xref: /linux/drivers/gpu/drm/msm/dsi/dsi_host.c (revision a4eb44a6435d6d8f9e642407a4a06f65eb90ca04)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2015, The Linux Foundation. All rights reserved.
4  */
5 
6 #include <linux/clk.h>
7 #include <linux/delay.h>
8 #include <linux/dma-mapping.h>
9 #include <linux/err.h>
10 #include <linux/gpio/consumer.h>
11 #include <linux/interrupt.h>
12 #include <linux/mfd/syscon.h>
13 #include <linux/of_device.h>
14 #include <linux/of_graph.h>
15 #include <linux/of_irq.h>
16 #include <linux/pinctrl/consumer.h>
17 #include <linux/pm_opp.h>
18 #include <linux/regmap.h>
19 #include <linux/regulator/consumer.h>
20 #include <linux/spinlock.h>
21 
22 #include <video/mipi_display.h>
23 
24 #include "dsi.h"
25 #include "dsi.xml.h"
26 #include "sfpb.xml.h"
27 #include "dsi_cfg.h"
28 #include "msm_kms.h"
29 #include "msm_gem.h"
30 #include "phy/dsi_phy.h"
31 
32 #define DSI_RESET_TOGGLE_DELAY_MS 20
33 
34 static int dsi_get_version(const void __iomem *base, u32 *major, u32 *minor)
35 {
36 	u32 ver;
37 
38 	if (!major || !minor)
39 		return -EINVAL;
40 
41 	/*
42 	 * From DSI6G(v3), addition of a 6G_HW_VERSION register at offset 0
43 	 * makes all other registers 4-byte shifted down.
44 	 *
45 	 * In order to identify between DSI6G(v3) and beyond, and DSIv2 and
46 	 * older, we read the DSI_VERSION register without any shift(offset
47 	 * 0x1f0). In the case of DSIv2, this hast to be a non-zero value. In
48 	 * the case of DSI6G, this has to be zero (the offset points to a
49 	 * scratch register which we never touch)
50 	 */
51 
52 	ver = msm_readl(base + REG_DSI_VERSION);
53 	if (ver) {
54 		/* older dsi host, there is no register shift */
55 		ver = FIELD(ver, DSI_VERSION_MAJOR);
56 		if (ver <= MSM_DSI_VER_MAJOR_V2) {
57 			/* old versions */
58 			*major = ver;
59 			*minor = 0;
60 			return 0;
61 		} else {
62 			return -EINVAL;
63 		}
64 	} else {
65 		/*
66 		 * newer host, offset 0 has 6G_HW_VERSION, the rest of the
67 		 * registers are shifted down, read DSI_VERSION again with
68 		 * the shifted offset
69 		 */
70 		ver = msm_readl(base + DSI_6G_REG_SHIFT + REG_DSI_VERSION);
71 		ver = FIELD(ver, DSI_VERSION_MAJOR);
72 		if (ver == MSM_DSI_VER_MAJOR_6G) {
73 			/* 6G version */
74 			*major = ver;
75 			*minor = msm_readl(base + REG_DSI_6G_HW_VERSION);
76 			return 0;
77 		} else {
78 			return -EINVAL;
79 		}
80 	}
81 }
82 
83 #define DSI_ERR_STATE_ACK			0x0000
84 #define DSI_ERR_STATE_TIMEOUT			0x0001
85 #define DSI_ERR_STATE_DLN0_PHY			0x0002
86 #define DSI_ERR_STATE_FIFO			0x0004
87 #define DSI_ERR_STATE_MDP_FIFO_UNDERFLOW	0x0008
88 #define DSI_ERR_STATE_INTERLEAVE_OP_CONTENTION	0x0010
89 #define DSI_ERR_STATE_PLL_UNLOCKED		0x0020
90 
91 #define DSI_CLK_CTRL_ENABLE_CLKS	\
92 		(DSI_CLK_CTRL_AHBS_HCLK_ON | DSI_CLK_CTRL_AHBM_SCLK_ON | \
93 		DSI_CLK_CTRL_PCLK_ON | DSI_CLK_CTRL_DSICLK_ON | \
94 		DSI_CLK_CTRL_BYTECLK_ON | DSI_CLK_CTRL_ESCCLK_ON | \
95 		DSI_CLK_CTRL_FORCE_ON_DYN_AHBM_HCLK)
96 
97 struct msm_dsi_host {
98 	struct mipi_dsi_host base;
99 
100 	struct platform_device *pdev;
101 	struct drm_device *dev;
102 
103 	int id;
104 
105 	void __iomem *ctrl_base;
106 	phys_addr_t ctrl_size;
107 	struct regulator_bulk_data supplies[DSI_DEV_REGULATOR_MAX];
108 
109 	int num_bus_clks;
110 	struct clk_bulk_data bus_clks[DSI_BUS_CLK_MAX];
111 
112 	struct clk *byte_clk;
113 	struct clk *esc_clk;
114 	struct clk *pixel_clk;
115 	struct clk *byte_clk_src;
116 	struct clk *pixel_clk_src;
117 	struct clk *byte_intf_clk;
118 
119 	unsigned long byte_clk_rate;
120 	unsigned long pixel_clk_rate;
121 	unsigned long esc_clk_rate;
122 
123 	/* DSI v2 specific clocks */
124 	struct clk *src_clk;
125 	struct clk *esc_clk_src;
126 	struct clk *dsi_clk_src;
127 
128 	unsigned long src_clk_rate;
129 
130 	struct gpio_desc *disp_en_gpio;
131 	struct gpio_desc *te_gpio;
132 
133 	const struct msm_dsi_cfg_handler *cfg_hnd;
134 
135 	struct completion dma_comp;
136 	struct completion video_comp;
137 	struct mutex dev_mutex;
138 	struct mutex cmd_mutex;
139 	spinlock_t intr_lock; /* Protect interrupt ctrl register */
140 
141 	u32 err_work_state;
142 	struct work_struct err_work;
143 	struct work_struct hpd_work;
144 	struct workqueue_struct *workqueue;
145 
146 	/* DSI 6G TX buffer*/
147 	struct drm_gem_object *tx_gem_obj;
148 
149 	/* DSI v2 TX buffer */
150 	void *tx_buf;
151 	dma_addr_t tx_buf_paddr;
152 
153 	int tx_size;
154 
155 	u8 *rx_buf;
156 
157 	struct regmap *sfpb;
158 
159 	struct drm_display_mode *mode;
160 
161 	/* connected device info */
162 	struct device_node *device_node;
163 	unsigned int channel;
164 	unsigned int lanes;
165 	enum mipi_dsi_pixel_format format;
166 	unsigned long mode_flags;
167 
168 	/* lane data parsed via DT */
169 	int dlane_swap;
170 	int num_data_lanes;
171 
172 	/* from phy DT */
173 	bool cphy_mode;
174 
175 	u32 dma_cmd_ctrl_restore;
176 
177 	bool registered;
178 	bool power_on;
179 	bool enabled;
180 	int irq;
181 };
182 
183 static u32 dsi_get_bpp(const enum mipi_dsi_pixel_format fmt)
184 {
185 	switch (fmt) {
186 	case MIPI_DSI_FMT_RGB565:		return 16;
187 	case MIPI_DSI_FMT_RGB666_PACKED:	return 18;
188 	case MIPI_DSI_FMT_RGB666:
189 	case MIPI_DSI_FMT_RGB888:
190 	default:				return 24;
191 	}
192 }
193 
194 static inline u32 dsi_read(struct msm_dsi_host *msm_host, u32 reg)
195 {
196 	return msm_readl(msm_host->ctrl_base + reg);
197 }
198 static inline void dsi_write(struct msm_dsi_host *msm_host, u32 reg, u32 data)
199 {
200 	msm_writel(data, msm_host->ctrl_base + reg);
201 }
202 
203 static int dsi_host_regulator_enable(struct msm_dsi_host *msm_host);
204 static void dsi_host_regulator_disable(struct msm_dsi_host *msm_host);
205 
206 static const struct msm_dsi_cfg_handler *dsi_get_config(
207 						struct msm_dsi_host *msm_host)
208 {
209 	const struct msm_dsi_cfg_handler *cfg_hnd = NULL;
210 	struct device *dev = &msm_host->pdev->dev;
211 	struct clk *ahb_clk;
212 	int ret;
213 	u32 major = 0, minor = 0;
214 
215 	ahb_clk = msm_clk_get(msm_host->pdev, "iface");
216 	if (IS_ERR(ahb_clk)) {
217 		pr_err("%s: cannot get interface clock\n", __func__);
218 		goto exit;
219 	}
220 
221 	pm_runtime_get_sync(dev);
222 
223 	ret = clk_prepare_enable(ahb_clk);
224 	if (ret) {
225 		pr_err("%s: unable to enable ahb_clk\n", __func__);
226 		goto runtime_put;
227 	}
228 
229 	ret = dsi_get_version(msm_host->ctrl_base, &major, &minor);
230 	if (ret) {
231 		pr_err("%s: Invalid version\n", __func__);
232 		goto disable_clks;
233 	}
234 
235 	cfg_hnd = msm_dsi_cfg_get(major, minor);
236 
237 	DBG("%s: Version %x:%x\n", __func__, major, minor);
238 
239 disable_clks:
240 	clk_disable_unprepare(ahb_clk);
241 runtime_put:
242 	pm_runtime_put_sync(dev);
243 exit:
244 	return cfg_hnd;
245 }
246 
247 static inline struct msm_dsi_host *to_msm_dsi_host(struct mipi_dsi_host *host)
248 {
249 	return container_of(host, struct msm_dsi_host, base);
250 }
251 
252 static void dsi_host_regulator_disable(struct msm_dsi_host *msm_host)
253 {
254 	struct regulator_bulk_data *s = msm_host->supplies;
255 	const struct dsi_reg_entry *regs = msm_host->cfg_hnd->cfg->reg_cfg.regs;
256 	int num = msm_host->cfg_hnd->cfg->reg_cfg.num;
257 	int i;
258 
259 	DBG("");
260 	for (i = num - 1; i >= 0; i--)
261 		if (regs[i].disable_load >= 0)
262 			regulator_set_load(s[i].consumer,
263 					   regs[i].disable_load);
264 
265 	regulator_bulk_disable(num, s);
266 }
267 
268 static int dsi_host_regulator_enable(struct msm_dsi_host *msm_host)
269 {
270 	struct regulator_bulk_data *s = msm_host->supplies;
271 	const struct dsi_reg_entry *regs = msm_host->cfg_hnd->cfg->reg_cfg.regs;
272 	int num = msm_host->cfg_hnd->cfg->reg_cfg.num;
273 	int ret, i;
274 
275 	DBG("");
276 	for (i = 0; i < num; i++) {
277 		if (regs[i].enable_load >= 0) {
278 			ret = regulator_set_load(s[i].consumer,
279 						 regs[i].enable_load);
280 			if (ret < 0) {
281 				pr_err("regulator %d set op mode failed, %d\n",
282 					i, ret);
283 				goto fail;
284 			}
285 		}
286 	}
287 
288 	ret = regulator_bulk_enable(num, s);
289 	if (ret < 0) {
290 		pr_err("regulator enable failed, %d\n", ret);
291 		goto fail;
292 	}
293 
294 	return 0;
295 
296 fail:
297 	for (i--; i >= 0; i--)
298 		regulator_set_load(s[i].consumer, regs[i].disable_load);
299 	return ret;
300 }
301 
302 static int dsi_regulator_init(struct msm_dsi_host *msm_host)
303 {
304 	struct regulator_bulk_data *s = msm_host->supplies;
305 	const struct dsi_reg_entry *regs = msm_host->cfg_hnd->cfg->reg_cfg.regs;
306 	int num = msm_host->cfg_hnd->cfg->reg_cfg.num;
307 	int i, ret;
308 
309 	for (i = 0; i < num; i++)
310 		s[i].supply = regs[i].name;
311 
312 	ret = devm_regulator_bulk_get(&msm_host->pdev->dev, num, s);
313 	if (ret < 0) {
314 		pr_err("%s: failed to init regulator, ret=%d\n",
315 						__func__, ret);
316 		return ret;
317 	}
318 
319 	return 0;
320 }
321 
322 int dsi_clk_init_v2(struct msm_dsi_host *msm_host)
323 {
324 	struct platform_device *pdev = msm_host->pdev;
325 	int ret = 0;
326 
327 	msm_host->src_clk = msm_clk_get(pdev, "src");
328 
329 	if (IS_ERR(msm_host->src_clk)) {
330 		ret = PTR_ERR(msm_host->src_clk);
331 		pr_err("%s: can't find src clock. ret=%d\n",
332 			__func__, ret);
333 		msm_host->src_clk = NULL;
334 		return ret;
335 	}
336 
337 	msm_host->esc_clk_src = clk_get_parent(msm_host->esc_clk);
338 	if (!msm_host->esc_clk_src) {
339 		ret = -ENODEV;
340 		pr_err("%s: can't get esc clock parent. ret=%d\n",
341 			__func__, ret);
342 		return ret;
343 	}
344 
345 	msm_host->dsi_clk_src = clk_get_parent(msm_host->src_clk);
346 	if (!msm_host->dsi_clk_src) {
347 		ret = -ENODEV;
348 		pr_err("%s: can't get src clock parent. ret=%d\n",
349 			__func__, ret);
350 	}
351 
352 	return ret;
353 }
354 
355 int dsi_clk_init_6g_v2(struct msm_dsi_host *msm_host)
356 {
357 	struct platform_device *pdev = msm_host->pdev;
358 	int ret = 0;
359 
360 	msm_host->byte_intf_clk = msm_clk_get(pdev, "byte_intf");
361 	if (IS_ERR(msm_host->byte_intf_clk)) {
362 		ret = PTR_ERR(msm_host->byte_intf_clk);
363 		pr_err("%s: can't find byte_intf clock. ret=%d\n",
364 			__func__, ret);
365 	}
366 
367 	return ret;
368 }
369 
370 static int dsi_clk_init(struct msm_dsi_host *msm_host)
371 {
372 	struct platform_device *pdev = msm_host->pdev;
373 	const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd;
374 	const struct msm_dsi_config *cfg = cfg_hnd->cfg;
375 	int i, ret = 0;
376 
377 	/* get bus clocks */
378 	for (i = 0; i < cfg->num_bus_clks; i++)
379 		msm_host->bus_clks[i].id = cfg->bus_clk_names[i];
380 	msm_host->num_bus_clks = cfg->num_bus_clks;
381 
382 	ret = devm_clk_bulk_get(&pdev->dev, msm_host->num_bus_clks, msm_host->bus_clks);
383 	if (ret < 0) {
384 		dev_err(&pdev->dev, "Unable to get clocks, ret = %d\n", ret);
385 		goto exit;
386 	}
387 
388 	/* get link and source clocks */
389 	msm_host->byte_clk = msm_clk_get(pdev, "byte");
390 	if (IS_ERR(msm_host->byte_clk)) {
391 		ret = PTR_ERR(msm_host->byte_clk);
392 		pr_err("%s: can't find dsi_byte clock. ret=%d\n",
393 			__func__, ret);
394 		msm_host->byte_clk = NULL;
395 		goto exit;
396 	}
397 
398 	msm_host->pixel_clk = msm_clk_get(pdev, "pixel");
399 	if (IS_ERR(msm_host->pixel_clk)) {
400 		ret = PTR_ERR(msm_host->pixel_clk);
401 		pr_err("%s: can't find dsi_pixel clock. ret=%d\n",
402 			__func__, ret);
403 		msm_host->pixel_clk = NULL;
404 		goto exit;
405 	}
406 
407 	msm_host->esc_clk = msm_clk_get(pdev, "core");
408 	if (IS_ERR(msm_host->esc_clk)) {
409 		ret = PTR_ERR(msm_host->esc_clk);
410 		pr_err("%s: can't find dsi_esc clock. ret=%d\n",
411 			__func__, ret);
412 		msm_host->esc_clk = NULL;
413 		goto exit;
414 	}
415 
416 	msm_host->byte_clk_src = clk_get_parent(msm_host->byte_clk);
417 	if (IS_ERR(msm_host->byte_clk_src)) {
418 		ret = PTR_ERR(msm_host->byte_clk_src);
419 		pr_err("%s: can't find byte_clk clock. ret=%d\n", __func__, ret);
420 		goto exit;
421 	}
422 
423 	msm_host->pixel_clk_src = clk_get_parent(msm_host->pixel_clk);
424 	if (IS_ERR(msm_host->pixel_clk_src)) {
425 		ret = PTR_ERR(msm_host->pixel_clk_src);
426 		pr_err("%s: can't find pixel_clk clock. ret=%d\n", __func__, ret);
427 		goto exit;
428 	}
429 
430 	if (cfg_hnd->ops->clk_init_ver)
431 		ret = cfg_hnd->ops->clk_init_ver(msm_host);
432 exit:
433 	return ret;
434 }
435 
436 int msm_dsi_runtime_suspend(struct device *dev)
437 {
438 	struct platform_device *pdev = to_platform_device(dev);
439 	struct msm_dsi *msm_dsi = platform_get_drvdata(pdev);
440 	struct mipi_dsi_host *host = msm_dsi->host;
441 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
442 
443 	if (!msm_host->cfg_hnd)
444 		return 0;
445 
446 	clk_bulk_disable_unprepare(msm_host->num_bus_clks, msm_host->bus_clks);
447 
448 	return 0;
449 }
450 
451 int msm_dsi_runtime_resume(struct device *dev)
452 {
453 	struct platform_device *pdev = to_platform_device(dev);
454 	struct msm_dsi *msm_dsi = platform_get_drvdata(pdev);
455 	struct mipi_dsi_host *host = msm_dsi->host;
456 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
457 
458 	if (!msm_host->cfg_hnd)
459 		return 0;
460 
461 	return clk_bulk_prepare_enable(msm_host->num_bus_clks, msm_host->bus_clks);
462 }
463 
464 int dsi_link_clk_set_rate_6g(struct msm_dsi_host *msm_host)
465 {
466 	unsigned long byte_intf_rate;
467 	int ret;
468 
469 	DBG("Set clk rates: pclk=%d, byteclk=%lu",
470 		msm_host->mode->clock, msm_host->byte_clk_rate);
471 
472 	ret = dev_pm_opp_set_rate(&msm_host->pdev->dev,
473 				  msm_host->byte_clk_rate);
474 	if (ret) {
475 		pr_err("%s: dev_pm_opp_set_rate failed %d\n", __func__, ret);
476 		return ret;
477 	}
478 
479 	ret = clk_set_rate(msm_host->pixel_clk, msm_host->pixel_clk_rate);
480 	if (ret) {
481 		pr_err("%s: Failed to set rate pixel clk, %d\n", __func__, ret);
482 		return ret;
483 	}
484 
485 	if (msm_host->byte_intf_clk) {
486 		/* For CPHY, byte_intf_clk is same as byte_clk */
487 		if (msm_host->cphy_mode)
488 			byte_intf_rate = msm_host->byte_clk_rate;
489 		else
490 			byte_intf_rate = msm_host->byte_clk_rate / 2;
491 
492 		ret = clk_set_rate(msm_host->byte_intf_clk, byte_intf_rate);
493 		if (ret) {
494 			pr_err("%s: Failed to set rate byte intf clk, %d\n",
495 			       __func__, ret);
496 			return ret;
497 		}
498 	}
499 
500 	return 0;
501 }
502 
503 
504 int dsi_link_clk_enable_6g(struct msm_dsi_host *msm_host)
505 {
506 	int ret;
507 
508 	ret = clk_prepare_enable(msm_host->esc_clk);
509 	if (ret) {
510 		pr_err("%s: Failed to enable dsi esc clk\n", __func__);
511 		goto error;
512 	}
513 
514 	ret = clk_prepare_enable(msm_host->byte_clk);
515 	if (ret) {
516 		pr_err("%s: Failed to enable dsi byte clk\n", __func__);
517 		goto byte_clk_err;
518 	}
519 
520 	ret = clk_prepare_enable(msm_host->pixel_clk);
521 	if (ret) {
522 		pr_err("%s: Failed to enable dsi pixel clk\n", __func__);
523 		goto pixel_clk_err;
524 	}
525 
526 	ret = clk_prepare_enable(msm_host->byte_intf_clk);
527 	if (ret) {
528 		pr_err("%s: Failed to enable byte intf clk\n",
529 			   __func__);
530 		goto byte_intf_clk_err;
531 	}
532 
533 	return 0;
534 
535 byte_intf_clk_err:
536 	clk_disable_unprepare(msm_host->pixel_clk);
537 pixel_clk_err:
538 	clk_disable_unprepare(msm_host->byte_clk);
539 byte_clk_err:
540 	clk_disable_unprepare(msm_host->esc_clk);
541 error:
542 	return ret;
543 }
544 
545 int dsi_link_clk_set_rate_v2(struct msm_dsi_host *msm_host)
546 {
547 	int ret;
548 
549 	DBG("Set clk rates: pclk=%d, byteclk=%lu, esc_clk=%lu, dsi_src_clk=%lu",
550 		msm_host->mode->clock, msm_host->byte_clk_rate,
551 		msm_host->esc_clk_rate, msm_host->src_clk_rate);
552 
553 	ret = clk_set_rate(msm_host->byte_clk, msm_host->byte_clk_rate);
554 	if (ret) {
555 		pr_err("%s: Failed to set rate byte clk, %d\n", __func__, ret);
556 		return ret;
557 	}
558 
559 	ret = clk_set_rate(msm_host->esc_clk, msm_host->esc_clk_rate);
560 	if (ret) {
561 		pr_err("%s: Failed to set rate esc clk, %d\n", __func__, ret);
562 		return ret;
563 	}
564 
565 	ret = clk_set_rate(msm_host->src_clk, msm_host->src_clk_rate);
566 	if (ret) {
567 		pr_err("%s: Failed to set rate src clk, %d\n", __func__, ret);
568 		return ret;
569 	}
570 
571 	ret = clk_set_rate(msm_host->pixel_clk, msm_host->pixel_clk_rate);
572 	if (ret) {
573 		pr_err("%s: Failed to set rate pixel clk, %d\n", __func__, ret);
574 		return ret;
575 	}
576 
577 	return 0;
578 }
579 
580 int dsi_link_clk_enable_v2(struct msm_dsi_host *msm_host)
581 {
582 	int ret;
583 
584 	ret = clk_prepare_enable(msm_host->byte_clk);
585 	if (ret) {
586 		pr_err("%s: Failed to enable dsi byte clk\n", __func__);
587 		goto error;
588 	}
589 
590 	ret = clk_prepare_enable(msm_host->esc_clk);
591 	if (ret) {
592 		pr_err("%s: Failed to enable dsi esc clk\n", __func__);
593 		goto esc_clk_err;
594 	}
595 
596 	ret = clk_prepare_enable(msm_host->src_clk);
597 	if (ret) {
598 		pr_err("%s: Failed to enable dsi src clk\n", __func__);
599 		goto src_clk_err;
600 	}
601 
602 	ret = clk_prepare_enable(msm_host->pixel_clk);
603 	if (ret) {
604 		pr_err("%s: Failed to enable dsi pixel clk\n", __func__);
605 		goto pixel_clk_err;
606 	}
607 
608 	return 0;
609 
610 pixel_clk_err:
611 	clk_disable_unprepare(msm_host->src_clk);
612 src_clk_err:
613 	clk_disable_unprepare(msm_host->esc_clk);
614 esc_clk_err:
615 	clk_disable_unprepare(msm_host->byte_clk);
616 error:
617 	return ret;
618 }
619 
620 void dsi_link_clk_disable_6g(struct msm_dsi_host *msm_host)
621 {
622 	/* Drop the performance state vote */
623 	dev_pm_opp_set_rate(&msm_host->pdev->dev, 0);
624 	clk_disable_unprepare(msm_host->esc_clk);
625 	clk_disable_unprepare(msm_host->pixel_clk);
626 	clk_disable_unprepare(msm_host->byte_intf_clk);
627 	clk_disable_unprepare(msm_host->byte_clk);
628 }
629 
630 void dsi_link_clk_disable_v2(struct msm_dsi_host *msm_host)
631 {
632 	clk_disable_unprepare(msm_host->pixel_clk);
633 	clk_disable_unprepare(msm_host->src_clk);
634 	clk_disable_unprepare(msm_host->esc_clk);
635 	clk_disable_unprepare(msm_host->byte_clk);
636 }
637 
638 static unsigned long dsi_get_pclk_rate(struct msm_dsi_host *msm_host, bool is_bonded_dsi)
639 {
640 	struct drm_display_mode *mode = msm_host->mode;
641 	unsigned long pclk_rate;
642 
643 	pclk_rate = mode->clock * 1000;
644 
645 	/*
646 	 * For bonded DSI mode, the current DRM mode has the complete width of the
647 	 * panel. Since, the complete panel is driven by two DSI controllers,
648 	 * the clock rates have to be split between the two dsi controllers.
649 	 * Adjust the byte and pixel clock rates for each dsi host accordingly.
650 	 */
651 	if (is_bonded_dsi)
652 		pclk_rate /= 2;
653 
654 	return pclk_rate;
655 }
656 
657 static void dsi_calc_pclk(struct msm_dsi_host *msm_host, bool is_bonded_dsi)
658 {
659 	u8 lanes = msm_host->lanes;
660 	u32 bpp = dsi_get_bpp(msm_host->format);
661 	unsigned long pclk_rate = dsi_get_pclk_rate(msm_host, is_bonded_dsi);
662 	u64 pclk_bpp = (u64)pclk_rate * bpp;
663 
664 	if (lanes == 0) {
665 		pr_err("%s: forcing mdss_dsi lanes to 1\n", __func__);
666 		lanes = 1;
667 	}
668 
669 	/* CPHY "byte_clk" is in units of 16 bits */
670 	if (msm_host->cphy_mode)
671 		do_div(pclk_bpp, (16 * lanes));
672 	else
673 		do_div(pclk_bpp, (8 * lanes));
674 
675 	msm_host->pixel_clk_rate = pclk_rate;
676 	msm_host->byte_clk_rate = pclk_bpp;
677 
678 	DBG("pclk=%lu, bclk=%lu", msm_host->pixel_clk_rate,
679 				msm_host->byte_clk_rate);
680 
681 }
682 
683 int dsi_calc_clk_rate_6g(struct msm_dsi_host *msm_host, bool is_bonded_dsi)
684 {
685 	if (!msm_host->mode) {
686 		pr_err("%s: mode not set\n", __func__);
687 		return -EINVAL;
688 	}
689 
690 	dsi_calc_pclk(msm_host, is_bonded_dsi);
691 	msm_host->esc_clk_rate = clk_get_rate(msm_host->esc_clk);
692 	return 0;
693 }
694 
695 int dsi_calc_clk_rate_v2(struct msm_dsi_host *msm_host, bool is_bonded_dsi)
696 {
697 	u32 bpp = dsi_get_bpp(msm_host->format);
698 	u64 pclk_bpp;
699 	unsigned int esc_mhz, esc_div;
700 	unsigned long byte_mhz;
701 
702 	dsi_calc_pclk(msm_host, is_bonded_dsi);
703 
704 	pclk_bpp = (u64)dsi_get_pclk_rate(msm_host, is_bonded_dsi) * bpp;
705 	do_div(pclk_bpp, 8);
706 	msm_host->src_clk_rate = pclk_bpp;
707 
708 	/*
709 	 * esc clock is byte clock followed by a 4 bit divider,
710 	 * we need to find an escape clock frequency within the
711 	 * mipi DSI spec range within the maximum divider limit
712 	 * We iterate here between an escape clock frequencey
713 	 * between 20 Mhz to 5 Mhz and pick up the first one
714 	 * that can be supported by our divider
715 	 */
716 
717 	byte_mhz = msm_host->byte_clk_rate / 1000000;
718 
719 	for (esc_mhz = 20; esc_mhz >= 5; esc_mhz--) {
720 		esc_div = DIV_ROUND_UP(byte_mhz, esc_mhz);
721 
722 		/*
723 		 * TODO: Ideally, we shouldn't know what sort of divider
724 		 * is available in mmss_cc, we're just assuming that
725 		 * it'll always be a 4 bit divider. Need to come up with
726 		 * a better way here.
727 		 */
728 		if (esc_div >= 1 && esc_div <= 16)
729 			break;
730 	}
731 
732 	if (esc_mhz < 5)
733 		return -EINVAL;
734 
735 	msm_host->esc_clk_rate = msm_host->byte_clk_rate / esc_div;
736 
737 	DBG("esc=%lu, src=%lu", msm_host->esc_clk_rate,
738 		msm_host->src_clk_rate);
739 
740 	return 0;
741 }
742 
743 static void dsi_intr_ctrl(struct msm_dsi_host *msm_host, u32 mask, int enable)
744 {
745 	u32 intr;
746 	unsigned long flags;
747 
748 	spin_lock_irqsave(&msm_host->intr_lock, flags);
749 	intr = dsi_read(msm_host, REG_DSI_INTR_CTRL);
750 
751 	if (enable)
752 		intr |= mask;
753 	else
754 		intr &= ~mask;
755 
756 	DBG("intr=%x enable=%d", intr, enable);
757 
758 	dsi_write(msm_host, REG_DSI_INTR_CTRL, intr);
759 	spin_unlock_irqrestore(&msm_host->intr_lock, flags);
760 }
761 
762 static inline enum dsi_traffic_mode dsi_get_traffic_mode(const u32 mode_flags)
763 {
764 	if (mode_flags & MIPI_DSI_MODE_VIDEO_BURST)
765 		return BURST_MODE;
766 	else if (mode_flags & MIPI_DSI_MODE_VIDEO_SYNC_PULSE)
767 		return NON_BURST_SYNCH_PULSE;
768 
769 	return NON_BURST_SYNCH_EVENT;
770 }
771 
772 static inline enum dsi_vid_dst_format dsi_get_vid_fmt(
773 				const enum mipi_dsi_pixel_format mipi_fmt)
774 {
775 	switch (mipi_fmt) {
776 	case MIPI_DSI_FMT_RGB888:	return VID_DST_FORMAT_RGB888;
777 	case MIPI_DSI_FMT_RGB666:	return VID_DST_FORMAT_RGB666_LOOSE;
778 	case MIPI_DSI_FMT_RGB666_PACKED:	return VID_DST_FORMAT_RGB666;
779 	case MIPI_DSI_FMT_RGB565:	return VID_DST_FORMAT_RGB565;
780 	default:			return VID_DST_FORMAT_RGB888;
781 	}
782 }
783 
784 static inline enum dsi_cmd_dst_format dsi_get_cmd_fmt(
785 				const enum mipi_dsi_pixel_format mipi_fmt)
786 {
787 	switch (mipi_fmt) {
788 	case MIPI_DSI_FMT_RGB888:	return CMD_DST_FORMAT_RGB888;
789 	case MIPI_DSI_FMT_RGB666_PACKED:
790 	case MIPI_DSI_FMT_RGB666:	return CMD_DST_FORMAT_RGB666;
791 	case MIPI_DSI_FMT_RGB565:	return CMD_DST_FORMAT_RGB565;
792 	default:			return CMD_DST_FORMAT_RGB888;
793 	}
794 }
795 
796 static void dsi_ctrl_config(struct msm_dsi_host *msm_host, bool enable,
797 			struct msm_dsi_phy_shared_timings *phy_shared_timings, struct msm_dsi_phy *phy)
798 {
799 	u32 flags = msm_host->mode_flags;
800 	enum mipi_dsi_pixel_format mipi_fmt = msm_host->format;
801 	const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd;
802 	u32 data = 0, lane_ctrl = 0;
803 
804 	if (!enable) {
805 		dsi_write(msm_host, REG_DSI_CTRL, 0);
806 		return;
807 	}
808 
809 	if (flags & MIPI_DSI_MODE_VIDEO) {
810 		if (flags & MIPI_DSI_MODE_VIDEO_HSE)
811 			data |= DSI_VID_CFG0_PULSE_MODE_HSA_HE;
812 		if (flags & MIPI_DSI_MODE_VIDEO_NO_HFP)
813 			data |= DSI_VID_CFG0_HFP_POWER_STOP;
814 		if (flags & MIPI_DSI_MODE_VIDEO_NO_HBP)
815 			data |= DSI_VID_CFG0_HBP_POWER_STOP;
816 		if (flags & MIPI_DSI_MODE_VIDEO_NO_HSA)
817 			data |= DSI_VID_CFG0_HSA_POWER_STOP;
818 		/* Always set low power stop mode for BLLP
819 		 * to let command engine send packets
820 		 */
821 		data |= DSI_VID_CFG0_EOF_BLLP_POWER_STOP |
822 			DSI_VID_CFG0_BLLP_POWER_STOP;
823 		data |= DSI_VID_CFG0_TRAFFIC_MODE(dsi_get_traffic_mode(flags));
824 		data |= DSI_VID_CFG0_DST_FORMAT(dsi_get_vid_fmt(mipi_fmt));
825 		data |= DSI_VID_CFG0_VIRT_CHANNEL(msm_host->channel);
826 		dsi_write(msm_host, REG_DSI_VID_CFG0, data);
827 
828 		/* Do not swap RGB colors */
829 		data = DSI_VID_CFG1_RGB_SWAP(SWAP_RGB);
830 		dsi_write(msm_host, REG_DSI_VID_CFG1, 0);
831 	} else {
832 		/* Do not swap RGB colors */
833 		data = DSI_CMD_CFG0_RGB_SWAP(SWAP_RGB);
834 		data |= DSI_CMD_CFG0_DST_FORMAT(dsi_get_cmd_fmt(mipi_fmt));
835 		dsi_write(msm_host, REG_DSI_CMD_CFG0, data);
836 
837 		data = DSI_CMD_CFG1_WR_MEM_START(MIPI_DCS_WRITE_MEMORY_START) |
838 			DSI_CMD_CFG1_WR_MEM_CONTINUE(
839 					MIPI_DCS_WRITE_MEMORY_CONTINUE);
840 		/* Always insert DCS command */
841 		data |= DSI_CMD_CFG1_INSERT_DCS_COMMAND;
842 		dsi_write(msm_host, REG_DSI_CMD_CFG1, data);
843 	}
844 
845 	dsi_write(msm_host, REG_DSI_CMD_DMA_CTRL,
846 			DSI_CMD_DMA_CTRL_FROM_FRAME_BUFFER |
847 			DSI_CMD_DMA_CTRL_LOW_POWER);
848 
849 	data = 0;
850 	/* Always assume dedicated TE pin */
851 	data |= DSI_TRIG_CTRL_TE;
852 	data |= DSI_TRIG_CTRL_MDP_TRIGGER(TRIGGER_NONE);
853 	data |= DSI_TRIG_CTRL_DMA_TRIGGER(TRIGGER_SW);
854 	data |= DSI_TRIG_CTRL_STREAM(msm_host->channel);
855 	if ((cfg_hnd->major == MSM_DSI_VER_MAJOR_6G) &&
856 		(cfg_hnd->minor >= MSM_DSI_6G_VER_MINOR_V1_2))
857 		data |= DSI_TRIG_CTRL_BLOCK_DMA_WITHIN_FRAME;
858 	dsi_write(msm_host, REG_DSI_TRIG_CTRL, data);
859 
860 	data = DSI_CLKOUT_TIMING_CTRL_T_CLK_POST(phy_shared_timings->clk_post) |
861 		DSI_CLKOUT_TIMING_CTRL_T_CLK_PRE(phy_shared_timings->clk_pre);
862 	dsi_write(msm_host, REG_DSI_CLKOUT_TIMING_CTRL, data);
863 
864 	if ((cfg_hnd->major == MSM_DSI_VER_MAJOR_6G) &&
865 	    (cfg_hnd->minor > MSM_DSI_6G_VER_MINOR_V1_0) &&
866 	    phy_shared_timings->clk_pre_inc_by_2)
867 		dsi_write(msm_host, REG_DSI_T_CLK_PRE_EXTEND,
868 			  DSI_T_CLK_PRE_EXTEND_INC_BY_2_BYTECLK);
869 
870 	data = 0;
871 	if (!(flags & MIPI_DSI_MODE_NO_EOT_PACKET))
872 		data |= DSI_EOT_PACKET_CTRL_TX_EOT_APPEND;
873 	dsi_write(msm_host, REG_DSI_EOT_PACKET_CTRL, data);
874 
875 	/* allow only ack-err-status to generate interrupt */
876 	dsi_write(msm_host, REG_DSI_ERR_INT_MASK0, 0x13ff3fe0);
877 
878 	dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_ERROR, 1);
879 
880 	dsi_write(msm_host, REG_DSI_CLK_CTRL, DSI_CLK_CTRL_ENABLE_CLKS);
881 
882 	data = DSI_CTRL_CLK_EN;
883 
884 	DBG("lane number=%d", msm_host->lanes);
885 	data |= ((DSI_CTRL_LANE0 << msm_host->lanes) - DSI_CTRL_LANE0);
886 
887 	dsi_write(msm_host, REG_DSI_LANE_SWAP_CTRL,
888 		  DSI_LANE_SWAP_CTRL_DLN_SWAP_SEL(msm_host->dlane_swap));
889 
890 	if (!(flags & MIPI_DSI_CLOCK_NON_CONTINUOUS)) {
891 		lane_ctrl = dsi_read(msm_host, REG_DSI_LANE_CTRL);
892 
893 		if (msm_dsi_phy_set_continuous_clock(phy, enable))
894 			lane_ctrl &= ~DSI_LANE_CTRL_HS_REQ_SEL_PHY;
895 
896 		dsi_write(msm_host, REG_DSI_LANE_CTRL,
897 			lane_ctrl | DSI_LANE_CTRL_CLKLN_HS_FORCE_REQUEST);
898 	}
899 
900 	data |= DSI_CTRL_ENABLE;
901 
902 	dsi_write(msm_host, REG_DSI_CTRL, data);
903 
904 	if (msm_host->cphy_mode)
905 		dsi_write(msm_host, REG_DSI_CPHY_MODE_CTRL, BIT(0));
906 }
907 
908 static void dsi_timing_setup(struct msm_dsi_host *msm_host, bool is_bonded_dsi)
909 {
910 	struct drm_display_mode *mode = msm_host->mode;
911 	u32 hs_start = 0, vs_start = 0; /* take sync start as 0 */
912 	u32 h_total = mode->htotal;
913 	u32 v_total = mode->vtotal;
914 	u32 hs_end = mode->hsync_end - mode->hsync_start;
915 	u32 vs_end = mode->vsync_end - mode->vsync_start;
916 	u32 ha_start = h_total - mode->hsync_start;
917 	u32 ha_end = ha_start + mode->hdisplay;
918 	u32 va_start = v_total - mode->vsync_start;
919 	u32 va_end = va_start + mode->vdisplay;
920 	u32 hdisplay = mode->hdisplay;
921 	u32 wc;
922 
923 	DBG("");
924 
925 	/*
926 	 * For bonded DSI mode, the current DRM mode has
927 	 * the complete width of the panel. Since, the complete
928 	 * panel is driven by two DSI controllers, the horizontal
929 	 * timings have to be split between the two dsi controllers.
930 	 * Adjust the DSI host timing values accordingly.
931 	 */
932 	if (is_bonded_dsi) {
933 		h_total /= 2;
934 		hs_end /= 2;
935 		ha_start /= 2;
936 		ha_end /= 2;
937 		hdisplay /= 2;
938 	}
939 
940 	if (msm_host->mode_flags & MIPI_DSI_MODE_VIDEO) {
941 		dsi_write(msm_host, REG_DSI_ACTIVE_H,
942 			DSI_ACTIVE_H_START(ha_start) |
943 			DSI_ACTIVE_H_END(ha_end));
944 		dsi_write(msm_host, REG_DSI_ACTIVE_V,
945 			DSI_ACTIVE_V_START(va_start) |
946 			DSI_ACTIVE_V_END(va_end));
947 		dsi_write(msm_host, REG_DSI_TOTAL,
948 			DSI_TOTAL_H_TOTAL(h_total - 1) |
949 			DSI_TOTAL_V_TOTAL(v_total - 1));
950 
951 		dsi_write(msm_host, REG_DSI_ACTIVE_HSYNC,
952 			DSI_ACTIVE_HSYNC_START(hs_start) |
953 			DSI_ACTIVE_HSYNC_END(hs_end));
954 		dsi_write(msm_host, REG_DSI_ACTIVE_VSYNC_HPOS, 0);
955 		dsi_write(msm_host, REG_DSI_ACTIVE_VSYNC_VPOS,
956 			DSI_ACTIVE_VSYNC_VPOS_START(vs_start) |
957 			DSI_ACTIVE_VSYNC_VPOS_END(vs_end));
958 	} else {		/* command mode */
959 		/* image data and 1 byte write_memory_start cmd */
960 		wc = hdisplay * dsi_get_bpp(msm_host->format) / 8 + 1;
961 
962 		dsi_write(msm_host, REG_DSI_CMD_MDP_STREAM0_CTRL,
963 			DSI_CMD_MDP_STREAM0_CTRL_WORD_COUNT(wc) |
964 			DSI_CMD_MDP_STREAM0_CTRL_VIRTUAL_CHANNEL(
965 					msm_host->channel) |
966 			DSI_CMD_MDP_STREAM0_CTRL_DATA_TYPE(
967 					MIPI_DSI_DCS_LONG_WRITE));
968 
969 		dsi_write(msm_host, REG_DSI_CMD_MDP_STREAM0_TOTAL,
970 			DSI_CMD_MDP_STREAM0_TOTAL_H_TOTAL(hdisplay) |
971 			DSI_CMD_MDP_STREAM0_TOTAL_V_TOTAL(mode->vdisplay));
972 	}
973 }
974 
975 static void dsi_sw_reset(struct msm_dsi_host *msm_host)
976 {
977 	dsi_write(msm_host, REG_DSI_CLK_CTRL, DSI_CLK_CTRL_ENABLE_CLKS);
978 	wmb(); /* clocks need to be enabled before reset */
979 
980 	dsi_write(msm_host, REG_DSI_RESET, 1);
981 	msleep(DSI_RESET_TOGGLE_DELAY_MS); /* make sure reset happen */
982 	dsi_write(msm_host, REG_DSI_RESET, 0);
983 }
984 
985 static void dsi_op_mode_config(struct msm_dsi_host *msm_host,
986 					bool video_mode, bool enable)
987 {
988 	u32 dsi_ctrl;
989 
990 	dsi_ctrl = dsi_read(msm_host, REG_DSI_CTRL);
991 
992 	if (!enable) {
993 		dsi_ctrl &= ~(DSI_CTRL_ENABLE | DSI_CTRL_VID_MODE_EN |
994 				DSI_CTRL_CMD_MODE_EN);
995 		dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_CMD_MDP_DONE |
996 					DSI_IRQ_MASK_VIDEO_DONE, 0);
997 	} else {
998 		if (video_mode) {
999 			dsi_ctrl |= DSI_CTRL_VID_MODE_EN;
1000 		} else {		/* command mode */
1001 			dsi_ctrl |= DSI_CTRL_CMD_MODE_EN;
1002 			dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_CMD_MDP_DONE, 1);
1003 		}
1004 		dsi_ctrl |= DSI_CTRL_ENABLE;
1005 	}
1006 
1007 	dsi_write(msm_host, REG_DSI_CTRL, dsi_ctrl);
1008 }
1009 
1010 static void dsi_set_tx_power_mode(int mode, struct msm_dsi_host *msm_host)
1011 {
1012 	u32 data;
1013 
1014 	data = dsi_read(msm_host, REG_DSI_CMD_DMA_CTRL);
1015 
1016 	if (mode == 0)
1017 		data &= ~DSI_CMD_DMA_CTRL_LOW_POWER;
1018 	else
1019 		data |= DSI_CMD_DMA_CTRL_LOW_POWER;
1020 
1021 	dsi_write(msm_host, REG_DSI_CMD_DMA_CTRL, data);
1022 }
1023 
1024 static void dsi_wait4video_done(struct msm_dsi_host *msm_host)
1025 {
1026 	u32 ret = 0;
1027 	struct device *dev = &msm_host->pdev->dev;
1028 
1029 	dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_VIDEO_DONE, 1);
1030 
1031 	reinit_completion(&msm_host->video_comp);
1032 
1033 	ret = wait_for_completion_timeout(&msm_host->video_comp,
1034 			msecs_to_jiffies(70));
1035 
1036 	if (ret == 0)
1037 		DRM_DEV_ERROR(dev, "wait for video done timed out\n");
1038 
1039 	dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_VIDEO_DONE, 0);
1040 }
1041 
1042 static void dsi_wait4video_eng_busy(struct msm_dsi_host *msm_host)
1043 {
1044 	if (!(msm_host->mode_flags & MIPI_DSI_MODE_VIDEO))
1045 		return;
1046 
1047 	if (msm_host->power_on && msm_host->enabled) {
1048 		dsi_wait4video_done(msm_host);
1049 		/* delay 4 ms to skip BLLP */
1050 		usleep_range(2000, 4000);
1051 	}
1052 }
1053 
1054 int dsi_tx_buf_alloc_6g(struct msm_dsi_host *msm_host, int size)
1055 {
1056 	struct drm_device *dev = msm_host->dev;
1057 	struct msm_drm_private *priv = dev->dev_private;
1058 	uint64_t iova;
1059 	u8 *data;
1060 
1061 	data = msm_gem_kernel_new(dev, size, MSM_BO_WC,
1062 					priv->kms->aspace,
1063 					&msm_host->tx_gem_obj, &iova);
1064 
1065 	if (IS_ERR(data)) {
1066 		msm_host->tx_gem_obj = NULL;
1067 		return PTR_ERR(data);
1068 	}
1069 
1070 	msm_gem_object_set_name(msm_host->tx_gem_obj, "tx_gem");
1071 
1072 	msm_host->tx_size = msm_host->tx_gem_obj->size;
1073 
1074 	return 0;
1075 }
1076 
1077 int dsi_tx_buf_alloc_v2(struct msm_dsi_host *msm_host, int size)
1078 {
1079 	struct drm_device *dev = msm_host->dev;
1080 
1081 	msm_host->tx_buf = dma_alloc_coherent(dev->dev, size,
1082 					&msm_host->tx_buf_paddr, GFP_KERNEL);
1083 	if (!msm_host->tx_buf)
1084 		return -ENOMEM;
1085 
1086 	msm_host->tx_size = size;
1087 
1088 	return 0;
1089 }
1090 
1091 static void dsi_tx_buf_free(struct msm_dsi_host *msm_host)
1092 {
1093 	struct drm_device *dev = msm_host->dev;
1094 	struct msm_drm_private *priv;
1095 
1096 	/*
1097 	 * This is possible if we're tearing down before we've had a chance to
1098 	 * fully initialize. A very real possibility if our probe is deferred,
1099 	 * in which case we'll hit msm_dsi_host_destroy() without having run
1100 	 * through the dsi_tx_buf_alloc().
1101 	 */
1102 	if (!dev)
1103 		return;
1104 
1105 	priv = dev->dev_private;
1106 	if (msm_host->tx_gem_obj) {
1107 		msm_gem_unpin_iova(msm_host->tx_gem_obj, priv->kms->aspace);
1108 		drm_gem_object_put(msm_host->tx_gem_obj);
1109 		msm_host->tx_gem_obj = NULL;
1110 	}
1111 
1112 	if (msm_host->tx_buf)
1113 		dma_free_coherent(dev->dev, msm_host->tx_size, msm_host->tx_buf,
1114 			msm_host->tx_buf_paddr);
1115 }
1116 
1117 void *dsi_tx_buf_get_6g(struct msm_dsi_host *msm_host)
1118 {
1119 	return msm_gem_get_vaddr(msm_host->tx_gem_obj);
1120 }
1121 
1122 void *dsi_tx_buf_get_v2(struct msm_dsi_host *msm_host)
1123 {
1124 	return msm_host->tx_buf;
1125 }
1126 
1127 void dsi_tx_buf_put_6g(struct msm_dsi_host *msm_host)
1128 {
1129 	msm_gem_put_vaddr(msm_host->tx_gem_obj);
1130 }
1131 
1132 /*
1133  * prepare cmd buffer to be txed
1134  */
1135 static int dsi_cmd_dma_add(struct msm_dsi_host *msm_host,
1136 			   const struct mipi_dsi_msg *msg)
1137 {
1138 	const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd;
1139 	struct mipi_dsi_packet packet;
1140 	int len;
1141 	int ret;
1142 	u8 *data;
1143 
1144 	ret = mipi_dsi_create_packet(&packet, msg);
1145 	if (ret) {
1146 		pr_err("%s: create packet failed, %d\n", __func__, ret);
1147 		return ret;
1148 	}
1149 	len = (packet.size + 3) & (~0x3);
1150 
1151 	if (len > msm_host->tx_size) {
1152 		pr_err("%s: packet size is too big\n", __func__);
1153 		return -EINVAL;
1154 	}
1155 
1156 	data = cfg_hnd->ops->tx_buf_get(msm_host);
1157 	if (IS_ERR(data)) {
1158 		ret = PTR_ERR(data);
1159 		pr_err("%s: get vaddr failed, %d\n", __func__, ret);
1160 		return ret;
1161 	}
1162 
1163 	/* MSM specific command format in memory */
1164 	data[0] = packet.header[1];
1165 	data[1] = packet.header[2];
1166 	data[2] = packet.header[0];
1167 	data[3] = BIT(7); /* Last packet */
1168 	if (mipi_dsi_packet_format_is_long(msg->type))
1169 		data[3] |= BIT(6);
1170 	if (msg->rx_buf && msg->rx_len)
1171 		data[3] |= BIT(5);
1172 
1173 	/* Long packet */
1174 	if (packet.payload && packet.payload_length)
1175 		memcpy(data + 4, packet.payload, packet.payload_length);
1176 
1177 	/* Append 0xff to the end */
1178 	if (packet.size < len)
1179 		memset(data + packet.size, 0xff, len - packet.size);
1180 
1181 	if (cfg_hnd->ops->tx_buf_put)
1182 		cfg_hnd->ops->tx_buf_put(msm_host);
1183 
1184 	return len;
1185 }
1186 
1187 /*
1188  * dsi_short_read1_resp: 1 parameter
1189  */
1190 static int dsi_short_read1_resp(u8 *buf, const struct mipi_dsi_msg *msg)
1191 {
1192 	u8 *data = msg->rx_buf;
1193 	if (data && (msg->rx_len >= 1)) {
1194 		*data = buf[1]; /* strip out dcs type */
1195 		return 1;
1196 	} else {
1197 		pr_err("%s: read data does not match with rx_buf len %zu\n",
1198 			__func__, msg->rx_len);
1199 		return -EINVAL;
1200 	}
1201 }
1202 
1203 /*
1204  * dsi_short_read2_resp: 2 parameter
1205  */
1206 static int dsi_short_read2_resp(u8 *buf, const struct mipi_dsi_msg *msg)
1207 {
1208 	u8 *data = msg->rx_buf;
1209 	if (data && (msg->rx_len >= 2)) {
1210 		data[0] = buf[1]; /* strip out dcs type */
1211 		data[1] = buf[2];
1212 		return 2;
1213 	} else {
1214 		pr_err("%s: read data does not match with rx_buf len %zu\n",
1215 			__func__, msg->rx_len);
1216 		return -EINVAL;
1217 	}
1218 }
1219 
1220 static int dsi_long_read_resp(u8 *buf, const struct mipi_dsi_msg *msg)
1221 {
1222 	/* strip out 4 byte dcs header */
1223 	if (msg->rx_buf && msg->rx_len)
1224 		memcpy(msg->rx_buf, buf + 4, msg->rx_len);
1225 
1226 	return msg->rx_len;
1227 }
1228 
1229 int dsi_dma_base_get_6g(struct msm_dsi_host *msm_host, uint64_t *dma_base)
1230 {
1231 	struct drm_device *dev = msm_host->dev;
1232 	struct msm_drm_private *priv = dev->dev_private;
1233 
1234 	if (!dma_base)
1235 		return -EINVAL;
1236 
1237 	return msm_gem_get_and_pin_iova(msm_host->tx_gem_obj,
1238 				priv->kms->aspace, dma_base);
1239 }
1240 
1241 int dsi_dma_base_get_v2(struct msm_dsi_host *msm_host, uint64_t *dma_base)
1242 {
1243 	if (!dma_base)
1244 		return -EINVAL;
1245 
1246 	*dma_base = msm_host->tx_buf_paddr;
1247 	return 0;
1248 }
1249 
1250 static int dsi_cmd_dma_tx(struct msm_dsi_host *msm_host, int len)
1251 {
1252 	const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd;
1253 	int ret;
1254 	uint64_t dma_base;
1255 	bool triggered;
1256 
1257 	ret = cfg_hnd->ops->dma_base_get(msm_host, &dma_base);
1258 	if (ret) {
1259 		pr_err("%s: failed to get iova: %d\n", __func__, ret);
1260 		return ret;
1261 	}
1262 
1263 	reinit_completion(&msm_host->dma_comp);
1264 
1265 	dsi_wait4video_eng_busy(msm_host);
1266 
1267 	triggered = msm_dsi_manager_cmd_xfer_trigger(
1268 						msm_host->id, dma_base, len);
1269 	if (triggered) {
1270 		ret = wait_for_completion_timeout(&msm_host->dma_comp,
1271 					msecs_to_jiffies(200));
1272 		DBG("ret=%d", ret);
1273 		if (ret == 0)
1274 			ret = -ETIMEDOUT;
1275 		else
1276 			ret = len;
1277 	} else
1278 		ret = len;
1279 
1280 	return ret;
1281 }
1282 
1283 static int dsi_cmd_dma_rx(struct msm_dsi_host *msm_host,
1284 			u8 *buf, int rx_byte, int pkt_size)
1285 {
1286 	u32 *temp, data;
1287 	int i, j = 0, cnt;
1288 	u32 read_cnt;
1289 	u8 reg[16];
1290 	int repeated_bytes = 0;
1291 	int buf_offset = buf - msm_host->rx_buf;
1292 
1293 	temp = (u32 *)reg;
1294 	cnt = (rx_byte + 3) >> 2;
1295 	if (cnt > 4)
1296 		cnt = 4; /* 4 x 32 bits registers only */
1297 
1298 	if (rx_byte == 4)
1299 		read_cnt = 4;
1300 	else
1301 		read_cnt = pkt_size + 6;
1302 
1303 	/*
1304 	 * In case of multiple reads from the panel, after the first read, there
1305 	 * is possibility that there are some bytes in the payload repeating in
1306 	 * the RDBK_DATA registers. Since we read all the parameters from the
1307 	 * panel right from the first byte for every pass. We need to skip the
1308 	 * repeating bytes and then append the new parameters to the rx buffer.
1309 	 */
1310 	if (read_cnt > 16) {
1311 		int bytes_shifted;
1312 		/* Any data more than 16 bytes will be shifted out.
1313 		 * The temp read buffer should already contain these bytes.
1314 		 * The remaining bytes in read buffer are the repeated bytes.
1315 		 */
1316 		bytes_shifted = read_cnt - 16;
1317 		repeated_bytes = buf_offset - bytes_shifted;
1318 	}
1319 
1320 	for (i = cnt - 1; i >= 0; i--) {
1321 		data = dsi_read(msm_host, REG_DSI_RDBK_DATA(i));
1322 		*temp++ = ntohl(data); /* to host byte order */
1323 		DBG("data = 0x%x and ntohl(data) = 0x%x", data, ntohl(data));
1324 	}
1325 
1326 	for (i = repeated_bytes; i < 16; i++)
1327 		buf[j++] = reg[i];
1328 
1329 	return j;
1330 }
1331 
1332 static int dsi_cmds2buf_tx(struct msm_dsi_host *msm_host,
1333 				const struct mipi_dsi_msg *msg)
1334 {
1335 	int len, ret;
1336 	int bllp_len = msm_host->mode->hdisplay *
1337 			dsi_get_bpp(msm_host->format) / 8;
1338 
1339 	len = dsi_cmd_dma_add(msm_host, msg);
1340 	if (!len) {
1341 		pr_err("%s: failed to add cmd type = 0x%x\n",
1342 			__func__,  msg->type);
1343 		return -EINVAL;
1344 	}
1345 
1346 	/* for video mode, do not send cmds more than
1347 	* one pixel line, since it only transmit it
1348 	* during BLLP.
1349 	*/
1350 	/* TODO: if the command is sent in LP mode, the bit rate is only
1351 	 * half of esc clk rate. In this case, if the video is already
1352 	 * actively streaming, we need to check more carefully if the
1353 	 * command can be fit into one BLLP.
1354 	 */
1355 	if ((msm_host->mode_flags & MIPI_DSI_MODE_VIDEO) && (len > bllp_len)) {
1356 		pr_err("%s: cmd cannot fit into BLLP period, len=%d\n",
1357 			__func__, len);
1358 		return -EINVAL;
1359 	}
1360 
1361 	ret = dsi_cmd_dma_tx(msm_host, len);
1362 	if (ret < len) {
1363 		pr_err("%s: cmd dma tx failed, type=0x%x, data0=0x%x, len=%d\n",
1364 			__func__, msg->type, (*(u8 *)(msg->tx_buf)), len);
1365 		return -ECOMM;
1366 	}
1367 
1368 	return len;
1369 }
1370 
1371 static void dsi_sw_reset_restore(struct msm_dsi_host *msm_host)
1372 {
1373 	u32 data0, data1;
1374 
1375 	data0 = dsi_read(msm_host, REG_DSI_CTRL);
1376 	data1 = data0;
1377 	data1 &= ~DSI_CTRL_ENABLE;
1378 	dsi_write(msm_host, REG_DSI_CTRL, data1);
1379 	/*
1380 	 * dsi controller need to be disabled before
1381 	 * clocks turned on
1382 	 */
1383 	wmb();
1384 
1385 	dsi_write(msm_host, REG_DSI_CLK_CTRL, DSI_CLK_CTRL_ENABLE_CLKS);
1386 	wmb();	/* make sure clocks enabled */
1387 
1388 	/* dsi controller can only be reset while clocks are running */
1389 	dsi_write(msm_host, REG_DSI_RESET, 1);
1390 	msleep(DSI_RESET_TOGGLE_DELAY_MS); /* make sure reset happen */
1391 	dsi_write(msm_host, REG_DSI_RESET, 0);
1392 	wmb();	/* controller out of reset */
1393 	dsi_write(msm_host, REG_DSI_CTRL, data0);
1394 	wmb();	/* make sure dsi controller enabled again */
1395 }
1396 
1397 static void dsi_hpd_worker(struct work_struct *work)
1398 {
1399 	struct msm_dsi_host *msm_host =
1400 		container_of(work, struct msm_dsi_host, hpd_work);
1401 
1402 	drm_helper_hpd_irq_event(msm_host->dev);
1403 }
1404 
1405 static void dsi_err_worker(struct work_struct *work)
1406 {
1407 	struct msm_dsi_host *msm_host =
1408 		container_of(work, struct msm_dsi_host, err_work);
1409 	u32 status = msm_host->err_work_state;
1410 
1411 	pr_err_ratelimited("%s: status=%x\n", __func__, status);
1412 	if (status & DSI_ERR_STATE_MDP_FIFO_UNDERFLOW)
1413 		dsi_sw_reset_restore(msm_host);
1414 
1415 	/* It is safe to clear here because error irq is disabled. */
1416 	msm_host->err_work_state = 0;
1417 
1418 	/* enable dsi error interrupt */
1419 	dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_ERROR, 1);
1420 }
1421 
1422 static void dsi_ack_err_status(struct msm_dsi_host *msm_host)
1423 {
1424 	u32 status;
1425 
1426 	status = dsi_read(msm_host, REG_DSI_ACK_ERR_STATUS);
1427 
1428 	if (status) {
1429 		dsi_write(msm_host, REG_DSI_ACK_ERR_STATUS, status);
1430 		/* Writing of an extra 0 needed to clear error bits */
1431 		dsi_write(msm_host, REG_DSI_ACK_ERR_STATUS, 0);
1432 		msm_host->err_work_state |= DSI_ERR_STATE_ACK;
1433 	}
1434 }
1435 
1436 static void dsi_timeout_status(struct msm_dsi_host *msm_host)
1437 {
1438 	u32 status;
1439 
1440 	status = dsi_read(msm_host, REG_DSI_TIMEOUT_STATUS);
1441 
1442 	if (status) {
1443 		dsi_write(msm_host, REG_DSI_TIMEOUT_STATUS, status);
1444 		msm_host->err_work_state |= DSI_ERR_STATE_TIMEOUT;
1445 	}
1446 }
1447 
1448 static void dsi_dln0_phy_err(struct msm_dsi_host *msm_host)
1449 {
1450 	u32 status;
1451 
1452 	status = dsi_read(msm_host, REG_DSI_DLN0_PHY_ERR);
1453 
1454 	if (status & (DSI_DLN0_PHY_ERR_DLN0_ERR_ESC |
1455 			DSI_DLN0_PHY_ERR_DLN0_ERR_SYNC_ESC |
1456 			DSI_DLN0_PHY_ERR_DLN0_ERR_CONTROL |
1457 			DSI_DLN0_PHY_ERR_DLN0_ERR_CONTENTION_LP0 |
1458 			DSI_DLN0_PHY_ERR_DLN0_ERR_CONTENTION_LP1)) {
1459 		dsi_write(msm_host, REG_DSI_DLN0_PHY_ERR, status);
1460 		msm_host->err_work_state |= DSI_ERR_STATE_DLN0_PHY;
1461 	}
1462 }
1463 
1464 static void dsi_fifo_status(struct msm_dsi_host *msm_host)
1465 {
1466 	u32 status;
1467 
1468 	status = dsi_read(msm_host, REG_DSI_FIFO_STATUS);
1469 
1470 	/* fifo underflow, overflow */
1471 	if (status) {
1472 		dsi_write(msm_host, REG_DSI_FIFO_STATUS, status);
1473 		msm_host->err_work_state |= DSI_ERR_STATE_FIFO;
1474 		if (status & DSI_FIFO_STATUS_CMD_MDP_FIFO_UNDERFLOW)
1475 			msm_host->err_work_state |=
1476 					DSI_ERR_STATE_MDP_FIFO_UNDERFLOW;
1477 	}
1478 }
1479 
1480 static void dsi_status(struct msm_dsi_host *msm_host)
1481 {
1482 	u32 status;
1483 
1484 	status = dsi_read(msm_host, REG_DSI_STATUS0);
1485 
1486 	if (status & DSI_STATUS0_INTERLEAVE_OP_CONTENTION) {
1487 		dsi_write(msm_host, REG_DSI_STATUS0, status);
1488 		msm_host->err_work_state |=
1489 			DSI_ERR_STATE_INTERLEAVE_OP_CONTENTION;
1490 	}
1491 }
1492 
1493 static void dsi_clk_status(struct msm_dsi_host *msm_host)
1494 {
1495 	u32 status;
1496 
1497 	status = dsi_read(msm_host, REG_DSI_CLK_STATUS);
1498 
1499 	if (status & DSI_CLK_STATUS_PLL_UNLOCKED) {
1500 		dsi_write(msm_host, REG_DSI_CLK_STATUS, status);
1501 		msm_host->err_work_state |= DSI_ERR_STATE_PLL_UNLOCKED;
1502 	}
1503 }
1504 
1505 static void dsi_error(struct msm_dsi_host *msm_host)
1506 {
1507 	/* disable dsi error interrupt */
1508 	dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_ERROR, 0);
1509 
1510 	dsi_clk_status(msm_host);
1511 	dsi_fifo_status(msm_host);
1512 	dsi_ack_err_status(msm_host);
1513 	dsi_timeout_status(msm_host);
1514 	dsi_status(msm_host);
1515 	dsi_dln0_phy_err(msm_host);
1516 
1517 	queue_work(msm_host->workqueue, &msm_host->err_work);
1518 }
1519 
1520 static irqreturn_t dsi_host_irq(int irq, void *ptr)
1521 {
1522 	struct msm_dsi_host *msm_host = ptr;
1523 	u32 isr;
1524 	unsigned long flags;
1525 
1526 	if (!msm_host->ctrl_base)
1527 		return IRQ_HANDLED;
1528 
1529 	spin_lock_irqsave(&msm_host->intr_lock, flags);
1530 	isr = dsi_read(msm_host, REG_DSI_INTR_CTRL);
1531 	dsi_write(msm_host, REG_DSI_INTR_CTRL, isr);
1532 	spin_unlock_irqrestore(&msm_host->intr_lock, flags);
1533 
1534 	DBG("isr=0x%x, id=%d", isr, msm_host->id);
1535 
1536 	if (isr & DSI_IRQ_ERROR)
1537 		dsi_error(msm_host);
1538 
1539 	if (isr & DSI_IRQ_VIDEO_DONE)
1540 		complete(&msm_host->video_comp);
1541 
1542 	if (isr & DSI_IRQ_CMD_DMA_DONE)
1543 		complete(&msm_host->dma_comp);
1544 
1545 	return IRQ_HANDLED;
1546 }
1547 
1548 static int dsi_host_init_panel_gpios(struct msm_dsi_host *msm_host,
1549 			struct device *panel_device)
1550 {
1551 	msm_host->disp_en_gpio = devm_gpiod_get_optional(panel_device,
1552 							 "disp-enable",
1553 							 GPIOD_OUT_LOW);
1554 	if (IS_ERR(msm_host->disp_en_gpio)) {
1555 		DBG("cannot get disp-enable-gpios %ld",
1556 				PTR_ERR(msm_host->disp_en_gpio));
1557 		return PTR_ERR(msm_host->disp_en_gpio);
1558 	}
1559 
1560 	msm_host->te_gpio = devm_gpiod_get_optional(panel_device, "disp-te",
1561 								GPIOD_IN);
1562 	if (IS_ERR(msm_host->te_gpio)) {
1563 		DBG("cannot get disp-te-gpios %ld", PTR_ERR(msm_host->te_gpio));
1564 		return PTR_ERR(msm_host->te_gpio);
1565 	}
1566 
1567 	return 0;
1568 }
1569 
1570 static int dsi_host_attach(struct mipi_dsi_host *host,
1571 					struct mipi_dsi_device *dsi)
1572 {
1573 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
1574 	int ret;
1575 
1576 	if (dsi->lanes > msm_host->num_data_lanes)
1577 		return -EINVAL;
1578 
1579 	msm_host->channel = dsi->channel;
1580 	msm_host->lanes = dsi->lanes;
1581 	msm_host->format = dsi->format;
1582 	msm_host->mode_flags = dsi->mode_flags;
1583 
1584 	/* Some gpios defined in panel DT need to be controlled by host */
1585 	ret = dsi_host_init_panel_gpios(msm_host, &dsi->dev);
1586 	if (ret)
1587 		return ret;
1588 
1589 	ret = dsi_dev_attach(msm_host->pdev);
1590 	if (ret)
1591 		return ret;
1592 
1593 	DBG("id=%d", msm_host->id);
1594 	if (msm_host->dev)
1595 		queue_work(msm_host->workqueue, &msm_host->hpd_work);
1596 
1597 	return 0;
1598 }
1599 
1600 static int dsi_host_detach(struct mipi_dsi_host *host,
1601 					struct mipi_dsi_device *dsi)
1602 {
1603 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
1604 
1605 	dsi_dev_detach(msm_host->pdev);
1606 
1607 	msm_host->device_node = NULL;
1608 
1609 	DBG("id=%d", msm_host->id);
1610 	if (msm_host->dev)
1611 		queue_work(msm_host->workqueue, &msm_host->hpd_work);
1612 
1613 	return 0;
1614 }
1615 
1616 static ssize_t dsi_host_transfer(struct mipi_dsi_host *host,
1617 					const struct mipi_dsi_msg *msg)
1618 {
1619 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
1620 	int ret;
1621 
1622 	if (!msg || !msm_host->power_on)
1623 		return -EINVAL;
1624 
1625 	mutex_lock(&msm_host->cmd_mutex);
1626 	ret = msm_dsi_manager_cmd_xfer(msm_host->id, msg);
1627 	mutex_unlock(&msm_host->cmd_mutex);
1628 
1629 	return ret;
1630 }
1631 
1632 static const struct mipi_dsi_host_ops dsi_host_ops = {
1633 	.attach = dsi_host_attach,
1634 	.detach = dsi_host_detach,
1635 	.transfer = dsi_host_transfer,
1636 };
1637 
1638 /*
1639  * List of supported physical to logical lane mappings.
1640  * For example, the 2nd entry represents the following mapping:
1641  *
1642  * "3012": Logic 3->Phys 0; Logic 0->Phys 1; Logic 1->Phys 2; Logic 2->Phys 3;
1643  */
1644 static const int supported_data_lane_swaps[][4] = {
1645 	{ 0, 1, 2, 3 },
1646 	{ 3, 0, 1, 2 },
1647 	{ 2, 3, 0, 1 },
1648 	{ 1, 2, 3, 0 },
1649 	{ 0, 3, 2, 1 },
1650 	{ 1, 0, 3, 2 },
1651 	{ 2, 1, 0, 3 },
1652 	{ 3, 2, 1, 0 },
1653 };
1654 
1655 static int dsi_host_parse_lane_data(struct msm_dsi_host *msm_host,
1656 				    struct device_node *ep)
1657 {
1658 	struct device *dev = &msm_host->pdev->dev;
1659 	struct property *prop;
1660 	u32 lane_map[4];
1661 	int ret, i, len, num_lanes;
1662 
1663 	prop = of_find_property(ep, "data-lanes", &len);
1664 	if (!prop) {
1665 		DRM_DEV_DEBUG(dev,
1666 			"failed to find data lane mapping, using default\n");
1667 		/* Set the number of date lanes to 4 by default. */
1668 		msm_host->num_data_lanes = 4;
1669 		return 0;
1670 	}
1671 
1672 	num_lanes = len / sizeof(u32);
1673 
1674 	if (num_lanes < 1 || num_lanes > 4) {
1675 		DRM_DEV_ERROR(dev, "bad number of data lanes\n");
1676 		return -EINVAL;
1677 	}
1678 
1679 	msm_host->num_data_lanes = num_lanes;
1680 
1681 	ret = of_property_read_u32_array(ep, "data-lanes", lane_map,
1682 					 num_lanes);
1683 	if (ret) {
1684 		DRM_DEV_ERROR(dev, "failed to read lane data\n");
1685 		return ret;
1686 	}
1687 
1688 	/*
1689 	 * compare DT specified physical-logical lane mappings with the ones
1690 	 * supported by hardware
1691 	 */
1692 	for (i = 0; i < ARRAY_SIZE(supported_data_lane_swaps); i++) {
1693 		const int *swap = supported_data_lane_swaps[i];
1694 		int j;
1695 
1696 		/*
1697 		 * the data-lanes array we get from DT has a logical->physical
1698 		 * mapping. The "data lane swap" register field represents
1699 		 * supported configurations in a physical->logical mapping.
1700 		 * Translate the DT mapping to what we understand and find a
1701 		 * configuration that works.
1702 		 */
1703 		for (j = 0; j < num_lanes; j++) {
1704 			if (lane_map[j] < 0 || lane_map[j] > 3)
1705 				DRM_DEV_ERROR(dev, "bad physical lane entry %u\n",
1706 					lane_map[j]);
1707 
1708 			if (swap[lane_map[j]] != j)
1709 				break;
1710 		}
1711 
1712 		if (j == num_lanes) {
1713 			msm_host->dlane_swap = i;
1714 			return 0;
1715 		}
1716 	}
1717 
1718 	return -EINVAL;
1719 }
1720 
1721 static int dsi_host_parse_dt(struct msm_dsi_host *msm_host)
1722 {
1723 	struct device *dev = &msm_host->pdev->dev;
1724 	struct device_node *np = dev->of_node;
1725 	struct device_node *endpoint, *device_node;
1726 	int ret = 0;
1727 
1728 	/*
1729 	 * Get the endpoint of the output port of the DSI host. In our case,
1730 	 * this is mapped to port number with reg = 1. Don't return an error if
1731 	 * the remote endpoint isn't defined. It's possible that there is
1732 	 * nothing connected to the dsi output.
1733 	 */
1734 	endpoint = of_graph_get_endpoint_by_regs(np, 1, -1);
1735 	if (!endpoint) {
1736 		DRM_DEV_DEBUG(dev, "%s: no endpoint\n", __func__);
1737 		return 0;
1738 	}
1739 
1740 	ret = dsi_host_parse_lane_data(msm_host, endpoint);
1741 	if (ret) {
1742 		DRM_DEV_ERROR(dev, "%s: invalid lane configuration %d\n",
1743 			__func__, ret);
1744 		ret = -EINVAL;
1745 		goto err;
1746 	}
1747 
1748 	/* Get panel node from the output port's endpoint data */
1749 	device_node = of_graph_get_remote_node(np, 1, 0);
1750 	if (!device_node) {
1751 		DRM_DEV_DEBUG(dev, "%s: no valid device\n", __func__);
1752 		ret = -ENODEV;
1753 		goto err;
1754 	}
1755 
1756 	msm_host->device_node = device_node;
1757 
1758 	if (of_property_read_bool(np, "syscon-sfpb")) {
1759 		msm_host->sfpb = syscon_regmap_lookup_by_phandle(np,
1760 					"syscon-sfpb");
1761 		if (IS_ERR(msm_host->sfpb)) {
1762 			DRM_DEV_ERROR(dev, "%s: failed to get sfpb regmap\n",
1763 				__func__);
1764 			ret = PTR_ERR(msm_host->sfpb);
1765 		}
1766 	}
1767 
1768 	of_node_put(device_node);
1769 
1770 err:
1771 	of_node_put(endpoint);
1772 
1773 	return ret;
1774 }
1775 
1776 static int dsi_host_get_id(struct msm_dsi_host *msm_host)
1777 {
1778 	struct platform_device *pdev = msm_host->pdev;
1779 	const struct msm_dsi_config *cfg = msm_host->cfg_hnd->cfg;
1780 	struct resource *res;
1781 	int i;
1782 
1783 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dsi_ctrl");
1784 	if (!res)
1785 		return -EINVAL;
1786 
1787 	for (i = 0; i < cfg->num_dsi; i++) {
1788 		if (cfg->io_start[i] == res->start)
1789 			return i;
1790 	}
1791 
1792 	return -EINVAL;
1793 }
1794 
1795 int msm_dsi_host_init(struct msm_dsi *msm_dsi)
1796 {
1797 	struct msm_dsi_host *msm_host = NULL;
1798 	struct platform_device *pdev = msm_dsi->pdev;
1799 	int ret;
1800 
1801 	msm_host = devm_kzalloc(&pdev->dev, sizeof(*msm_host), GFP_KERNEL);
1802 	if (!msm_host) {
1803 		ret = -ENOMEM;
1804 		goto fail;
1805 	}
1806 
1807 	msm_host->pdev = pdev;
1808 	msm_dsi->host = &msm_host->base;
1809 
1810 	ret = dsi_host_parse_dt(msm_host);
1811 	if (ret) {
1812 		pr_err("%s: failed to parse dt\n", __func__);
1813 		goto fail;
1814 	}
1815 
1816 	msm_host->ctrl_base = msm_ioremap_size(pdev, "dsi_ctrl", "DSI CTRL", &msm_host->ctrl_size);
1817 	if (IS_ERR(msm_host->ctrl_base)) {
1818 		pr_err("%s: unable to map Dsi ctrl base\n", __func__);
1819 		ret = PTR_ERR(msm_host->ctrl_base);
1820 		goto fail;
1821 	}
1822 
1823 	pm_runtime_enable(&pdev->dev);
1824 
1825 	msm_host->cfg_hnd = dsi_get_config(msm_host);
1826 	if (!msm_host->cfg_hnd) {
1827 		ret = -EINVAL;
1828 		pr_err("%s: get config failed\n", __func__);
1829 		goto fail;
1830 	}
1831 
1832 	msm_host->id = dsi_host_get_id(msm_host);
1833 	if (msm_host->id < 0) {
1834 		ret = msm_host->id;
1835 		pr_err("%s: unable to identify DSI host index\n", __func__);
1836 		goto fail;
1837 	}
1838 
1839 	/* fixup base address by io offset */
1840 	msm_host->ctrl_base += msm_host->cfg_hnd->cfg->io_offset;
1841 
1842 	ret = dsi_regulator_init(msm_host);
1843 	if (ret) {
1844 		pr_err("%s: regulator init failed\n", __func__);
1845 		goto fail;
1846 	}
1847 
1848 	ret = dsi_clk_init(msm_host);
1849 	if (ret) {
1850 		pr_err("%s: unable to initialize dsi clks\n", __func__);
1851 		goto fail;
1852 	}
1853 
1854 	msm_host->rx_buf = devm_kzalloc(&pdev->dev, SZ_4K, GFP_KERNEL);
1855 	if (!msm_host->rx_buf) {
1856 		ret = -ENOMEM;
1857 		pr_err("%s: alloc rx temp buf failed\n", __func__);
1858 		goto fail;
1859 	}
1860 
1861 	ret = devm_pm_opp_set_clkname(&pdev->dev, "byte");
1862 	if (ret)
1863 		return ret;
1864 	/* OPP table is optional */
1865 	ret = devm_pm_opp_of_add_table(&pdev->dev);
1866 	if (ret && ret != -ENODEV) {
1867 		dev_err(&pdev->dev, "invalid OPP table in device tree\n");
1868 		return ret;
1869 	}
1870 
1871 	msm_host->irq = irq_of_parse_and_map(pdev->dev.of_node, 0);
1872 	if (msm_host->irq < 0) {
1873 		ret = msm_host->irq;
1874 		dev_err(&pdev->dev, "failed to get irq: %d\n", ret);
1875 		return ret;
1876 	}
1877 
1878 	/* do not autoenable, will be enabled later */
1879 	ret = devm_request_irq(&pdev->dev, msm_host->irq, dsi_host_irq,
1880 			IRQF_TRIGGER_HIGH | IRQF_ONESHOT | IRQF_NO_AUTOEN,
1881 			"dsi_isr", msm_host);
1882 	if (ret < 0) {
1883 		dev_err(&pdev->dev, "failed to request IRQ%u: %d\n",
1884 				msm_host->irq, ret);
1885 		return ret;
1886 	}
1887 
1888 	init_completion(&msm_host->dma_comp);
1889 	init_completion(&msm_host->video_comp);
1890 	mutex_init(&msm_host->dev_mutex);
1891 	mutex_init(&msm_host->cmd_mutex);
1892 	spin_lock_init(&msm_host->intr_lock);
1893 
1894 	/* setup workqueue */
1895 	msm_host->workqueue = alloc_ordered_workqueue("dsi_drm_work", 0);
1896 	INIT_WORK(&msm_host->err_work, dsi_err_worker);
1897 	INIT_WORK(&msm_host->hpd_work, dsi_hpd_worker);
1898 
1899 	msm_dsi->id = msm_host->id;
1900 
1901 	DBG("Dsi Host %d initialized", msm_host->id);
1902 	return 0;
1903 
1904 fail:
1905 	return ret;
1906 }
1907 
1908 void msm_dsi_host_destroy(struct mipi_dsi_host *host)
1909 {
1910 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
1911 
1912 	DBG("");
1913 	dsi_tx_buf_free(msm_host);
1914 	if (msm_host->workqueue) {
1915 		destroy_workqueue(msm_host->workqueue);
1916 		msm_host->workqueue = NULL;
1917 	}
1918 
1919 	mutex_destroy(&msm_host->cmd_mutex);
1920 	mutex_destroy(&msm_host->dev_mutex);
1921 
1922 	pm_runtime_disable(&msm_host->pdev->dev);
1923 }
1924 
1925 int msm_dsi_host_modeset_init(struct mipi_dsi_host *host,
1926 					struct drm_device *dev)
1927 {
1928 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
1929 	const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd;
1930 	int ret;
1931 
1932 	msm_host->dev = dev;
1933 	ret = cfg_hnd->ops->tx_buf_alloc(msm_host, SZ_4K);
1934 	if (ret) {
1935 		pr_err("%s: alloc tx gem obj failed, %d\n", __func__, ret);
1936 		return ret;
1937 	}
1938 
1939 	return 0;
1940 }
1941 
1942 int msm_dsi_host_register(struct mipi_dsi_host *host)
1943 {
1944 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
1945 	int ret;
1946 
1947 	/* Register mipi dsi host */
1948 	if (!msm_host->registered) {
1949 		host->dev = &msm_host->pdev->dev;
1950 		host->ops = &dsi_host_ops;
1951 		ret = mipi_dsi_host_register(host);
1952 		if (ret)
1953 			return ret;
1954 
1955 		msm_host->registered = true;
1956 	}
1957 
1958 	return 0;
1959 }
1960 
1961 void msm_dsi_host_unregister(struct mipi_dsi_host *host)
1962 {
1963 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
1964 
1965 	if (msm_host->registered) {
1966 		mipi_dsi_host_unregister(host);
1967 		host->dev = NULL;
1968 		host->ops = NULL;
1969 		msm_host->registered = false;
1970 	}
1971 }
1972 
1973 int msm_dsi_host_xfer_prepare(struct mipi_dsi_host *host,
1974 				const struct mipi_dsi_msg *msg)
1975 {
1976 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
1977 	const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd;
1978 
1979 	/* TODO: make sure dsi_cmd_mdp is idle.
1980 	 * Since DSI6G v1.2.0, we can set DSI_TRIG_CTRL.BLOCK_DMA_WITHIN_FRAME
1981 	 * to ask H/W to wait until cmd mdp is idle. S/W wait is not needed.
1982 	 * How to handle the old versions? Wait for mdp cmd done?
1983 	 */
1984 
1985 	/*
1986 	 * mdss interrupt is generated in mdp core clock domain
1987 	 * mdp clock need to be enabled to receive dsi interrupt
1988 	 */
1989 	pm_runtime_get_sync(&msm_host->pdev->dev);
1990 	cfg_hnd->ops->link_clk_set_rate(msm_host);
1991 	cfg_hnd->ops->link_clk_enable(msm_host);
1992 
1993 	/* TODO: vote for bus bandwidth */
1994 
1995 	if (!(msg->flags & MIPI_DSI_MSG_USE_LPM))
1996 		dsi_set_tx_power_mode(0, msm_host);
1997 
1998 	msm_host->dma_cmd_ctrl_restore = dsi_read(msm_host, REG_DSI_CTRL);
1999 	dsi_write(msm_host, REG_DSI_CTRL,
2000 		msm_host->dma_cmd_ctrl_restore |
2001 		DSI_CTRL_CMD_MODE_EN |
2002 		DSI_CTRL_ENABLE);
2003 	dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_CMD_DMA_DONE, 1);
2004 
2005 	return 0;
2006 }
2007 
2008 void msm_dsi_host_xfer_restore(struct mipi_dsi_host *host,
2009 				const struct mipi_dsi_msg *msg)
2010 {
2011 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2012 	const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd;
2013 
2014 	dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_CMD_DMA_DONE, 0);
2015 	dsi_write(msm_host, REG_DSI_CTRL, msm_host->dma_cmd_ctrl_restore);
2016 
2017 	if (!(msg->flags & MIPI_DSI_MSG_USE_LPM))
2018 		dsi_set_tx_power_mode(1, msm_host);
2019 
2020 	/* TODO: unvote for bus bandwidth */
2021 
2022 	cfg_hnd->ops->link_clk_disable(msm_host);
2023 	pm_runtime_put(&msm_host->pdev->dev);
2024 }
2025 
2026 int msm_dsi_host_cmd_tx(struct mipi_dsi_host *host,
2027 				const struct mipi_dsi_msg *msg)
2028 {
2029 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2030 
2031 	return dsi_cmds2buf_tx(msm_host, msg);
2032 }
2033 
2034 int msm_dsi_host_cmd_rx(struct mipi_dsi_host *host,
2035 				const struct mipi_dsi_msg *msg)
2036 {
2037 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2038 	const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd;
2039 	int data_byte, rx_byte, dlen, end;
2040 	int short_response, diff, pkt_size, ret = 0;
2041 	char cmd;
2042 	int rlen = msg->rx_len;
2043 	u8 *buf;
2044 
2045 	if (rlen <= 2) {
2046 		short_response = 1;
2047 		pkt_size = rlen;
2048 		rx_byte = 4;
2049 	} else {
2050 		short_response = 0;
2051 		data_byte = 10;	/* first read */
2052 		if (rlen < data_byte)
2053 			pkt_size = rlen;
2054 		else
2055 			pkt_size = data_byte;
2056 		rx_byte = data_byte + 6; /* 4 header + 2 crc */
2057 	}
2058 
2059 	buf = msm_host->rx_buf;
2060 	end = 0;
2061 	while (!end) {
2062 		u8 tx[2] = {pkt_size & 0xff, pkt_size >> 8};
2063 		struct mipi_dsi_msg max_pkt_size_msg = {
2064 			.channel = msg->channel,
2065 			.type = MIPI_DSI_SET_MAXIMUM_RETURN_PACKET_SIZE,
2066 			.tx_len = 2,
2067 			.tx_buf = tx,
2068 		};
2069 
2070 		DBG("rlen=%d pkt_size=%d rx_byte=%d",
2071 			rlen, pkt_size, rx_byte);
2072 
2073 		ret = dsi_cmds2buf_tx(msm_host, &max_pkt_size_msg);
2074 		if (ret < 2) {
2075 			pr_err("%s: Set max pkt size failed, %d\n",
2076 				__func__, ret);
2077 			return -EINVAL;
2078 		}
2079 
2080 		if ((cfg_hnd->major == MSM_DSI_VER_MAJOR_6G) &&
2081 			(cfg_hnd->minor >= MSM_DSI_6G_VER_MINOR_V1_1)) {
2082 			/* Clear the RDBK_DATA registers */
2083 			dsi_write(msm_host, REG_DSI_RDBK_DATA_CTRL,
2084 					DSI_RDBK_DATA_CTRL_CLR);
2085 			wmb(); /* make sure the RDBK registers are cleared */
2086 			dsi_write(msm_host, REG_DSI_RDBK_DATA_CTRL, 0);
2087 			wmb(); /* release cleared status before transfer */
2088 		}
2089 
2090 		ret = dsi_cmds2buf_tx(msm_host, msg);
2091 		if (ret < msg->tx_len) {
2092 			pr_err("%s: Read cmd Tx failed, %d\n", __func__, ret);
2093 			return ret;
2094 		}
2095 
2096 		/*
2097 		 * once cmd_dma_done interrupt received,
2098 		 * return data from client is ready and stored
2099 		 * at RDBK_DATA register already
2100 		 * since rx fifo is 16 bytes, dcs header is kept at first loop,
2101 		 * after that dcs header lost during shift into registers
2102 		 */
2103 		dlen = dsi_cmd_dma_rx(msm_host, buf, rx_byte, pkt_size);
2104 
2105 		if (dlen <= 0)
2106 			return 0;
2107 
2108 		if (short_response)
2109 			break;
2110 
2111 		if (rlen <= data_byte) {
2112 			diff = data_byte - rlen;
2113 			end = 1;
2114 		} else {
2115 			diff = 0;
2116 			rlen -= data_byte;
2117 		}
2118 
2119 		if (!end) {
2120 			dlen -= 2; /* 2 crc */
2121 			dlen -= diff;
2122 			buf += dlen;	/* next start position */
2123 			data_byte = 14;	/* NOT first read */
2124 			if (rlen < data_byte)
2125 				pkt_size += rlen;
2126 			else
2127 				pkt_size += data_byte;
2128 			DBG("buf=%p dlen=%d diff=%d", buf, dlen, diff);
2129 		}
2130 	}
2131 
2132 	/*
2133 	 * For single Long read, if the requested rlen < 10,
2134 	 * we need to shift the start position of rx
2135 	 * data buffer to skip the bytes which are not
2136 	 * updated.
2137 	 */
2138 	if (pkt_size < 10 && !short_response)
2139 		buf = msm_host->rx_buf + (10 - rlen);
2140 	else
2141 		buf = msm_host->rx_buf;
2142 
2143 	cmd = buf[0];
2144 	switch (cmd) {
2145 	case MIPI_DSI_RX_ACKNOWLEDGE_AND_ERROR_REPORT:
2146 		pr_err("%s: rx ACK_ERR_PACLAGE\n", __func__);
2147 		ret = 0;
2148 		break;
2149 	case MIPI_DSI_RX_GENERIC_SHORT_READ_RESPONSE_1BYTE:
2150 	case MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_1BYTE:
2151 		ret = dsi_short_read1_resp(buf, msg);
2152 		break;
2153 	case MIPI_DSI_RX_GENERIC_SHORT_READ_RESPONSE_2BYTE:
2154 	case MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_2BYTE:
2155 		ret = dsi_short_read2_resp(buf, msg);
2156 		break;
2157 	case MIPI_DSI_RX_GENERIC_LONG_READ_RESPONSE:
2158 	case MIPI_DSI_RX_DCS_LONG_READ_RESPONSE:
2159 		ret = dsi_long_read_resp(buf, msg);
2160 		break;
2161 	default:
2162 		pr_warn("%s:Invalid response cmd\n", __func__);
2163 		ret = 0;
2164 	}
2165 
2166 	return ret;
2167 }
2168 
2169 void msm_dsi_host_cmd_xfer_commit(struct mipi_dsi_host *host, u32 dma_base,
2170 				  u32 len)
2171 {
2172 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2173 
2174 	dsi_write(msm_host, REG_DSI_DMA_BASE, dma_base);
2175 	dsi_write(msm_host, REG_DSI_DMA_LEN, len);
2176 	dsi_write(msm_host, REG_DSI_TRIG_DMA, 1);
2177 
2178 	/* Make sure trigger happens */
2179 	wmb();
2180 }
2181 
2182 void msm_dsi_host_set_phy_mode(struct mipi_dsi_host *host,
2183 	struct msm_dsi_phy *src_phy)
2184 {
2185 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2186 
2187 	msm_host->cphy_mode = src_phy->cphy_mode;
2188 }
2189 
2190 void msm_dsi_host_reset_phy(struct mipi_dsi_host *host)
2191 {
2192 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2193 
2194 	DBG("");
2195 	dsi_write(msm_host, REG_DSI_PHY_RESET, DSI_PHY_RESET_RESET);
2196 	/* Make sure fully reset */
2197 	wmb();
2198 	udelay(1000);
2199 	dsi_write(msm_host, REG_DSI_PHY_RESET, 0);
2200 	udelay(100);
2201 }
2202 
2203 void msm_dsi_host_get_phy_clk_req(struct mipi_dsi_host *host,
2204 			struct msm_dsi_phy_clk_request *clk_req,
2205 			bool is_bonded_dsi)
2206 {
2207 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2208 	const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd;
2209 	int ret;
2210 
2211 	ret = cfg_hnd->ops->calc_clk_rate(msm_host, is_bonded_dsi);
2212 	if (ret) {
2213 		pr_err("%s: unable to calc clk rate, %d\n", __func__, ret);
2214 		return;
2215 	}
2216 
2217 	/* CPHY transmits 16 bits over 7 clock cycles
2218 	 * "byte_clk" is in units of 16-bits (see dsi_calc_pclk),
2219 	 * so multiply by 7 to get the "bitclk rate"
2220 	 */
2221 	if (msm_host->cphy_mode)
2222 		clk_req->bitclk_rate = msm_host->byte_clk_rate * 7;
2223 	else
2224 		clk_req->bitclk_rate = msm_host->byte_clk_rate * 8;
2225 	clk_req->escclk_rate = msm_host->esc_clk_rate;
2226 }
2227 
2228 void msm_dsi_host_enable_irq(struct mipi_dsi_host *host)
2229 {
2230 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2231 
2232 	enable_irq(msm_host->irq);
2233 }
2234 
2235 void msm_dsi_host_disable_irq(struct mipi_dsi_host *host)
2236 {
2237 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2238 
2239 	disable_irq(msm_host->irq);
2240 }
2241 
2242 int msm_dsi_host_enable(struct mipi_dsi_host *host)
2243 {
2244 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2245 
2246 	dsi_op_mode_config(msm_host,
2247 		!!(msm_host->mode_flags & MIPI_DSI_MODE_VIDEO), true);
2248 
2249 	/* TODO: clock should be turned off for command mode,
2250 	 * and only turned on before MDP START.
2251 	 * This part of code should be enabled once mdp driver support it.
2252 	 */
2253 	/* if (msm_panel->mode == MSM_DSI_CMD_MODE) {
2254 	 *	dsi_link_clk_disable(msm_host);
2255 	 *	pm_runtime_put(&msm_host->pdev->dev);
2256 	 * }
2257 	 */
2258 	msm_host->enabled = true;
2259 	return 0;
2260 }
2261 
2262 int msm_dsi_host_disable(struct mipi_dsi_host *host)
2263 {
2264 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2265 
2266 	msm_host->enabled = false;
2267 	dsi_op_mode_config(msm_host,
2268 		!!(msm_host->mode_flags & MIPI_DSI_MODE_VIDEO), false);
2269 
2270 	/* Since we have disabled INTF, the video engine won't stop so that
2271 	 * the cmd engine will be blocked.
2272 	 * Reset to disable video engine so that we can send off cmd.
2273 	 */
2274 	dsi_sw_reset(msm_host);
2275 
2276 	return 0;
2277 }
2278 
2279 static void msm_dsi_sfpb_config(struct msm_dsi_host *msm_host, bool enable)
2280 {
2281 	enum sfpb_ahb_arb_master_port_en en;
2282 
2283 	if (!msm_host->sfpb)
2284 		return;
2285 
2286 	en = enable ? SFPB_MASTER_PORT_ENABLE : SFPB_MASTER_PORT_DISABLE;
2287 
2288 	regmap_update_bits(msm_host->sfpb, REG_SFPB_GPREG,
2289 			SFPB_GPREG_MASTER_PORT_EN__MASK,
2290 			SFPB_GPREG_MASTER_PORT_EN(en));
2291 }
2292 
2293 int msm_dsi_host_power_on(struct mipi_dsi_host *host,
2294 			struct msm_dsi_phy_shared_timings *phy_shared_timings,
2295 			bool is_bonded_dsi, struct msm_dsi_phy *phy)
2296 {
2297 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2298 	const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd;
2299 	int ret = 0;
2300 
2301 	mutex_lock(&msm_host->dev_mutex);
2302 	if (msm_host->power_on) {
2303 		DBG("dsi host already on");
2304 		goto unlock_ret;
2305 	}
2306 
2307 	msm_dsi_sfpb_config(msm_host, true);
2308 
2309 	ret = dsi_host_regulator_enable(msm_host);
2310 	if (ret) {
2311 		pr_err("%s:Failed to enable vregs.ret=%d\n",
2312 			__func__, ret);
2313 		goto unlock_ret;
2314 	}
2315 
2316 	pm_runtime_get_sync(&msm_host->pdev->dev);
2317 	ret = cfg_hnd->ops->link_clk_set_rate(msm_host);
2318 	if (!ret)
2319 		ret = cfg_hnd->ops->link_clk_enable(msm_host);
2320 	if (ret) {
2321 		pr_err("%s: failed to enable link clocks. ret=%d\n",
2322 		       __func__, ret);
2323 		goto fail_disable_reg;
2324 	}
2325 
2326 	ret = pinctrl_pm_select_default_state(&msm_host->pdev->dev);
2327 	if (ret) {
2328 		pr_err("%s: failed to set pinctrl default state, %d\n",
2329 			__func__, ret);
2330 		goto fail_disable_clk;
2331 	}
2332 
2333 	dsi_timing_setup(msm_host, is_bonded_dsi);
2334 	dsi_sw_reset(msm_host);
2335 	dsi_ctrl_config(msm_host, true, phy_shared_timings, phy);
2336 
2337 	if (msm_host->disp_en_gpio)
2338 		gpiod_set_value(msm_host->disp_en_gpio, 1);
2339 
2340 	msm_host->power_on = true;
2341 	mutex_unlock(&msm_host->dev_mutex);
2342 
2343 	return 0;
2344 
2345 fail_disable_clk:
2346 	cfg_hnd->ops->link_clk_disable(msm_host);
2347 	pm_runtime_put(&msm_host->pdev->dev);
2348 fail_disable_reg:
2349 	dsi_host_regulator_disable(msm_host);
2350 unlock_ret:
2351 	mutex_unlock(&msm_host->dev_mutex);
2352 	return ret;
2353 }
2354 
2355 int msm_dsi_host_power_off(struct mipi_dsi_host *host)
2356 {
2357 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2358 	const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd;
2359 
2360 	mutex_lock(&msm_host->dev_mutex);
2361 	if (!msm_host->power_on) {
2362 		DBG("dsi host already off");
2363 		goto unlock_ret;
2364 	}
2365 
2366 	dsi_ctrl_config(msm_host, false, NULL, NULL);
2367 
2368 	if (msm_host->disp_en_gpio)
2369 		gpiod_set_value(msm_host->disp_en_gpio, 0);
2370 
2371 	pinctrl_pm_select_sleep_state(&msm_host->pdev->dev);
2372 
2373 	cfg_hnd->ops->link_clk_disable(msm_host);
2374 	pm_runtime_put(&msm_host->pdev->dev);
2375 
2376 	dsi_host_regulator_disable(msm_host);
2377 
2378 	msm_dsi_sfpb_config(msm_host, false);
2379 
2380 	DBG("-");
2381 
2382 	msm_host->power_on = false;
2383 
2384 unlock_ret:
2385 	mutex_unlock(&msm_host->dev_mutex);
2386 	return 0;
2387 }
2388 
2389 int msm_dsi_host_set_display_mode(struct mipi_dsi_host *host,
2390 				  const struct drm_display_mode *mode)
2391 {
2392 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2393 
2394 	if (msm_host->mode) {
2395 		drm_mode_destroy(msm_host->dev, msm_host->mode);
2396 		msm_host->mode = NULL;
2397 	}
2398 
2399 	msm_host->mode = drm_mode_duplicate(msm_host->dev, mode);
2400 	if (!msm_host->mode) {
2401 		pr_err("%s: cannot duplicate mode\n", __func__);
2402 		return -ENOMEM;
2403 	}
2404 
2405 	return 0;
2406 }
2407 
2408 struct drm_panel *msm_dsi_host_get_panel(struct mipi_dsi_host *host)
2409 {
2410 	return of_drm_find_panel(to_msm_dsi_host(host)->device_node);
2411 }
2412 
2413 unsigned long msm_dsi_host_get_mode_flags(struct mipi_dsi_host *host)
2414 {
2415 	return to_msm_dsi_host(host)->mode_flags;
2416 }
2417 
2418 struct drm_bridge *msm_dsi_host_get_bridge(struct mipi_dsi_host *host)
2419 {
2420 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2421 
2422 	return of_drm_find_bridge(msm_host->device_node);
2423 }
2424 
2425 void msm_dsi_host_snapshot(struct msm_disp_state *disp_state, struct mipi_dsi_host *host)
2426 {
2427 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2428 
2429 	pm_runtime_get_sync(&msm_host->pdev->dev);
2430 
2431 	msm_disp_snapshot_add_block(disp_state, msm_host->ctrl_size,
2432 			msm_host->ctrl_base, "dsi%d_ctrl", msm_host->id);
2433 
2434 	pm_runtime_put_sync(&msm_host->pdev->dev);
2435 }
2436 
2437 static void msm_dsi_host_video_test_pattern_setup(struct msm_dsi_host *msm_host)
2438 {
2439 	u32 reg;
2440 
2441 	reg = dsi_read(msm_host, REG_DSI_TEST_PATTERN_GEN_CTRL);
2442 
2443 	dsi_write(msm_host, REG_DSI_TEST_PATTERN_GEN_VIDEO_INIT_VAL, 0xff);
2444 	/* draw checkered rectangle pattern */
2445 	dsi_write(msm_host, REG_DSI_TPG_MAIN_CONTROL,
2446 			DSI_TPG_MAIN_CONTROL_CHECKERED_RECTANGLE_PATTERN);
2447 	/* use 24-bit RGB test pttern */
2448 	dsi_write(msm_host, REG_DSI_TPG_VIDEO_CONFIG,
2449 			DSI_TPG_VIDEO_CONFIG_BPP(VIDEO_CONFIG_24BPP) |
2450 			DSI_TPG_VIDEO_CONFIG_RGB);
2451 
2452 	reg |= DSI_TEST_PATTERN_GEN_CTRL_VIDEO_PATTERN_SEL(VID_MDSS_GENERAL_PATTERN);
2453 	dsi_write(msm_host, REG_DSI_TEST_PATTERN_GEN_CTRL, reg);
2454 
2455 	DBG("Video test pattern setup done\n");
2456 }
2457 
2458 static void msm_dsi_host_cmd_test_pattern_setup(struct msm_dsi_host *msm_host)
2459 {
2460 	u32 reg;
2461 
2462 	reg = dsi_read(msm_host, REG_DSI_TEST_PATTERN_GEN_CTRL);
2463 
2464 	/* initial value for test pattern */
2465 	dsi_write(msm_host, REG_DSI_TEST_PATTERN_GEN_CMD_MDP_INIT_VAL0, 0xff);
2466 
2467 	reg |= DSI_TEST_PATTERN_GEN_CTRL_CMD_MDP_STREAM0_PATTERN_SEL(CMD_MDP_MDSS_GENERAL_PATTERN);
2468 
2469 	dsi_write(msm_host, REG_DSI_TEST_PATTERN_GEN_CTRL, reg);
2470 	/* draw checkered rectangle pattern */
2471 	dsi_write(msm_host, REG_DSI_TPG_MAIN_CONTROL2,
2472 			DSI_TPG_MAIN_CONTROL2_CMD_MDP0_CHECKERED_RECTANGLE_PATTERN);
2473 
2474 	DBG("Cmd test pattern setup done\n");
2475 }
2476 
2477 void msm_dsi_host_test_pattern_en(struct mipi_dsi_host *host)
2478 {
2479 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2480 	bool is_video_mode = !!(msm_host->mode_flags & MIPI_DSI_MODE_VIDEO);
2481 	u32 reg;
2482 
2483 	if (is_video_mode)
2484 		msm_dsi_host_video_test_pattern_setup(msm_host);
2485 	else
2486 		msm_dsi_host_cmd_test_pattern_setup(msm_host);
2487 
2488 	reg = dsi_read(msm_host, REG_DSI_TEST_PATTERN_GEN_CTRL);
2489 	/* enable the test pattern generator */
2490 	dsi_write(msm_host, REG_DSI_TEST_PATTERN_GEN_CTRL, (reg | DSI_TEST_PATTERN_GEN_CTRL_EN));
2491 
2492 	/* for command mode need to trigger one frame from tpg */
2493 	if (!is_video_mode)
2494 		dsi_write(msm_host, REG_DSI_TEST_PATTERN_GEN_CMD_STREAM0_TRIGGER,
2495 				DSI_TEST_PATTERN_GEN_CMD_STREAM0_TRIGGER_SW_TRIGGER);
2496 }
2497