DBG("%d, %d, %d, %d, %d", 508 timing->shared_timings.clk_pre, timing->shared_timings.clk_post, 509 timing->clk_prepare, timing->hs_exit, timing->hs_rqst); 510 511 return 0; 512 } 513 514 static int dsi_phy_enable_resource(struct msm_dsi_phy *phy) 515 { 516 struct device *dev = &phy->pdev->dev; 517 int ret; 518 519 ret = pm_runtime_resume_and_get(dev); 520 if (ret) 521 return ret; 522 523 ret = clk_prepare_enable(phy->ahb_clk); 524 if (ret) { 525 DRM_DEV_ERROR(dev, "%s: can't enable ahb clk, %d\n", __func__, ret); 526 pm_runtime_put_sync(dev); 527 } 528 529 return ret; 530 } 531 532 static void dsi_phy_disable_resource(struct msm_dsi_phy *phy) 533 { 534 clk_disable_unprepare(phy->ahb_clk); 535 pm_runtime_put(&phy->pdev->dev); 536 } 537 538 static const struct of_device_id dsi_phy_dt_match[] = { 539 #ifdef CONFIG_DRM_MSM_DSI_28NM_PHY 540 { .compatible = "qcom,dsi-phy-28nm-hpm", 541 .data = &dsi_phy_28nm_hpm_cfgs }, 542 { .compatible = "qcom,dsi-phy-28nm-hpm-fam-b", 543 .data = &dsi_phy_28nm_hpm_famb_cfgs }, 544 { .compatible = "qcom,dsi-phy-28nm-lp", 545 .data = &dsi_phy_28nm_lp_cfgs }, 546 { .compatible = "qcom,dsi-phy-28nm-8226", 547 .data = &dsi_phy_28nm_8226_cfgs }, 548 #endif 549 #ifdef CONFIG_DRM_MSM_DSI_20NM_PHY 550 { .compatible = "qcom,dsi-phy-20nm", 551 .data = &dsi_phy_20nm_cfgs }, 552 #endif 553 #ifdef CONFIG_DRM_MSM_DSI_28NM_8960_PHY 554 { .compatible = "qcom,dsi-phy-28nm-8960", 555 .data = &dsi_phy_28nm_8960_cfgs }, 556 #endif 557 #ifdef CONFIG_DRM_MSM_DSI_14NM_PHY 558 { .compatible = "qcom,dsi-phy-14nm", 559 .data = &dsi_phy_14nm_cfgs }, 560 { .compatible = "qcom,dsi-phy-14nm-2290", 561 .data = &dsi_phy_14nm_2290_cfgs }, 562 { .compatible = "qcom,dsi-phy-14nm-660", 563 .data = &dsi_phy_14nm_660_cfgs }, 564 { .compatible = "qcom,dsi-phy-14nm-8953", 565 .data = &dsi_phy_14nm_8953_cfgs }, 566 { .compatible = "qcom,sm6125-dsi-phy-14nm", 567 .data = &dsi_phy_14nm_2290_cfgs }, 568 #endif 569 #ifdef CONFIG_DRM_MSM_DSI_10NM_PHY 570 { .compatible = "qcom,dsi-phy-10nm", 571 .data = &dsi_phy_10nm_cfgs }, 572 { .compatible = "qcom,dsi-phy-10nm-8998", 573 .data = &dsi_phy_10nm_8998_cfgs }, 574 #endif 575 #ifdef CONFIG_DRM_MSM_DSI_7NM_PHY 576 { .compatible = "qcom,dsi-phy-7nm", 577 .data = &dsi_phy_7nm_cfgs }, 578 { .compatible = "qcom,dsi-phy-7nm-8150", 579 .data = &dsi_phy_7nm_8150_cfgs }, 580 { .compatible = "qcom,sc7280-dsi-phy-7nm", 581 .data = &dsi_phy_7nm_7280_cfgs }, 582 { .compatible = "qcom,sm6375-dsi-phy-7nm", 583 .data = &dsi_phy_7nm_6375_cfgs }, 584 { .compatible = "qcom,sm8350-dsi-phy-5nm", 585 .data = &dsi_phy_5nm_8350_cfgs }, 586 { .compatible = "qcom,sm8450-dsi-phy-5nm", 587 .data = &dsi_phy_5nm_8450_cfgs }, 588 { .compatible = "qcom,sm8550-dsi-phy-4nm", 589 .data = &dsi_phy_4nm_8550_cfgs }, 590 { .compatible = "qcom,sm8650-dsi-phy-4nm", 591 .data = &dsi_phy_4nm_8650_cfgs }, 592 #endif 593 {} 594 }; 595 596 /* 597 * Currently, we only support one SoC for each PHY type. When we have multiple 598 * SoCs for the same PHY, we can try to make the index searching a bit more 599 * clever. 600 */ 601 static int dsi_phy_get_id(struct msm_dsi_phy *phy) 602 { 603 struct platform_device *pdev = phy->pdev; 604 const struct msm_dsi_phy_cfg *cfg = phy->cfg; 605 struct resource *res; 606 int i; 607 608 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dsi_phy"); 609 if (!res) 610 return -EINVAL; 611 612 for (i = 0; i < cfg->num_dsi_phy; i++) { 613 if (cfg->io_start[i] == res->start) 614 return i; 615 } 616 617 return -EINVAL; 618 } 619 620 static int dsi_phy_driver_probe(struct platform_device *pdev) 621 { 622 struct msm_dsi_phy *phy; 623 struct device *dev = &pdev->dev; 624 u32 phy_type; 625 int ret; 626 627 phy = devm_kzalloc(dev, sizeof(*phy), GFP_KERNEL); 628 if (!phy) 629 return -ENOMEM; 630 631 phy->provided_clocks = devm_kzalloc(dev, 632 struct_size(phy->provided_clocks, hws, NUM_PROVIDED_CLKS), 633 GFP_KERNEL); 634 if (!phy->provided_clocks) 635 return -ENOMEM; 636 637 phy->provided_clocks->num = NUM_PROVIDED_CLKS; 638 639 phy->cfg = of_device_get_match_data(&pdev->dev); 640 if (!phy->cfg) 641 return -ENODEV; 642 643 phy->pdev = pdev; 644 645 phy->id = dsi_phy_get_id(phy); 646 if (phy->id < 0) 647 return dev_err_probe(dev, phy->id, 648 "Couldn't identify PHY index\n"); 649 650 phy->regulator_ldo_mode = of_property_read_bool(dev->of_node, 651 "qcom,dsi-phy-regulator-ldo-mode"); 652 if (!of_property_read_u32(dev->of_node, "phy-type", &phy_type)) 653 phy->cphy_mode = (phy_type == PHY_TYPE_CPHY); 654 655 phy->base = msm_ioremap_size(pdev, "dsi_phy", &phy->base_size); 656 if (IS_ERR(phy->base)) 657 return dev_err_probe(dev, PTR_ERR(phy->base), 658 "Failed to map phy base\n"); 659 660 phy->pll_base = msm_ioremap_size(pdev, "dsi_pll", &phy->pll_size); 661 if (IS_ERR(phy->pll_base)) 662 return dev_err_probe(dev, PTR_ERR(phy->pll_base), 663 "Failed to map pll base\n"); 664 665 if (phy->cfg->has_phy_lane) { 666 phy->lane_base = msm_ioremap_size(pdev, "dsi_phy_lane", &phy->lane_size); 667 if (IS_ERR(phy->lane_base)) 668 return dev_err_probe(dev, PTR_ERR(phy->lane_base), 669 "Failed to map phy lane base\n"); 670 } 671 672 if (phy->cfg->has_phy_regulator) { 673 phy->reg_base = msm_ioremap_size(pdev, "dsi_phy_regulator", &phy->reg_size); 674 if (IS_ERR(phy->reg_base)) 675 return dev_err_probe(dev, PTR_ERR(phy->reg_base), 676 "Failed to map phy regulator base\n"); 677 } 678 679 if (phy->cfg->ops.parse_dt_properties) { 680 ret = phy->cfg->ops.parse_dt_properties(phy); 681 if (ret) 682 return ret; 683 } 684 685 ret = devm_regulator_bulk_get_const(dev, phy->cfg->num_regulators, 686 phy->cfg->regulator_data, 687 &phy->supplies); 688 if (ret) 689 return ret; 690 691 phy->ahb_clk = msm_clk_get(pdev, "iface"); 692 if (IS_ERR(phy->ahb_clk)) 693 return dev_err_probe(dev, PTR_ERR(phy->ahb_clk), 694 "Unable to get ahb clk\n"); 695 696 ret = devm_pm_runtime_enable(&pdev->dev); 697 if (ret) 698 return ret; 699 700 /* PLL init will call into clk_register which requires 701 * register access, so we need to enable power and ahb clock. 702 */ 703 ret = dsi_phy_enable_resource(phy); 704 if (ret) 705 return ret; 706 707 if (phy->cfg->ops.pll_init) { 708 ret = phy->cfg->ops.pll_init(phy); 709 if (ret) 710 return dev_err_probe(dev, ret, 711 "PLL init failed; need separate clk driver\n"); 712 } 713 714 ret = devm_of_clk_add_hw_provider(dev, of_clk_hw_onecell_get, 715 phy->provided_clocks); 716 if (ret) 717 return dev_err_probe(dev, ret, 718 "Failed to register clk provider\n"); 719 720 dsi_phy_disable_resource(phy); 721 722 platform_set_drvdata(pdev, phy); 723 724 return 0; 725 } 726 727 static struct platform_driver dsi_phy_platform_driver = { 728 .probe = dsi_phy_driver_probe, 729 .driver = { 730 .name = "msm_dsi_phy", 731 .of_match_table = dsi_phy_dt_match, 732 }, 733 }; 734 735 void __init msm_dsi_phy_driver_register(void) 736 { 737 platform_driver_register(&dsi_phy_platform_driver); 738 } 739 740 void __exit msm_dsi_phy_driver_unregister(void) 741 { 742 platform_driver_unregister(&dsi_phy_platform_driver); 743 } 744 745 int msm_dsi_phy_enable(struct msm_dsi_phy *phy, 746 struct msm_dsi_phy_clk_request *clk_req, 747 struct msm_dsi_phy_shared_timings *shared_timings) 748 { 749 struct device *dev; 750 int ret; 751 752 if (!phy || !phy->cfg->ops.enable) 753 return -EINVAL; 754 755 dev = &phy->pdev->dev; 756 757 ret = dsi_phy_enable_resource(phy); 758 if (ret) { 759 DRM_DEV_ERROR(dev, "%s: resource enable failed, %d\n", 760 __func__, ret); 761 goto res_en_fail; 762 } 763 764 ret = regulator_bulk_enable(phy->cfg->num_regulators, phy->supplies); 765 if (ret) { 766 DRM_DEV_ERROR(dev, "%s: regulator enable failed, %d\n", 767 __func__, ret); 768 goto reg_en_fail; 769 } 770 771 ret = phy->cfg->ops.enable(phy, clk_req); 772 if (ret) { 773 DRM_DEV_ERROR(dev, "%s: phy enable failed, %d\n", __func__, ret); 774 goto phy_en_fail; 775 } 776 777 memcpy(shared_timings, &phy->timing.shared_timings, 778 sizeof(*shared_timings)); 779 780 /* 781 * Resetting DSI PHY silently changes its PLL registers to reset status, 782 * which will confuse clock driver and result in wrong output rate of 783 * link clocks. Restore PLL status if its PLL is being used as clock 784 * source. 785 */ 786 if (phy->usecase != MSM_DSI_PHY_SLAVE) { 787 ret = msm_dsi_phy_pll_restore_state(phy); 788 if (ret) { 789 DRM_DEV_ERROR(dev, "%s: failed to restore phy state, %d\n", 790 __func__, ret); 791 goto pll_restor_fail; 792 } 793 } 794 795 return 0; 796 797 pll_restor_fail: 798 if (phy->cfg->ops.disable) 799 phy->cfg->ops.disable(phy); 800 phy_en_fail: 801 regulator_bulk_disable(phy->cfg->num_regulators, phy->supplies); 802 reg_en_fail: 803 dsi_phy_disable_resource(phy); 804 res_en_fail: 805 return ret; 806 } 807 808 void msm_dsi_phy_disable(struct msm_dsi_phy *phy) 809 { 810 if (!phy || !phy->cfg->ops.disable) 811 return; 812 813 phy->cfg->ops.disable(phy); 814 815 regulator_bulk_disable(phy->cfg->num_regulators, phy->supplies); 816 dsi_phy_disable_resource(phy); 817 } 818 819 void msm_dsi_phy_set_usecase(struct msm_dsi_phy *phy, 820 enum msm_dsi_phy_usecase uc) 821 { 822 if (phy) 823 phy->usecase = uc; 824 } 825 826 /* Returns true if we have to clear DSI_LANE_CTRL.HS_REQ_SEL_PHY */ 827 bool msm_dsi_phy_set_continuous_clock(struct msm_dsi_phy *phy, bool enable) 828 { 829 if (!phy || !phy->cfg->ops.set_continuous_clock) 830 return false; 831 832 return phy->cfg->ops.set_continuous_clock(phy, enable); 833 } 834 835 void msm_dsi_phy_pll_save_state(struct msm_dsi_phy *phy) 836 { 837 if (phy->cfg->ops.save_pll_state) { 838 phy->cfg->ops.save_pll_state(phy); 839 phy->state_saved = true; 840 } 841 } 842 843 int msm_dsi_phy_pll_restore_state(struct msm_dsi_phy *phy) 844 { 845 int ret; 846 847 if (phy->cfg->ops.restore_pll_state && phy->state_saved) { 848 ret = phy->cfg->ops.restore_pll_state(phy); 849 if (ret) 850 return ret; 851 852 phy->state_saved = false; 853 } 854 855 return 0; 856 } 857 858 void msm_dsi_phy_snapshot(struct msm_disp_state *disp_state, struct msm_dsi_phy *phy) 859 { 860 msm_disp_snapshot_add_block(disp_state, 861 phy->base_size, phy->base, 862 "dsi%d_phy", phy->id); 863 864 /* Do not try accessing PLL registers if it is switched off */ 865 if (phy->pll_on) 866 msm_disp_snapshot_add_block(disp_state, 867 phy->pll_size, phy->pll_base, 868 "dsi%d_pll", phy->id); 869 870 if (phy->lane_base) 871 msm_disp_snapshot_add_block(disp_state, 872 phy->lane_size, phy->lane_base, 873 "dsi%d_lane", phy->id); 874 875 if (phy->reg_base) 876 msm_disp_snapshot_add_block(disp_state, 877 phy->reg_size, phy->reg_base, 878 "dsi%d_reg", phy->id); 879 } 880