xref: /linux/drivers/gpu/drm/msm/dsi/dsi_host.c (revision 6fdcba32711044c35c0e1b094cbd8f3f0b4472c9)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2015, The Linux Foundation. All rights reserved.
4  */
5 
6 #include <linux/clk.h>
7 #include <linux/delay.h>
8 #include <linux/dma-mapping.h>
9 #include <linux/err.h>
10 #include <linux/gpio/consumer.h>
11 #include <linux/interrupt.h>
12 #include <linux/mfd/syscon.h>
13 #include <linux/of_device.h>
14 #include <linux/of_graph.h>
15 #include <linux/of_irq.h>
16 #include <linux/pinctrl/consumer.h>
17 #include <linux/regmap.h>
18 #include <linux/regulator/consumer.h>
19 #include <linux/spinlock.h>
20 
21 #include <video/mipi_display.h>
22 
23 #include "dsi.h"
24 #include "dsi.xml.h"
25 #include "sfpb.xml.h"
26 #include "dsi_cfg.h"
27 #include "msm_kms.h"
28 
29 #define DSI_RESET_TOGGLE_DELAY_MS 20
30 
31 static int dsi_get_version(const void __iomem *base, u32 *major, u32 *minor)
32 {
33 	u32 ver;
34 
35 	if (!major || !minor)
36 		return -EINVAL;
37 
38 	/*
39 	 * From DSI6G(v3), addition of a 6G_HW_VERSION register at offset 0
40 	 * makes all other registers 4-byte shifted down.
41 	 *
42 	 * In order to identify between DSI6G(v3) and beyond, and DSIv2 and
43 	 * older, we read the DSI_VERSION register without any shift(offset
44 	 * 0x1f0). In the case of DSIv2, this hast to be a non-zero value. In
45 	 * the case of DSI6G, this has to be zero (the offset points to a
46 	 * scratch register which we never touch)
47 	 */
48 
49 	ver = msm_readl(base + REG_DSI_VERSION);
50 	if (ver) {
51 		/* older dsi host, there is no register shift */
52 		ver = FIELD(ver, DSI_VERSION_MAJOR);
53 		if (ver <= MSM_DSI_VER_MAJOR_V2) {
54 			/* old versions */
55 			*major = ver;
56 			*minor = 0;
57 			return 0;
58 		} else {
59 			return -EINVAL;
60 		}
61 	} else {
62 		/*
63 		 * newer host, offset 0 has 6G_HW_VERSION, the rest of the
64 		 * registers are shifted down, read DSI_VERSION again with
65 		 * the shifted offset
66 		 */
67 		ver = msm_readl(base + DSI_6G_REG_SHIFT + REG_DSI_VERSION);
68 		ver = FIELD(ver, DSI_VERSION_MAJOR);
69 		if (ver == MSM_DSI_VER_MAJOR_6G) {
70 			/* 6G version */
71 			*major = ver;
72 			*minor = msm_readl(base + REG_DSI_6G_HW_VERSION);
73 			return 0;
74 		} else {
75 			return -EINVAL;
76 		}
77 	}
78 }
79 
80 #define DSI_ERR_STATE_ACK			0x0000
81 #define DSI_ERR_STATE_TIMEOUT			0x0001
82 #define DSI_ERR_STATE_DLN0_PHY			0x0002
83 #define DSI_ERR_STATE_FIFO			0x0004
84 #define DSI_ERR_STATE_MDP_FIFO_UNDERFLOW	0x0008
85 #define DSI_ERR_STATE_INTERLEAVE_OP_CONTENTION	0x0010
86 #define DSI_ERR_STATE_PLL_UNLOCKED		0x0020
87 
88 #define DSI_CLK_CTRL_ENABLE_CLKS	\
89 		(DSI_CLK_CTRL_AHBS_HCLK_ON | DSI_CLK_CTRL_AHBM_SCLK_ON | \
90 		DSI_CLK_CTRL_PCLK_ON | DSI_CLK_CTRL_DSICLK_ON | \
91 		DSI_CLK_CTRL_BYTECLK_ON | DSI_CLK_CTRL_ESCCLK_ON | \
92 		DSI_CLK_CTRL_FORCE_ON_DYN_AHBM_HCLK)
93 
94 struct msm_dsi_host {
95 	struct mipi_dsi_host base;
96 
97 	struct platform_device *pdev;
98 	struct drm_device *dev;
99 
100 	int id;
101 
102 	void __iomem *ctrl_base;
103 	struct regulator_bulk_data supplies[DSI_DEV_REGULATOR_MAX];
104 
105 	struct clk *bus_clks[DSI_BUS_CLK_MAX];
106 
107 	struct clk *byte_clk;
108 	struct clk *esc_clk;
109 	struct clk *pixel_clk;
110 	struct clk *byte_clk_src;
111 	struct clk *pixel_clk_src;
112 	struct clk *byte_intf_clk;
113 
114 	u32 byte_clk_rate;
115 	u32 pixel_clk_rate;
116 	u32 esc_clk_rate;
117 
118 	/* DSI v2 specific clocks */
119 	struct clk *src_clk;
120 	struct clk *esc_clk_src;
121 	struct clk *dsi_clk_src;
122 
123 	u32 src_clk_rate;
124 
125 	struct gpio_desc *disp_en_gpio;
126 	struct gpio_desc *te_gpio;
127 
128 	const struct msm_dsi_cfg_handler *cfg_hnd;
129 
130 	struct completion dma_comp;
131 	struct completion video_comp;
132 	struct mutex dev_mutex;
133 	struct mutex cmd_mutex;
134 	spinlock_t intr_lock; /* Protect interrupt ctrl register */
135 
136 	u32 err_work_state;
137 	struct work_struct err_work;
138 	struct work_struct hpd_work;
139 	struct workqueue_struct *workqueue;
140 
141 	/* DSI 6G TX buffer*/
142 	struct drm_gem_object *tx_gem_obj;
143 
144 	/* DSI v2 TX buffer */
145 	void *tx_buf;
146 	dma_addr_t tx_buf_paddr;
147 
148 	int tx_size;
149 
150 	u8 *rx_buf;
151 
152 	struct regmap *sfpb;
153 
154 	struct drm_display_mode *mode;
155 
156 	/* connected device info */
157 	struct device_node *device_node;
158 	unsigned int channel;
159 	unsigned int lanes;
160 	enum mipi_dsi_pixel_format format;
161 	unsigned long mode_flags;
162 
163 	/* lane data parsed via DT */
164 	int dlane_swap;
165 	int num_data_lanes;
166 
167 	u32 dma_cmd_ctrl_restore;
168 
169 	bool registered;
170 	bool power_on;
171 	bool enabled;
172 	int irq;
173 };
174 
175 static u32 dsi_get_bpp(const enum mipi_dsi_pixel_format fmt)
176 {
177 	switch (fmt) {
178 	case MIPI_DSI_FMT_RGB565:		return 16;
179 	case MIPI_DSI_FMT_RGB666_PACKED:	return 18;
180 	case MIPI_DSI_FMT_RGB666:
181 	case MIPI_DSI_FMT_RGB888:
182 	default:				return 24;
183 	}
184 }
185 
186 static inline u32 dsi_read(struct msm_dsi_host *msm_host, u32 reg)
187 {
188 	return msm_readl(msm_host->ctrl_base + reg);
189 }
190 static inline void dsi_write(struct msm_dsi_host *msm_host, u32 reg, u32 data)
191 {
192 	msm_writel(data, msm_host->ctrl_base + reg);
193 }
194 
195 static int dsi_host_regulator_enable(struct msm_dsi_host *msm_host);
196 static void dsi_host_regulator_disable(struct msm_dsi_host *msm_host);
197 
198 static const struct msm_dsi_cfg_handler *dsi_get_config(
199 						struct msm_dsi_host *msm_host)
200 {
201 	const struct msm_dsi_cfg_handler *cfg_hnd = NULL;
202 	struct device *dev = &msm_host->pdev->dev;
203 	struct regulator *gdsc_reg;
204 	struct clk *ahb_clk;
205 	int ret;
206 	u32 major = 0, minor = 0;
207 
208 	gdsc_reg = regulator_get(dev, "gdsc");
209 	if (IS_ERR(gdsc_reg)) {
210 		pr_err("%s: cannot get gdsc\n", __func__);
211 		goto exit;
212 	}
213 
214 	ahb_clk = msm_clk_get(msm_host->pdev, "iface");
215 	if (IS_ERR(ahb_clk)) {
216 		pr_err("%s: cannot get interface clock\n", __func__);
217 		goto put_gdsc;
218 	}
219 
220 	pm_runtime_get_sync(dev);
221 
222 	ret = regulator_enable(gdsc_reg);
223 	if (ret) {
224 		pr_err("%s: unable to enable gdsc\n", __func__);
225 		goto put_gdsc;
226 	}
227 
228 	ret = clk_prepare_enable(ahb_clk);
229 	if (ret) {
230 		pr_err("%s: unable to enable ahb_clk\n", __func__);
231 		goto disable_gdsc;
232 	}
233 
234 	ret = dsi_get_version(msm_host->ctrl_base, &major, &minor);
235 	if (ret) {
236 		pr_err("%s: Invalid version\n", __func__);
237 		goto disable_clks;
238 	}
239 
240 	cfg_hnd = msm_dsi_cfg_get(major, minor);
241 
242 	DBG("%s: Version %x:%x\n", __func__, major, minor);
243 
244 disable_clks:
245 	clk_disable_unprepare(ahb_clk);
246 disable_gdsc:
247 	regulator_disable(gdsc_reg);
248 	pm_runtime_put_sync(dev);
249 put_gdsc:
250 	regulator_put(gdsc_reg);
251 exit:
252 	return cfg_hnd;
253 }
254 
255 static inline struct msm_dsi_host *to_msm_dsi_host(struct mipi_dsi_host *host)
256 {
257 	return container_of(host, struct msm_dsi_host, base);
258 }
259 
260 static void dsi_host_regulator_disable(struct msm_dsi_host *msm_host)
261 {
262 	struct regulator_bulk_data *s = msm_host->supplies;
263 	const struct dsi_reg_entry *regs = msm_host->cfg_hnd->cfg->reg_cfg.regs;
264 	int num = msm_host->cfg_hnd->cfg->reg_cfg.num;
265 	int i;
266 
267 	DBG("");
268 	for (i = num - 1; i >= 0; i--)
269 		if (regs[i].disable_load >= 0)
270 			regulator_set_load(s[i].consumer,
271 					   regs[i].disable_load);
272 
273 	regulator_bulk_disable(num, s);
274 }
275 
276 static int dsi_host_regulator_enable(struct msm_dsi_host *msm_host)
277 {
278 	struct regulator_bulk_data *s = msm_host->supplies;
279 	const struct dsi_reg_entry *regs = msm_host->cfg_hnd->cfg->reg_cfg.regs;
280 	int num = msm_host->cfg_hnd->cfg->reg_cfg.num;
281 	int ret, i;
282 
283 	DBG("");
284 	for (i = 0; i < num; i++) {
285 		if (regs[i].enable_load >= 0) {
286 			ret = regulator_set_load(s[i].consumer,
287 						 regs[i].enable_load);
288 			if (ret < 0) {
289 				pr_err("regulator %d set op mode failed, %d\n",
290 					i, ret);
291 				goto fail;
292 			}
293 		}
294 	}
295 
296 	ret = regulator_bulk_enable(num, s);
297 	if (ret < 0) {
298 		pr_err("regulator enable failed, %d\n", ret);
299 		goto fail;
300 	}
301 
302 	return 0;
303 
304 fail:
305 	for (i--; i >= 0; i--)
306 		regulator_set_load(s[i].consumer, regs[i].disable_load);
307 	return ret;
308 }
309 
310 static int dsi_regulator_init(struct msm_dsi_host *msm_host)
311 {
312 	struct regulator_bulk_data *s = msm_host->supplies;
313 	const struct dsi_reg_entry *regs = msm_host->cfg_hnd->cfg->reg_cfg.regs;
314 	int num = msm_host->cfg_hnd->cfg->reg_cfg.num;
315 	int i, ret;
316 
317 	for (i = 0; i < num; i++)
318 		s[i].supply = regs[i].name;
319 
320 	ret = devm_regulator_bulk_get(&msm_host->pdev->dev, num, s);
321 	if (ret < 0) {
322 		pr_err("%s: failed to init regulator, ret=%d\n",
323 						__func__, ret);
324 		return ret;
325 	}
326 
327 	return 0;
328 }
329 
330 int dsi_clk_init_v2(struct msm_dsi_host *msm_host)
331 {
332 	struct platform_device *pdev = msm_host->pdev;
333 	int ret = 0;
334 
335 	msm_host->src_clk = msm_clk_get(pdev, "src");
336 
337 	if (IS_ERR(msm_host->src_clk)) {
338 		ret = PTR_ERR(msm_host->src_clk);
339 		pr_err("%s: can't find src clock. ret=%d\n",
340 			__func__, ret);
341 		msm_host->src_clk = NULL;
342 		return ret;
343 	}
344 
345 	msm_host->esc_clk_src = clk_get_parent(msm_host->esc_clk);
346 	if (!msm_host->esc_clk_src) {
347 		ret = -ENODEV;
348 		pr_err("%s: can't get esc clock parent. ret=%d\n",
349 			__func__, ret);
350 		return ret;
351 	}
352 
353 	msm_host->dsi_clk_src = clk_get_parent(msm_host->src_clk);
354 	if (!msm_host->dsi_clk_src) {
355 		ret = -ENODEV;
356 		pr_err("%s: can't get src clock parent. ret=%d\n",
357 			__func__, ret);
358 	}
359 
360 	return ret;
361 }
362 
363 int dsi_clk_init_6g_v2(struct msm_dsi_host *msm_host)
364 {
365 	struct platform_device *pdev = msm_host->pdev;
366 	int ret = 0;
367 
368 	msm_host->byte_intf_clk = msm_clk_get(pdev, "byte_intf");
369 	if (IS_ERR(msm_host->byte_intf_clk)) {
370 		ret = PTR_ERR(msm_host->byte_intf_clk);
371 		pr_err("%s: can't find byte_intf clock. ret=%d\n",
372 			__func__, ret);
373 	}
374 
375 	return ret;
376 }
377 
378 static int dsi_clk_init(struct msm_dsi_host *msm_host)
379 {
380 	struct platform_device *pdev = msm_host->pdev;
381 	const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd;
382 	const struct msm_dsi_config *cfg = cfg_hnd->cfg;
383 	int i, ret = 0;
384 
385 	/* get bus clocks */
386 	for (i = 0; i < cfg->num_bus_clks; i++) {
387 		msm_host->bus_clks[i] = msm_clk_get(pdev,
388 						cfg->bus_clk_names[i]);
389 		if (IS_ERR(msm_host->bus_clks[i])) {
390 			ret = PTR_ERR(msm_host->bus_clks[i]);
391 			pr_err("%s: Unable to get %s clock, ret = %d\n",
392 				__func__, cfg->bus_clk_names[i], ret);
393 			goto exit;
394 		}
395 	}
396 
397 	/* get link and source clocks */
398 	msm_host->byte_clk = msm_clk_get(pdev, "byte");
399 	if (IS_ERR(msm_host->byte_clk)) {
400 		ret = PTR_ERR(msm_host->byte_clk);
401 		pr_err("%s: can't find dsi_byte clock. ret=%d\n",
402 			__func__, ret);
403 		msm_host->byte_clk = NULL;
404 		goto exit;
405 	}
406 
407 	msm_host->pixel_clk = msm_clk_get(pdev, "pixel");
408 	if (IS_ERR(msm_host->pixel_clk)) {
409 		ret = PTR_ERR(msm_host->pixel_clk);
410 		pr_err("%s: can't find dsi_pixel clock. ret=%d\n",
411 			__func__, ret);
412 		msm_host->pixel_clk = NULL;
413 		goto exit;
414 	}
415 
416 	msm_host->esc_clk = msm_clk_get(pdev, "core");
417 	if (IS_ERR(msm_host->esc_clk)) {
418 		ret = PTR_ERR(msm_host->esc_clk);
419 		pr_err("%s: can't find dsi_esc clock. ret=%d\n",
420 			__func__, ret);
421 		msm_host->esc_clk = NULL;
422 		goto exit;
423 	}
424 
425 	msm_host->byte_clk_src = clk_get_parent(msm_host->byte_clk);
426 	if (IS_ERR(msm_host->byte_clk_src)) {
427 		ret = PTR_ERR(msm_host->byte_clk_src);
428 		pr_err("%s: can't find byte_clk clock. ret=%d\n", __func__, ret);
429 		goto exit;
430 	}
431 
432 	msm_host->pixel_clk_src = clk_get_parent(msm_host->pixel_clk);
433 	if (IS_ERR(msm_host->pixel_clk_src)) {
434 		ret = PTR_ERR(msm_host->pixel_clk_src);
435 		pr_err("%s: can't find pixel_clk clock. ret=%d\n", __func__, ret);
436 		goto exit;
437 	}
438 
439 	if (cfg_hnd->ops->clk_init_ver)
440 		ret = cfg_hnd->ops->clk_init_ver(msm_host);
441 exit:
442 	return ret;
443 }
444 
445 static int dsi_bus_clk_enable(struct msm_dsi_host *msm_host)
446 {
447 	const struct msm_dsi_config *cfg = msm_host->cfg_hnd->cfg;
448 	int i, ret;
449 
450 	DBG("id=%d", msm_host->id);
451 
452 	for (i = 0; i < cfg->num_bus_clks; i++) {
453 		ret = clk_prepare_enable(msm_host->bus_clks[i]);
454 		if (ret) {
455 			pr_err("%s: failed to enable bus clock %d ret %d\n",
456 				__func__, i, ret);
457 			goto err;
458 		}
459 	}
460 
461 	return 0;
462 err:
463 	for (; i > 0; i--)
464 		clk_disable_unprepare(msm_host->bus_clks[i]);
465 
466 	return ret;
467 }
468 
469 static void dsi_bus_clk_disable(struct msm_dsi_host *msm_host)
470 {
471 	const struct msm_dsi_config *cfg = msm_host->cfg_hnd->cfg;
472 	int i;
473 
474 	DBG("");
475 
476 	for (i = cfg->num_bus_clks - 1; i >= 0; i--)
477 		clk_disable_unprepare(msm_host->bus_clks[i]);
478 }
479 
480 int msm_dsi_runtime_suspend(struct device *dev)
481 {
482 	struct platform_device *pdev = to_platform_device(dev);
483 	struct msm_dsi *msm_dsi = platform_get_drvdata(pdev);
484 	struct mipi_dsi_host *host = msm_dsi->host;
485 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
486 
487 	if (!msm_host->cfg_hnd)
488 		return 0;
489 
490 	dsi_bus_clk_disable(msm_host);
491 
492 	return 0;
493 }
494 
495 int msm_dsi_runtime_resume(struct device *dev)
496 {
497 	struct platform_device *pdev = to_platform_device(dev);
498 	struct msm_dsi *msm_dsi = platform_get_drvdata(pdev);
499 	struct mipi_dsi_host *host = msm_dsi->host;
500 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
501 
502 	if (!msm_host->cfg_hnd)
503 		return 0;
504 
505 	return dsi_bus_clk_enable(msm_host);
506 }
507 
508 int dsi_link_clk_enable_6g(struct msm_dsi_host *msm_host)
509 {
510 	int ret;
511 
512 	DBG("Set clk rates: pclk=%d, byteclk=%d",
513 		msm_host->mode->clock, msm_host->byte_clk_rate);
514 
515 	ret = clk_set_rate(msm_host->byte_clk, msm_host->byte_clk_rate);
516 	if (ret) {
517 		pr_err("%s: Failed to set rate byte clk, %d\n", __func__, ret);
518 		goto error;
519 	}
520 
521 	ret = clk_set_rate(msm_host->pixel_clk, msm_host->pixel_clk_rate);
522 	if (ret) {
523 		pr_err("%s: Failed to set rate pixel clk, %d\n", __func__, ret);
524 		goto error;
525 	}
526 
527 	if (msm_host->byte_intf_clk) {
528 		ret = clk_set_rate(msm_host->byte_intf_clk,
529 				   msm_host->byte_clk_rate / 2);
530 		if (ret) {
531 			pr_err("%s: Failed to set rate byte intf clk, %d\n",
532 			       __func__, ret);
533 			goto error;
534 		}
535 	}
536 
537 	ret = clk_prepare_enable(msm_host->esc_clk);
538 	if (ret) {
539 		pr_err("%s: Failed to enable dsi esc clk\n", __func__);
540 		goto error;
541 	}
542 
543 	ret = clk_prepare_enable(msm_host->byte_clk);
544 	if (ret) {
545 		pr_err("%s: Failed to enable dsi byte clk\n", __func__);
546 		goto byte_clk_err;
547 	}
548 
549 	ret = clk_prepare_enable(msm_host->pixel_clk);
550 	if (ret) {
551 		pr_err("%s: Failed to enable dsi pixel clk\n", __func__);
552 		goto pixel_clk_err;
553 	}
554 
555 	if (msm_host->byte_intf_clk) {
556 		ret = clk_prepare_enable(msm_host->byte_intf_clk);
557 		if (ret) {
558 			pr_err("%s: Failed to enable byte intf clk\n",
559 			       __func__);
560 			goto byte_intf_clk_err;
561 		}
562 	}
563 
564 	return 0;
565 
566 byte_intf_clk_err:
567 	clk_disable_unprepare(msm_host->pixel_clk);
568 pixel_clk_err:
569 	clk_disable_unprepare(msm_host->byte_clk);
570 byte_clk_err:
571 	clk_disable_unprepare(msm_host->esc_clk);
572 error:
573 	return ret;
574 }
575 
576 int dsi_link_clk_enable_v2(struct msm_dsi_host *msm_host)
577 {
578 	int ret;
579 
580 	DBG("Set clk rates: pclk=%d, byteclk=%d, esc_clk=%d, dsi_src_clk=%d",
581 		msm_host->mode->clock, msm_host->byte_clk_rate,
582 		msm_host->esc_clk_rate, msm_host->src_clk_rate);
583 
584 	ret = clk_set_rate(msm_host->byte_clk, msm_host->byte_clk_rate);
585 	if (ret) {
586 		pr_err("%s: Failed to set rate byte clk, %d\n", __func__, ret);
587 		goto error;
588 	}
589 
590 	ret = clk_set_rate(msm_host->esc_clk, msm_host->esc_clk_rate);
591 	if (ret) {
592 		pr_err("%s: Failed to set rate esc clk, %d\n", __func__, ret);
593 		goto error;
594 	}
595 
596 	ret = clk_set_rate(msm_host->src_clk, msm_host->src_clk_rate);
597 	if (ret) {
598 		pr_err("%s: Failed to set rate src clk, %d\n", __func__, ret);
599 		goto error;
600 	}
601 
602 	ret = clk_set_rate(msm_host->pixel_clk, msm_host->pixel_clk_rate);
603 	if (ret) {
604 		pr_err("%s: Failed to set rate pixel clk, %d\n", __func__, ret);
605 		goto error;
606 	}
607 
608 	ret = clk_prepare_enable(msm_host->byte_clk);
609 	if (ret) {
610 		pr_err("%s: Failed to enable dsi byte clk\n", __func__);
611 		goto error;
612 	}
613 
614 	ret = clk_prepare_enable(msm_host->esc_clk);
615 	if (ret) {
616 		pr_err("%s: Failed to enable dsi esc clk\n", __func__);
617 		goto esc_clk_err;
618 	}
619 
620 	ret = clk_prepare_enable(msm_host->src_clk);
621 	if (ret) {
622 		pr_err("%s: Failed to enable dsi src clk\n", __func__);
623 		goto src_clk_err;
624 	}
625 
626 	ret = clk_prepare_enable(msm_host->pixel_clk);
627 	if (ret) {
628 		pr_err("%s: Failed to enable dsi pixel clk\n", __func__);
629 		goto pixel_clk_err;
630 	}
631 
632 	return 0;
633 
634 pixel_clk_err:
635 	clk_disable_unprepare(msm_host->src_clk);
636 src_clk_err:
637 	clk_disable_unprepare(msm_host->esc_clk);
638 esc_clk_err:
639 	clk_disable_unprepare(msm_host->byte_clk);
640 error:
641 	return ret;
642 }
643 
644 void dsi_link_clk_disable_6g(struct msm_dsi_host *msm_host)
645 {
646 	clk_disable_unprepare(msm_host->esc_clk);
647 	clk_disable_unprepare(msm_host->pixel_clk);
648 	if (msm_host->byte_intf_clk)
649 		clk_disable_unprepare(msm_host->byte_intf_clk);
650 	clk_disable_unprepare(msm_host->byte_clk);
651 }
652 
653 void dsi_link_clk_disable_v2(struct msm_dsi_host *msm_host)
654 {
655 	clk_disable_unprepare(msm_host->pixel_clk);
656 	clk_disable_unprepare(msm_host->src_clk);
657 	clk_disable_unprepare(msm_host->esc_clk);
658 	clk_disable_unprepare(msm_host->byte_clk);
659 }
660 
661 static u32 dsi_get_pclk_rate(struct msm_dsi_host *msm_host, bool is_dual_dsi)
662 {
663 	struct drm_display_mode *mode = msm_host->mode;
664 	u32 pclk_rate;
665 
666 	pclk_rate = mode->clock * 1000;
667 
668 	/*
669 	 * For dual DSI mode, the current DRM mode has the complete width of the
670 	 * panel. Since, the complete panel is driven by two DSI controllers,
671 	 * the clock rates have to be split between the two dsi controllers.
672 	 * Adjust the byte and pixel clock rates for each dsi host accordingly.
673 	 */
674 	if (is_dual_dsi)
675 		pclk_rate /= 2;
676 
677 	return pclk_rate;
678 }
679 
680 static void dsi_calc_pclk(struct msm_dsi_host *msm_host, bool is_dual_dsi)
681 {
682 	u8 lanes = msm_host->lanes;
683 	u32 bpp = dsi_get_bpp(msm_host->format);
684 	u32 pclk_rate = dsi_get_pclk_rate(msm_host, is_dual_dsi);
685 	u64 pclk_bpp = (u64)pclk_rate * bpp;
686 
687 	if (lanes == 0) {
688 		pr_err("%s: forcing mdss_dsi lanes to 1\n", __func__);
689 		lanes = 1;
690 	}
691 
692 	do_div(pclk_bpp, (8 * lanes));
693 
694 	msm_host->pixel_clk_rate = pclk_rate;
695 	msm_host->byte_clk_rate = pclk_bpp;
696 
697 	DBG("pclk=%d, bclk=%d", msm_host->pixel_clk_rate,
698 				msm_host->byte_clk_rate);
699 
700 }
701 
702 int dsi_calc_clk_rate_6g(struct msm_dsi_host *msm_host, bool is_dual_dsi)
703 {
704 	if (!msm_host->mode) {
705 		pr_err("%s: mode not set\n", __func__);
706 		return -EINVAL;
707 	}
708 
709 	dsi_calc_pclk(msm_host, is_dual_dsi);
710 	msm_host->esc_clk_rate = clk_get_rate(msm_host->esc_clk);
711 	return 0;
712 }
713 
714 int dsi_calc_clk_rate_v2(struct msm_dsi_host *msm_host, bool is_dual_dsi)
715 {
716 	u32 bpp = dsi_get_bpp(msm_host->format);
717 	u64 pclk_bpp;
718 	unsigned int esc_mhz, esc_div;
719 	unsigned long byte_mhz;
720 
721 	dsi_calc_pclk(msm_host, is_dual_dsi);
722 
723 	pclk_bpp = (u64)dsi_get_pclk_rate(msm_host, is_dual_dsi) * bpp;
724 	do_div(pclk_bpp, 8);
725 	msm_host->src_clk_rate = pclk_bpp;
726 
727 	/*
728 	 * esc clock is byte clock followed by a 4 bit divider,
729 	 * we need to find an escape clock frequency within the
730 	 * mipi DSI spec range within the maximum divider limit
731 	 * We iterate here between an escape clock frequencey
732 	 * between 20 Mhz to 5 Mhz and pick up the first one
733 	 * that can be supported by our divider
734 	 */
735 
736 	byte_mhz = msm_host->byte_clk_rate / 1000000;
737 
738 	for (esc_mhz = 20; esc_mhz >= 5; esc_mhz--) {
739 		esc_div = DIV_ROUND_UP(byte_mhz, esc_mhz);
740 
741 		/*
742 		 * TODO: Ideally, we shouldn't know what sort of divider
743 		 * is available in mmss_cc, we're just assuming that
744 		 * it'll always be a 4 bit divider. Need to come up with
745 		 * a better way here.
746 		 */
747 		if (esc_div >= 1 && esc_div <= 16)
748 			break;
749 	}
750 
751 	if (esc_mhz < 5)
752 		return -EINVAL;
753 
754 	msm_host->esc_clk_rate = msm_host->byte_clk_rate / esc_div;
755 
756 	DBG("esc=%d, src=%d", msm_host->esc_clk_rate,
757 		msm_host->src_clk_rate);
758 
759 	return 0;
760 }
761 
762 static void dsi_intr_ctrl(struct msm_dsi_host *msm_host, u32 mask, int enable)
763 {
764 	u32 intr;
765 	unsigned long flags;
766 
767 	spin_lock_irqsave(&msm_host->intr_lock, flags);
768 	intr = dsi_read(msm_host, REG_DSI_INTR_CTRL);
769 
770 	if (enable)
771 		intr |= mask;
772 	else
773 		intr &= ~mask;
774 
775 	DBG("intr=%x enable=%d", intr, enable);
776 
777 	dsi_write(msm_host, REG_DSI_INTR_CTRL, intr);
778 	spin_unlock_irqrestore(&msm_host->intr_lock, flags);
779 }
780 
781 static inline enum dsi_traffic_mode dsi_get_traffic_mode(const u32 mode_flags)
782 {
783 	if (mode_flags & MIPI_DSI_MODE_VIDEO_BURST)
784 		return BURST_MODE;
785 	else if (mode_flags & MIPI_DSI_MODE_VIDEO_SYNC_PULSE)
786 		return NON_BURST_SYNCH_PULSE;
787 
788 	return NON_BURST_SYNCH_EVENT;
789 }
790 
791 static inline enum dsi_vid_dst_format dsi_get_vid_fmt(
792 				const enum mipi_dsi_pixel_format mipi_fmt)
793 {
794 	switch (mipi_fmt) {
795 	case MIPI_DSI_FMT_RGB888:	return VID_DST_FORMAT_RGB888;
796 	case MIPI_DSI_FMT_RGB666:	return VID_DST_FORMAT_RGB666_LOOSE;
797 	case MIPI_DSI_FMT_RGB666_PACKED:	return VID_DST_FORMAT_RGB666;
798 	case MIPI_DSI_FMT_RGB565:	return VID_DST_FORMAT_RGB565;
799 	default:			return VID_DST_FORMAT_RGB888;
800 	}
801 }
802 
803 static inline enum dsi_cmd_dst_format dsi_get_cmd_fmt(
804 				const enum mipi_dsi_pixel_format mipi_fmt)
805 {
806 	switch (mipi_fmt) {
807 	case MIPI_DSI_FMT_RGB888:	return CMD_DST_FORMAT_RGB888;
808 	case MIPI_DSI_FMT_RGB666_PACKED:
809 	case MIPI_DSI_FMT_RGB666:	return CMD_DST_FORMAT_RGB666;
810 	case MIPI_DSI_FMT_RGB565:	return CMD_DST_FORMAT_RGB565;
811 	default:			return CMD_DST_FORMAT_RGB888;
812 	}
813 }
814 
815 static void dsi_ctrl_config(struct msm_dsi_host *msm_host, bool enable,
816 			struct msm_dsi_phy_shared_timings *phy_shared_timings)
817 {
818 	u32 flags = msm_host->mode_flags;
819 	enum mipi_dsi_pixel_format mipi_fmt = msm_host->format;
820 	const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd;
821 	u32 data = 0;
822 
823 	if (!enable) {
824 		dsi_write(msm_host, REG_DSI_CTRL, 0);
825 		return;
826 	}
827 
828 	if (flags & MIPI_DSI_MODE_VIDEO) {
829 		if (flags & MIPI_DSI_MODE_VIDEO_HSE)
830 			data |= DSI_VID_CFG0_PULSE_MODE_HSA_HE;
831 		if (flags & MIPI_DSI_MODE_VIDEO_HFP)
832 			data |= DSI_VID_CFG0_HFP_POWER_STOP;
833 		if (flags & MIPI_DSI_MODE_VIDEO_HBP)
834 			data |= DSI_VID_CFG0_HBP_POWER_STOP;
835 		if (flags & MIPI_DSI_MODE_VIDEO_HSA)
836 			data |= DSI_VID_CFG0_HSA_POWER_STOP;
837 		/* Always set low power stop mode for BLLP
838 		 * to let command engine send packets
839 		 */
840 		data |= DSI_VID_CFG0_EOF_BLLP_POWER_STOP |
841 			DSI_VID_CFG0_BLLP_POWER_STOP;
842 		data |= DSI_VID_CFG0_TRAFFIC_MODE(dsi_get_traffic_mode(flags));
843 		data |= DSI_VID_CFG0_DST_FORMAT(dsi_get_vid_fmt(mipi_fmt));
844 		data |= DSI_VID_CFG0_VIRT_CHANNEL(msm_host->channel);
845 		dsi_write(msm_host, REG_DSI_VID_CFG0, data);
846 
847 		/* Do not swap RGB colors */
848 		data = DSI_VID_CFG1_RGB_SWAP(SWAP_RGB);
849 		dsi_write(msm_host, REG_DSI_VID_CFG1, 0);
850 	} else {
851 		/* Do not swap RGB colors */
852 		data = DSI_CMD_CFG0_RGB_SWAP(SWAP_RGB);
853 		data |= DSI_CMD_CFG0_DST_FORMAT(dsi_get_cmd_fmt(mipi_fmt));
854 		dsi_write(msm_host, REG_DSI_CMD_CFG0, data);
855 
856 		data = DSI_CMD_CFG1_WR_MEM_START(MIPI_DCS_WRITE_MEMORY_START) |
857 			DSI_CMD_CFG1_WR_MEM_CONTINUE(
858 					MIPI_DCS_WRITE_MEMORY_CONTINUE);
859 		/* Always insert DCS command */
860 		data |= DSI_CMD_CFG1_INSERT_DCS_COMMAND;
861 		dsi_write(msm_host, REG_DSI_CMD_CFG1, data);
862 	}
863 
864 	dsi_write(msm_host, REG_DSI_CMD_DMA_CTRL,
865 			DSI_CMD_DMA_CTRL_FROM_FRAME_BUFFER |
866 			DSI_CMD_DMA_CTRL_LOW_POWER);
867 
868 	data = 0;
869 	/* Always assume dedicated TE pin */
870 	data |= DSI_TRIG_CTRL_TE;
871 	data |= DSI_TRIG_CTRL_MDP_TRIGGER(TRIGGER_NONE);
872 	data |= DSI_TRIG_CTRL_DMA_TRIGGER(TRIGGER_SW);
873 	data |= DSI_TRIG_CTRL_STREAM(msm_host->channel);
874 	if ((cfg_hnd->major == MSM_DSI_VER_MAJOR_6G) &&
875 		(cfg_hnd->minor >= MSM_DSI_6G_VER_MINOR_V1_2))
876 		data |= DSI_TRIG_CTRL_BLOCK_DMA_WITHIN_FRAME;
877 	dsi_write(msm_host, REG_DSI_TRIG_CTRL, data);
878 
879 	data = DSI_CLKOUT_TIMING_CTRL_T_CLK_POST(phy_shared_timings->clk_post) |
880 		DSI_CLKOUT_TIMING_CTRL_T_CLK_PRE(phy_shared_timings->clk_pre);
881 	dsi_write(msm_host, REG_DSI_CLKOUT_TIMING_CTRL, data);
882 
883 	if ((cfg_hnd->major == MSM_DSI_VER_MAJOR_6G) &&
884 	    (cfg_hnd->minor > MSM_DSI_6G_VER_MINOR_V1_0) &&
885 	    phy_shared_timings->clk_pre_inc_by_2)
886 		dsi_write(msm_host, REG_DSI_T_CLK_PRE_EXTEND,
887 			  DSI_T_CLK_PRE_EXTEND_INC_BY_2_BYTECLK);
888 
889 	data = 0;
890 	if (!(flags & MIPI_DSI_MODE_EOT_PACKET))
891 		data |= DSI_EOT_PACKET_CTRL_TX_EOT_APPEND;
892 	dsi_write(msm_host, REG_DSI_EOT_PACKET_CTRL, data);
893 
894 	/* allow only ack-err-status to generate interrupt */
895 	dsi_write(msm_host, REG_DSI_ERR_INT_MASK0, 0x13ff3fe0);
896 
897 	dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_ERROR, 1);
898 
899 	dsi_write(msm_host, REG_DSI_CLK_CTRL, DSI_CLK_CTRL_ENABLE_CLKS);
900 
901 	data = DSI_CTRL_CLK_EN;
902 
903 	DBG("lane number=%d", msm_host->lanes);
904 	data |= ((DSI_CTRL_LANE0 << msm_host->lanes) - DSI_CTRL_LANE0);
905 
906 	dsi_write(msm_host, REG_DSI_LANE_SWAP_CTRL,
907 		  DSI_LANE_SWAP_CTRL_DLN_SWAP_SEL(msm_host->dlane_swap));
908 
909 	if (!(flags & MIPI_DSI_CLOCK_NON_CONTINUOUS))
910 		dsi_write(msm_host, REG_DSI_LANE_CTRL,
911 			DSI_LANE_CTRL_CLKLN_HS_FORCE_REQUEST);
912 
913 	data |= DSI_CTRL_ENABLE;
914 
915 	dsi_write(msm_host, REG_DSI_CTRL, data);
916 }
917 
918 static void dsi_timing_setup(struct msm_dsi_host *msm_host, bool is_dual_dsi)
919 {
920 	struct drm_display_mode *mode = msm_host->mode;
921 	u32 hs_start = 0, vs_start = 0; /* take sync start as 0 */
922 	u32 h_total = mode->htotal;
923 	u32 v_total = mode->vtotal;
924 	u32 hs_end = mode->hsync_end - mode->hsync_start;
925 	u32 vs_end = mode->vsync_end - mode->vsync_start;
926 	u32 ha_start = h_total - mode->hsync_start;
927 	u32 ha_end = ha_start + mode->hdisplay;
928 	u32 va_start = v_total - mode->vsync_start;
929 	u32 va_end = va_start + mode->vdisplay;
930 	u32 hdisplay = mode->hdisplay;
931 	u32 wc;
932 
933 	DBG("");
934 
935 	/*
936 	 * For dual DSI mode, the current DRM mode has
937 	 * the complete width of the panel. Since, the complete
938 	 * panel is driven by two DSI controllers, the horizontal
939 	 * timings have to be split between the two dsi controllers.
940 	 * Adjust the DSI host timing values accordingly.
941 	 */
942 	if (is_dual_dsi) {
943 		h_total /= 2;
944 		hs_end /= 2;
945 		ha_start /= 2;
946 		ha_end /= 2;
947 		hdisplay /= 2;
948 	}
949 
950 	if (msm_host->mode_flags & MIPI_DSI_MODE_VIDEO) {
951 		dsi_write(msm_host, REG_DSI_ACTIVE_H,
952 			DSI_ACTIVE_H_START(ha_start) |
953 			DSI_ACTIVE_H_END(ha_end));
954 		dsi_write(msm_host, REG_DSI_ACTIVE_V,
955 			DSI_ACTIVE_V_START(va_start) |
956 			DSI_ACTIVE_V_END(va_end));
957 		dsi_write(msm_host, REG_DSI_TOTAL,
958 			DSI_TOTAL_H_TOTAL(h_total - 1) |
959 			DSI_TOTAL_V_TOTAL(v_total - 1));
960 
961 		dsi_write(msm_host, REG_DSI_ACTIVE_HSYNC,
962 			DSI_ACTIVE_HSYNC_START(hs_start) |
963 			DSI_ACTIVE_HSYNC_END(hs_end));
964 		dsi_write(msm_host, REG_DSI_ACTIVE_VSYNC_HPOS, 0);
965 		dsi_write(msm_host, REG_DSI_ACTIVE_VSYNC_VPOS,
966 			DSI_ACTIVE_VSYNC_VPOS_START(vs_start) |
967 			DSI_ACTIVE_VSYNC_VPOS_END(vs_end));
968 	} else {		/* command mode */
969 		/* image data and 1 byte write_memory_start cmd */
970 		wc = hdisplay * dsi_get_bpp(msm_host->format) / 8 + 1;
971 
972 		dsi_write(msm_host, REG_DSI_CMD_MDP_STREAM_CTRL,
973 			DSI_CMD_MDP_STREAM_CTRL_WORD_COUNT(wc) |
974 			DSI_CMD_MDP_STREAM_CTRL_VIRTUAL_CHANNEL(
975 					msm_host->channel) |
976 			DSI_CMD_MDP_STREAM_CTRL_DATA_TYPE(
977 					MIPI_DSI_DCS_LONG_WRITE));
978 
979 		dsi_write(msm_host, REG_DSI_CMD_MDP_STREAM_TOTAL,
980 			DSI_CMD_MDP_STREAM_TOTAL_H_TOTAL(hdisplay) |
981 			DSI_CMD_MDP_STREAM_TOTAL_V_TOTAL(mode->vdisplay));
982 	}
983 }
984 
985 static void dsi_sw_reset(struct msm_dsi_host *msm_host)
986 {
987 	dsi_write(msm_host, REG_DSI_CLK_CTRL, DSI_CLK_CTRL_ENABLE_CLKS);
988 	wmb(); /* clocks need to be enabled before reset */
989 
990 	dsi_write(msm_host, REG_DSI_RESET, 1);
991 	msleep(DSI_RESET_TOGGLE_DELAY_MS); /* make sure reset happen */
992 	dsi_write(msm_host, REG_DSI_RESET, 0);
993 }
994 
995 static void dsi_op_mode_config(struct msm_dsi_host *msm_host,
996 					bool video_mode, bool enable)
997 {
998 	u32 dsi_ctrl;
999 
1000 	dsi_ctrl = dsi_read(msm_host, REG_DSI_CTRL);
1001 
1002 	if (!enable) {
1003 		dsi_ctrl &= ~(DSI_CTRL_ENABLE | DSI_CTRL_VID_MODE_EN |
1004 				DSI_CTRL_CMD_MODE_EN);
1005 		dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_CMD_MDP_DONE |
1006 					DSI_IRQ_MASK_VIDEO_DONE, 0);
1007 	} else {
1008 		if (video_mode) {
1009 			dsi_ctrl |= DSI_CTRL_VID_MODE_EN;
1010 		} else {		/* command mode */
1011 			dsi_ctrl |= DSI_CTRL_CMD_MODE_EN;
1012 			dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_CMD_MDP_DONE, 1);
1013 		}
1014 		dsi_ctrl |= DSI_CTRL_ENABLE;
1015 	}
1016 
1017 	dsi_write(msm_host, REG_DSI_CTRL, dsi_ctrl);
1018 }
1019 
1020 static void dsi_set_tx_power_mode(int mode, struct msm_dsi_host *msm_host)
1021 {
1022 	u32 data;
1023 
1024 	data = dsi_read(msm_host, REG_DSI_CMD_DMA_CTRL);
1025 
1026 	if (mode == 0)
1027 		data &= ~DSI_CMD_DMA_CTRL_LOW_POWER;
1028 	else
1029 		data |= DSI_CMD_DMA_CTRL_LOW_POWER;
1030 
1031 	dsi_write(msm_host, REG_DSI_CMD_DMA_CTRL, data);
1032 }
1033 
1034 static void dsi_wait4video_done(struct msm_dsi_host *msm_host)
1035 {
1036 	u32 ret = 0;
1037 	struct device *dev = &msm_host->pdev->dev;
1038 
1039 	dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_VIDEO_DONE, 1);
1040 
1041 	reinit_completion(&msm_host->video_comp);
1042 
1043 	ret = wait_for_completion_timeout(&msm_host->video_comp,
1044 			msecs_to_jiffies(70));
1045 
1046 	if (ret == 0)
1047 		DRM_DEV_ERROR(dev, "wait for video done timed out\n");
1048 
1049 	dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_VIDEO_DONE, 0);
1050 }
1051 
1052 static void dsi_wait4video_eng_busy(struct msm_dsi_host *msm_host)
1053 {
1054 	if (!(msm_host->mode_flags & MIPI_DSI_MODE_VIDEO))
1055 		return;
1056 
1057 	if (msm_host->power_on && msm_host->enabled) {
1058 		dsi_wait4video_done(msm_host);
1059 		/* delay 4 ms to skip BLLP */
1060 		usleep_range(2000, 4000);
1061 	}
1062 }
1063 
1064 int dsi_tx_buf_alloc_6g(struct msm_dsi_host *msm_host, int size)
1065 {
1066 	struct drm_device *dev = msm_host->dev;
1067 	struct msm_drm_private *priv = dev->dev_private;
1068 	uint64_t iova;
1069 	u8 *data;
1070 
1071 	data = msm_gem_kernel_new(dev, size, MSM_BO_UNCACHED,
1072 					priv->kms->aspace,
1073 					&msm_host->tx_gem_obj, &iova);
1074 
1075 	if (IS_ERR(data)) {
1076 		msm_host->tx_gem_obj = NULL;
1077 		return PTR_ERR(data);
1078 	}
1079 
1080 	msm_gem_object_set_name(msm_host->tx_gem_obj, "tx_gem");
1081 
1082 	msm_host->tx_size = msm_host->tx_gem_obj->size;
1083 
1084 	return 0;
1085 }
1086 
1087 int dsi_tx_buf_alloc_v2(struct msm_dsi_host *msm_host, int size)
1088 {
1089 	struct drm_device *dev = msm_host->dev;
1090 
1091 	msm_host->tx_buf = dma_alloc_coherent(dev->dev, size,
1092 					&msm_host->tx_buf_paddr, GFP_KERNEL);
1093 	if (!msm_host->tx_buf)
1094 		return -ENOMEM;
1095 
1096 	msm_host->tx_size = size;
1097 
1098 	return 0;
1099 }
1100 
1101 static void dsi_tx_buf_free(struct msm_dsi_host *msm_host)
1102 {
1103 	struct drm_device *dev = msm_host->dev;
1104 	struct msm_drm_private *priv;
1105 
1106 	/*
1107 	 * This is possible if we're tearing down before we've had a chance to
1108 	 * fully initialize. A very real possibility if our probe is deferred,
1109 	 * in which case we'll hit msm_dsi_host_destroy() without having run
1110 	 * through the dsi_tx_buf_alloc().
1111 	 */
1112 	if (!dev)
1113 		return;
1114 
1115 	priv = dev->dev_private;
1116 	if (msm_host->tx_gem_obj) {
1117 		msm_gem_unpin_iova(msm_host->tx_gem_obj, priv->kms->aspace);
1118 		drm_gem_object_put_unlocked(msm_host->tx_gem_obj);
1119 		msm_host->tx_gem_obj = NULL;
1120 	}
1121 
1122 	if (msm_host->tx_buf)
1123 		dma_free_coherent(dev->dev, msm_host->tx_size, msm_host->tx_buf,
1124 			msm_host->tx_buf_paddr);
1125 }
1126 
1127 void *dsi_tx_buf_get_6g(struct msm_dsi_host *msm_host)
1128 {
1129 	return msm_gem_get_vaddr(msm_host->tx_gem_obj);
1130 }
1131 
1132 void *dsi_tx_buf_get_v2(struct msm_dsi_host *msm_host)
1133 {
1134 	return msm_host->tx_buf;
1135 }
1136 
1137 void dsi_tx_buf_put_6g(struct msm_dsi_host *msm_host)
1138 {
1139 	msm_gem_put_vaddr(msm_host->tx_gem_obj);
1140 }
1141 
1142 /*
1143  * prepare cmd buffer to be txed
1144  */
1145 static int dsi_cmd_dma_add(struct msm_dsi_host *msm_host,
1146 			   const struct mipi_dsi_msg *msg)
1147 {
1148 	const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd;
1149 	struct mipi_dsi_packet packet;
1150 	int len;
1151 	int ret;
1152 	u8 *data;
1153 
1154 	ret = mipi_dsi_create_packet(&packet, msg);
1155 	if (ret) {
1156 		pr_err("%s: create packet failed, %d\n", __func__, ret);
1157 		return ret;
1158 	}
1159 	len = (packet.size + 3) & (~0x3);
1160 
1161 	if (len > msm_host->tx_size) {
1162 		pr_err("%s: packet size is too big\n", __func__);
1163 		return -EINVAL;
1164 	}
1165 
1166 	data = cfg_hnd->ops->tx_buf_get(msm_host);
1167 	if (IS_ERR(data)) {
1168 		ret = PTR_ERR(data);
1169 		pr_err("%s: get vaddr failed, %d\n", __func__, ret);
1170 		return ret;
1171 	}
1172 
1173 	/* MSM specific command format in memory */
1174 	data[0] = packet.header[1];
1175 	data[1] = packet.header[2];
1176 	data[2] = packet.header[0];
1177 	data[3] = BIT(7); /* Last packet */
1178 	if (mipi_dsi_packet_format_is_long(msg->type))
1179 		data[3] |= BIT(6);
1180 	if (msg->rx_buf && msg->rx_len)
1181 		data[3] |= BIT(5);
1182 
1183 	/* Long packet */
1184 	if (packet.payload && packet.payload_length)
1185 		memcpy(data + 4, packet.payload, packet.payload_length);
1186 
1187 	/* Append 0xff to the end */
1188 	if (packet.size < len)
1189 		memset(data + packet.size, 0xff, len - packet.size);
1190 
1191 	if (cfg_hnd->ops->tx_buf_put)
1192 		cfg_hnd->ops->tx_buf_put(msm_host);
1193 
1194 	return len;
1195 }
1196 
1197 /*
1198  * dsi_short_read1_resp: 1 parameter
1199  */
1200 static int dsi_short_read1_resp(u8 *buf, const struct mipi_dsi_msg *msg)
1201 {
1202 	u8 *data = msg->rx_buf;
1203 	if (data && (msg->rx_len >= 1)) {
1204 		*data = buf[1]; /* strip out dcs type */
1205 		return 1;
1206 	} else {
1207 		pr_err("%s: read data does not match with rx_buf len %zu\n",
1208 			__func__, msg->rx_len);
1209 		return -EINVAL;
1210 	}
1211 }
1212 
1213 /*
1214  * dsi_short_read2_resp: 2 parameter
1215  */
1216 static int dsi_short_read2_resp(u8 *buf, const struct mipi_dsi_msg *msg)
1217 {
1218 	u8 *data = msg->rx_buf;
1219 	if (data && (msg->rx_len >= 2)) {
1220 		data[0] = buf[1]; /* strip out dcs type */
1221 		data[1] = buf[2];
1222 		return 2;
1223 	} else {
1224 		pr_err("%s: read data does not match with rx_buf len %zu\n",
1225 			__func__, msg->rx_len);
1226 		return -EINVAL;
1227 	}
1228 }
1229 
1230 static int dsi_long_read_resp(u8 *buf, const struct mipi_dsi_msg *msg)
1231 {
1232 	/* strip out 4 byte dcs header */
1233 	if (msg->rx_buf && msg->rx_len)
1234 		memcpy(msg->rx_buf, buf + 4, msg->rx_len);
1235 
1236 	return msg->rx_len;
1237 }
1238 
1239 int dsi_dma_base_get_6g(struct msm_dsi_host *msm_host, uint64_t *dma_base)
1240 {
1241 	struct drm_device *dev = msm_host->dev;
1242 	struct msm_drm_private *priv = dev->dev_private;
1243 
1244 	if (!dma_base)
1245 		return -EINVAL;
1246 
1247 	return msm_gem_get_and_pin_iova(msm_host->tx_gem_obj,
1248 				priv->kms->aspace, dma_base);
1249 }
1250 
1251 int dsi_dma_base_get_v2(struct msm_dsi_host *msm_host, uint64_t *dma_base)
1252 {
1253 	if (!dma_base)
1254 		return -EINVAL;
1255 
1256 	*dma_base = msm_host->tx_buf_paddr;
1257 	return 0;
1258 }
1259 
1260 static int dsi_cmd_dma_tx(struct msm_dsi_host *msm_host, int len)
1261 {
1262 	const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd;
1263 	int ret;
1264 	uint64_t dma_base;
1265 	bool triggered;
1266 
1267 	ret = cfg_hnd->ops->dma_base_get(msm_host, &dma_base);
1268 	if (ret) {
1269 		pr_err("%s: failed to get iova: %d\n", __func__, ret);
1270 		return ret;
1271 	}
1272 
1273 	reinit_completion(&msm_host->dma_comp);
1274 
1275 	dsi_wait4video_eng_busy(msm_host);
1276 
1277 	triggered = msm_dsi_manager_cmd_xfer_trigger(
1278 						msm_host->id, dma_base, len);
1279 	if (triggered) {
1280 		ret = wait_for_completion_timeout(&msm_host->dma_comp,
1281 					msecs_to_jiffies(200));
1282 		DBG("ret=%d", ret);
1283 		if (ret == 0)
1284 			ret = -ETIMEDOUT;
1285 		else
1286 			ret = len;
1287 	} else
1288 		ret = len;
1289 
1290 	return ret;
1291 }
1292 
1293 static int dsi_cmd_dma_rx(struct msm_dsi_host *msm_host,
1294 			u8 *buf, int rx_byte, int pkt_size)
1295 {
1296 	u32 *temp, data;
1297 	int i, j = 0, cnt;
1298 	u32 read_cnt;
1299 	u8 reg[16];
1300 	int repeated_bytes = 0;
1301 	int buf_offset = buf - msm_host->rx_buf;
1302 
1303 	temp = (u32 *)reg;
1304 	cnt = (rx_byte + 3) >> 2;
1305 	if (cnt > 4)
1306 		cnt = 4; /* 4 x 32 bits registers only */
1307 
1308 	if (rx_byte == 4)
1309 		read_cnt = 4;
1310 	else
1311 		read_cnt = pkt_size + 6;
1312 
1313 	/*
1314 	 * In case of multiple reads from the panel, after the first read, there
1315 	 * is possibility that there are some bytes in the payload repeating in
1316 	 * the RDBK_DATA registers. Since we read all the parameters from the
1317 	 * panel right from the first byte for every pass. We need to skip the
1318 	 * repeating bytes and then append the new parameters to the rx buffer.
1319 	 */
1320 	if (read_cnt > 16) {
1321 		int bytes_shifted;
1322 		/* Any data more than 16 bytes will be shifted out.
1323 		 * The temp read buffer should already contain these bytes.
1324 		 * The remaining bytes in read buffer are the repeated bytes.
1325 		 */
1326 		bytes_shifted = read_cnt - 16;
1327 		repeated_bytes = buf_offset - bytes_shifted;
1328 	}
1329 
1330 	for (i = cnt - 1; i >= 0; i--) {
1331 		data = dsi_read(msm_host, REG_DSI_RDBK_DATA(i));
1332 		*temp++ = ntohl(data); /* to host byte order */
1333 		DBG("data = 0x%x and ntohl(data) = 0x%x", data, ntohl(data));
1334 	}
1335 
1336 	for (i = repeated_bytes; i < 16; i++)
1337 		buf[j++] = reg[i];
1338 
1339 	return j;
1340 }
1341 
1342 static int dsi_cmds2buf_tx(struct msm_dsi_host *msm_host,
1343 				const struct mipi_dsi_msg *msg)
1344 {
1345 	int len, ret;
1346 	int bllp_len = msm_host->mode->hdisplay *
1347 			dsi_get_bpp(msm_host->format) / 8;
1348 
1349 	len = dsi_cmd_dma_add(msm_host, msg);
1350 	if (!len) {
1351 		pr_err("%s: failed to add cmd type = 0x%x\n",
1352 			__func__,  msg->type);
1353 		return -EINVAL;
1354 	}
1355 
1356 	/* for video mode, do not send cmds more than
1357 	* one pixel line, since it only transmit it
1358 	* during BLLP.
1359 	*/
1360 	/* TODO: if the command is sent in LP mode, the bit rate is only
1361 	 * half of esc clk rate. In this case, if the video is already
1362 	 * actively streaming, we need to check more carefully if the
1363 	 * command can be fit into one BLLP.
1364 	 */
1365 	if ((msm_host->mode_flags & MIPI_DSI_MODE_VIDEO) && (len > bllp_len)) {
1366 		pr_err("%s: cmd cannot fit into BLLP period, len=%d\n",
1367 			__func__, len);
1368 		return -EINVAL;
1369 	}
1370 
1371 	ret = dsi_cmd_dma_tx(msm_host, len);
1372 	if (ret < len) {
1373 		pr_err("%s: cmd dma tx failed, type=0x%x, data0=0x%x, len=%d\n",
1374 			__func__, msg->type, (*(u8 *)(msg->tx_buf)), len);
1375 		return -ECOMM;
1376 	}
1377 
1378 	return len;
1379 }
1380 
1381 static void dsi_sw_reset_restore(struct msm_dsi_host *msm_host)
1382 {
1383 	u32 data0, data1;
1384 
1385 	data0 = dsi_read(msm_host, REG_DSI_CTRL);
1386 	data1 = data0;
1387 	data1 &= ~DSI_CTRL_ENABLE;
1388 	dsi_write(msm_host, REG_DSI_CTRL, data1);
1389 	/*
1390 	 * dsi controller need to be disabled before
1391 	 * clocks turned on
1392 	 */
1393 	wmb();
1394 
1395 	dsi_write(msm_host, REG_DSI_CLK_CTRL, DSI_CLK_CTRL_ENABLE_CLKS);
1396 	wmb();	/* make sure clocks enabled */
1397 
1398 	/* dsi controller can only be reset while clocks are running */
1399 	dsi_write(msm_host, REG_DSI_RESET, 1);
1400 	msleep(DSI_RESET_TOGGLE_DELAY_MS); /* make sure reset happen */
1401 	dsi_write(msm_host, REG_DSI_RESET, 0);
1402 	wmb();	/* controller out of reset */
1403 	dsi_write(msm_host, REG_DSI_CTRL, data0);
1404 	wmb();	/* make sure dsi controller enabled again */
1405 }
1406 
1407 static void dsi_hpd_worker(struct work_struct *work)
1408 {
1409 	struct msm_dsi_host *msm_host =
1410 		container_of(work, struct msm_dsi_host, hpd_work);
1411 
1412 	drm_helper_hpd_irq_event(msm_host->dev);
1413 }
1414 
1415 static void dsi_err_worker(struct work_struct *work)
1416 {
1417 	struct msm_dsi_host *msm_host =
1418 		container_of(work, struct msm_dsi_host, err_work);
1419 	u32 status = msm_host->err_work_state;
1420 
1421 	pr_err_ratelimited("%s: status=%x\n", __func__, status);
1422 	if (status & DSI_ERR_STATE_MDP_FIFO_UNDERFLOW)
1423 		dsi_sw_reset_restore(msm_host);
1424 
1425 	/* It is safe to clear here because error irq is disabled. */
1426 	msm_host->err_work_state = 0;
1427 
1428 	/* enable dsi error interrupt */
1429 	dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_ERROR, 1);
1430 }
1431 
1432 static void dsi_ack_err_status(struct msm_dsi_host *msm_host)
1433 {
1434 	u32 status;
1435 
1436 	status = dsi_read(msm_host, REG_DSI_ACK_ERR_STATUS);
1437 
1438 	if (status) {
1439 		dsi_write(msm_host, REG_DSI_ACK_ERR_STATUS, status);
1440 		/* Writing of an extra 0 needed to clear error bits */
1441 		dsi_write(msm_host, REG_DSI_ACK_ERR_STATUS, 0);
1442 		msm_host->err_work_state |= DSI_ERR_STATE_ACK;
1443 	}
1444 }
1445 
1446 static void dsi_timeout_status(struct msm_dsi_host *msm_host)
1447 {
1448 	u32 status;
1449 
1450 	status = dsi_read(msm_host, REG_DSI_TIMEOUT_STATUS);
1451 
1452 	if (status) {
1453 		dsi_write(msm_host, REG_DSI_TIMEOUT_STATUS, status);
1454 		msm_host->err_work_state |= DSI_ERR_STATE_TIMEOUT;
1455 	}
1456 }
1457 
1458 static void dsi_dln0_phy_err(struct msm_dsi_host *msm_host)
1459 {
1460 	u32 status;
1461 
1462 	status = dsi_read(msm_host, REG_DSI_DLN0_PHY_ERR);
1463 
1464 	if (status & (DSI_DLN0_PHY_ERR_DLN0_ERR_ESC |
1465 			DSI_DLN0_PHY_ERR_DLN0_ERR_SYNC_ESC |
1466 			DSI_DLN0_PHY_ERR_DLN0_ERR_CONTROL |
1467 			DSI_DLN0_PHY_ERR_DLN0_ERR_CONTENTION_LP0 |
1468 			DSI_DLN0_PHY_ERR_DLN0_ERR_CONTENTION_LP1)) {
1469 		dsi_write(msm_host, REG_DSI_DLN0_PHY_ERR, status);
1470 		msm_host->err_work_state |= DSI_ERR_STATE_DLN0_PHY;
1471 	}
1472 }
1473 
1474 static void dsi_fifo_status(struct msm_dsi_host *msm_host)
1475 {
1476 	u32 status;
1477 
1478 	status = dsi_read(msm_host, REG_DSI_FIFO_STATUS);
1479 
1480 	/* fifo underflow, overflow */
1481 	if (status) {
1482 		dsi_write(msm_host, REG_DSI_FIFO_STATUS, status);
1483 		msm_host->err_work_state |= DSI_ERR_STATE_FIFO;
1484 		if (status & DSI_FIFO_STATUS_CMD_MDP_FIFO_UNDERFLOW)
1485 			msm_host->err_work_state |=
1486 					DSI_ERR_STATE_MDP_FIFO_UNDERFLOW;
1487 	}
1488 }
1489 
1490 static void dsi_status(struct msm_dsi_host *msm_host)
1491 {
1492 	u32 status;
1493 
1494 	status = dsi_read(msm_host, REG_DSI_STATUS0);
1495 
1496 	if (status & DSI_STATUS0_INTERLEAVE_OP_CONTENTION) {
1497 		dsi_write(msm_host, REG_DSI_STATUS0, status);
1498 		msm_host->err_work_state |=
1499 			DSI_ERR_STATE_INTERLEAVE_OP_CONTENTION;
1500 	}
1501 }
1502 
1503 static void dsi_clk_status(struct msm_dsi_host *msm_host)
1504 {
1505 	u32 status;
1506 
1507 	status = dsi_read(msm_host, REG_DSI_CLK_STATUS);
1508 
1509 	if (status & DSI_CLK_STATUS_PLL_UNLOCKED) {
1510 		dsi_write(msm_host, REG_DSI_CLK_STATUS, status);
1511 		msm_host->err_work_state |= DSI_ERR_STATE_PLL_UNLOCKED;
1512 	}
1513 }
1514 
1515 static void dsi_error(struct msm_dsi_host *msm_host)
1516 {
1517 	/* disable dsi error interrupt */
1518 	dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_ERROR, 0);
1519 
1520 	dsi_clk_status(msm_host);
1521 	dsi_fifo_status(msm_host);
1522 	dsi_ack_err_status(msm_host);
1523 	dsi_timeout_status(msm_host);
1524 	dsi_status(msm_host);
1525 	dsi_dln0_phy_err(msm_host);
1526 
1527 	queue_work(msm_host->workqueue, &msm_host->err_work);
1528 }
1529 
1530 static irqreturn_t dsi_host_irq(int irq, void *ptr)
1531 {
1532 	struct msm_dsi_host *msm_host = ptr;
1533 	u32 isr;
1534 	unsigned long flags;
1535 
1536 	if (!msm_host->ctrl_base)
1537 		return IRQ_HANDLED;
1538 
1539 	spin_lock_irqsave(&msm_host->intr_lock, flags);
1540 	isr = dsi_read(msm_host, REG_DSI_INTR_CTRL);
1541 	dsi_write(msm_host, REG_DSI_INTR_CTRL, isr);
1542 	spin_unlock_irqrestore(&msm_host->intr_lock, flags);
1543 
1544 	DBG("isr=0x%x, id=%d", isr, msm_host->id);
1545 
1546 	if (isr & DSI_IRQ_ERROR)
1547 		dsi_error(msm_host);
1548 
1549 	if (isr & DSI_IRQ_VIDEO_DONE)
1550 		complete(&msm_host->video_comp);
1551 
1552 	if (isr & DSI_IRQ_CMD_DMA_DONE)
1553 		complete(&msm_host->dma_comp);
1554 
1555 	return IRQ_HANDLED;
1556 }
1557 
1558 static int dsi_host_init_panel_gpios(struct msm_dsi_host *msm_host,
1559 			struct device *panel_device)
1560 {
1561 	msm_host->disp_en_gpio = devm_gpiod_get_optional(panel_device,
1562 							 "disp-enable",
1563 							 GPIOD_OUT_LOW);
1564 	if (IS_ERR(msm_host->disp_en_gpio)) {
1565 		DBG("cannot get disp-enable-gpios %ld",
1566 				PTR_ERR(msm_host->disp_en_gpio));
1567 		return PTR_ERR(msm_host->disp_en_gpio);
1568 	}
1569 
1570 	msm_host->te_gpio = devm_gpiod_get_optional(panel_device, "disp-te",
1571 								GPIOD_IN);
1572 	if (IS_ERR(msm_host->te_gpio)) {
1573 		DBG("cannot get disp-te-gpios %ld", PTR_ERR(msm_host->te_gpio));
1574 		return PTR_ERR(msm_host->te_gpio);
1575 	}
1576 
1577 	return 0;
1578 }
1579 
1580 static int dsi_host_attach(struct mipi_dsi_host *host,
1581 					struct mipi_dsi_device *dsi)
1582 {
1583 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
1584 	int ret;
1585 
1586 	if (dsi->lanes > msm_host->num_data_lanes)
1587 		return -EINVAL;
1588 
1589 	msm_host->channel = dsi->channel;
1590 	msm_host->lanes = dsi->lanes;
1591 	msm_host->format = dsi->format;
1592 	msm_host->mode_flags = dsi->mode_flags;
1593 
1594 	/* Some gpios defined in panel DT need to be controlled by host */
1595 	ret = dsi_host_init_panel_gpios(msm_host, &dsi->dev);
1596 	if (ret)
1597 		return ret;
1598 
1599 	DBG("id=%d", msm_host->id);
1600 	if (msm_host->dev)
1601 		queue_work(msm_host->workqueue, &msm_host->hpd_work);
1602 
1603 	return 0;
1604 }
1605 
1606 static int dsi_host_detach(struct mipi_dsi_host *host,
1607 					struct mipi_dsi_device *dsi)
1608 {
1609 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
1610 
1611 	msm_host->device_node = NULL;
1612 
1613 	DBG("id=%d", msm_host->id);
1614 	if (msm_host->dev)
1615 		queue_work(msm_host->workqueue, &msm_host->hpd_work);
1616 
1617 	return 0;
1618 }
1619 
1620 static ssize_t dsi_host_transfer(struct mipi_dsi_host *host,
1621 					const struct mipi_dsi_msg *msg)
1622 {
1623 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
1624 	int ret;
1625 
1626 	if (!msg || !msm_host->power_on)
1627 		return -EINVAL;
1628 
1629 	mutex_lock(&msm_host->cmd_mutex);
1630 	ret = msm_dsi_manager_cmd_xfer(msm_host->id, msg);
1631 	mutex_unlock(&msm_host->cmd_mutex);
1632 
1633 	return ret;
1634 }
1635 
1636 static struct mipi_dsi_host_ops dsi_host_ops = {
1637 	.attach = dsi_host_attach,
1638 	.detach = dsi_host_detach,
1639 	.transfer = dsi_host_transfer,
1640 };
1641 
1642 /*
1643  * List of supported physical to logical lane mappings.
1644  * For example, the 2nd entry represents the following mapping:
1645  *
1646  * "3012": Logic 3->Phys 0; Logic 0->Phys 1; Logic 1->Phys 2; Logic 2->Phys 3;
1647  */
1648 static const int supported_data_lane_swaps[][4] = {
1649 	{ 0, 1, 2, 3 },
1650 	{ 3, 0, 1, 2 },
1651 	{ 2, 3, 0, 1 },
1652 	{ 1, 2, 3, 0 },
1653 	{ 0, 3, 2, 1 },
1654 	{ 1, 0, 3, 2 },
1655 	{ 2, 1, 0, 3 },
1656 	{ 3, 2, 1, 0 },
1657 };
1658 
1659 static int dsi_host_parse_lane_data(struct msm_dsi_host *msm_host,
1660 				    struct device_node *ep)
1661 {
1662 	struct device *dev = &msm_host->pdev->dev;
1663 	struct property *prop;
1664 	u32 lane_map[4];
1665 	int ret, i, len, num_lanes;
1666 
1667 	prop = of_find_property(ep, "data-lanes", &len);
1668 	if (!prop) {
1669 		DRM_DEV_DEBUG(dev,
1670 			"failed to find data lane mapping, using default\n");
1671 		return 0;
1672 	}
1673 
1674 	num_lanes = len / sizeof(u32);
1675 
1676 	if (num_lanes < 1 || num_lanes > 4) {
1677 		DRM_DEV_ERROR(dev, "bad number of data lanes\n");
1678 		return -EINVAL;
1679 	}
1680 
1681 	msm_host->num_data_lanes = num_lanes;
1682 
1683 	ret = of_property_read_u32_array(ep, "data-lanes", lane_map,
1684 					 num_lanes);
1685 	if (ret) {
1686 		DRM_DEV_ERROR(dev, "failed to read lane data\n");
1687 		return ret;
1688 	}
1689 
1690 	/*
1691 	 * compare DT specified physical-logical lane mappings with the ones
1692 	 * supported by hardware
1693 	 */
1694 	for (i = 0; i < ARRAY_SIZE(supported_data_lane_swaps); i++) {
1695 		const int *swap = supported_data_lane_swaps[i];
1696 		int j;
1697 
1698 		/*
1699 		 * the data-lanes array we get from DT has a logical->physical
1700 		 * mapping. The "data lane swap" register field represents
1701 		 * supported configurations in a physical->logical mapping.
1702 		 * Translate the DT mapping to what we understand and find a
1703 		 * configuration that works.
1704 		 */
1705 		for (j = 0; j < num_lanes; j++) {
1706 			if (lane_map[j] < 0 || lane_map[j] > 3)
1707 				DRM_DEV_ERROR(dev, "bad physical lane entry %u\n",
1708 					lane_map[j]);
1709 
1710 			if (swap[lane_map[j]] != j)
1711 				break;
1712 		}
1713 
1714 		if (j == num_lanes) {
1715 			msm_host->dlane_swap = i;
1716 			return 0;
1717 		}
1718 	}
1719 
1720 	return -EINVAL;
1721 }
1722 
1723 static int dsi_host_parse_dt(struct msm_dsi_host *msm_host)
1724 {
1725 	struct device *dev = &msm_host->pdev->dev;
1726 	struct device_node *np = dev->of_node;
1727 	struct device_node *endpoint, *device_node;
1728 	int ret = 0;
1729 
1730 	/*
1731 	 * Get the endpoint of the output port of the DSI host. In our case,
1732 	 * this is mapped to port number with reg = 1. Don't return an error if
1733 	 * the remote endpoint isn't defined. It's possible that there is
1734 	 * nothing connected to the dsi output.
1735 	 */
1736 	endpoint = of_graph_get_endpoint_by_regs(np, 1, -1);
1737 	if (!endpoint) {
1738 		DRM_DEV_DEBUG(dev, "%s: no endpoint\n", __func__);
1739 		return 0;
1740 	}
1741 
1742 	ret = dsi_host_parse_lane_data(msm_host, endpoint);
1743 	if (ret) {
1744 		DRM_DEV_ERROR(dev, "%s: invalid lane configuration %d\n",
1745 			__func__, ret);
1746 		ret = -EINVAL;
1747 		goto err;
1748 	}
1749 
1750 	/* Get panel node from the output port's endpoint data */
1751 	device_node = of_graph_get_remote_node(np, 1, 0);
1752 	if (!device_node) {
1753 		DRM_DEV_DEBUG(dev, "%s: no valid device\n", __func__);
1754 		ret = -ENODEV;
1755 		goto err;
1756 	}
1757 
1758 	msm_host->device_node = device_node;
1759 
1760 	if (of_property_read_bool(np, "syscon-sfpb")) {
1761 		msm_host->sfpb = syscon_regmap_lookup_by_phandle(np,
1762 					"syscon-sfpb");
1763 		if (IS_ERR(msm_host->sfpb)) {
1764 			DRM_DEV_ERROR(dev, "%s: failed to get sfpb regmap\n",
1765 				__func__);
1766 			ret = PTR_ERR(msm_host->sfpb);
1767 		}
1768 	}
1769 
1770 	of_node_put(device_node);
1771 
1772 err:
1773 	of_node_put(endpoint);
1774 
1775 	return ret;
1776 }
1777 
1778 static int dsi_host_get_id(struct msm_dsi_host *msm_host)
1779 {
1780 	struct platform_device *pdev = msm_host->pdev;
1781 	const struct msm_dsi_config *cfg = msm_host->cfg_hnd->cfg;
1782 	struct resource *res;
1783 	int i;
1784 
1785 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dsi_ctrl");
1786 	if (!res)
1787 		return -EINVAL;
1788 
1789 	for (i = 0; i < cfg->num_dsi; i++) {
1790 		if (cfg->io_start[i] == res->start)
1791 			return i;
1792 	}
1793 
1794 	return -EINVAL;
1795 }
1796 
1797 int msm_dsi_host_init(struct msm_dsi *msm_dsi)
1798 {
1799 	struct msm_dsi_host *msm_host = NULL;
1800 	struct platform_device *pdev = msm_dsi->pdev;
1801 	int ret;
1802 
1803 	msm_host = devm_kzalloc(&pdev->dev, sizeof(*msm_host), GFP_KERNEL);
1804 	if (!msm_host) {
1805 		pr_err("%s: FAILED: cannot alloc dsi host\n",
1806 		       __func__);
1807 		ret = -ENOMEM;
1808 		goto fail;
1809 	}
1810 
1811 	msm_host->pdev = pdev;
1812 	msm_dsi->host = &msm_host->base;
1813 
1814 	ret = dsi_host_parse_dt(msm_host);
1815 	if (ret) {
1816 		pr_err("%s: failed to parse dt\n", __func__);
1817 		goto fail;
1818 	}
1819 
1820 	msm_host->ctrl_base = msm_ioremap(pdev, "dsi_ctrl", "DSI CTRL");
1821 	if (IS_ERR(msm_host->ctrl_base)) {
1822 		pr_err("%s: unable to map Dsi ctrl base\n", __func__);
1823 		ret = PTR_ERR(msm_host->ctrl_base);
1824 		goto fail;
1825 	}
1826 
1827 	pm_runtime_enable(&pdev->dev);
1828 
1829 	msm_host->cfg_hnd = dsi_get_config(msm_host);
1830 	if (!msm_host->cfg_hnd) {
1831 		ret = -EINVAL;
1832 		pr_err("%s: get config failed\n", __func__);
1833 		goto fail;
1834 	}
1835 
1836 	msm_host->id = dsi_host_get_id(msm_host);
1837 	if (msm_host->id < 0) {
1838 		ret = msm_host->id;
1839 		pr_err("%s: unable to identify DSI host index\n", __func__);
1840 		goto fail;
1841 	}
1842 
1843 	/* fixup base address by io offset */
1844 	msm_host->ctrl_base += msm_host->cfg_hnd->cfg->io_offset;
1845 
1846 	ret = dsi_regulator_init(msm_host);
1847 	if (ret) {
1848 		pr_err("%s: regulator init failed\n", __func__);
1849 		goto fail;
1850 	}
1851 
1852 	ret = dsi_clk_init(msm_host);
1853 	if (ret) {
1854 		pr_err("%s: unable to initialize dsi clks\n", __func__);
1855 		goto fail;
1856 	}
1857 
1858 	msm_host->rx_buf = devm_kzalloc(&pdev->dev, SZ_4K, GFP_KERNEL);
1859 	if (!msm_host->rx_buf) {
1860 		ret = -ENOMEM;
1861 		pr_err("%s: alloc rx temp buf failed\n", __func__);
1862 		goto fail;
1863 	}
1864 
1865 	init_completion(&msm_host->dma_comp);
1866 	init_completion(&msm_host->video_comp);
1867 	mutex_init(&msm_host->dev_mutex);
1868 	mutex_init(&msm_host->cmd_mutex);
1869 	spin_lock_init(&msm_host->intr_lock);
1870 
1871 	/* setup workqueue */
1872 	msm_host->workqueue = alloc_ordered_workqueue("dsi_drm_work", 0);
1873 	INIT_WORK(&msm_host->err_work, dsi_err_worker);
1874 	INIT_WORK(&msm_host->hpd_work, dsi_hpd_worker);
1875 
1876 	msm_dsi->id = msm_host->id;
1877 
1878 	DBG("Dsi Host %d initialized", msm_host->id);
1879 	return 0;
1880 
1881 fail:
1882 	return ret;
1883 }
1884 
1885 void msm_dsi_host_destroy(struct mipi_dsi_host *host)
1886 {
1887 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
1888 
1889 	DBG("");
1890 	dsi_tx_buf_free(msm_host);
1891 	if (msm_host->workqueue) {
1892 		flush_workqueue(msm_host->workqueue);
1893 		destroy_workqueue(msm_host->workqueue);
1894 		msm_host->workqueue = NULL;
1895 	}
1896 
1897 	mutex_destroy(&msm_host->cmd_mutex);
1898 	mutex_destroy(&msm_host->dev_mutex);
1899 
1900 	pm_runtime_disable(&msm_host->pdev->dev);
1901 }
1902 
1903 int msm_dsi_host_modeset_init(struct mipi_dsi_host *host,
1904 					struct drm_device *dev)
1905 {
1906 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
1907 	const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd;
1908 	struct platform_device *pdev = msm_host->pdev;
1909 	int ret;
1910 
1911 	msm_host->irq = irq_of_parse_and_map(pdev->dev.of_node, 0);
1912 	if (msm_host->irq < 0) {
1913 		ret = msm_host->irq;
1914 		DRM_DEV_ERROR(dev->dev, "failed to get irq: %d\n", ret);
1915 		return ret;
1916 	}
1917 
1918 	ret = devm_request_irq(&pdev->dev, msm_host->irq,
1919 			dsi_host_irq, IRQF_TRIGGER_HIGH | IRQF_ONESHOT,
1920 			"dsi_isr", msm_host);
1921 	if (ret < 0) {
1922 		DRM_DEV_ERROR(&pdev->dev, "failed to request IRQ%u: %d\n",
1923 				msm_host->irq, ret);
1924 		return ret;
1925 	}
1926 
1927 	msm_host->dev = dev;
1928 	ret = cfg_hnd->ops->tx_buf_alloc(msm_host, SZ_4K);
1929 	if (ret) {
1930 		pr_err("%s: alloc tx gem obj failed, %d\n", __func__, ret);
1931 		return ret;
1932 	}
1933 
1934 	return 0;
1935 }
1936 
1937 int msm_dsi_host_register(struct mipi_dsi_host *host, bool check_defer)
1938 {
1939 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
1940 	int ret;
1941 
1942 	/* Register mipi dsi host */
1943 	if (!msm_host->registered) {
1944 		host->dev = &msm_host->pdev->dev;
1945 		host->ops = &dsi_host_ops;
1946 		ret = mipi_dsi_host_register(host);
1947 		if (ret)
1948 			return ret;
1949 
1950 		msm_host->registered = true;
1951 
1952 		/* If the panel driver has not been probed after host register,
1953 		 * we should defer the host's probe.
1954 		 * It makes sure panel is connected when fbcon detects
1955 		 * connector status and gets the proper display mode to
1956 		 * create framebuffer.
1957 		 * Don't try to defer if there is nothing connected to the dsi
1958 		 * output
1959 		 */
1960 		if (check_defer && msm_host->device_node) {
1961 			if (IS_ERR(of_drm_find_panel(msm_host->device_node)))
1962 				if (!of_drm_find_bridge(msm_host->device_node))
1963 					return -EPROBE_DEFER;
1964 		}
1965 	}
1966 
1967 	return 0;
1968 }
1969 
1970 void msm_dsi_host_unregister(struct mipi_dsi_host *host)
1971 {
1972 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
1973 
1974 	if (msm_host->registered) {
1975 		mipi_dsi_host_unregister(host);
1976 		host->dev = NULL;
1977 		host->ops = NULL;
1978 		msm_host->registered = false;
1979 	}
1980 }
1981 
1982 int msm_dsi_host_xfer_prepare(struct mipi_dsi_host *host,
1983 				const struct mipi_dsi_msg *msg)
1984 {
1985 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
1986 	const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd;
1987 
1988 	/* TODO: make sure dsi_cmd_mdp is idle.
1989 	 * Since DSI6G v1.2.0, we can set DSI_TRIG_CTRL.BLOCK_DMA_WITHIN_FRAME
1990 	 * to ask H/W to wait until cmd mdp is idle. S/W wait is not needed.
1991 	 * How to handle the old versions? Wait for mdp cmd done?
1992 	 */
1993 
1994 	/*
1995 	 * mdss interrupt is generated in mdp core clock domain
1996 	 * mdp clock need to be enabled to receive dsi interrupt
1997 	 */
1998 	pm_runtime_get_sync(&msm_host->pdev->dev);
1999 	cfg_hnd->ops->link_clk_enable(msm_host);
2000 
2001 	/* TODO: vote for bus bandwidth */
2002 
2003 	if (!(msg->flags & MIPI_DSI_MSG_USE_LPM))
2004 		dsi_set_tx_power_mode(0, msm_host);
2005 
2006 	msm_host->dma_cmd_ctrl_restore = dsi_read(msm_host, REG_DSI_CTRL);
2007 	dsi_write(msm_host, REG_DSI_CTRL,
2008 		msm_host->dma_cmd_ctrl_restore |
2009 		DSI_CTRL_CMD_MODE_EN |
2010 		DSI_CTRL_ENABLE);
2011 	dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_CMD_DMA_DONE, 1);
2012 
2013 	return 0;
2014 }
2015 
2016 void msm_dsi_host_xfer_restore(struct mipi_dsi_host *host,
2017 				const struct mipi_dsi_msg *msg)
2018 {
2019 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2020 	const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd;
2021 
2022 	dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_CMD_DMA_DONE, 0);
2023 	dsi_write(msm_host, REG_DSI_CTRL, msm_host->dma_cmd_ctrl_restore);
2024 
2025 	if (!(msg->flags & MIPI_DSI_MSG_USE_LPM))
2026 		dsi_set_tx_power_mode(1, msm_host);
2027 
2028 	/* TODO: unvote for bus bandwidth */
2029 
2030 	cfg_hnd->ops->link_clk_disable(msm_host);
2031 	pm_runtime_put_autosuspend(&msm_host->pdev->dev);
2032 }
2033 
2034 int msm_dsi_host_cmd_tx(struct mipi_dsi_host *host,
2035 				const struct mipi_dsi_msg *msg)
2036 {
2037 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2038 
2039 	return dsi_cmds2buf_tx(msm_host, msg);
2040 }
2041 
2042 int msm_dsi_host_cmd_rx(struct mipi_dsi_host *host,
2043 				const struct mipi_dsi_msg *msg)
2044 {
2045 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2046 	const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd;
2047 	int data_byte, rx_byte, dlen, end;
2048 	int short_response, diff, pkt_size, ret = 0;
2049 	char cmd;
2050 	int rlen = msg->rx_len;
2051 	u8 *buf;
2052 
2053 	if (rlen <= 2) {
2054 		short_response = 1;
2055 		pkt_size = rlen;
2056 		rx_byte = 4;
2057 	} else {
2058 		short_response = 0;
2059 		data_byte = 10;	/* first read */
2060 		if (rlen < data_byte)
2061 			pkt_size = rlen;
2062 		else
2063 			pkt_size = data_byte;
2064 		rx_byte = data_byte + 6; /* 4 header + 2 crc */
2065 	}
2066 
2067 	buf = msm_host->rx_buf;
2068 	end = 0;
2069 	while (!end) {
2070 		u8 tx[2] = {pkt_size & 0xff, pkt_size >> 8};
2071 		struct mipi_dsi_msg max_pkt_size_msg = {
2072 			.channel = msg->channel,
2073 			.type = MIPI_DSI_SET_MAXIMUM_RETURN_PACKET_SIZE,
2074 			.tx_len = 2,
2075 			.tx_buf = tx,
2076 		};
2077 
2078 		DBG("rlen=%d pkt_size=%d rx_byte=%d",
2079 			rlen, pkt_size, rx_byte);
2080 
2081 		ret = dsi_cmds2buf_tx(msm_host, &max_pkt_size_msg);
2082 		if (ret < 2) {
2083 			pr_err("%s: Set max pkt size failed, %d\n",
2084 				__func__, ret);
2085 			return -EINVAL;
2086 		}
2087 
2088 		if ((cfg_hnd->major == MSM_DSI_VER_MAJOR_6G) &&
2089 			(cfg_hnd->minor >= MSM_DSI_6G_VER_MINOR_V1_1)) {
2090 			/* Clear the RDBK_DATA registers */
2091 			dsi_write(msm_host, REG_DSI_RDBK_DATA_CTRL,
2092 					DSI_RDBK_DATA_CTRL_CLR);
2093 			wmb(); /* make sure the RDBK registers are cleared */
2094 			dsi_write(msm_host, REG_DSI_RDBK_DATA_CTRL, 0);
2095 			wmb(); /* release cleared status before transfer */
2096 		}
2097 
2098 		ret = dsi_cmds2buf_tx(msm_host, msg);
2099 		if (ret < msg->tx_len) {
2100 			pr_err("%s: Read cmd Tx failed, %d\n", __func__, ret);
2101 			return ret;
2102 		}
2103 
2104 		/*
2105 		 * once cmd_dma_done interrupt received,
2106 		 * return data from client is ready and stored
2107 		 * at RDBK_DATA register already
2108 		 * since rx fifo is 16 bytes, dcs header is kept at first loop,
2109 		 * after that dcs header lost during shift into registers
2110 		 */
2111 		dlen = dsi_cmd_dma_rx(msm_host, buf, rx_byte, pkt_size);
2112 
2113 		if (dlen <= 0)
2114 			return 0;
2115 
2116 		if (short_response)
2117 			break;
2118 
2119 		if (rlen <= data_byte) {
2120 			diff = data_byte - rlen;
2121 			end = 1;
2122 		} else {
2123 			diff = 0;
2124 			rlen -= data_byte;
2125 		}
2126 
2127 		if (!end) {
2128 			dlen -= 2; /* 2 crc */
2129 			dlen -= diff;
2130 			buf += dlen;	/* next start position */
2131 			data_byte = 14;	/* NOT first read */
2132 			if (rlen < data_byte)
2133 				pkt_size += rlen;
2134 			else
2135 				pkt_size += data_byte;
2136 			DBG("buf=%p dlen=%d diff=%d", buf, dlen, diff);
2137 		}
2138 	}
2139 
2140 	/*
2141 	 * For single Long read, if the requested rlen < 10,
2142 	 * we need to shift the start position of rx
2143 	 * data buffer to skip the bytes which are not
2144 	 * updated.
2145 	 */
2146 	if (pkt_size < 10 && !short_response)
2147 		buf = msm_host->rx_buf + (10 - rlen);
2148 	else
2149 		buf = msm_host->rx_buf;
2150 
2151 	cmd = buf[0];
2152 	switch (cmd) {
2153 	case MIPI_DSI_RX_ACKNOWLEDGE_AND_ERROR_REPORT:
2154 		pr_err("%s: rx ACK_ERR_PACLAGE\n", __func__);
2155 		ret = 0;
2156 		break;
2157 	case MIPI_DSI_RX_GENERIC_SHORT_READ_RESPONSE_1BYTE:
2158 	case MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_1BYTE:
2159 		ret = dsi_short_read1_resp(buf, msg);
2160 		break;
2161 	case MIPI_DSI_RX_GENERIC_SHORT_READ_RESPONSE_2BYTE:
2162 	case MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_2BYTE:
2163 		ret = dsi_short_read2_resp(buf, msg);
2164 		break;
2165 	case MIPI_DSI_RX_GENERIC_LONG_READ_RESPONSE:
2166 	case MIPI_DSI_RX_DCS_LONG_READ_RESPONSE:
2167 		ret = dsi_long_read_resp(buf, msg);
2168 		break;
2169 	default:
2170 		pr_warn("%s:Invalid response cmd\n", __func__);
2171 		ret = 0;
2172 	}
2173 
2174 	return ret;
2175 }
2176 
2177 void msm_dsi_host_cmd_xfer_commit(struct mipi_dsi_host *host, u32 dma_base,
2178 				  u32 len)
2179 {
2180 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2181 
2182 	dsi_write(msm_host, REG_DSI_DMA_BASE, dma_base);
2183 	dsi_write(msm_host, REG_DSI_DMA_LEN, len);
2184 	dsi_write(msm_host, REG_DSI_TRIG_DMA, 1);
2185 
2186 	/* Make sure trigger happens */
2187 	wmb();
2188 }
2189 
2190 int msm_dsi_host_set_src_pll(struct mipi_dsi_host *host,
2191 	struct msm_dsi_pll *src_pll)
2192 {
2193 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2194 	struct clk *byte_clk_provider, *pixel_clk_provider;
2195 	int ret;
2196 
2197 	ret = msm_dsi_pll_get_clk_provider(src_pll,
2198 				&byte_clk_provider, &pixel_clk_provider);
2199 	if (ret) {
2200 		pr_info("%s: can't get provider from pll, don't set parent\n",
2201 			__func__);
2202 		return 0;
2203 	}
2204 
2205 	ret = clk_set_parent(msm_host->byte_clk_src, byte_clk_provider);
2206 	if (ret) {
2207 		pr_err("%s: can't set parent to byte_clk_src. ret=%d\n",
2208 			__func__, ret);
2209 		goto exit;
2210 	}
2211 
2212 	ret = clk_set_parent(msm_host->pixel_clk_src, pixel_clk_provider);
2213 	if (ret) {
2214 		pr_err("%s: can't set parent to pixel_clk_src. ret=%d\n",
2215 			__func__, ret);
2216 		goto exit;
2217 	}
2218 
2219 	if (msm_host->dsi_clk_src) {
2220 		ret = clk_set_parent(msm_host->dsi_clk_src, pixel_clk_provider);
2221 		if (ret) {
2222 			pr_err("%s: can't set parent to dsi_clk_src. ret=%d\n",
2223 				__func__, ret);
2224 			goto exit;
2225 		}
2226 	}
2227 
2228 	if (msm_host->esc_clk_src) {
2229 		ret = clk_set_parent(msm_host->esc_clk_src, byte_clk_provider);
2230 		if (ret) {
2231 			pr_err("%s: can't set parent to esc_clk_src. ret=%d\n",
2232 				__func__, ret);
2233 			goto exit;
2234 		}
2235 	}
2236 
2237 exit:
2238 	return ret;
2239 }
2240 
2241 void msm_dsi_host_reset_phy(struct mipi_dsi_host *host)
2242 {
2243 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2244 
2245 	DBG("");
2246 	dsi_write(msm_host, REG_DSI_PHY_RESET, DSI_PHY_RESET_RESET);
2247 	/* Make sure fully reset */
2248 	wmb();
2249 	udelay(1000);
2250 	dsi_write(msm_host, REG_DSI_PHY_RESET, 0);
2251 	udelay(100);
2252 }
2253 
2254 void msm_dsi_host_get_phy_clk_req(struct mipi_dsi_host *host,
2255 			struct msm_dsi_phy_clk_request *clk_req,
2256 			bool is_dual_dsi)
2257 {
2258 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2259 	const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd;
2260 	int ret;
2261 
2262 	ret = cfg_hnd->ops->calc_clk_rate(msm_host, is_dual_dsi);
2263 	if (ret) {
2264 		pr_err("%s: unable to calc clk rate, %d\n", __func__, ret);
2265 		return;
2266 	}
2267 
2268 	clk_req->bitclk_rate = msm_host->byte_clk_rate * 8;
2269 	clk_req->escclk_rate = msm_host->esc_clk_rate;
2270 }
2271 
2272 int msm_dsi_host_enable(struct mipi_dsi_host *host)
2273 {
2274 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2275 
2276 	dsi_op_mode_config(msm_host,
2277 		!!(msm_host->mode_flags & MIPI_DSI_MODE_VIDEO), true);
2278 
2279 	/* TODO: clock should be turned off for command mode,
2280 	 * and only turned on before MDP START.
2281 	 * This part of code should be enabled once mdp driver support it.
2282 	 */
2283 	/* if (msm_panel->mode == MSM_DSI_CMD_MODE) {
2284 	 *	dsi_link_clk_disable(msm_host);
2285 	 *	pm_runtime_put_autosuspend(&msm_host->pdev->dev);
2286 	 * }
2287 	 */
2288 	msm_host->enabled = true;
2289 	return 0;
2290 }
2291 
2292 int msm_dsi_host_disable(struct mipi_dsi_host *host)
2293 {
2294 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2295 
2296 	msm_host->enabled = false;
2297 	dsi_op_mode_config(msm_host,
2298 		!!(msm_host->mode_flags & MIPI_DSI_MODE_VIDEO), false);
2299 
2300 	/* Since we have disabled INTF, the video engine won't stop so that
2301 	 * the cmd engine will be blocked.
2302 	 * Reset to disable video engine so that we can send off cmd.
2303 	 */
2304 	dsi_sw_reset(msm_host);
2305 
2306 	return 0;
2307 }
2308 
2309 static void msm_dsi_sfpb_config(struct msm_dsi_host *msm_host, bool enable)
2310 {
2311 	enum sfpb_ahb_arb_master_port_en en;
2312 
2313 	if (!msm_host->sfpb)
2314 		return;
2315 
2316 	en = enable ? SFPB_MASTER_PORT_ENABLE : SFPB_MASTER_PORT_DISABLE;
2317 
2318 	regmap_update_bits(msm_host->sfpb, REG_SFPB_GPREG,
2319 			SFPB_GPREG_MASTER_PORT_EN__MASK,
2320 			SFPB_GPREG_MASTER_PORT_EN(en));
2321 }
2322 
2323 int msm_dsi_host_power_on(struct mipi_dsi_host *host,
2324 			struct msm_dsi_phy_shared_timings *phy_shared_timings,
2325 			bool is_dual_dsi)
2326 {
2327 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2328 	const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd;
2329 	int ret = 0;
2330 
2331 	mutex_lock(&msm_host->dev_mutex);
2332 	if (msm_host->power_on) {
2333 		DBG("dsi host already on");
2334 		goto unlock_ret;
2335 	}
2336 
2337 	msm_dsi_sfpb_config(msm_host, true);
2338 
2339 	ret = dsi_host_regulator_enable(msm_host);
2340 	if (ret) {
2341 		pr_err("%s:Failed to enable vregs.ret=%d\n",
2342 			__func__, ret);
2343 		goto unlock_ret;
2344 	}
2345 
2346 	pm_runtime_get_sync(&msm_host->pdev->dev);
2347 	ret = cfg_hnd->ops->link_clk_enable(msm_host);
2348 	if (ret) {
2349 		pr_err("%s: failed to enable link clocks. ret=%d\n",
2350 		       __func__, ret);
2351 		goto fail_disable_reg;
2352 	}
2353 
2354 	ret = pinctrl_pm_select_default_state(&msm_host->pdev->dev);
2355 	if (ret) {
2356 		pr_err("%s: failed to set pinctrl default state, %d\n",
2357 			__func__, ret);
2358 		goto fail_disable_clk;
2359 	}
2360 
2361 	dsi_timing_setup(msm_host, is_dual_dsi);
2362 	dsi_sw_reset(msm_host);
2363 	dsi_ctrl_config(msm_host, true, phy_shared_timings);
2364 
2365 	if (msm_host->disp_en_gpio)
2366 		gpiod_set_value(msm_host->disp_en_gpio, 1);
2367 
2368 	msm_host->power_on = true;
2369 	mutex_unlock(&msm_host->dev_mutex);
2370 
2371 	return 0;
2372 
2373 fail_disable_clk:
2374 	cfg_hnd->ops->link_clk_disable(msm_host);
2375 	pm_runtime_put_autosuspend(&msm_host->pdev->dev);
2376 fail_disable_reg:
2377 	dsi_host_regulator_disable(msm_host);
2378 unlock_ret:
2379 	mutex_unlock(&msm_host->dev_mutex);
2380 	return ret;
2381 }
2382 
2383 int msm_dsi_host_power_off(struct mipi_dsi_host *host)
2384 {
2385 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2386 	const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd;
2387 
2388 	mutex_lock(&msm_host->dev_mutex);
2389 	if (!msm_host->power_on) {
2390 		DBG("dsi host already off");
2391 		goto unlock_ret;
2392 	}
2393 
2394 	dsi_ctrl_config(msm_host, false, NULL);
2395 
2396 	if (msm_host->disp_en_gpio)
2397 		gpiod_set_value(msm_host->disp_en_gpio, 0);
2398 
2399 	pinctrl_pm_select_sleep_state(&msm_host->pdev->dev);
2400 
2401 	cfg_hnd->ops->link_clk_disable(msm_host);
2402 	pm_runtime_put_autosuspend(&msm_host->pdev->dev);
2403 
2404 	dsi_host_regulator_disable(msm_host);
2405 
2406 	msm_dsi_sfpb_config(msm_host, false);
2407 
2408 	DBG("-");
2409 
2410 	msm_host->power_on = false;
2411 
2412 unlock_ret:
2413 	mutex_unlock(&msm_host->dev_mutex);
2414 	return 0;
2415 }
2416 
2417 int msm_dsi_host_set_display_mode(struct mipi_dsi_host *host,
2418 				  const struct drm_display_mode *mode)
2419 {
2420 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2421 
2422 	if (msm_host->mode) {
2423 		drm_mode_destroy(msm_host->dev, msm_host->mode);
2424 		msm_host->mode = NULL;
2425 	}
2426 
2427 	msm_host->mode = drm_mode_duplicate(msm_host->dev, mode);
2428 	if (!msm_host->mode) {
2429 		pr_err("%s: cannot duplicate mode\n", __func__);
2430 		return -ENOMEM;
2431 	}
2432 
2433 	return 0;
2434 }
2435 
2436 struct drm_panel *msm_dsi_host_get_panel(struct mipi_dsi_host *host)
2437 {
2438 	return of_drm_find_panel(to_msm_dsi_host(host)->device_node);
2439 }
2440 
2441 unsigned long msm_dsi_host_get_mode_flags(struct mipi_dsi_host *host)
2442 {
2443 	return to_msm_dsi_host(host)->mode_flags;
2444 }
2445 
2446 struct drm_bridge *msm_dsi_host_get_bridge(struct mipi_dsi_host *host)
2447 {
2448 	struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
2449 
2450 	return of_drm_find_bridge(msm_host->device_node);
2451 }
2452