1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2015, The Linux Foundation. All rights reserved. 4 */ 5 6 #include <linux/clk.h> 7 #include <linux/delay.h> 8 #include <linux/err.h> 9 #include <linux/gpio.h> 10 #include <linux/gpio/consumer.h> 11 #include <linux/interrupt.h> 12 #include <linux/of_device.h> 13 #include <linux/of_gpio.h> 14 #include <linux/of_irq.h> 15 #include <linux/pinctrl/consumer.h> 16 #include <linux/of_graph.h> 17 #include <linux/regulator/consumer.h> 18 #include <linux/spinlock.h> 19 #include <linux/mfd/syscon.h> 20 #include <linux/regmap.h> 21 #include <video/mipi_display.h> 22 23 #include "dsi.h" 24 #include "dsi.xml.h" 25 #include "sfpb.xml.h" 26 #include "dsi_cfg.h" 27 #include "msm_kms.h" 28 29 static int dsi_get_version(const void __iomem *base, u32 *major, u32 *minor) 30 { 31 u32 ver; 32 33 if (!major || !minor) 34 return -EINVAL; 35 36 /* 37 * From DSI6G(v3), addition of a 6G_HW_VERSION register at offset 0 38 * makes all other registers 4-byte shifted down. 39 * 40 * In order to identify between DSI6G(v3) and beyond, and DSIv2 and 41 * older, we read the DSI_VERSION register without any shift(offset 42 * 0x1f0). In the case of DSIv2, this hast to be a non-zero value. In 43 * the case of DSI6G, this has to be zero (the offset points to a 44 * scratch register which we never touch) 45 */ 46 47 ver = msm_readl(base + REG_DSI_VERSION); 48 if (ver) { 49 /* older dsi host, there is no register shift */ 50 ver = FIELD(ver, DSI_VERSION_MAJOR); 51 if (ver <= MSM_DSI_VER_MAJOR_V2) { 52 /* old versions */ 53 *major = ver; 54 *minor = 0; 55 return 0; 56 } else { 57 return -EINVAL; 58 } 59 } else { 60 /* 61 * newer host, offset 0 has 6G_HW_VERSION, the rest of the 62 * registers are shifted down, read DSI_VERSION again with 63 * the shifted offset 64 */ 65 ver = msm_readl(base + DSI_6G_REG_SHIFT + REG_DSI_VERSION); 66 ver = FIELD(ver, DSI_VERSION_MAJOR); 67 if (ver == MSM_DSI_VER_MAJOR_6G) { 68 /* 6G version */ 69 *major = ver; 70 *minor = msm_readl(base + REG_DSI_6G_HW_VERSION); 71 return 0; 72 } else { 73 return -EINVAL; 74 } 75 } 76 } 77 78 #define DSI_ERR_STATE_ACK 0x0000 79 #define DSI_ERR_STATE_TIMEOUT 0x0001 80 #define DSI_ERR_STATE_DLN0_PHY 0x0002 81 #define DSI_ERR_STATE_FIFO 0x0004 82 #define DSI_ERR_STATE_MDP_FIFO_UNDERFLOW 0x0008 83 #define DSI_ERR_STATE_INTERLEAVE_OP_CONTENTION 0x0010 84 #define DSI_ERR_STATE_PLL_UNLOCKED 0x0020 85 86 #define DSI_CLK_CTRL_ENABLE_CLKS \ 87 (DSI_CLK_CTRL_AHBS_HCLK_ON | DSI_CLK_CTRL_AHBM_SCLK_ON | \ 88 DSI_CLK_CTRL_PCLK_ON | DSI_CLK_CTRL_DSICLK_ON | \ 89 DSI_CLK_CTRL_BYTECLK_ON | DSI_CLK_CTRL_ESCCLK_ON | \ 90 DSI_CLK_CTRL_FORCE_ON_DYN_AHBM_HCLK) 91 92 struct msm_dsi_host { 93 struct mipi_dsi_host base; 94 95 struct platform_device *pdev; 96 struct drm_device *dev; 97 98 int id; 99 100 void __iomem *ctrl_base; 101 struct regulator_bulk_data supplies[DSI_DEV_REGULATOR_MAX]; 102 103 struct clk *bus_clks[DSI_BUS_CLK_MAX]; 104 105 struct clk *byte_clk; 106 struct clk *esc_clk; 107 struct clk *pixel_clk; 108 struct clk *byte_clk_src; 109 struct clk *pixel_clk_src; 110 struct clk *byte_intf_clk; 111 112 u32 byte_clk_rate; 113 u32 pixel_clk_rate; 114 u32 esc_clk_rate; 115 116 /* DSI v2 specific clocks */ 117 struct clk *src_clk; 118 struct clk *esc_clk_src; 119 struct clk *dsi_clk_src; 120 121 u32 src_clk_rate; 122 123 struct gpio_desc *disp_en_gpio; 124 struct gpio_desc *te_gpio; 125 126 const struct msm_dsi_cfg_handler *cfg_hnd; 127 128 struct completion dma_comp; 129 struct completion video_comp; 130 struct mutex dev_mutex; 131 struct mutex cmd_mutex; 132 spinlock_t intr_lock; /* Protect interrupt ctrl register */ 133 134 u32 err_work_state; 135 struct work_struct err_work; 136 struct work_struct hpd_work; 137 struct workqueue_struct *workqueue; 138 139 /* DSI 6G TX buffer*/ 140 struct drm_gem_object *tx_gem_obj; 141 142 /* DSI v2 TX buffer */ 143 void *tx_buf; 144 dma_addr_t tx_buf_paddr; 145 146 int tx_size; 147 148 u8 *rx_buf; 149 150 struct regmap *sfpb; 151 152 struct drm_display_mode *mode; 153 154 /* connected device info */ 155 struct device_node *device_node; 156 unsigned int channel; 157 unsigned int lanes; 158 enum mipi_dsi_pixel_format format; 159 unsigned long mode_flags; 160 161 /* lane data parsed via DT */ 162 int dlane_swap; 163 int num_data_lanes; 164 165 u32 dma_cmd_ctrl_restore; 166 167 bool registered; 168 bool power_on; 169 bool enabled; 170 int irq; 171 }; 172 173 static u32 dsi_get_bpp(const enum mipi_dsi_pixel_format fmt) 174 { 175 switch (fmt) { 176 case MIPI_DSI_FMT_RGB565: return 16; 177 case MIPI_DSI_FMT_RGB666_PACKED: return 18; 178 case MIPI_DSI_FMT_RGB666: 179 case MIPI_DSI_FMT_RGB888: 180 default: return 24; 181 } 182 } 183 184 static inline u32 dsi_read(struct msm_dsi_host *msm_host, u32 reg) 185 { 186 return msm_readl(msm_host->ctrl_base + reg); 187 } 188 static inline void dsi_write(struct msm_dsi_host *msm_host, u32 reg, u32 data) 189 { 190 msm_writel(data, msm_host->ctrl_base + reg); 191 } 192 193 static int dsi_host_regulator_enable(struct msm_dsi_host *msm_host); 194 static void dsi_host_regulator_disable(struct msm_dsi_host *msm_host); 195 196 static const struct msm_dsi_cfg_handler *dsi_get_config( 197 struct msm_dsi_host *msm_host) 198 { 199 const struct msm_dsi_cfg_handler *cfg_hnd = NULL; 200 struct device *dev = &msm_host->pdev->dev; 201 struct regulator *gdsc_reg; 202 struct clk *ahb_clk; 203 int ret; 204 u32 major = 0, minor = 0; 205 206 gdsc_reg = regulator_get(dev, "gdsc"); 207 if (IS_ERR(gdsc_reg)) { 208 pr_err("%s: cannot get gdsc\n", __func__); 209 goto exit; 210 } 211 212 ahb_clk = msm_clk_get(msm_host->pdev, "iface"); 213 if (IS_ERR(ahb_clk)) { 214 pr_err("%s: cannot get interface clock\n", __func__); 215 goto put_gdsc; 216 } 217 218 pm_runtime_get_sync(dev); 219 220 ret = regulator_enable(gdsc_reg); 221 if (ret) { 222 pr_err("%s: unable to enable gdsc\n", __func__); 223 goto put_gdsc; 224 } 225 226 ret = clk_prepare_enable(ahb_clk); 227 if (ret) { 228 pr_err("%s: unable to enable ahb_clk\n", __func__); 229 goto disable_gdsc; 230 } 231 232 ret = dsi_get_version(msm_host->ctrl_base, &major, &minor); 233 if (ret) { 234 pr_err("%s: Invalid version\n", __func__); 235 goto disable_clks; 236 } 237 238 cfg_hnd = msm_dsi_cfg_get(major, minor); 239 240 DBG("%s: Version %x:%x\n", __func__, major, minor); 241 242 disable_clks: 243 clk_disable_unprepare(ahb_clk); 244 disable_gdsc: 245 regulator_disable(gdsc_reg); 246 pm_runtime_put_sync(dev); 247 put_gdsc: 248 regulator_put(gdsc_reg); 249 exit: 250 return cfg_hnd; 251 } 252 253 static inline struct msm_dsi_host *to_msm_dsi_host(struct mipi_dsi_host *host) 254 { 255 return container_of(host, struct msm_dsi_host, base); 256 } 257 258 static void dsi_host_regulator_disable(struct msm_dsi_host *msm_host) 259 { 260 struct regulator_bulk_data *s = msm_host->supplies; 261 const struct dsi_reg_entry *regs = msm_host->cfg_hnd->cfg->reg_cfg.regs; 262 int num = msm_host->cfg_hnd->cfg->reg_cfg.num; 263 int i; 264 265 DBG(""); 266 for (i = num - 1; i >= 0; i--) 267 if (regs[i].disable_load >= 0) 268 regulator_set_load(s[i].consumer, 269 regs[i].disable_load); 270 271 regulator_bulk_disable(num, s); 272 } 273 274 static int dsi_host_regulator_enable(struct msm_dsi_host *msm_host) 275 { 276 struct regulator_bulk_data *s = msm_host->supplies; 277 const struct dsi_reg_entry *regs = msm_host->cfg_hnd->cfg->reg_cfg.regs; 278 int num = msm_host->cfg_hnd->cfg->reg_cfg.num; 279 int ret, i; 280 281 DBG(""); 282 for (i = 0; i < num; i++) { 283 if (regs[i].enable_load >= 0) { 284 ret = regulator_set_load(s[i].consumer, 285 regs[i].enable_load); 286 if (ret < 0) { 287 pr_err("regulator %d set op mode failed, %d\n", 288 i, ret); 289 goto fail; 290 } 291 } 292 } 293 294 ret = regulator_bulk_enable(num, s); 295 if (ret < 0) { 296 pr_err("regulator enable failed, %d\n", ret); 297 goto fail; 298 } 299 300 return 0; 301 302 fail: 303 for (i--; i >= 0; i--) 304 regulator_set_load(s[i].consumer, regs[i].disable_load); 305 return ret; 306 } 307 308 static int dsi_regulator_init(struct msm_dsi_host *msm_host) 309 { 310 struct regulator_bulk_data *s = msm_host->supplies; 311 const struct dsi_reg_entry *regs = msm_host->cfg_hnd->cfg->reg_cfg.regs; 312 int num = msm_host->cfg_hnd->cfg->reg_cfg.num; 313 int i, ret; 314 315 for (i = 0; i < num; i++) 316 s[i].supply = regs[i].name; 317 318 ret = devm_regulator_bulk_get(&msm_host->pdev->dev, num, s); 319 if (ret < 0) { 320 pr_err("%s: failed to init regulator, ret=%d\n", 321 __func__, ret); 322 return ret; 323 } 324 325 return 0; 326 } 327 328 int dsi_clk_init_v2(struct msm_dsi_host *msm_host) 329 { 330 struct platform_device *pdev = msm_host->pdev; 331 int ret = 0; 332 333 msm_host->src_clk = msm_clk_get(pdev, "src"); 334 335 if (IS_ERR(msm_host->src_clk)) { 336 ret = PTR_ERR(msm_host->src_clk); 337 pr_err("%s: can't find src clock. ret=%d\n", 338 __func__, ret); 339 msm_host->src_clk = NULL; 340 return ret; 341 } 342 343 msm_host->esc_clk_src = clk_get_parent(msm_host->esc_clk); 344 if (!msm_host->esc_clk_src) { 345 ret = -ENODEV; 346 pr_err("%s: can't get esc clock parent. ret=%d\n", 347 __func__, ret); 348 return ret; 349 } 350 351 msm_host->dsi_clk_src = clk_get_parent(msm_host->src_clk); 352 if (!msm_host->dsi_clk_src) { 353 ret = -ENODEV; 354 pr_err("%s: can't get src clock parent. ret=%d\n", 355 __func__, ret); 356 } 357 358 return ret; 359 } 360 361 int dsi_clk_init_6g_v2(struct msm_dsi_host *msm_host) 362 { 363 struct platform_device *pdev = msm_host->pdev; 364 int ret = 0; 365 366 msm_host->byte_intf_clk = msm_clk_get(pdev, "byte_intf"); 367 if (IS_ERR(msm_host->byte_intf_clk)) { 368 ret = PTR_ERR(msm_host->byte_intf_clk); 369 pr_err("%s: can't find byte_intf clock. ret=%d\n", 370 __func__, ret); 371 } 372 373 return ret; 374 } 375 376 static int dsi_clk_init(struct msm_dsi_host *msm_host) 377 { 378 struct platform_device *pdev = msm_host->pdev; 379 const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd; 380 const struct msm_dsi_config *cfg = cfg_hnd->cfg; 381 int i, ret = 0; 382 383 /* get bus clocks */ 384 for (i = 0; i < cfg->num_bus_clks; i++) { 385 msm_host->bus_clks[i] = msm_clk_get(pdev, 386 cfg->bus_clk_names[i]); 387 if (IS_ERR(msm_host->bus_clks[i])) { 388 ret = PTR_ERR(msm_host->bus_clks[i]); 389 pr_err("%s: Unable to get %s clock, ret = %d\n", 390 __func__, cfg->bus_clk_names[i], ret); 391 goto exit; 392 } 393 } 394 395 /* get link and source clocks */ 396 msm_host->byte_clk = msm_clk_get(pdev, "byte"); 397 if (IS_ERR(msm_host->byte_clk)) { 398 ret = PTR_ERR(msm_host->byte_clk); 399 pr_err("%s: can't find dsi_byte clock. ret=%d\n", 400 __func__, ret); 401 msm_host->byte_clk = NULL; 402 goto exit; 403 } 404 405 msm_host->pixel_clk = msm_clk_get(pdev, "pixel"); 406 if (IS_ERR(msm_host->pixel_clk)) { 407 ret = PTR_ERR(msm_host->pixel_clk); 408 pr_err("%s: can't find dsi_pixel clock. ret=%d\n", 409 __func__, ret); 410 msm_host->pixel_clk = NULL; 411 goto exit; 412 } 413 414 msm_host->esc_clk = msm_clk_get(pdev, "core"); 415 if (IS_ERR(msm_host->esc_clk)) { 416 ret = PTR_ERR(msm_host->esc_clk); 417 pr_err("%s: can't find dsi_esc clock. ret=%d\n", 418 __func__, ret); 419 msm_host->esc_clk = NULL; 420 goto exit; 421 } 422 423 msm_host->byte_clk_src = clk_get_parent(msm_host->byte_clk); 424 if (!msm_host->byte_clk_src) { 425 ret = -ENODEV; 426 pr_err("%s: can't find byte_clk clock. ret=%d\n", __func__, ret); 427 goto exit; 428 } 429 430 msm_host->pixel_clk_src = clk_get_parent(msm_host->pixel_clk); 431 if (!msm_host->pixel_clk_src) { 432 ret = -ENODEV; 433 pr_err("%s: can't find pixel_clk clock. ret=%d\n", __func__, ret); 434 goto exit; 435 } 436 437 if (cfg_hnd->ops->clk_init_ver) 438 ret = cfg_hnd->ops->clk_init_ver(msm_host); 439 exit: 440 return ret; 441 } 442 443 static int dsi_bus_clk_enable(struct msm_dsi_host *msm_host) 444 { 445 const struct msm_dsi_config *cfg = msm_host->cfg_hnd->cfg; 446 int i, ret; 447 448 DBG("id=%d", msm_host->id); 449 450 for (i = 0; i < cfg->num_bus_clks; i++) { 451 ret = clk_prepare_enable(msm_host->bus_clks[i]); 452 if (ret) { 453 pr_err("%s: failed to enable bus clock %d ret %d\n", 454 __func__, i, ret); 455 goto err; 456 } 457 } 458 459 return 0; 460 err: 461 for (; i > 0; i--) 462 clk_disable_unprepare(msm_host->bus_clks[i]); 463 464 return ret; 465 } 466 467 static void dsi_bus_clk_disable(struct msm_dsi_host *msm_host) 468 { 469 const struct msm_dsi_config *cfg = msm_host->cfg_hnd->cfg; 470 int i; 471 472 DBG(""); 473 474 for (i = cfg->num_bus_clks - 1; i >= 0; i--) 475 clk_disable_unprepare(msm_host->bus_clks[i]); 476 } 477 478 int msm_dsi_runtime_suspend(struct device *dev) 479 { 480 struct platform_device *pdev = to_platform_device(dev); 481 struct msm_dsi *msm_dsi = platform_get_drvdata(pdev); 482 struct mipi_dsi_host *host = msm_dsi->host; 483 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 484 485 if (!msm_host->cfg_hnd) 486 return 0; 487 488 dsi_bus_clk_disable(msm_host); 489 490 return 0; 491 } 492 493 int msm_dsi_runtime_resume(struct device *dev) 494 { 495 struct platform_device *pdev = to_platform_device(dev); 496 struct msm_dsi *msm_dsi = platform_get_drvdata(pdev); 497 struct mipi_dsi_host *host = msm_dsi->host; 498 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 499 500 if (!msm_host->cfg_hnd) 501 return 0; 502 503 return dsi_bus_clk_enable(msm_host); 504 } 505 506 int dsi_link_clk_enable_6g(struct msm_dsi_host *msm_host) 507 { 508 int ret; 509 510 DBG("Set clk rates: pclk=%d, byteclk=%d", 511 msm_host->mode->clock, msm_host->byte_clk_rate); 512 513 ret = clk_set_rate(msm_host->byte_clk, msm_host->byte_clk_rate); 514 if (ret) { 515 pr_err("%s: Failed to set rate byte clk, %d\n", __func__, ret); 516 goto error; 517 } 518 519 ret = clk_set_rate(msm_host->pixel_clk, msm_host->pixel_clk_rate); 520 if (ret) { 521 pr_err("%s: Failed to set rate pixel clk, %d\n", __func__, ret); 522 goto error; 523 } 524 525 if (msm_host->byte_intf_clk) { 526 ret = clk_set_rate(msm_host->byte_intf_clk, 527 msm_host->byte_clk_rate / 2); 528 if (ret) { 529 pr_err("%s: Failed to set rate byte intf clk, %d\n", 530 __func__, ret); 531 goto error; 532 } 533 } 534 535 ret = clk_prepare_enable(msm_host->esc_clk); 536 if (ret) { 537 pr_err("%s: Failed to enable dsi esc clk\n", __func__); 538 goto error; 539 } 540 541 ret = clk_prepare_enable(msm_host->byte_clk); 542 if (ret) { 543 pr_err("%s: Failed to enable dsi byte clk\n", __func__); 544 goto byte_clk_err; 545 } 546 547 ret = clk_prepare_enable(msm_host->pixel_clk); 548 if (ret) { 549 pr_err("%s: Failed to enable dsi pixel clk\n", __func__); 550 goto pixel_clk_err; 551 } 552 553 if (msm_host->byte_intf_clk) { 554 ret = clk_prepare_enable(msm_host->byte_intf_clk); 555 if (ret) { 556 pr_err("%s: Failed to enable byte intf clk\n", 557 __func__); 558 goto byte_intf_clk_err; 559 } 560 } 561 562 return 0; 563 564 byte_intf_clk_err: 565 clk_disable_unprepare(msm_host->pixel_clk); 566 pixel_clk_err: 567 clk_disable_unprepare(msm_host->byte_clk); 568 byte_clk_err: 569 clk_disable_unprepare(msm_host->esc_clk); 570 error: 571 return ret; 572 } 573 574 int dsi_link_clk_enable_v2(struct msm_dsi_host *msm_host) 575 { 576 int ret; 577 578 DBG("Set clk rates: pclk=%d, byteclk=%d, esc_clk=%d, dsi_src_clk=%d", 579 msm_host->mode->clock, msm_host->byte_clk_rate, 580 msm_host->esc_clk_rate, msm_host->src_clk_rate); 581 582 ret = clk_set_rate(msm_host->byte_clk, msm_host->byte_clk_rate); 583 if (ret) { 584 pr_err("%s: Failed to set rate byte clk, %d\n", __func__, ret); 585 goto error; 586 } 587 588 ret = clk_set_rate(msm_host->esc_clk, msm_host->esc_clk_rate); 589 if (ret) { 590 pr_err("%s: Failed to set rate esc clk, %d\n", __func__, ret); 591 goto error; 592 } 593 594 ret = clk_set_rate(msm_host->src_clk, msm_host->src_clk_rate); 595 if (ret) { 596 pr_err("%s: Failed to set rate src clk, %d\n", __func__, ret); 597 goto error; 598 } 599 600 ret = clk_set_rate(msm_host->pixel_clk, msm_host->pixel_clk_rate); 601 if (ret) { 602 pr_err("%s: Failed to set rate pixel clk, %d\n", __func__, ret); 603 goto error; 604 } 605 606 ret = clk_prepare_enable(msm_host->byte_clk); 607 if (ret) { 608 pr_err("%s: Failed to enable dsi byte clk\n", __func__); 609 goto error; 610 } 611 612 ret = clk_prepare_enable(msm_host->esc_clk); 613 if (ret) { 614 pr_err("%s: Failed to enable dsi esc clk\n", __func__); 615 goto esc_clk_err; 616 } 617 618 ret = clk_prepare_enable(msm_host->src_clk); 619 if (ret) { 620 pr_err("%s: Failed to enable dsi src clk\n", __func__); 621 goto src_clk_err; 622 } 623 624 ret = clk_prepare_enable(msm_host->pixel_clk); 625 if (ret) { 626 pr_err("%s: Failed to enable dsi pixel clk\n", __func__); 627 goto pixel_clk_err; 628 } 629 630 return 0; 631 632 pixel_clk_err: 633 clk_disable_unprepare(msm_host->src_clk); 634 src_clk_err: 635 clk_disable_unprepare(msm_host->esc_clk); 636 esc_clk_err: 637 clk_disable_unprepare(msm_host->byte_clk); 638 error: 639 return ret; 640 } 641 642 void dsi_link_clk_disable_6g(struct msm_dsi_host *msm_host) 643 { 644 clk_disable_unprepare(msm_host->esc_clk); 645 clk_disable_unprepare(msm_host->pixel_clk); 646 if (msm_host->byte_intf_clk) 647 clk_disable_unprepare(msm_host->byte_intf_clk); 648 clk_disable_unprepare(msm_host->byte_clk); 649 } 650 651 void dsi_link_clk_disable_v2(struct msm_dsi_host *msm_host) 652 { 653 clk_disable_unprepare(msm_host->pixel_clk); 654 clk_disable_unprepare(msm_host->src_clk); 655 clk_disable_unprepare(msm_host->esc_clk); 656 clk_disable_unprepare(msm_host->byte_clk); 657 } 658 659 static u32 dsi_get_pclk_rate(struct msm_dsi_host *msm_host, bool is_dual_dsi) 660 { 661 struct drm_display_mode *mode = msm_host->mode; 662 u32 pclk_rate; 663 664 pclk_rate = mode->clock * 1000; 665 666 /* 667 * For dual DSI mode, the current DRM mode has the complete width of the 668 * panel. Since, the complete panel is driven by two DSI controllers, 669 * the clock rates have to be split between the two dsi controllers. 670 * Adjust the byte and pixel clock rates for each dsi host accordingly. 671 */ 672 if (is_dual_dsi) 673 pclk_rate /= 2; 674 675 return pclk_rate; 676 } 677 678 static void dsi_calc_pclk(struct msm_dsi_host *msm_host, bool is_dual_dsi) 679 { 680 u8 lanes = msm_host->lanes; 681 u32 bpp = dsi_get_bpp(msm_host->format); 682 u32 pclk_rate = dsi_get_pclk_rate(msm_host, is_dual_dsi); 683 u64 pclk_bpp = (u64)pclk_rate * bpp; 684 685 if (lanes == 0) { 686 pr_err("%s: forcing mdss_dsi lanes to 1\n", __func__); 687 lanes = 1; 688 } 689 690 do_div(pclk_bpp, (8 * lanes)); 691 692 msm_host->pixel_clk_rate = pclk_rate; 693 msm_host->byte_clk_rate = pclk_bpp; 694 695 DBG("pclk=%d, bclk=%d", msm_host->pixel_clk_rate, 696 msm_host->byte_clk_rate); 697 698 } 699 700 int dsi_calc_clk_rate_6g(struct msm_dsi_host *msm_host, bool is_dual_dsi) 701 { 702 if (!msm_host->mode) { 703 pr_err("%s: mode not set\n", __func__); 704 return -EINVAL; 705 } 706 707 dsi_calc_pclk(msm_host, is_dual_dsi); 708 msm_host->esc_clk_rate = clk_get_rate(msm_host->esc_clk); 709 return 0; 710 } 711 712 int dsi_calc_clk_rate_v2(struct msm_dsi_host *msm_host, bool is_dual_dsi) 713 { 714 u32 bpp = dsi_get_bpp(msm_host->format); 715 u64 pclk_bpp; 716 unsigned int esc_mhz, esc_div; 717 unsigned long byte_mhz; 718 719 dsi_calc_pclk(msm_host, is_dual_dsi); 720 721 pclk_bpp = (u64)dsi_get_pclk_rate(msm_host, is_dual_dsi) * bpp; 722 do_div(pclk_bpp, 8); 723 msm_host->src_clk_rate = pclk_bpp; 724 725 /* 726 * esc clock is byte clock followed by a 4 bit divider, 727 * we need to find an escape clock frequency within the 728 * mipi DSI spec range within the maximum divider limit 729 * We iterate here between an escape clock frequencey 730 * between 20 Mhz to 5 Mhz and pick up the first one 731 * that can be supported by our divider 732 */ 733 734 byte_mhz = msm_host->byte_clk_rate / 1000000; 735 736 for (esc_mhz = 20; esc_mhz >= 5; esc_mhz--) { 737 esc_div = DIV_ROUND_UP(byte_mhz, esc_mhz); 738 739 /* 740 * TODO: Ideally, we shouldn't know what sort of divider 741 * is available in mmss_cc, we're just assuming that 742 * it'll always be a 4 bit divider. Need to come up with 743 * a better way here. 744 */ 745 if (esc_div >= 1 && esc_div <= 16) 746 break; 747 } 748 749 if (esc_mhz < 5) 750 return -EINVAL; 751 752 msm_host->esc_clk_rate = msm_host->byte_clk_rate / esc_div; 753 754 DBG("esc=%d, src=%d", msm_host->esc_clk_rate, 755 msm_host->src_clk_rate); 756 757 return 0; 758 } 759 760 static void dsi_intr_ctrl(struct msm_dsi_host *msm_host, u32 mask, int enable) 761 { 762 u32 intr; 763 unsigned long flags; 764 765 spin_lock_irqsave(&msm_host->intr_lock, flags); 766 intr = dsi_read(msm_host, REG_DSI_INTR_CTRL); 767 768 if (enable) 769 intr |= mask; 770 else 771 intr &= ~mask; 772 773 DBG("intr=%x enable=%d", intr, enable); 774 775 dsi_write(msm_host, REG_DSI_INTR_CTRL, intr); 776 spin_unlock_irqrestore(&msm_host->intr_lock, flags); 777 } 778 779 static inline enum dsi_traffic_mode dsi_get_traffic_mode(const u32 mode_flags) 780 { 781 if (mode_flags & MIPI_DSI_MODE_VIDEO_BURST) 782 return BURST_MODE; 783 else if (mode_flags & MIPI_DSI_MODE_VIDEO_SYNC_PULSE) 784 return NON_BURST_SYNCH_PULSE; 785 786 return NON_BURST_SYNCH_EVENT; 787 } 788 789 static inline enum dsi_vid_dst_format dsi_get_vid_fmt( 790 const enum mipi_dsi_pixel_format mipi_fmt) 791 { 792 switch (mipi_fmt) { 793 case MIPI_DSI_FMT_RGB888: return VID_DST_FORMAT_RGB888; 794 case MIPI_DSI_FMT_RGB666: return VID_DST_FORMAT_RGB666_LOOSE; 795 case MIPI_DSI_FMT_RGB666_PACKED: return VID_DST_FORMAT_RGB666; 796 case MIPI_DSI_FMT_RGB565: return VID_DST_FORMAT_RGB565; 797 default: return VID_DST_FORMAT_RGB888; 798 } 799 } 800 801 static inline enum dsi_cmd_dst_format dsi_get_cmd_fmt( 802 const enum mipi_dsi_pixel_format mipi_fmt) 803 { 804 switch (mipi_fmt) { 805 case MIPI_DSI_FMT_RGB888: return CMD_DST_FORMAT_RGB888; 806 case MIPI_DSI_FMT_RGB666_PACKED: 807 case MIPI_DSI_FMT_RGB666: return CMD_DST_FORMAT_RGB666; 808 case MIPI_DSI_FMT_RGB565: return CMD_DST_FORMAT_RGB565; 809 default: return CMD_DST_FORMAT_RGB888; 810 } 811 } 812 813 static void dsi_ctrl_config(struct msm_dsi_host *msm_host, bool enable, 814 struct msm_dsi_phy_shared_timings *phy_shared_timings) 815 { 816 u32 flags = msm_host->mode_flags; 817 enum mipi_dsi_pixel_format mipi_fmt = msm_host->format; 818 const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd; 819 u32 data = 0; 820 821 if (!enable) { 822 dsi_write(msm_host, REG_DSI_CTRL, 0); 823 return; 824 } 825 826 if (flags & MIPI_DSI_MODE_VIDEO) { 827 if (flags & MIPI_DSI_MODE_VIDEO_HSE) 828 data |= DSI_VID_CFG0_PULSE_MODE_HSA_HE; 829 if (flags & MIPI_DSI_MODE_VIDEO_HFP) 830 data |= DSI_VID_CFG0_HFP_POWER_STOP; 831 if (flags & MIPI_DSI_MODE_VIDEO_HBP) 832 data |= DSI_VID_CFG0_HBP_POWER_STOP; 833 if (flags & MIPI_DSI_MODE_VIDEO_HSA) 834 data |= DSI_VID_CFG0_HSA_POWER_STOP; 835 /* Always set low power stop mode for BLLP 836 * to let command engine send packets 837 */ 838 data |= DSI_VID_CFG0_EOF_BLLP_POWER_STOP | 839 DSI_VID_CFG0_BLLP_POWER_STOP; 840 data |= DSI_VID_CFG0_TRAFFIC_MODE(dsi_get_traffic_mode(flags)); 841 data |= DSI_VID_CFG0_DST_FORMAT(dsi_get_vid_fmt(mipi_fmt)); 842 data |= DSI_VID_CFG0_VIRT_CHANNEL(msm_host->channel); 843 dsi_write(msm_host, REG_DSI_VID_CFG0, data); 844 845 /* Do not swap RGB colors */ 846 data = DSI_VID_CFG1_RGB_SWAP(SWAP_RGB); 847 dsi_write(msm_host, REG_DSI_VID_CFG1, 0); 848 } else { 849 /* Do not swap RGB colors */ 850 data = DSI_CMD_CFG0_RGB_SWAP(SWAP_RGB); 851 data |= DSI_CMD_CFG0_DST_FORMAT(dsi_get_cmd_fmt(mipi_fmt)); 852 dsi_write(msm_host, REG_DSI_CMD_CFG0, data); 853 854 data = DSI_CMD_CFG1_WR_MEM_START(MIPI_DCS_WRITE_MEMORY_START) | 855 DSI_CMD_CFG1_WR_MEM_CONTINUE( 856 MIPI_DCS_WRITE_MEMORY_CONTINUE); 857 /* Always insert DCS command */ 858 data |= DSI_CMD_CFG1_INSERT_DCS_COMMAND; 859 dsi_write(msm_host, REG_DSI_CMD_CFG1, data); 860 } 861 862 dsi_write(msm_host, REG_DSI_CMD_DMA_CTRL, 863 DSI_CMD_DMA_CTRL_FROM_FRAME_BUFFER | 864 DSI_CMD_DMA_CTRL_LOW_POWER); 865 866 data = 0; 867 /* Always assume dedicated TE pin */ 868 data |= DSI_TRIG_CTRL_TE; 869 data |= DSI_TRIG_CTRL_MDP_TRIGGER(TRIGGER_NONE); 870 data |= DSI_TRIG_CTRL_DMA_TRIGGER(TRIGGER_SW); 871 data |= DSI_TRIG_CTRL_STREAM(msm_host->channel); 872 if ((cfg_hnd->major == MSM_DSI_VER_MAJOR_6G) && 873 (cfg_hnd->minor >= MSM_DSI_6G_VER_MINOR_V1_2)) 874 data |= DSI_TRIG_CTRL_BLOCK_DMA_WITHIN_FRAME; 875 dsi_write(msm_host, REG_DSI_TRIG_CTRL, data); 876 877 data = DSI_CLKOUT_TIMING_CTRL_T_CLK_POST(phy_shared_timings->clk_post) | 878 DSI_CLKOUT_TIMING_CTRL_T_CLK_PRE(phy_shared_timings->clk_pre); 879 dsi_write(msm_host, REG_DSI_CLKOUT_TIMING_CTRL, data); 880 881 if ((cfg_hnd->major == MSM_DSI_VER_MAJOR_6G) && 882 (cfg_hnd->minor > MSM_DSI_6G_VER_MINOR_V1_0) && 883 phy_shared_timings->clk_pre_inc_by_2) 884 dsi_write(msm_host, REG_DSI_T_CLK_PRE_EXTEND, 885 DSI_T_CLK_PRE_EXTEND_INC_BY_2_BYTECLK); 886 887 data = 0; 888 if (!(flags & MIPI_DSI_MODE_EOT_PACKET)) 889 data |= DSI_EOT_PACKET_CTRL_TX_EOT_APPEND; 890 dsi_write(msm_host, REG_DSI_EOT_PACKET_CTRL, data); 891 892 /* allow only ack-err-status to generate interrupt */ 893 dsi_write(msm_host, REG_DSI_ERR_INT_MASK0, 0x13ff3fe0); 894 895 dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_ERROR, 1); 896 897 dsi_write(msm_host, REG_DSI_CLK_CTRL, DSI_CLK_CTRL_ENABLE_CLKS); 898 899 data = DSI_CTRL_CLK_EN; 900 901 DBG("lane number=%d", msm_host->lanes); 902 data |= ((DSI_CTRL_LANE0 << msm_host->lanes) - DSI_CTRL_LANE0); 903 904 dsi_write(msm_host, REG_DSI_LANE_SWAP_CTRL, 905 DSI_LANE_SWAP_CTRL_DLN_SWAP_SEL(msm_host->dlane_swap)); 906 907 if (!(flags & MIPI_DSI_CLOCK_NON_CONTINUOUS)) 908 dsi_write(msm_host, REG_DSI_LANE_CTRL, 909 DSI_LANE_CTRL_CLKLN_HS_FORCE_REQUEST); 910 911 data |= DSI_CTRL_ENABLE; 912 913 dsi_write(msm_host, REG_DSI_CTRL, data); 914 } 915 916 static void dsi_timing_setup(struct msm_dsi_host *msm_host, bool is_dual_dsi) 917 { 918 struct drm_display_mode *mode = msm_host->mode; 919 u32 hs_start = 0, vs_start = 0; /* take sync start as 0 */ 920 u32 h_total = mode->htotal; 921 u32 v_total = mode->vtotal; 922 u32 hs_end = mode->hsync_end - mode->hsync_start; 923 u32 vs_end = mode->vsync_end - mode->vsync_start; 924 u32 ha_start = h_total - mode->hsync_start; 925 u32 ha_end = ha_start + mode->hdisplay; 926 u32 va_start = v_total - mode->vsync_start; 927 u32 va_end = va_start + mode->vdisplay; 928 u32 hdisplay = mode->hdisplay; 929 u32 wc; 930 931 DBG(""); 932 933 /* 934 * For dual DSI mode, the current DRM mode has 935 * the complete width of the panel. Since, the complete 936 * panel is driven by two DSI controllers, the horizontal 937 * timings have to be split between the two dsi controllers. 938 * Adjust the DSI host timing values accordingly. 939 */ 940 if (is_dual_dsi) { 941 h_total /= 2; 942 hs_end /= 2; 943 ha_start /= 2; 944 ha_end /= 2; 945 hdisplay /= 2; 946 } 947 948 if (msm_host->mode_flags & MIPI_DSI_MODE_VIDEO) { 949 dsi_write(msm_host, REG_DSI_ACTIVE_H, 950 DSI_ACTIVE_H_START(ha_start) | 951 DSI_ACTIVE_H_END(ha_end)); 952 dsi_write(msm_host, REG_DSI_ACTIVE_V, 953 DSI_ACTIVE_V_START(va_start) | 954 DSI_ACTIVE_V_END(va_end)); 955 dsi_write(msm_host, REG_DSI_TOTAL, 956 DSI_TOTAL_H_TOTAL(h_total - 1) | 957 DSI_TOTAL_V_TOTAL(v_total - 1)); 958 959 dsi_write(msm_host, REG_DSI_ACTIVE_HSYNC, 960 DSI_ACTIVE_HSYNC_START(hs_start) | 961 DSI_ACTIVE_HSYNC_END(hs_end)); 962 dsi_write(msm_host, REG_DSI_ACTIVE_VSYNC_HPOS, 0); 963 dsi_write(msm_host, REG_DSI_ACTIVE_VSYNC_VPOS, 964 DSI_ACTIVE_VSYNC_VPOS_START(vs_start) | 965 DSI_ACTIVE_VSYNC_VPOS_END(vs_end)); 966 } else { /* command mode */ 967 /* image data and 1 byte write_memory_start cmd */ 968 wc = hdisplay * dsi_get_bpp(msm_host->format) / 8 + 1; 969 970 dsi_write(msm_host, REG_DSI_CMD_MDP_STREAM_CTRL, 971 DSI_CMD_MDP_STREAM_CTRL_WORD_COUNT(wc) | 972 DSI_CMD_MDP_STREAM_CTRL_VIRTUAL_CHANNEL( 973 msm_host->channel) | 974 DSI_CMD_MDP_STREAM_CTRL_DATA_TYPE( 975 MIPI_DSI_DCS_LONG_WRITE)); 976 977 dsi_write(msm_host, REG_DSI_CMD_MDP_STREAM_TOTAL, 978 DSI_CMD_MDP_STREAM_TOTAL_H_TOTAL(hdisplay) | 979 DSI_CMD_MDP_STREAM_TOTAL_V_TOTAL(mode->vdisplay)); 980 } 981 } 982 983 static void dsi_sw_reset(struct msm_dsi_host *msm_host) 984 { 985 dsi_write(msm_host, REG_DSI_CLK_CTRL, DSI_CLK_CTRL_ENABLE_CLKS); 986 wmb(); /* clocks need to be enabled before reset */ 987 988 dsi_write(msm_host, REG_DSI_RESET, 1); 989 wmb(); /* make sure reset happen */ 990 dsi_write(msm_host, REG_DSI_RESET, 0); 991 } 992 993 static void dsi_op_mode_config(struct msm_dsi_host *msm_host, 994 bool video_mode, bool enable) 995 { 996 u32 dsi_ctrl; 997 998 dsi_ctrl = dsi_read(msm_host, REG_DSI_CTRL); 999 1000 if (!enable) { 1001 dsi_ctrl &= ~(DSI_CTRL_ENABLE | DSI_CTRL_VID_MODE_EN | 1002 DSI_CTRL_CMD_MODE_EN); 1003 dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_CMD_MDP_DONE | 1004 DSI_IRQ_MASK_VIDEO_DONE, 0); 1005 } else { 1006 if (video_mode) { 1007 dsi_ctrl |= DSI_CTRL_VID_MODE_EN; 1008 } else { /* command mode */ 1009 dsi_ctrl |= DSI_CTRL_CMD_MODE_EN; 1010 dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_CMD_MDP_DONE, 1); 1011 } 1012 dsi_ctrl |= DSI_CTRL_ENABLE; 1013 } 1014 1015 dsi_write(msm_host, REG_DSI_CTRL, dsi_ctrl); 1016 } 1017 1018 static void dsi_set_tx_power_mode(int mode, struct msm_dsi_host *msm_host) 1019 { 1020 u32 data; 1021 1022 data = dsi_read(msm_host, REG_DSI_CMD_DMA_CTRL); 1023 1024 if (mode == 0) 1025 data &= ~DSI_CMD_DMA_CTRL_LOW_POWER; 1026 else 1027 data |= DSI_CMD_DMA_CTRL_LOW_POWER; 1028 1029 dsi_write(msm_host, REG_DSI_CMD_DMA_CTRL, data); 1030 } 1031 1032 static void dsi_wait4video_done(struct msm_dsi_host *msm_host) 1033 { 1034 u32 ret = 0; 1035 struct device *dev = &msm_host->pdev->dev; 1036 1037 dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_VIDEO_DONE, 1); 1038 1039 reinit_completion(&msm_host->video_comp); 1040 1041 ret = wait_for_completion_timeout(&msm_host->video_comp, 1042 msecs_to_jiffies(70)); 1043 1044 if (ret == 0) 1045 DRM_DEV_ERROR(dev, "wait for video done timed out\n"); 1046 1047 dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_VIDEO_DONE, 0); 1048 } 1049 1050 static void dsi_wait4video_eng_busy(struct msm_dsi_host *msm_host) 1051 { 1052 if (!(msm_host->mode_flags & MIPI_DSI_MODE_VIDEO)) 1053 return; 1054 1055 if (msm_host->power_on && msm_host->enabled) { 1056 dsi_wait4video_done(msm_host); 1057 /* delay 4 ms to skip BLLP */ 1058 usleep_range(2000, 4000); 1059 } 1060 } 1061 1062 int dsi_tx_buf_alloc_6g(struct msm_dsi_host *msm_host, int size) 1063 { 1064 struct drm_device *dev = msm_host->dev; 1065 struct msm_drm_private *priv = dev->dev_private; 1066 uint64_t iova; 1067 u8 *data; 1068 1069 data = msm_gem_kernel_new(dev, size, MSM_BO_UNCACHED, 1070 priv->kms->aspace, 1071 &msm_host->tx_gem_obj, &iova); 1072 1073 if (IS_ERR(data)) { 1074 msm_host->tx_gem_obj = NULL; 1075 return PTR_ERR(data); 1076 } 1077 1078 msm_gem_object_set_name(msm_host->tx_gem_obj, "tx_gem"); 1079 1080 msm_host->tx_size = msm_host->tx_gem_obj->size; 1081 1082 return 0; 1083 } 1084 1085 int dsi_tx_buf_alloc_v2(struct msm_dsi_host *msm_host, int size) 1086 { 1087 struct drm_device *dev = msm_host->dev; 1088 1089 msm_host->tx_buf = dma_alloc_coherent(dev->dev, size, 1090 &msm_host->tx_buf_paddr, GFP_KERNEL); 1091 if (!msm_host->tx_buf) 1092 return -ENOMEM; 1093 1094 msm_host->tx_size = size; 1095 1096 return 0; 1097 } 1098 1099 static void dsi_tx_buf_free(struct msm_dsi_host *msm_host) 1100 { 1101 struct drm_device *dev = msm_host->dev; 1102 struct msm_drm_private *priv; 1103 1104 /* 1105 * This is possible if we're tearing down before we've had a chance to 1106 * fully initialize. A very real possibility if our probe is deferred, 1107 * in which case we'll hit msm_dsi_host_destroy() without having run 1108 * through the dsi_tx_buf_alloc(). 1109 */ 1110 if (!dev) 1111 return; 1112 1113 priv = dev->dev_private; 1114 if (msm_host->tx_gem_obj) { 1115 msm_gem_unpin_iova(msm_host->tx_gem_obj, priv->kms->aspace); 1116 drm_gem_object_put_unlocked(msm_host->tx_gem_obj); 1117 msm_host->tx_gem_obj = NULL; 1118 } 1119 1120 if (msm_host->tx_buf) 1121 dma_free_coherent(dev->dev, msm_host->tx_size, msm_host->tx_buf, 1122 msm_host->tx_buf_paddr); 1123 } 1124 1125 void *dsi_tx_buf_get_6g(struct msm_dsi_host *msm_host) 1126 { 1127 return msm_gem_get_vaddr(msm_host->tx_gem_obj); 1128 } 1129 1130 void *dsi_tx_buf_get_v2(struct msm_dsi_host *msm_host) 1131 { 1132 return msm_host->tx_buf; 1133 } 1134 1135 void dsi_tx_buf_put_6g(struct msm_dsi_host *msm_host) 1136 { 1137 msm_gem_put_vaddr(msm_host->tx_gem_obj); 1138 } 1139 1140 /* 1141 * prepare cmd buffer to be txed 1142 */ 1143 static int dsi_cmd_dma_add(struct msm_dsi_host *msm_host, 1144 const struct mipi_dsi_msg *msg) 1145 { 1146 const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd; 1147 struct mipi_dsi_packet packet; 1148 int len; 1149 int ret; 1150 u8 *data; 1151 1152 ret = mipi_dsi_create_packet(&packet, msg); 1153 if (ret) { 1154 pr_err("%s: create packet failed, %d\n", __func__, ret); 1155 return ret; 1156 } 1157 len = (packet.size + 3) & (~0x3); 1158 1159 if (len > msm_host->tx_size) { 1160 pr_err("%s: packet size is too big\n", __func__); 1161 return -EINVAL; 1162 } 1163 1164 data = cfg_hnd->ops->tx_buf_get(msm_host); 1165 if (IS_ERR(data)) { 1166 ret = PTR_ERR(data); 1167 pr_err("%s: get vaddr failed, %d\n", __func__, ret); 1168 return ret; 1169 } 1170 1171 /* MSM specific command format in memory */ 1172 data[0] = packet.header[1]; 1173 data[1] = packet.header[2]; 1174 data[2] = packet.header[0]; 1175 data[3] = BIT(7); /* Last packet */ 1176 if (mipi_dsi_packet_format_is_long(msg->type)) 1177 data[3] |= BIT(6); 1178 if (msg->rx_buf && msg->rx_len) 1179 data[3] |= BIT(5); 1180 1181 /* Long packet */ 1182 if (packet.payload && packet.payload_length) 1183 memcpy(data + 4, packet.payload, packet.payload_length); 1184 1185 /* Append 0xff to the end */ 1186 if (packet.size < len) 1187 memset(data + packet.size, 0xff, len - packet.size); 1188 1189 if (cfg_hnd->ops->tx_buf_put) 1190 cfg_hnd->ops->tx_buf_put(msm_host); 1191 1192 return len; 1193 } 1194 1195 /* 1196 * dsi_short_read1_resp: 1 parameter 1197 */ 1198 static int dsi_short_read1_resp(u8 *buf, const struct mipi_dsi_msg *msg) 1199 { 1200 u8 *data = msg->rx_buf; 1201 if (data && (msg->rx_len >= 1)) { 1202 *data = buf[1]; /* strip out dcs type */ 1203 return 1; 1204 } else { 1205 pr_err("%s: read data does not match with rx_buf len %zu\n", 1206 __func__, msg->rx_len); 1207 return -EINVAL; 1208 } 1209 } 1210 1211 /* 1212 * dsi_short_read2_resp: 2 parameter 1213 */ 1214 static int dsi_short_read2_resp(u8 *buf, const struct mipi_dsi_msg *msg) 1215 { 1216 u8 *data = msg->rx_buf; 1217 if (data && (msg->rx_len >= 2)) { 1218 data[0] = buf[1]; /* strip out dcs type */ 1219 data[1] = buf[2]; 1220 return 2; 1221 } else { 1222 pr_err("%s: read data does not match with rx_buf len %zu\n", 1223 __func__, msg->rx_len); 1224 return -EINVAL; 1225 } 1226 } 1227 1228 static int dsi_long_read_resp(u8 *buf, const struct mipi_dsi_msg *msg) 1229 { 1230 /* strip out 4 byte dcs header */ 1231 if (msg->rx_buf && msg->rx_len) 1232 memcpy(msg->rx_buf, buf + 4, msg->rx_len); 1233 1234 return msg->rx_len; 1235 } 1236 1237 int dsi_dma_base_get_6g(struct msm_dsi_host *msm_host, uint64_t *dma_base) 1238 { 1239 struct drm_device *dev = msm_host->dev; 1240 struct msm_drm_private *priv = dev->dev_private; 1241 1242 if (!dma_base) 1243 return -EINVAL; 1244 1245 return msm_gem_get_and_pin_iova(msm_host->tx_gem_obj, 1246 priv->kms->aspace, dma_base); 1247 } 1248 1249 int dsi_dma_base_get_v2(struct msm_dsi_host *msm_host, uint64_t *dma_base) 1250 { 1251 if (!dma_base) 1252 return -EINVAL; 1253 1254 *dma_base = msm_host->tx_buf_paddr; 1255 return 0; 1256 } 1257 1258 static int dsi_cmd_dma_tx(struct msm_dsi_host *msm_host, int len) 1259 { 1260 const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd; 1261 int ret; 1262 uint64_t dma_base; 1263 bool triggered; 1264 1265 ret = cfg_hnd->ops->dma_base_get(msm_host, &dma_base); 1266 if (ret) { 1267 pr_err("%s: failed to get iova: %d\n", __func__, ret); 1268 return ret; 1269 } 1270 1271 reinit_completion(&msm_host->dma_comp); 1272 1273 dsi_wait4video_eng_busy(msm_host); 1274 1275 triggered = msm_dsi_manager_cmd_xfer_trigger( 1276 msm_host->id, dma_base, len); 1277 if (triggered) { 1278 ret = wait_for_completion_timeout(&msm_host->dma_comp, 1279 msecs_to_jiffies(200)); 1280 DBG("ret=%d", ret); 1281 if (ret == 0) 1282 ret = -ETIMEDOUT; 1283 else 1284 ret = len; 1285 } else 1286 ret = len; 1287 1288 return ret; 1289 } 1290 1291 static int dsi_cmd_dma_rx(struct msm_dsi_host *msm_host, 1292 u8 *buf, int rx_byte, int pkt_size) 1293 { 1294 u32 *lp, *temp, data; 1295 int i, j = 0, cnt; 1296 u32 read_cnt; 1297 u8 reg[16]; 1298 int repeated_bytes = 0; 1299 int buf_offset = buf - msm_host->rx_buf; 1300 1301 lp = (u32 *)buf; 1302 temp = (u32 *)reg; 1303 cnt = (rx_byte + 3) >> 2; 1304 if (cnt > 4) 1305 cnt = 4; /* 4 x 32 bits registers only */ 1306 1307 if (rx_byte == 4) 1308 read_cnt = 4; 1309 else 1310 read_cnt = pkt_size + 6; 1311 1312 /* 1313 * In case of multiple reads from the panel, after the first read, there 1314 * is possibility that there are some bytes in the payload repeating in 1315 * the RDBK_DATA registers. Since we read all the parameters from the 1316 * panel right from the first byte for every pass. We need to skip the 1317 * repeating bytes and then append the new parameters to the rx buffer. 1318 */ 1319 if (read_cnt > 16) { 1320 int bytes_shifted; 1321 /* Any data more than 16 bytes will be shifted out. 1322 * The temp read buffer should already contain these bytes. 1323 * The remaining bytes in read buffer are the repeated bytes. 1324 */ 1325 bytes_shifted = read_cnt - 16; 1326 repeated_bytes = buf_offset - bytes_shifted; 1327 } 1328 1329 for (i = cnt - 1; i >= 0; i--) { 1330 data = dsi_read(msm_host, REG_DSI_RDBK_DATA(i)); 1331 *temp++ = ntohl(data); /* to host byte order */ 1332 DBG("data = 0x%x and ntohl(data) = 0x%x", data, ntohl(data)); 1333 } 1334 1335 for (i = repeated_bytes; i < 16; i++) 1336 buf[j++] = reg[i]; 1337 1338 return j; 1339 } 1340 1341 static int dsi_cmds2buf_tx(struct msm_dsi_host *msm_host, 1342 const struct mipi_dsi_msg *msg) 1343 { 1344 int len, ret; 1345 int bllp_len = msm_host->mode->hdisplay * 1346 dsi_get_bpp(msm_host->format) / 8; 1347 1348 len = dsi_cmd_dma_add(msm_host, msg); 1349 if (!len) { 1350 pr_err("%s: failed to add cmd type = 0x%x\n", 1351 __func__, msg->type); 1352 return -EINVAL; 1353 } 1354 1355 /* for video mode, do not send cmds more than 1356 * one pixel line, since it only transmit it 1357 * during BLLP. 1358 */ 1359 /* TODO: if the command is sent in LP mode, the bit rate is only 1360 * half of esc clk rate. In this case, if the video is already 1361 * actively streaming, we need to check more carefully if the 1362 * command can be fit into one BLLP. 1363 */ 1364 if ((msm_host->mode_flags & MIPI_DSI_MODE_VIDEO) && (len > bllp_len)) { 1365 pr_err("%s: cmd cannot fit into BLLP period, len=%d\n", 1366 __func__, len); 1367 return -EINVAL; 1368 } 1369 1370 ret = dsi_cmd_dma_tx(msm_host, len); 1371 if (ret < len) { 1372 pr_err("%s: cmd dma tx failed, type=0x%x, data0=0x%x, len=%d\n", 1373 __func__, msg->type, (*(u8 *)(msg->tx_buf)), len); 1374 return -ECOMM; 1375 } 1376 1377 return len; 1378 } 1379 1380 static void dsi_sw_reset_restore(struct msm_dsi_host *msm_host) 1381 { 1382 u32 data0, data1; 1383 1384 data0 = dsi_read(msm_host, REG_DSI_CTRL); 1385 data1 = data0; 1386 data1 &= ~DSI_CTRL_ENABLE; 1387 dsi_write(msm_host, REG_DSI_CTRL, data1); 1388 /* 1389 * dsi controller need to be disabled before 1390 * clocks turned on 1391 */ 1392 wmb(); 1393 1394 dsi_write(msm_host, REG_DSI_CLK_CTRL, DSI_CLK_CTRL_ENABLE_CLKS); 1395 wmb(); /* make sure clocks enabled */ 1396 1397 /* dsi controller can only be reset while clocks are running */ 1398 dsi_write(msm_host, REG_DSI_RESET, 1); 1399 wmb(); /* make sure reset happen */ 1400 dsi_write(msm_host, REG_DSI_RESET, 0); 1401 wmb(); /* controller out of reset */ 1402 dsi_write(msm_host, REG_DSI_CTRL, data0); 1403 wmb(); /* make sure dsi controller enabled again */ 1404 } 1405 1406 static void dsi_hpd_worker(struct work_struct *work) 1407 { 1408 struct msm_dsi_host *msm_host = 1409 container_of(work, struct msm_dsi_host, hpd_work); 1410 1411 drm_helper_hpd_irq_event(msm_host->dev); 1412 } 1413 1414 static void dsi_err_worker(struct work_struct *work) 1415 { 1416 struct msm_dsi_host *msm_host = 1417 container_of(work, struct msm_dsi_host, err_work); 1418 u32 status = msm_host->err_work_state; 1419 1420 pr_err_ratelimited("%s: status=%x\n", __func__, status); 1421 if (status & DSI_ERR_STATE_MDP_FIFO_UNDERFLOW) 1422 dsi_sw_reset_restore(msm_host); 1423 1424 /* It is safe to clear here because error irq is disabled. */ 1425 msm_host->err_work_state = 0; 1426 1427 /* enable dsi error interrupt */ 1428 dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_ERROR, 1); 1429 } 1430 1431 static void dsi_ack_err_status(struct msm_dsi_host *msm_host) 1432 { 1433 u32 status; 1434 1435 status = dsi_read(msm_host, REG_DSI_ACK_ERR_STATUS); 1436 1437 if (status) { 1438 dsi_write(msm_host, REG_DSI_ACK_ERR_STATUS, status); 1439 /* Writing of an extra 0 needed to clear error bits */ 1440 dsi_write(msm_host, REG_DSI_ACK_ERR_STATUS, 0); 1441 msm_host->err_work_state |= DSI_ERR_STATE_ACK; 1442 } 1443 } 1444 1445 static void dsi_timeout_status(struct msm_dsi_host *msm_host) 1446 { 1447 u32 status; 1448 1449 status = dsi_read(msm_host, REG_DSI_TIMEOUT_STATUS); 1450 1451 if (status) { 1452 dsi_write(msm_host, REG_DSI_TIMEOUT_STATUS, status); 1453 msm_host->err_work_state |= DSI_ERR_STATE_TIMEOUT; 1454 } 1455 } 1456 1457 static void dsi_dln0_phy_err(struct msm_dsi_host *msm_host) 1458 { 1459 u32 status; 1460 1461 status = dsi_read(msm_host, REG_DSI_DLN0_PHY_ERR); 1462 1463 if (status & (DSI_DLN0_PHY_ERR_DLN0_ERR_ESC | 1464 DSI_DLN0_PHY_ERR_DLN0_ERR_SYNC_ESC | 1465 DSI_DLN0_PHY_ERR_DLN0_ERR_CONTROL | 1466 DSI_DLN0_PHY_ERR_DLN0_ERR_CONTENTION_LP0 | 1467 DSI_DLN0_PHY_ERR_DLN0_ERR_CONTENTION_LP1)) { 1468 dsi_write(msm_host, REG_DSI_DLN0_PHY_ERR, status); 1469 msm_host->err_work_state |= DSI_ERR_STATE_DLN0_PHY; 1470 } 1471 } 1472 1473 static void dsi_fifo_status(struct msm_dsi_host *msm_host) 1474 { 1475 u32 status; 1476 1477 status = dsi_read(msm_host, REG_DSI_FIFO_STATUS); 1478 1479 /* fifo underflow, overflow */ 1480 if (status) { 1481 dsi_write(msm_host, REG_DSI_FIFO_STATUS, status); 1482 msm_host->err_work_state |= DSI_ERR_STATE_FIFO; 1483 if (status & DSI_FIFO_STATUS_CMD_MDP_FIFO_UNDERFLOW) 1484 msm_host->err_work_state |= 1485 DSI_ERR_STATE_MDP_FIFO_UNDERFLOW; 1486 } 1487 } 1488 1489 static void dsi_status(struct msm_dsi_host *msm_host) 1490 { 1491 u32 status; 1492 1493 status = dsi_read(msm_host, REG_DSI_STATUS0); 1494 1495 if (status & DSI_STATUS0_INTERLEAVE_OP_CONTENTION) { 1496 dsi_write(msm_host, REG_DSI_STATUS0, status); 1497 msm_host->err_work_state |= 1498 DSI_ERR_STATE_INTERLEAVE_OP_CONTENTION; 1499 } 1500 } 1501 1502 static void dsi_clk_status(struct msm_dsi_host *msm_host) 1503 { 1504 u32 status; 1505 1506 status = dsi_read(msm_host, REG_DSI_CLK_STATUS); 1507 1508 if (status & DSI_CLK_STATUS_PLL_UNLOCKED) { 1509 dsi_write(msm_host, REG_DSI_CLK_STATUS, status); 1510 msm_host->err_work_state |= DSI_ERR_STATE_PLL_UNLOCKED; 1511 } 1512 } 1513 1514 static void dsi_error(struct msm_dsi_host *msm_host) 1515 { 1516 /* disable dsi error interrupt */ 1517 dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_ERROR, 0); 1518 1519 dsi_clk_status(msm_host); 1520 dsi_fifo_status(msm_host); 1521 dsi_ack_err_status(msm_host); 1522 dsi_timeout_status(msm_host); 1523 dsi_status(msm_host); 1524 dsi_dln0_phy_err(msm_host); 1525 1526 queue_work(msm_host->workqueue, &msm_host->err_work); 1527 } 1528 1529 static irqreturn_t dsi_host_irq(int irq, void *ptr) 1530 { 1531 struct msm_dsi_host *msm_host = ptr; 1532 u32 isr; 1533 unsigned long flags; 1534 1535 if (!msm_host->ctrl_base) 1536 return IRQ_HANDLED; 1537 1538 spin_lock_irqsave(&msm_host->intr_lock, flags); 1539 isr = dsi_read(msm_host, REG_DSI_INTR_CTRL); 1540 dsi_write(msm_host, REG_DSI_INTR_CTRL, isr); 1541 spin_unlock_irqrestore(&msm_host->intr_lock, flags); 1542 1543 DBG("isr=0x%x, id=%d", isr, msm_host->id); 1544 1545 if (isr & DSI_IRQ_ERROR) 1546 dsi_error(msm_host); 1547 1548 if (isr & DSI_IRQ_VIDEO_DONE) 1549 complete(&msm_host->video_comp); 1550 1551 if (isr & DSI_IRQ_CMD_DMA_DONE) 1552 complete(&msm_host->dma_comp); 1553 1554 return IRQ_HANDLED; 1555 } 1556 1557 static int dsi_host_init_panel_gpios(struct msm_dsi_host *msm_host, 1558 struct device *panel_device) 1559 { 1560 msm_host->disp_en_gpio = devm_gpiod_get_optional(panel_device, 1561 "disp-enable", 1562 GPIOD_OUT_LOW); 1563 if (IS_ERR(msm_host->disp_en_gpio)) { 1564 DBG("cannot get disp-enable-gpios %ld", 1565 PTR_ERR(msm_host->disp_en_gpio)); 1566 return PTR_ERR(msm_host->disp_en_gpio); 1567 } 1568 1569 msm_host->te_gpio = devm_gpiod_get_optional(panel_device, "disp-te", 1570 GPIOD_IN); 1571 if (IS_ERR(msm_host->te_gpio)) { 1572 DBG("cannot get disp-te-gpios %ld", PTR_ERR(msm_host->te_gpio)); 1573 return PTR_ERR(msm_host->te_gpio); 1574 } 1575 1576 return 0; 1577 } 1578 1579 static int dsi_host_attach(struct mipi_dsi_host *host, 1580 struct mipi_dsi_device *dsi) 1581 { 1582 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 1583 int ret; 1584 1585 if (dsi->lanes > msm_host->num_data_lanes) 1586 return -EINVAL; 1587 1588 msm_host->channel = dsi->channel; 1589 msm_host->lanes = dsi->lanes; 1590 msm_host->format = dsi->format; 1591 msm_host->mode_flags = dsi->mode_flags; 1592 1593 /* Some gpios defined in panel DT need to be controlled by host */ 1594 ret = dsi_host_init_panel_gpios(msm_host, &dsi->dev); 1595 if (ret) 1596 return ret; 1597 1598 DBG("id=%d", msm_host->id); 1599 if (msm_host->dev) 1600 queue_work(msm_host->workqueue, &msm_host->hpd_work); 1601 1602 return 0; 1603 } 1604 1605 static int dsi_host_detach(struct mipi_dsi_host *host, 1606 struct mipi_dsi_device *dsi) 1607 { 1608 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 1609 1610 msm_host->device_node = NULL; 1611 1612 DBG("id=%d", msm_host->id); 1613 if (msm_host->dev) 1614 queue_work(msm_host->workqueue, &msm_host->hpd_work); 1615 1616 return 0; 1617 } 1618 1619 static ssize_t dsi_host_transfer(struct mipi_dsi_host *host, 1620 const struct mipi_dsi_msg *msg) 1621 { 1622 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 1623 int ret; 1624 1625 if (!msg || !msm_host->power_on) 1626 return -EINVAL; 1627 1628 mutex_lock(&msm_host->cmd_mutex); 1629 ret = msm_dsi_manager_cmd_xfer(msm_host->id, msg); 1630 mutex_unlock(&msm_host->cmd_mutex); 1631 1632 return ret; 1633 } 1634 1635 static struct mipi_dsi_host_ops dsi_host_ops = { 1636 .attach = dsi_host_attach, 1637 .detach = dsi_host_detach, 1638 .transfer = dsi_host_transfer, 1639 }; 1640 1641 /* 1642 * List of supported physical to logical lane mappings. 1643 * For example, the 2nd entry represents the following mapping: 1644 * 1645 * "3012": Logic 3->Phys 0; Logic 0->Phys 1; Logic 1->Phys 2; Logic 2->Phys 3; 1646 */ 1647 static const int supported_data_lane_swaps[][4] = { 1648 { 0, 1, 2, 3 }, 1649 { 3, 0, 1, 2 }, 1650 { 2, 3, 0, 1 }, 1651 { 1, 2, 3, 0 }, 1652 { 0, 3, 2, 1 }, 1653 { 1, 0, 3, 2 }, 1654 { 2, 1, 0, 3 }, 1655 { 3, 2, 1, 0 }, 1656 }; 1657 1658 static int dsi_host_parse_lane_data(struct msm_dsi_host *msm_host, 1659 struct device_node *ep) 1660 { 1661 struct device *dev = &msm_host->pdev->dev; 1662 struct property *prop; 1663 u32 lane_map[4]; 1664 int ret, i, len, num_lanes; 1665 1666 prop = of_find_property(ep, "data-lanes", &len); 1667 if (!prop) { 1668 DRM_DEV_DEBUG(dev, 1669 "failed to find data lane mapping, using default\n"); 1670 return 0; 1671 } 1672 1673 num_lanes = len / sizeof(u32); 1674 1675 if (num_lanes < 1 || num_lanes > 4) { 1676 DRM_DEV_ERROR(dev, "bad number of data lanes\n"); 1677 return -EINVAL; 1678 } 1679 1680 msm_host->num_data_lanes = num_lanes; 1681 1682 ret = of_property_read_u32_array(ep, "data-lanes", lane_map, 1683 num_lanes); 1684 if (ret) { 1685 DRM_DEV_ERROR(dev, "failed to read lane data\n"); 1686 return ret; 1687 } 1688 1689 /* 1690 * compare DT specified physical-logical lane mappings with the ones 1691 * supported by hardware 1692 */ 1693 for (i = 0; i < ARRAY_SIZE(supported_data_lane_swaps); i++) { 1694 const int *swap = supported_data_lane_swaps[i]; 1695 int j; 1696 1697 /* 1698 * the data-lanes array we get from DT has a logical->physical 1699 * mapping. The "data lane swap" register field represents 1700 * supported configurations in a physical->logical mapping. 1701 * Translate the DT mapping to what we understand and find a 1702 * configuration that works. 1703 */ 1704 for (j = 0; j < num_lanes; j++) { 1705 if (lane_map[j] < 0 || lane_map[j] > 3) 1706 DRM_DEV_ERROR(dev, "bad physical lane entry %u\n", 1707 lane_map[j]); 1708 1709 if (swap[lane_map[j]] != j) 1710 break; 1711 } 1712 1713 if (j == num_lanes) { 1714 msm_host->dlane_swap = i; 1715 return 0; 1716 } 1717 } 1718 1719 return -EINVAL; 1720 } 1721 1722 static int dsi_host_parse_dt(struct msm_dsi_host *msm_host) 1723 { 1724 struct device *dev = &msm_host->pdev->dev; 1725 struct device_node *np = dev->of_node; 1726 struct device_node *endpoint, *device_node; 1727 int ret = 0; 1728 1729 /* 1730 * Get the endpoint of the output port of the DSI host. In our case, 1731 * this is mapped to port number with reg = 1. Don't return an error if 1732 * the remote endpoint isn't defined. It's possible that there is 1733 * nothing connected to the dsi output. 1734 */ 1735 endpoint = of_graph_get_endpoint_by_regs(np, 1, -1); 1736 if (!endpoint) { 1737 DRM_DEV_DEBUG(dev, "%s: no endpoint\n", __func__); 1738 return 0; 1739 } 1740 1741 ret = dsi_host_parse_lane_data(msm_host, endpoint); 1742 if (ret) { 1743 DRM_DEV_ERROR(dev, "%s: invalid lane configuration %d\n", 1744 __func__, ret); 1745 ret = -EINVAL; 1746 goto err; 1747 } 1748 1749 /* Get panel node from the output port's endpoint data */ 1750 device_node = of_graph_get_remote_node(np, 1, 0); 1751 if (!device_node) { 1752 DRM_DEV_DEBUG(dev, "%s: no valid device\n", __func__); 1753 ret = -ENODEV; 1754 goto err; 1755 } 1756 1757 msm_host->device_node = device_node; 1758 1759 if (of_property_read_bool(np, "syscon-sfpb")) { 1760 msm_host->sfpb = syscon_regmap_lookup_by_phandle(np, 1761 "syscon-sfpb"); 1762 if (IS_ERR(msm_host->sfpb)) { 1763 DRM_DEV_ERROR(dev, "%s: failed to get sfpb regmap\n", 1764 __func__); 1765 ret = PTR_ERR(msm_host->sfpb); 1766 } 1767 } 1768 1769 of_node_put(device_node); 1770 1771 err: 1772 of_node_put(endpoint); 1773 1774 return ret; 1775 } 1776 1777 static int dsi_host_get_id(struct msm_dsi_host *msm_host) 1778 { 1779 struct platform_device *pdev = msm_host->pdev; 1780 const struct msm_dsi_config *cfg = msm_host->cfg_hnd->cfg; 1781 struct resource *res; 1782 int i; 1783 1784 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dsi_ctrl"); 1785 if (!res) 1786 return -EINVAL; 1787 1788 for (i = 0; i < cfg->num_dsi; i++) { 1789 if (cfg->io_start[i] == res->start) 1790 return i; 1791 } 1792 1793 return -EINVAL; 1794 } 1795 1796 int msm_dsi_host_init(struct msm_dsi *msm_dsi) 1797 { 1798 struct msm_dsi_host *msm_host = NULL; 1799 struct platform_device *pdev = msm_dsi->pdev; 1800 int ret; 1801 1802 msm_host = devm_kzalloc(&pdev->dev, sizeof(*msm_host), GFP_KERNEL); 1803 if (!msm_host) { 1804 pr_err("%s: FAILED: cannot alloc dsi host\n", 1805 __func__); 1806 ret = -ENOMEM; 1807 goto fail; 1808 } 1809 1810 msm_host->pdev = pdev; 1811 msm_dsi->host = &msm_host->base; 1812 1813 ret = dsi_host_parse_dt(msm_host); 1814 if (ret) { 1815 pr_err("%s: failed to parse dt\n", __func__); 1816 goto fail; 1817 } 1818 1819 msm_host->ctrl_base = msm_ioremap(pdev, "dsi_ctrl", "DSI CTRL"); 1820 if (IS_ERR(msm_host->ctrl_base)) { 1821 pr_err("%s: unable to map Dsi ctrl base\n", __func__); 1822 ret = PTR_ERR(msm_host->ctrl_base); 1823 goto fail; 1824 } 1825 1826 pm_runtime_enable(&pdev->dev); 1827 1828 msm_host->cfg_hnd = dsi_get_config(msm_host); 1829 if (!msm_host->cfg_hnd) { 1830 ret = -EINVAL; 1831 pr_err("%s: get config failed\n", __func__); 1832 goto fail; 1833 } 1834 1835 msm_host->id = dsi_host_get_id(msm_host); 1836 if (msm_host->id < 0) { 1837 ret = msm_host->id; 1838 pr_err("%s: unable to identify DSI host index\n", __func__); 1839 goto fail; 1840 } 1841 1842 /* fixup base address by io offset */ 1843 msm_host->ctrl_base += msm_host->cfg_hnd->cfg->io_offset; 1844 1845 ret = dsi_regulator_init(msm_host); 1846 if (ret) { 1847 pr_err("%s: regulator init failed\n", __func__); 1848 goto fail; 1849 } 1850 1851 ret = dsi_clk_init(msm_host); 1852 if (ret) { 1853 pr_err("%s: unable to initialize dsi clks\n", __func__); 1854 goto fail; 1855 } 1856 1857 msm_host->rx_buf = devm_kzalloc(&pdev->dev, SZ_4K, GFP_KERNEL); 1858 if (!msm_host->rx_buf) { 1859 ret = -ENOMEM; 1860 pr_err("%s: alloc rx temp buf failed\n", __func__); 1861 goto fail; 1862 } 1863 1864 init_completion(&msm_host->dma_comp); 1865 init_completion(&msm_host->video_comp); 1866 mutex_init(&msm_host->dev_mutex); 1867 mutex_init(&msm_host->cmd_mutex); 1868 spin_lock_init(&msm_host->intr_lock); 1869 1870 /* setup workqueue */ 1871 msm_host->workqueue = alloc_ordered_workqueue("dsi_drm_work", 0); 1872 INIT_WORK(&msm_host->err_work, dsi_err_worker); 1873 INIT_WORK(&msm_host->hpd_work, dsi_hpd_worker); 1874 1875 msm_dsi->id = msm_host->id; 1876 1877 DBG("Dsi Host %d initialized", msm_host->id); 1878 return 0; 1879 1880 fail: 1881 return ret; 1882 } 1883 1884 void msm_dsi_host_destroy(struct mipi_dsi_host *host) 1885 { 1886 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 1887 1888 DBG(""); 1889 dsi_tx_buf_free(msm_host); 1890 if (msm_host->workqueue) { 1891 flush_workqueue(msm_host->workqueue); 1892 destroy_workqueue(msm_host->workqueue); 1893 msm_host->workqueue = NULL; 1894 } 1895 1896 mutex_destroy(&msm_host->cmd_mutex); 1897 mutex_destroy(&msm_host->dev_mutex); 1898 1899 pm_runtime_disable(&msm_host->pdev->dev); 1900 } 1901 1902 int msm_dsi_host_modeset_init(struct mipi_dsi_host *host, 1903 struct drm_device *dev) 1904 { 1905 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 1906 const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd; 1907 struct platform_device *pdev = msm_host->pdev; 1908 int ret; 1909 1910 msm_host->irq = irq_of_parse_and_map(pdev->dev.of_node, 0); 1911 if (msm_host->irq < 0) { 1912 ret = msm_host->irq; 1913 DRM_DEV_ERROR(dev->dev, "failed to get irq: %d\n", ret); 1914 return ret; 1915 } 1916 1917 ret = devm_request_irq(&pdev->dev, msm_host->irq, 1918 dsi_host_irq, IRQF_TRIGGER_HIGH | IRQF_ONESHOT, 1919 "dsi_isr", msm_host); 1920 if (ret < 0) { 1921 DRM_DEV_ERROR(&pdev->dev, "failed to request IRQ%u: %d\n", 1922 msm_host->irq, ret); 1923 return ret; 1924 } 1925 1926 msm_host->dev = dev; 1927 ret = cfg_hnd->ops->tx_buf_alloc(msm_host, SZ_4K); 1928 if (ret) { 1929 pr_err("%s: alloc tx gem obj failed, %d\n", __func__, ret); 1930 return ret; 1931 } 1932 1933 return 0; 1934 } 1935 1936 int msm_dsi_host_register(struct mipi_dsi_host *host, bool check_defer) 1937 { 1938 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 1939 int ret; 1940 1941 /* Register mipi dsi host */ 1942 if (!msm_host->registered) { 1943 host->dev = &msm_host->pdev->dev; 1944 host->ops = &dsi_host_ops; 1945 ret = mipi_dsi_host_register(host); 1946 if (ret) 1947 return ret; 1948 1949 msm_host->registered = true; 1950 1951 /* If the panel driver has not been probed after host register, 1952 * we should defer the host's probe. 1953 * It makes sure panel is connected when fbcon detects 1954 * connector status and gets the proper display mode to 1955 * create framebuffer. 1956 * Don't try to defer if there is nothing connected to the dsi 1957 * output 1958 */ 1959 if (check_defer && msm_host->device_node) { 1960 if (IS_ERR(of_drm_find_panel(msm_host->device_node))) 1961 if (!of_drm_find_bridge(msm_host->device_node)) 1962 return -EPROBE_DEFER; 1963 } 1964 } 1965 1966 return 0; 1967 } 1968 1969 void msm_dsi_host_unregister(struct mipi_dsi_host *host) 1970 { 1971 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 1972 1973 if (msm_host->registered) { 1974 mipi_dsi_host_unregister(host); 1975 host->dev = NULL; 1976 host->ops = NULL; 1977 msm_host->registered = false; 1978 } 1979 } 1980 1981 int msm_dsi_host_xfer_prepare(struct mipi_dsi_host *host, 1982 const struct mipi_dsi_msg *msg) 1983 { 1984 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 1985 const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd; 1986 1987 /* TODO: make sure dsi_cmd_mdp is idle. 1988 * Since DSI6G v1.2.0, we can set DSI_TRIG_CTRL.BLOCK_DMA_WITHIN_FRAME 1989 * to ask H/W to wait until cmd mdp is idle. S/W wait is not needed. 1990 * How to handle the old versions? Wait for mdp cmd done? 1991 */ 1992 1993 /* 1994 * mdss interrupt is generated in mdp core clock domain 1995 * mdp clock need to be enabled to receive dsi interrupt 1996 */ 1997 pm_runtime_get_sync(&msm_host->pdev->dev); 1998 cfg_hnd->ops->link_clk_enable(msm_host); 1999 2000 /* TODO: vote for bus bandwidth */ 2001 2002 if (!(msg->flags & MIPI_DSI_MSG_USE_LPM)) 2003 dsi_set_tx_power_mode(0, msm_host); 2004 2005 msm_host->dma_cmd_ctrl_restore = dsi_read(msm_host, REG_DSI_CTRL); 2006 dsi_write(msm_host, REG_DSI_CTRL, 2007 msm_host->dma_cmd_ctrl_restore | 2008 DSI_CTRL_CMD_MODE_EN | 2009 DSI_CTRL_ENABLE); 2010 dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_CMD_DMA_DONE, 1); 2011 2012 return 0; 2013 } 2014 2015 void msm_dsi_host_xfer_restore(struct mipi_dsi_host *host, 2016 const struct mipi_dsi_msg *msg) 2017 { 2018 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2019 const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd; 2020 2021 dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_CMD_DMA_DONE, 0); 2022 dsi_write(msm_host, REG_DSI_CTRL, msm_host->dma_cmd_ctrl_restore); 2023 2024 if (!(msg->flags & MIPI_DSI_MSG_USE_LPM)) 2025 dsi_set_tx_power_mode(1, msm_host); 2026 2027 /* TODO: unvote for bus bandwidth */ 2028 2029 cfg_hnd->ops->link_clk_disable(msm_host); 2030 pm_runtime_put_autosuspend(&msm_host->pdev->dev); 2031 } 2032 2033 int msm_dsi_host_cmd_tx(struct mipi_dsi_host *host, 2034 const struct mipi_dsi_msg *msg) 2035 { 2036 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2037 2038 return dsi_cmds2buf_tx(msm_host, msg); 2039 } 2040 2041 int msm_dsi_host_cmd_rx(struct mipi_dsi_host *host, 2042 const struct mipi_dsi_msg *msg) 2043 { 2044 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2045 const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd; 2046 int data_byte, rx_byte, dlen, end; 2047 int short_response, diff, pkt_size, ret = 0; 2048 char cmd; 2049 int rlen = msg->rx_len; 2050 u8 *buf; 2051 2052 if (rlen <= 2) { 2053 short_response = 1; 2054 pkt_size = rlen; 2055 rx_byte = 4; 2056 } else { 2057 short_response = 0; 2058 data_byte = 10; /* first read */ 2059 if (rlen < data_byte) 2060 pkt_size = rlen; 2061 else 2062 pkt_size = data_byte; 2063 rx_byte = data_byte + 6; /* 4 header + 2 crc */ 2064 } 2065 2066 buf = msm_host->rx_buf; 2067 end = 0; 2068 while (!end) { 2069 u8 tx[2] = {pkt_size & 0xff, pkt_size >> 8}; 2070 struct mipi_dsi_msg max_pkt_size_msg = { 2071 .channel = msg->channel, 2072 .type = MIPI_DSI_SET_MAXIMUM_RETURN_PACKET_SIZE, 2073 .tx_len = 2, 2074 .tx_buf = tx, 2075 }; 2076 2077 DBG("rlen=%d pkt_size=%d rx_byte=%d", 2078 rlen, pkt_size, rx_byte); 2079 2080 ret = dsi_cmds2buf_tx(msm_host, &max_pkt_size_msg); 2081 if (ret < 2) { 2082 pr_err("%s: Set max pkt size failed, %d\n", 2083 __func__, ret); 2084 return -EINVAL; 2085 } 2086 2087 if ((cfg_hnd->major == MSM_DSI_VER_MAJOR_6G) && 2088 (cfg_hnd->minor >= MSM_DSI_6G_VER_MINOR_V1_1)) { 2089 /* Clear the RDBK_DATA registers */ 2090 dsi_write(msm_host, REG_DSI_RDBK_DATA_CTRL, 2091 DSI_RDBK_DATA_CTRL_CLR); 2092 wmb(); /* make sure the RDBK registers are cleared */ 2093 dsi_write(msm_host, REG_DSI_RDBK_DATA_CTRL, 0); 2094 wmb(); /* release cleared status before transfer */ 2095 } 2096 2097 ret = dsi_cmds2buf_tx(msm_host, msg); 2098 if (ret < msg->tx_len) { 2099 pr_err("%s: Read cmd Tx failed, %d\n", __func__, ret); 2100 return ret; 2101 } 2102 2103 /* 2104 * once cmd_dma_done interrupt received, 2105 * return data from client is ready and stored 2106 * at RDBK_DATA register already 2107 * since rx fifo is 16 bytes, dcs header is kept at first loop, 2108 * after that dcs header lost during shift into registers 2109 */ 2110 dlen = dsi_cmd_dma_rx(msm_host, buf, rx_byte, pkt_size); 2111 2112 if (dlen <= 0) 2113 return 0; 2114 2115 if (short_response) 2116 break; 2117 2118 if (rlen <= data_byte) { 2119 diff = data_byte - rlen; 2120 end = 1; 2121 } else { 2122 diff = 0; 2123 rlen -= data_byte; 2124 } 2125 2126 if (!end) { 2127 dlen -= 2; /* 2 crc */ 2128 dlen -= diff; 2129 buf += dlen; /* next start position */ 2130 data_byte = 14; /* NOT first read */ 2131 if (rlen < data_byte) 2132 pkt_size += rlen; 2133 else 2134 pkt_size += data_byte; 2135 DBG("buf=%p dlen=%d diff=%d", buf, dlen, diff); 2136 } 2137 } 2138 2139 /* 2140 * For single Long read, if the requested rlen < 10, 2141 * we need to shift the start position of rx 2142 * data buffer to skip the bytes which are not 2143 * updated. 2144 */ 2145 if (pkt_size < 10 && !short_response) 2146 buf = msm_host->rx_buf + (10 - rlen); 2147 else 2148 buf = msm_host->rx_buf; 2149 2150 cmd = buf[0]; 2151 switch (cmd) { 2152 case MIPI_DSI_RX_ACKNOWLEDGE_AND_ERROR_REPORT: 2153 pr_err("%s: rx ACK_ERR_PACLAGE\n", __func__); 2154 ret = 0; 2155 break; 2156 case MIPI_DSI_RX_GENERIC_SHORT_READ_RESPONSE_1BYTE: 2157 case MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_1BYTE: 2158 ret = dsi_short_read1_resp(buf, msg); 2159 break; 2160 case MIPI_DSI_RX_GENERIC_SHORT_READ_RESPONSE_2BYTE: 2161 case MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_2BYTE: 2162 ret = dsi_short_read2_resp(buf, msg); 2163 break; 2164 case MIPI_DSI_RX_GENERIC_LONG_READ_RESPONSE: 2165 case MIPI_DSI_RX_DCS_LONG_READ_RESPONSE: 2166 ret = dsi_long_read_resp(buf, msg); 2167 break; 2168 default: 2169 pr_warn("%s:Invalid response cmd\n", __func__); 2170 ret = 0; 2171 } 2172 2173 return ret; 2174 } 2175 2176 void msm_dsi_host_cmd_xfer_commit(struct mipi_dsi_host *host, u32 dma_base, 2177 u32 len) 2178 { 2179 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2180 2181 dsi_write(msm_host, REG_DSI_DMA_BASE, dma_base); 2182 dsi_write(msm_host, REG_DSI_DMA_LEN, len); 2183 dsi_write(msm_host, REG_DSI_TRIG_DMA, 1); 2184 2185 /* Make sure trigger happens */ 2186 wmb(); 2187 } 2188 2189 int msm_dsi_host_set_src_pll(struct mipi_dsi_host *host, 2190 struct msm_dsi_pll *src_pll) 2191 { 2192 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2193 struct clk *byte_clk_provider, *pixel_clk_provider; 2194 int ret; 2195 2196 ret = msm_dsi_pll_get_clk_provider(src_pll, 2197 &byte_clk_provider, &pixel_clk_provider); 2198 if (ret) { 2199 pr_info("%s: can't get provider from pll, don't set parent\n", 2200 __func__); 2201 return 0; 2202 } 2203 2204 ret = clk_set_parent(msm_host->byte_clk_src, byte_clk_provider); 2205 if (ret) { 2206 pr_err("%s: can't set parent to byte_clk_src. ret=%d\n", 2207 __func__, ret); 2208 goto exit; 2209 } 2210 2211 ret = clk_set_parent(msm_host->pixel_clk_src, pixel_clk_provider); 2212 if (ret) { 2213 pr_err("%s: can't set parent to pixel_clk_src. ret=%d\n", 2214 __func__, ret); 2215 goto exit; 2216 } 2217 2218 if (msm_host->dsi_clk_src) { 2219 ret = clk_set_parent(msm_host->dsi_clk_src, pixel_clk_provider); 2220 if (ret) { 2221 pr_err("%s: can't set parent to dsi_clk_src. ret=%d\n", 2222 __func__, ret); 2223 goto exit; 2224 } 2225 } 2226 2227 if (msm_host->esc_clk_src) { 2228 ret = clk_set_parent(msm_host->esc_clk_src, byte_clk_provider); 2229 if (ret) { 2230 pr_err("%s: can't set parent to esc_clk_src. ret=%d\n", 2231 __func__, ret); 2232 goto exit; 2233 } 2234 } 2235 2236 exit: 2237 return ret; 2238 } 2239 2240 void msm_dsi_host_reset_phy(struct mipi_dsi_host *host) 2241 { 2242 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2243 2244 DBG(""); 2245 dsi_write(msm_host, REG_DSI_PHY_RESET, DSI_PHY_RESET_RESET); 2246 /* Make sure fully reset */ 2247 wmb(); 2248 udelay(1000); 2249 dsi_write(msm_host, REG_DSI_PHY_RESET, 0); 2250 udelay(100); 2251 } 2252 2253 void msm_dsi_host_get_phy_clk_req(struct mipi_dsi_host *host, 2254 struct msm_dsi_phy_clk_request *clk_req, 2255 bool is_dual_dsi) 2256 { 2257 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2258 const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd; 2259 int ret; 2260 2261 ret = cfg_hnd->ops->calc_clk_rate(msm_host, is_dual_dsi); 2262 if (ret) { 2263 pr_err("%s: unable to calc clk rate, %d\n", __func__, ret); 2264 return; 2265 } 2266 2267 clk_req->bitclk_rate = msm_host->byte_clk_rate * 8; 2268 clk_req->escclk_rate = msm_host->esc_clk_rate; 2269 } 2270 2271 int msm_dsi_host_enable(struct mipi_dsi_host *host) 2272 { 2273 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2274 2275 dsi_op_mode_config(msm_host, 2276 !!(msm_host->mode_flags & MIPI_DSI_MODE_VIDEO), true); 2277 2278 /* TODO: clock should be turned off for command mode, 2279 * and only turned on before MDP START. 2280 * This part of code should be enabled once mdp driver support it. 2281 */ 2282 /* if (msm_panel->mode == MSM_DSI_CMD_MODE) { 2283 * dsi_link_clk_disable(msm_host); 2284 * pm_runtime_put_autosuspend(&msm_host->pdev->dev); 2285 * } 2286 */ 2287 msm_host->enabled = true; 2288 return 0; 2289 } 2290 2291 int msm_dsi_host_disable(struct mipi_dsi_host *host) 2292 { 2293 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2294 2295 msm_host->enabled = false; 2296 dsi_op_mode_config(msm_host, 2297 !!(msm_host->mode_flags & MIPI_DSI_MODE_VIDEO), false); 2298 2299 /* Since we have disabled INTF, the video engine won't stop so that 2300 * the cmd engine will be blocked. 2301 * Reset to disable video engine so that we can send off cmd. 2302 */ 2303 dsi_sw_reset(msm_host); 2304 2305 return 0; 2306 } 2307 2308 static void msm_dsi_sfpb_config(struct msm_dsi_host *msm_host, bool enable) 2309 { 2310 enum sfpb_ahb_arb_master_port_en en; 2311 2312 if (!msm_host->sfpb) 2313 return; 2314 2315 en = enable ? SFPB_MASTER_PORT_ENABLE : SFPB_MASTER_PORT_DISABLE; 2316 2317 regmap_update_bits(msm_host->sfpb, REG_SFPB_GPREG, 2318 SFPB_GPREG_MASTER_PORT_EN__MASK, 2319 SFPB_GPREG_MASTER_PORT_EN(en)); 2320 } 2321 2322 int msm_dsi_host_power_on(struct mipi_dsi_host *host, 2323 struct msm_dsi_phy_shared_timings *phy_shared_timings, 2324 bool is_dual_dsi) 2325 { 2326 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2327 const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd; 2328 int ret = 0; 2329 2330 mutex_lock(&msm_host->dev_mutex); 2331 if (msm_host->power_on) { 2332 DBG("dsi host already on"); 2333 goto unlock_ret; 2334 } 2335 2336 msm_dsi_sfpb_config(msm_host, true); 2337 2338 ret = dsi_host_regulator_enable(msm_host); 2339 if (ret) { 2340 pr_err("%s:Failed to enable vregs.ret=%d\n", 2341 __func__, ret); 2342 goto unlock_ret; 2343 } 2344 2345 pm_runtime_get_sync(&msm_host->pdev->dev); 2346 ret = cfg_hnd->ops->link_clk_enable(msm_host); 2347 if (ret) { 2348 pr_err("%s: failed to enable link clocks. ret=%d\n", 2349 __func__, ret); 2350 goto fail_disable_reg; 2351 } 2352 2353 ret = pinctrl_pm_select_default_state(&msm_host->pdev->dev); 2354 if (ret) { 2355 pr_err("%s: failed to set pinctrl default state, %d\n", 2356 __func__, ret); 2357 goto fail_disable_clk; 2358 } 2359 2360 dsi_timing_setup(msm_host, is_dual_dsi); 2361 dsi_sw_reset(msm_host); 2362 dsi_ctrl_config(msm_host, true, phy_shared_timings); 2363 2364 if (msm_host->disp_en_gpio) 2365 gpiod_set_value(msm_host->disp_en_gpio, 1); 2366 2367 msm_host->power_on = true; 2368 mutex_unlock(&msm_host->dev_mutex); 2369 2370 return 0; 2371 2372 fail_disable_clk: 2373 cfg_hnd->ops->link_clk_disable(msm_host); 2374 pm_runtime_put_autosuspend(&msm_host->pdev->dev); 2375 fail_disable_reg: 2376 dsi_host_regulator_disable(msm_host); 2377 unlock_ret: 2378 mutex_unlock(&msm_host->dev_mutex); 2379 return ret; 2380 } 2381 2382 int msm_dsi_host_power_off(struct mipi_dsi_host *host) 2383 { 2384 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2385 const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd; 2386 2387 mutex_lock(&msm_host->dev_mutex); 2388 if (!msm_host->power_on) { 2389 DBG("dsi host already off"); 2390 goto unlock_ret; 2391 } 2392 2393 dsi_ctrl_config(msm_host, false, NULL); 2394 2395 if (msm_host->disp_en_gpio) 2396 gpiod_set_value(msm_host->disp_en_gpio, 0); 2397 2398 pinctrl_pm_select_sleep_state(&msm_host->pdev->dev); 2399 2400 cfg_hnd->ops->link_clk_disable(msm_host); 2401 pm_runtime_put_autosuspend(&msm_host->pdev->dev); 2402 2403 dsi_host_regulator_disable(msm_host); 2404 2405 msm_dsi_sfpb_config(msm_host, false); 2406 2407 DBG("-"); 2408 2409 msm_host->power_on = false; 2410 2411 unlock_ret: 2412 mutex_unlock(&msm_host->dev_mutex); 2413 return 0; 2414 } 2415 2416 int msm_dsi_host_set_display_mode(struct mipi_dsi_host *host, 2417 const struct drm_display_mode *mode) 2418 { 2419 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2420 2421 if (msm_host->mode) { 2422 drm_mode_destroy(msm_host->dev, msm_host->mode); 2423 msm_host->mode = NULL; 2424 } 2425 2426 msm_host->mode = drm_mode_duplicate(msm_host->dev, mode); 2427 if (!msm_host->mode) { 2428 pr_err("%s: cannot duplicate mode\n", __func__); 2429 return -ENOMEM; 2430 } 2431 2432 return 0; 2433 } 2434 2435 struct drm_panel *msm_dsi_host_get_panel(struct mipi_dsi_host *host) 2436 { 2437 return of_drm_find_panel(to_msm_dsi_host(host)->device_node); 2438 } 2439 2440 unsigned long msm_dsi_host_get_mode_flags(struct mipi_dsi_host *host) 2441 { 2442 return to_msm_dsi_host(host)->mode_flags; 2443 } 2444 2445 struct drm_bridge *msm_dsi_host_get_bridge(struct mipi_dsi_host *host) 2446 { 2447 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2448 2449 return of_drm_find_bridge(msm_host->device_node); 2450 } 2451