1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2015, The Linux Foundation. All rights reserved. 4 */ 5 6 #include <linux/clk.h> 7 #include <linux/delay.h> 8 #include <linux/dma-mapping.h> 9 #include <linux/err.h> 10 #include <linux/gpio/consumer.h> 11 #include <linux/interrupt.h> 12 #include <linux/mfd/syscon.h> 13 #include <linux/of.h> 14 #include <linux/of_graph.h> 15 #include <linux/of_irq.h> 16 #include <linux/pinctrl/consumer.h> 17 #include <linux/pm_opp.h> 18 #include <linux/regmap.h> 19 #include <linux/regulator/consumer.h> 20 #include <linux/spinlock.h> 21 22 #include <video/mipi_display.h> 23 24 #include <drm/display/drm_dsc_helper.h> 25 #include <drm/drm_of.h> 26 27 #include "dsi.h" 28 #include "dsi.xml.h" 29 #include "sfpb.xml.h" 30 #include "dsi_cfg.h" 31 #include "msm_dsc_helper.h" 32 #include "msm_kms.h" 33 #include "msm_gem.h" 34 #include "phy/dsi_phy.h" 35 36 #define DSI_RESET_TOGGLE_DELAY_MS 20 37 38 static int dsi_populate_dsc_params(struct msm_dsi_host *msm_host, struct drm_dsc_config *dsc); 39 40 static int dsi_get_version(const void __iomem *base, u32 *major, u32 *minor) 41 { 42 u32 ver; 43 44 if (!major || !minor) 45 return -EINVAL; 46 47 /* 48 * From DSI6G(v3), addition of a 6G_HW_VERSION register at offset 0 49 * makes all other registers 4-byte shifted down. 50 * 51 * In order to identify between DSI6G(v3) and beyond, and DSIv2 and 52 * older, we read the DSI_VERSION register without any shift(offset 53 * 0x1f0). In the case of DSIv2, this hast to be a non-zero value. In 54 * the case of DSI6G, this has to be zero (the offset points to a 55 * scratch register which we never touch) 56 */ 57 58 ver = msm_readl(base + REG_DSI_VERSION); 59 if (ver) { 60 /* older dsi host, there is no register shift */ 61 ver = FIELD(ver, DSI_VERSION_MAJOR); 62 if (ver <= MSM_DSI_VER_MAJOR_V2) { 63 /* old versions */ 64 *major = ver; 65 *minor = 0; 66 return 0; 67 } else { 68 return -EINVAL; 69 } 70 } else { 71 /* 72 * newer host, offset 0 has 6G_HW_VERSION, the rest of the 73 * registers are shifted down, read DSI_VERSION again with 74 * the shifted offset 75 */ 76 ver = msm_readl(base + DSI_6G_REG_SHIFT + REG_DSI_VERSION); 77 ver = FIELD(ver, DSI_VERSION_MAJOR); 78 if (ver == MSM_DSI_VER_MAJOR_6G) { 79 /* 6G version */ 80 *major = ver; 81 *minor = msm_readl(base + REG_DSI_6G_HW_VERSION); 82 return 0; 83 } else { 84 return -EINVAL; 85 } 86 } 87 } 88 89 #define DSI_ERR_STATE_ACK 0x0000 90 #define DSI_ERR_STATE_TIMEOUT 0x0001 91 #define DSI_ERR_STATE_DLN0_PHY 0x0002 92 #define DSI_ERR_STATE_FIFO 0x0004 93 #define DSI_ERR_STATE_MDP_FIFO_UNDERFLOW 0x0008 94 #define DSI_ERR_STATE_INTERLEAVE_OP_CONTENTION 0x0010 95 #define DSI_ERR_STATE_PLL_UNLOCKED 0x0020 96 97 #define DSI_CLK_CTRL_ENABLE_CLKS \ 98 (DSI_CLK_CTRL_AHBS_HCLK_ON | DSI_CLK_CTRL_AHBM_SCLK_ON | \ 99 DSI_CLK_CTRL_PCLK_ON | DSI_CLK_CTRL_DSICLK_ON | \ 100 DSI_CLK_CTRL_BYTECLK_ON | DSI_CLK_CTRL_ESCCLK_ON | \ 101 DSI_CLK_CTRL_FORCE_ON_DYN_AHBM_HCLK) 102 103 struct msm_dsi_host { 104 struct mipi_dsi_host base; 105 106 struct platform_device *pdev; 107 struct drm_device *dev; 108 109 int id; 110 111 void __iomem *ctrl_base; 112 phys_addr_t ctrl_size; 113 struct regulator_bulk_data *supplies; 114 115 int num_bus_clks; 116 struct clk_bulk_data bus_clks[DSI_BUS_CLK_MAX]; 117 118 struct clk *byte_clk; 119 struct clk *esc_clk; 120 struct clk *pixel_clk; 121 struct clk *byte_intf_clk; 122 123 unsigned long byte_clk_rate; 124 unsigned long byte_intf_clk_rate; 125 unsigned long pixel_clk_rate; 126 unsigned long esc_clk_rate; 127 128 /* DSI v2 specific clocks */ 129 struct clk *src_clk; 130 131 unsigned long src_clk_rate; 132 133 struct gpio_desc *disp_en_gpio; 134 struct gpio_desc *te_gpio; 135 136 const struct msm_dsi_cfg_handler *cfg_hnd; 137 138 struct completion dma_comp; 139 struct completion video_comp; 140 struct mutex dev_mutex; 141 struct mutex cmd_mutex; 142 spinlock_t intr_lock; /* Protect interrupt ctrl register */ 143 144 u32 err_work_state; 145 struct work_struct err_work; 146 struct workqueue_struct *workqueue; 147 148 /* DSI 6G TX buffer*/ 149 struct drm_gem_object *tx_gem_obj; 150 struct msm_gem_address_space *aspace; 151 152 /* DSI v2 TX buffer */ 153 void *tx_buf; 154 dma_addr_t tx_buf_paddr; 155 156 int tx_size; 157 158 u8 *rx_buf; 159 160 struct regmap *sfpb; 161 162 struct drm_display_mode *mode; 163 struct drm_dsc_config *dsc; 164 165 /* connected device info */ 166 unsigned int channel; 167 unsigned int lanes; 168 enum mipi_dsi_pixel_format format; 169 unsigned long mode_flags; 170 171 /* lane data parsed via DT */ 172 int dlane_swap; 173 int num_data_lanes; 174 175 /* from phy DT */ 176 bool cphy_mode; 177 178 u32 dma_cmd_ctrl_restore; 179 180 bool registered; 181 bool power_on; 182 bool enabled; 183 int irq; 184 }; 185 186 static u32 dsi_get_bpp(const enum mipi_dsi_pixel_format fmt) 187 { 188 switch (fmt) { 189 case MIPI_DSI_FMT_RGB565: return 16; 190 case MIPI_DSI_FMT_RGB666_PACKED: return 18; 191 case MIPI_DSI_FMT_RGB666: 192 case MIPI_DSI_FMT_RGB888: 193 default: return 24; 194 } 195 } 196 197 static inline u32 dsi_read(struct msm_dsi_host *msm_host, u32 reg) 198 { 199 return msm_readl(msm_host->ctrl_base + reg); 200 } 201 static inline void dsi_write(struct msm_dsi_host *msm_host, u32 reg, u32 data) 202 { 203 msm_writel(data, msm_host->ctrl_base + reg); 204 } 205 206 static const struct msm_dsi_cfg_handler *dsi_get_config( 207 struct msm_dsi_host *msm_host) 208 { 209 const struct msm_dsi_cfg_handler *cfg_hnd = NULL; 210 struct device *dev = &msm_host->pdev->dev; 211 struct clk *ahb_clk; 212 int ret; 213 u32 major = 0, minor = 0; 214 215 ahb_clk = msm_clk_get(msm_host->pdev, "iface"); 216 if (IS_ERR(ahb_clk)) { 217 pr_err("%s: cannot get interface clock\n", __func__); 218 goto exit; 219 } 220 221 pm_runtime_get_sync(dev); 222 223 ret = clk_prepare_enable(ahb_clk); 224 if (ret) { 225 pr_err("%s: unable to enable ahb_clk\n", __func__); 226 goto runtime_put; 227 } 228 229 ret = dsi_get_version(msm_host->ctrl_base, &major, &minor); 230 if (ret) { 231 pr_err("%s: Invalid version\n", __func__); 232 goto disable_clks; 233 } 234 235 cfg_hnd = msm_dsi_cfg_get(major, minor); 236 237 DBG("%s: Version %x:%x\n", __func__, major, minor); 238 239 disable_clks: 240 clk_disable_unprepare(ahb_clk); 241 runtime_put: 242 pm_runtime_put_sync(dev); 243 exit: 244 return cfg_hnd; 245 } 246 247 static inline struct msm_dsi_host *to_msm_dsi_host(struct mipi_dsi_host *host) 248 { 249 return container_of(host, struct msm_dsi_host, base); 250 } 251 252 int dsi_clk_init_v2(struct msm_dsi_host *msm_host) 253 { 254 struct platform_device *pdev = msm_host->pdev; 255 int ret = 0; 256 257 msm_host->src_clk = msm_clk_get(pdev, "src"); 258 259 if (IS_ERR(msm_host->src_clk)) { 260 ret = PTR_ERR(msm_host->src_clk); 261 pr_err("%s: can't find src clock. ret=%d\n", 262 __func__, ret); 263 msm_host->src_clk = NULL; 264 return ret; 265 } 266 267 return ret; 268 } 269 270 int dsi_clk_init_6g_v2(struct msm_dsi_host *msm_host) 271 { 272 struct platform_device *pdev = msm_host->pdev; 273 int ret = 0; 274 275 msm_host->byte_intf_clk = msm_clk_get(pdev, "byte_intf"); 276 if (IS_ERR(msm_host->byte_intf_clk)) { 277 ret = PTR_ERR(msm_host->byte_intf_clk); 278 pr_err("%s: can't find byte_intf clock. ret=%d\n", 279 __func__, ret); 280 } 281 282 return ret; 283 } 284 285 static int dsi_clk_init(struct msm_dsi_host *msm_host) 286 { 287 struct platform_device *pdev = msm_host->pdev; 288 const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd; 289 const struct msm_dsi_config *cfg = cfg_hnd->cfg; 290 int i, ret = 0; 291 292 /* get bus clocks */ 293 for (i = 0; i < cfg->num_bus_clks; i++) 294 msm_host->bus_clks[i].id = cfg->bus_clk_names[i]; 295 msm_host->num_bus_clks = cfg->num_bus_clks; 296 297 ret = devm_clk_bulk_get(&pdev->dev, msm_host->num_bus_clks, msm_host->bus_clks); 298 if (ret < 0) { 299 dev_err(&pdev->dev, "Unable to get clocks, ret = %d\n", ret); 300 goto exit; 301 } 302 303 /* get link and source clocks */ 304 msm_host->byte_clk = msm_clk_get(pdev, "byte"); 305 if (IS_ERR(msm_host->byte_clk)) { 306 ret = PTR_ERR(msm_host->byte_clk); 307 pr_err("%s: can't find dsi_byte clock. ret=%d\n", 308 __func__, ret); 309 msm_host->byte_clk = NULL; 310 goto exit; 311 } 312 313 msm_host->pixel_clk = msm_clk_get(pdev, "pixel"); 314 if (IS_ERR(msm_host->pixel_clk)) { 315 ret = PTR_ERR(msm_host->pixel_clk); 316 pr_err("%s: can't find dsi_pixel clock. ret=%d\n", 317 __func__, ret); 318 msm_host->pixel_clk = NULL; 319 goto exit; 320 } 321 322 msm_host->esc_clk = msm_clk_get(pdev, "core"); 323 if (IS_ERR(msm_host->esc_clk)) { 324 ret = PTR_ERR(msm_host->esc_clk); 325 pr_err("%s: can't find dsi_esc clock. ret=%d\n", 326 __func__, ret); 327 msm_host->esc_clk = NULL; 328 goto exit; 329 } 330 331 if (cfg_hnd->ops->clk_init_ver) 332 ret = cfg_hnd->ops->clk_init_ver(msm_host); 333 exit: 334 return ret; 335 } 336 337 int msm_dsi_runtime_suspend(struct device *dev) 338 { 339 struct platform_device *pdev = to_platform_device(dev); 340 struct msm_dsi *msm_dsi = platform_get_drvdata(pdev); 341 struct mipi_dsi_host *host = msm_dsi->host; 342 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 343 344 if (!msm_host->cfg_hnd) 345 return 0; 346 347 clk_bulk_disable_unprepare(msm_host->num_bus_clks, msm_host->bus_clks); 348 349 return 0; 350 } 351 352 int msm_dsi_runtime_resume(struct device *dev) 353 { 354 struct platform_device *pdev = to_platform_device(dev); 355 struct msm_dsi *msm_dsi = platform_get_drvdata(pdev); 356 struct mipi_dsi_host *host = msm_dsi->host; 357 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 358 359 if (!msm_host->cfg_hnd) 360 return 0; 361 362 return clk_bulk_prepare_enable(msm_host->num_bus_clks, msm_host->bus_clks); 363 } 364 365 int dsi_link_clk_set_rate_6g(struct msm_dsi_host *msm_host) 366 { 367 int ret; 368 369 DBG("Set clk rates: pclk=%d, byteclk=%lu", 370 msm_host->mode->clock, msm_host->byte_clk_rate); 371 372 ret = dev_pm_opp_set_rate(&msm_host->pdev->dev, 373 msm_host->byte_clk_rate); 374 if (ret) { 375 pr_err("%s: dev_pm_opp_set_rate failed %d\n", __func__, ret); 376 return ret; 377 } 378 379 ret = clk_set_rate(msm_host->pixel_clk, msm_host->pixel_clk_rate); 380 if (ret) { 381 pr_err("%s: Failed to set rate pixel clk, %d\n", __func__, ret); 382 return ret; 383 } 384 385 if (msm_host->byte_intf_clk) { 386 ret = clk_set_rate(msm_host->byte_intf_clk, msm_host->byte_intf_clk_rate); 387 if (ret) { 388 pr_err("%s: Failed to set rate byte intf clk, %d\n", 389 __func__, ret); 390 return ret; 391 } 392 } 393 394 return 0; 395 } 396 397 398 int dsi_link_clk_enable_6g(struct msm_dsi_host *msm_host) 399 { 400 int ret; 401 402 ret = clk_prepare_enable(msm_host->esc_clk); 403 if (ret) { 404 pr_err("%s: Failed to enable dsi esc clk\n", __func__); 405 goto error; 406 } 407 408 ret = clk_prepare_enable(msm_host->byte_clk); 409 if (ret) { 410 pr_err("%s: Failed to enable dsi byte clk\n", __func__); 411 goto byte_clk_err; 412 } 413 414 ret = clk_prepare_enable(msm_host->pixel_clk); 415 if (ret) { 416 pr_err("%s: Failed to enable dsi pixel clk\n", __func__); 417 goto pixel_clk_err; 418 } 419 420 ret = clk_prepare_enable(msm_host->byte_intf_clk); 421 if (ret) { 422 pr_err("%s: Failed to enable byte intf clk\n", 423 __func__); 424 goto byte_intf_clk_err; 425 } 426 427 return 0; 428 429 byte_intf_clk_err: 430 clk_disable_unprepare(msm_host->pixel_clk); 431 pixel_clk_err: 432 clk_disable_unprepare(msm_host->byte_clk); 433 byte_clk_err: 434 clk_disable_unprepare(msm_host->esc_clk); 435 error: 436 return ret; 437 } 438 439 int dsi_link_clk_set_rate_v2(struct msm_dsi_host *msm_host) 440 { 441 int ret; 442 443 DBG("Set clk rates: pclk=%d, byteclk=%lu, esc_clk=%lu, dsi_src_clk=%lu", 444 msm_host->mode->clock, msm_host->byte_clk_rate, 445 msm_host->esc_clk_rate, msm_host->src_clk_rate); 446 447 ret = clk_set_rate(msm_host->byte_clk, msm_host->byte_clk_rate); 448 if (ret) { 449 pr_err("%s: Failed to set rate byte clk, %d\n", __func__, ret); 450 return ret; 451 } 452 453 ret = clk_set_rate(msm_host->esc_clk, msm_host->esc_clk_rate); 454 if (ret) { 455 pr_err("%s: Failed to set rate esc clk, %d\n", __func__, ret); 456 return ret; 457 } 458 459 ret = clk_set_rate(msm_host->src_clk, msm_host->src_clk_rate); 460 if (ret) { 461 pr_err("%s: Failed to set rate src clk, %d\n", __func__, ret); 462 return ret; 463 } 464 465 ret = clk_set_rate(msm_host->pixel_clk, msm_host->pixel_clk_rate); 466 if (ret) { 467 pr_err("%s: Failed to set rate pixel clk, %d\n", __func__, ret); 468 return ret; 469 } 470 471 return 0; 472 } 473 474 int dsi_link_clk_enable_v2(struct msm_dsi_host *msm_host) 475 { 476 int ret; 477 478 ret = clk_prepare_enable(msm_host->byte_clk); 479 if (ret) { 480 pr_err("%s: Failed to enable dsi byte clk\n", __func__); 481 goto error; 482 } 483 484 ret = clk_prepare_enable(msm_host->esc_clk); 485 if (ret) { 486 pr_err("%s: Failed to enable dsi esc clk\n", __func__); 487 goto esc_clk_err; 488 } 489 490 ret = clk_prepare_enable(msm_host->src_clk); 491 if (ret) { 492 pr_err("%s: Failed to enable dsi src clk\n", __func__); 493 goto src_clk_err; 494 } 495 496 ret = clk_prepare_enable(msm_host->pixel_clk); 497 if (ret) { 498 pr_err("%s: Failed to enable dsi pixel clk\n", __func__); 499 goto pixel_clk_err; 500 } 501 502 return 0; 503 504 pixel_clk_err: 505 clk_disable_unprepare(msm_host->src_clk); 506 src_clk_err: 507 clk_disable_unprepare(msm_host->esc_clk); 508 esc_clk_err: 509 clk_disable_unprepare(msm_host->byte_clk); 510 error: 511 return ret; 512 } 513 514 void dsi_link_clk_disable_6g(struct msm_dsi_host *msm_host) 515 { 516 /* Drop the performance state vote */ 517 dev_pm_opp_set_rate(&msm_host->pdev->dev, 0); 518 clk_disable_unprepare(msm_host->esc_clk); 519 clk_disable_unprepare(msm_host->pixel_clk); 520 clk_disable_unprepare(msm_host->byte_intf_clk); 521 clk_disable_unprepare(msm_host->byte_clk); 522 } 523 524 void dsi_link_clk_disable_v2(struct msm_dsi_host *msm_host) 525 { 526 clk_disable_unprepare(msm_host->pixel_clk); 527 clk_disable_unprepare(msm_host->src_clk); 528 clk_disable_unprepare(msm_host->esc_clk); 529 clk_disable_unprepare(msm_host->byte_clk); 530 } 531 532 static unsigned long dsi_adjust_pclk_for_compression(const struct drm_display_mode *mode, 533 const struct drm_dsc_config *dsc) 534 { 535 int new_hdisplay = DIV_ROUND_UP(mode->hdisplay * drm_dsc_get_bpp_int(dsc), 536 dsc->bits_per_component * 3); 537 538 int new_htotal = mode->htotal - mode->hdisplay + new_hdisplay; 539 540 return new_htotal * mode->vtotal * drm_mode_vrefresh(mode); 541 } 542 543 static unsigned long dsi_get_pclk_rate(const struct drm_display_mode *mode, 544 const struct drm_dsc_config *dsc, bool is_bonded_dsi) 545 { 546 unsigned long pclk_rate; 547 548 pclk_rate = mode->clock * 1000; 549 550 if (dsc) 551 pclk_rate = dsi_adjust_pclk_for_compression(mode, dsc); 552 553 /* 554 * For bonded DSI mode, the current DRM mode has the complete width of the 555 * panel. Since, the complete panel is driven by two DSI controllers, 556 * the clock rates have to be split between the two dsi controllers. 557 * Adjust the byte and pixel clock rates for each dsi host accordingly. 558 */ 559 if (is_bonded_dsi) 560 pclk_rate /= 2; 561 562 return pclk_rate; 563 } 564 565 unsigned long dsi_byte_clk_get_rate(struct mipi_dsi_host *host, bool is_bonded_dsi, 566 const struct drm_display_mode *mode) 567 { 568 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 569 u8 lanes = msm_host->lanes; 570 u32 bpp = dsi_get_bpp(msm_host->format); 571 unsigned long pclk_rate = dsi_get_pclk_rate(mode, msm_host->dsc, is_bonded_dsi); 572 unsigned long pclk_bpp; 573 574 if (lanes == 0) { 575 pr_err("%s: forcing mdss_dsi lanes to 1\n", __func__); 576 lanes = 1; 577 } 578 579 /* CPHY "byte_clk" is in units of 16 bits */ 580 if (msm_host->cphy_mode) 581 pclk_bpp = mult_frac(pclk_rate, bpp, 16 * lanes); 582 else 583 pclk_bpp = mult_frac(pclk_rate, bpp, 8 * lanes); 584 585 return pclk_bpp; 586 } 587 588 static void dsi_calc_pclk(struct msm_dsi_host *msm_host, bool is_bonded_dsi) 589 { 590 msm_host->pixel_clk_rate = dsi_get_pclk_rate(msm_host->mode, msm_host->dsc, is_bonded_dsi); 591 msm_host->byte_clk_rate = dsi_byte_clk_get_rate(&msm_host->base, is_bonded_dsi, 592 msm_host->mode); 593 594 DBG("pclk=%lu, bclk=%lu", msm_host->pixel_clk_rate, 595 msm_host->byte_clk_rate); 596 597 } 598 599 int dsi_calc_clk_rate_6g(struct msm_dsi_host *msm_host, bool is_bonded_dsi) 600 { 601 if (!msm_host->mode) { 602 pr_err("%s: mode not set\n", __func__); 603 return -EINVAL; 604 } 605 606 dsi_calc_pclk(msm_host, is_bonded_dsi); 607 msm_host->esc_clk_rate = clk_get_rate(msm_host->esc_clk); 608 return 0; 609 } 610 611 int dsi_calc_clk_rate_v2(struct msm_dsi_host *msm_host, bool is_bonded_dsi) 612 { 613 u32 bpp = dsi_get_bpp(msm_host->format); 614 unsigned int esc_mhz, esc_div; 615 unsigned long byte_mhz; 616 617 dsi_calc_pclk(msm_host, is_bonded_dsi); 618 619 msm_host->src_clk_rate = mult_frac(msm_host->pixel_clk_rate, bpp, 8); 620 621 /* 622 * esc clock is byte clock followed by a 4 bit divider, 623 * we need to find an escape clock frequency within the 624 * mipi DSI spec range within the maximum divider limit 625 * We iterate here between an escape clock frequencey 626 * between 20 Mhz to 5 Mhz and pick up the first one 627 * that can be supported by our divider 628 */ 629 630 byte_mhz = msm_host->byte_clk_rate / 1000000; 631 632 for (esc_mhz = 20; esc_mhz >= 5; esc_mhz--) { 633 esc_div = DIV_ROUND_UP(byte_mhz, esc_mhz); 634 635 /* 636 * TODO: Ideally, we shouldn't know what sort of divider 637 * is available in mmss_cc, we're just assuming that 638 * it'll always be a 4 bit divider. Need to come up with 639 * a better way here. 640 */ 641 if (esc_div >= 1 && esc_div <= 16) 642 break; 643 } 644 645 if (esc_mhz < 5) 646 return -EINVAL; 647 648 msm_host->esc_clk_rate = msm_host->byte_clk_rate / esc_div; 649 650 DBG("esc=%lu, src=%lu", msm_host->esc_clk_rate, 651 msm_host->src_clk_rate); 652 653 return 0; 654 } 655 656 static void dsi_intr_ctrl(struct msm_dsi_host *msm_host, u32 mask, int enable) 657 { 658 u32 intr; 659 unsigned long flags; 660 661 spin_lock_irqsave(&msm_host->intr_lock, flags); 662 intr = dsi_read(msm_host, REG_DSI_INTR_CTRL); 663 664 if (enable) 665 intr |= mask; 666 else 667 intr &= ~mask; 668 669 DBG("intr=%x enable=%d", intr, enable); 670 671 dsi_write(msm_host, REG_DSI_INTR_CTRL, intr); 672 spin_unlock_irqrestore(&msm_host->intr_lock, flags); 673 } 674 675 static inline enum dsi_traffic_mode dsi_get_traffic_mode(const u32 mode_flags) 676 { 677 if (mode_flags & MIPI_DSI_MODE_VIDEO_BURST) 678 return BURST_MODE; 679 else if (mode_flags & MIPI_DSI_MODE_VIDEO_SYNC_PULSE) 680 return NON_BURST_SYNCH_PULSE; 681 682 return NON_BURST_SYNCH_EVENT; 683 } 684 685 static inline enum dsi_vid_dst_format dsi_get_vid_fmt( 686 const enum mipi_dsi_pixel_format mipi_fmt) 687 { 688 switch (mipi_fmt) { 689 case MIPI_DSI_FMT_RGB888: return VID_DST_FORMAT_RGB888; 690 case MIPI_DSI_FMT_RGB666: return VID_DST_FORMAT_RGB666_LOOSE; 691 case MIPI_DSI_FMT_RGB666_PACKED: return VID_DST_FORMAT_RGB666; 692 case MIPI_DSI_FMT_RGB565: return VID_DST_FORMAT_RGB565; 693 default: return VID_DST_FORMAT_RGB888; 694 } 695 } 696 697 static inline enum dsi_cmd_dst_format dsi_get_cmd_fmt( 698 const enum mipi_dsi_pixel_format mipi_fmt) 699 { 700 switch (mipi_fmt) { 701 case MIPI_DSI_FMT_RGB888: return CMD_DST_FORMAT_RGB888; 702 case MIPI_DSI_FMT_RGB666_PACKED: 703 case MIPI_DSI_FMT_RGB666: return CMD_DST_FORMAT_RGB666; 704 case MIPI_DSI_FMT_RGB565: return CMD_DST_FORMAT_RGB565; 705 default: return CMD_DST_FORMAT_RGB888; 706 } 707 } 708 709 static void dsi_ctrl_disable(struct msm_dsi_host *msm_host) 710 { 711 dsi_write(msm_host, REG_DSI_CTRL, 0); 712 } 713 714 bool msm_dsi_host_is_wide_bus_enabled(struct mipi_dsi_host *host) 715 { 716 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 717 718 return msm_host->dsc && 719 (msm_host->cfg_hnd->major == MSM_DSI_VER_MAJOR_6G && 720 msm_host->cfg_hnd->minor >= MSM_DSI_6G_VER_MINOR_V2_5_0); 721 } 722 723 static void dsi_ctrl_enable(struct msm_dsi_host *msm_host, 724 struct msm_dsi_phy_shared_timings *phy_shared_timings, struct msm_dsi_phy *phy) 725 { 726 u32 flags = msm_host->mode_flags; 727 enum mipi_dsi_pixel_format mipi_fmt = msm_host->format; 728 const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd; 729 u32 data = 0, lane_ctrl = 0; 730 731 if (flags & MIPI_DSI_MODE_VIDEO) { 732 if (flags & MIPI_DSI_MODE_VIDEO_HSE) 733 data |= DSI_VID_CFG0_PULSE_MODE_HSA_HE; 734 if (flags & MIPI_DSI_MODE_VIDEO_NO_HFP) 735 data |= DSI_VID_CFG0_HFP_POWER_STOP; 736 if (flags & MIPI_DSI_MODE_VIDEO_NO_HBP) 737 data |= DSI_VID_CFG0_HBP_POWER_STOP; 738 if (flags & MIPI_DSI_MODE_VIDEO_NO_HSA) 739 data |= DSI_VID_CFG0_HSA_POWER_STOP; 740 /* Always set low power stop mode for BLLP 741 * to let command engine send packets 742 */ 743 data |= DSI_VID_CFG0_EOF_BLLP_POWER_STOP | 744 DSI_VID_CFG0_BLLP_POWER_STOP; 745 data |= DSI_VID_CFG0_TRAFFIC_MODE(dsi_get_traffic_mode(flags)); 746 data |= DSI_VID_CFG0_DST_FORMAT(dsi_get_vid_fmt(mipi_fmt)); 747 data |= DSI_VID_CFG0_VIRT_CHANNEL(msm_host->channel); 748 dsi_write(msm_host, REG_DSI_VID_CFG0, data); 749 750 /* Do not swap RGB colors */ 751 data = DSI_VID_CFG1_RGB_SWAP(SWAP_RGB); 752 dsi_write(msm_host, REG_DSI_VID_CFG1, 0); 753 } else { 754 /* Do not swap RGB colors */ 755 data = DSI_CMD_CFG0_RGB_SWAP(SWAP_RGB); 756 data |= DSI_CMD_CFG0_DST_FORMAT(dsi_get_cmd_fmt(mipi_fmt)); 757 dsi_write(msm_host, REG_DSI_CMD_CFG0, data); 758 759 data = DSI_CMD_CFG1_WR_MEM_START(MIPI_DCS_WRITE_MEMORY_START) | 760 DSI_CMD_CFG1_WR_MEM_CONTINUE( 761 MIPI_DCS_WRITE_MEMORY_CONTINUE); 762 /* Always insert DCS command */ 763 data |= DSI_CMD_CFG1_INSERT_DCS_COMMAND; 764 dsi_write(msm_host, REG_DSI_CMD_CFG1, data); 765 766 if (cfg_hnd->major == MSM_DSI_VER_MAJOR_6G) { 767 data = dsi_read(msm_host, REG_DSI_CMD_MODE_MDP_CTRL2); 768 769 if (cfg_hnd->minor >= MSM_DSI_6G_VER_MINOR_V1_3) 770 data |= DSI_CMD_MODE_MDP_CTRL2_BURST_MODE; 771 772 /* TODO: Allow for video-mode support once tested/fixed */ 773 if (msm_dsi_host_is_wide_bus_enabled(&msm_host->base)) 774 data |= DSI_CMD_MODE_MDP_CTRL2_DATABUS_WIDEN; 775 776 dsi_write(msm_host, REG_DSI_CMD_MODE_MDP_CTRL2, data); 777 } 778 } 779 780 dsi_write(msm_host, REG_DSI_CMD_DMA_CTRL, 781 DSI_CMD_DMA_CTRL_FROM_FRAME_BUFFER | 782 DSI_CMD_DMA_CTRL_LOW_POWER); 783 784 data = 0; 785 /* Always assume dedicated TE pin */ 786 data |= DSI_TRIG_CTRL_TE; 787 data |= DSI_TRIG_CTRL_MDP_TRIGGER(TRIGGER_NONE); 788 data |= DSI_TRIG_CTRL_DMA_TRIGGER(TRIGGER_SW); 789 data |= DSI_TRIG_CTRL_STREAM(msm_host->channel); 790 if ((cfg_hnd->major == MSM_DSI_VER_MAJOR_6G) && 791 (cfg_hnd->minor >= MSM_DSI_6G_VER_MINOR_V1_2)) 792 data |= DSI_TRIG_CTRL_BLOCK_DMA_WITHIN_FRAME; 793 dsi_write(msm_host, REG_DSI_TRIG_CTRL, data); 794 795 data = DSI_CLKOUT_TIMING_CTRL_T_CLK_POST(phy_shared_timings->clk_post) | 796 DSI_CLKOUT_TIMING_CTRL_T_CLK_PRE(phy_shared_timings->clk_pre); 797 dsi_write(msm_host, REG_DSI_CLKOUT_TIMING_CTRL, data); 798 799 if ((cfg_hnd->major == MSM_DSI_VER_MAJOR_6G) && 800 (cfg_hnd->minor > MSM_DSI_6G_VER_MINOR_V1_0) && 801 phy_shared_timings->clk_pre_inc_by_2) 802 dsi_write(msm_host, REG_DSI_T_CLK_PRE_EXTEND, 803 DSI_T_CLK_PRE_EXTEND_INC_BY_2_BYTECLK); 804 805 data = 0; 806 if (!(flags & MIPI_DSI_MODE_NO_EOT_PACKET)) 807 data |= DSI_EOT_PACKET_CTRL_TX_EOT_APPEND; 808 dsi_write(msm_host, REG_DSI_EOT_PACKET_CTRL, data); 809 810 /* allow only ack-err-status to generate interrupt */ 811 dsi_write(msm_host, REG_DSI_ERR_INT_MASK0, 0x13ff3fe0); 812 813 dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_ERROR, 1); 814 815 dsi_write(msm_host, REG_DSI_CLK_CTRL, DSI_CLK_CTRL_ENABLE_CLKS); 816 817 data = DSI_CTRL_CLK_EN; 818 819 DBG("lane number=%d", msm_host->lanes); 820 data |= ((DSI_CTRL_LANE0 << msm_host->lanes) - DSI_CTRL_LANE0); 821 822 dsi_write(msm_host, REG_DSI_LANE_SWAP_CTRL, 823 DSI_LANE_SWAP_CTRL_DLN_SWAP_SEL(msm_host->dlane_swap)); 824 825 if (!(flags & MIPI_DSI_CLOCK_NON_CONTINUOUS)) { 826 lane_ctrl = dsi_read(msm_host, REG_DSI_LANE_CTRL); 827 828 if (msm_dsi_phy_set_continuous_clock(phy, true)) 829 lane_ctrl &= ~DSI_LANE_CTRL_HS_REQ_SEL_PHY; 830 831 dsi_write(msm_host, REG_DSI_LANE_CTRL, 832 lane_ctrl | DSI_LANE_CTRL_CLKLN_HS_FORCE_REQUEST); 833 } 834 835 data |= DSI_CTRL_ENABLE; 836 837 dsi_write(msm_host, REG_DSI_CTRL, data); 838 839 if (msm_host->cphy_mode) 840 dsi_write(msm_host, REG_DSI_CPHY_MODE_CTRL, BIT(0)); 841 } 842 843 static void dsi_update_dsc_timing(struct msm_dsi_host *msm_host, bool is_cmd_mode, u32 hdisplay) 844 { 845 struct drm_dsc_config *dsc = msm_host->dsc; 846 u32 reg, reg_ctrl, reg_ctrl2; 847 u32 slice_per_intf, total_bytes_per_intf; 848 u32 pkt_per_line; 849 u32 eol_byte_num; 850 851 /* first calculate dsc parameters and then program 852 * compress mode registers 853 */ 854 slice_per_intf = msm_dsc_get_slices_per_intf(dsc, hdisplay); 855 856 total_bytes_per_intf = dsc->slice_chunk_size * slice_per_intf; 857 858 eol_byte_num = total_bytes_per_intf % 3; 859 860 /* 861 * Typically, pkt_per_line = slice_per_intf * slice_per_pkt. 862 * 863 * Since the current driver only supports slice_per_pkt = 1, 864 * pkt_per_line will be equal to slice per intf for now. 865 */ 866 pkt_per_line = slice_per_intf; 867 868 if (is_cmd_mode) /* packet data type */ 869 reg = DSI_COMMAND_COMPRESSION_MODE_CTRL_STREAM0_DATATYPE(MIPI_DSI_DCS_LONG_WRITE); 870 else 871 reg = DSI_VIDEO_COMPRESSION_MODE_CTRL_DATATYPE(MIPI_DSI_COMPRESSED_PIXEL_STREAM); 872 873 /* DSI_VIDEO_COMPRESSION_MODE & DSI_COMMAND_COMPRESSION_MODE 874 * registers have similar offsets, so for below common code use 875 * DSI_VIDEO_COMPRESSION_MODE_XXXX for setting bits 876 */ 877 reg |= DSI_VIDEO_COMPRESSION_MODE_CTRL_PKT_PER_LINE(pkt_per_line >> 1); 878 reg |= DSI_VIDEO_COMPRESSION_MODE_CTRL_EOL_BYTE_NUM(eol_byte_num); 879 reg |= DSI_VIDEO_COMPRESSION_MODE_CTRL_EN; 880 881 if (is_cmd_mode) { 882 reg_ctrl = dsi_read(msm_host, REG_DSI_COMMAND_COMPRESSION_MODE_CTRL); 883 reg_ctrl2 = dsi_read(msm_host, REG_DSI_COMMAND_COMPRESSION_MODE_CTRL2); 884 885 reg_ctrl &= ~0xffff; 886 reg_ctrl |= reg; 887 888 reg_ctrl2 &= ~DSI_COMMAND_COMPRESSION_MODE_CTRL2_STREAM0_SLICE_WIDTH__MASK; 889 reg_ctrl2 |= DSI_COMMAND_COMPRESSION_MODE_CTRL2_STREAM0_SLICE_WIDTH(dsc->slice_chunk_size); 890 891 dsi_write(msm_host, REG_DSI_COMMAND_COMPRESSION_MODE_CTRL, reg_ctrl); 892 dsi_write(msm_host, REG_DSI_COMMAND_COMPRESSION_MODE_CTRL2, reg_ctrl2); 893 } else { 894 dsi_write(msm_host, REG_DSI_VIDEO_COMPRESSION_MODE_CTRL, reg); 895 } 896 } 897 898 static void dsi_timing_setup(struct msm_dsi_host *msm_host, bool is_bonded_dsi) 899 { 900 struct drm_display_mode *mode = msm_host->mode; 901 u32 hs_start = 0, vs_start = 0; /* take sync start as 0 */ 902 u32 h_total = mode->htotal; 903 u32 v_total = mode->vtotal; 904 u32 hs_end = mode->hsync_end - mode->hsync_start; 905 u32 vs_end = mode->vsync_end - mode->vsync_start; 906 u32 ha_start = h_total - mode->hsync_start; 907 u32 ha_end = ha_start + mode->hdisplay; 908 u32 va_start = v_total - mode->vsync_start; 909 u32 va_end = va_start + mode->vdisplay; 910 u32 hdisplay = mode->hdisplay; 911 u32 wc; 912 int ret; 913 bool wide_bus_enabled = msm_dsi_host_is_wide_bus_enabled(&msm_host->base); 914 915 DBG(""); 916 917 /* 918 * For bonded DSI mode, the current DRM mode has 919 * the complete width of the panel. Since, the complete 920 * panel is driven by two DSI controllers, the horizontal 921 * timings have to be split between the two dsi controllers. 922 * Adjust the DSI host timing values accordingly. 923 */ 924 if (is_bonded_dsi) { 925 h_total /= 2; 926 hs_end /= 2; 927 ha_start /= 2; 928 ha_end /= 2; 929 hdisplay /= 2; 930 } 931 932 if (msm_host->dsc) { 933 struct drm_dsc_config *dsc = msm_host->dsc; 934 u32 bytes_per_pclk; 935 936 /* update dsc params with timing params */ 937 if (!dsc || !mode->hdisplay || !mode->vdisplay) { 938 pr_err("DSI: invalid input: pic_width: %d pic_height: %d\n", 939 mode->hdisplay, mode->vdisplay); 940 return; 941 } 942 943 dsc->pic_width = mode->hdisplay; 944 dsc->pic_height = mode->vdisplay; 945 DBG("Mode %dx%d\n", dsc->pic_width, dsc->pic_height); 946 947 /* we do the calculations for dsc parameters here so that 948 * panel can use these parameters 949 */ 950 ret = dsi_populate_dsc_params(msm_host, dsc); 951 if (ret) 952 return; 953 954 /* Divide the display by 3 but keep back/font porch and 955 * pulse width same 956 */ 957 h_total -= hdisplay; 958 if (wide_bus_enabled && !(msm_host->mode_flags & MIPI_DSI_MODE_VIDEO)) 959 bytes_per_pclk = 6; 960 else 961 bytes_per_pclk = 3; 962 963 hdisplay = DIV_ROUND_UP(msm_dsc_get_bytes_per_line(msm_host->dsc), bytes_per_pclk); 964 965 h_total += hdisplay; 966 ha_end = ha_start + hdisplay; 967 } 968 969 if (msm_host->mode_flags & MIPI_DSI_MODE_VIDEO) { 970 if (msm_host->dsc) 971 dsi_update_dsc_timing(msm_host, false, mode->hdisplay); 972 973 dsi_write(msm_host, REG_DSI_ACTIVE_H, 974 DSI_ACTIVE_H_START(ha_start) | 975 DSI_ACTIVE_H_END(ha_end)); 976 dsi_write(msm_host, REG_DSI_ACTIVE_V, 977 DSI_ACTIVE_V_START(va_start) | 978 DSI_ACTIVE_V_END(va_end)); 979 dsi_write(msm_host, REG_DSI_TOTAL, 980 DSI_TOTAL_H_TOTAL(h_total - 1) | 981 DSI_TOTAL_V_TOTAL(v_total - 1)); 982 983 dsi_write(msm_host, REG_DSI_ACTIVE_HSYNC, 984 DSI_ACTIVE_HSYNC_START(hs_start) | 985 DSI_ACTIVE_HSYNC_END(hs_end)); 986 dsi_write(msm_host, REG_DSI_ACTIVE_VSYNC_HPOS, 0); 987 dsi_write(msm_host, REG_DSI_ACTIVE_VSYNC_VPOS, 988 DSI_ACTIVE_VSYNC_VPOS_START(vs_start) | 989 DSI_ACTIVE_VSYNC_VPOS_END(vs_end)); 990 } else { /* command mode */ 991 if (msm_host->dsc) 992 dsi_update_dsc_timing(msm_host, true, mode->hdisplay); 993 994 /* image data and 1 byte write_memory_start cmd */ 995 if (!msm_host->dsc) 996 wc = hdisplay * dsi_get_bpp(msm_host->format) / 8 + 1; 997 else 998 /* 999 * When DSC is enabled, WC = slice_chunk_size * slice_per_pkt + 1. 1000 * Currently, the driver only supports default value of slice_per_pkt = 1 1001 * 1002 * TODO: Expand mipi_dsi_device struct to hold slice_per_pkt info 1003 * and adjust DSC math to account for slice_per_pkt. 1004 */ 1005 wc = msm_host->dsc->slice_chunk_size + 1; 1006 1007 dsi_write(msm_host, REG_DSI_CMD_MDP_STREAM0_CTRL, 1008 DSI_CMD_MDP_STREAM0_CTRL_WORD_COUNT(wc) | 1009 DSI_CMD_MDP_STREAM0_CTRL_VIRTUAL_CHANNEL( 1010 msm_host->channel) | 1011 DSI_CMD_MDP_STREAM0_CTRL_DATA_TYPE( 1012 MIPI_DSI_DCS_LONG_WRITE)); 1013 1014 dsi_write(msm_host, REG_DSI_CMD_MDP_STREAM0_TOTAL, 1015 DSI_CMD_MDP_STREAM0_TOTAL_H_TOTAL(hdisplay) | 1016 DSI_CMD_MDP_STREAM0_TOTAL_V_TOTAL(mode->vdisplay)); 1017 } 1018 } 1019 1020 static void dsi_sw_reset(struct msm_dsi_host *msm_host) 1021 { 1022 u32 ctrl; 1023 1024 ctrl = dsi_read(msm_host, REG_DSI_CTRL); 1025 1026 if (ctrl & DSI_CTRL_ENABLE) { 1027 dsi_write(msm_host, REG_DSI_CTRL, ctrl & ~DSI_CTRL_ENABLE); 1028 /* 1029 * dsi controller need to be disabled before 1030 * clocks turned on 1031 */ 1032 wmb(); 1033 } 1034 1035 dsi_write(msm_host, REG_DSI_CLK_CTRL, DSI_CLK_CTRL_ENABLE_CLKS); 1036 wmb(); /* clocks need to be enabled before reset */ 1037 1038 /* dsi controller can only be reset while clocks are running */ 1039 dsi_write(msm_host, REG_DSI_RESET, 1); 1040 msleep(DSI_RESET_TOGGLE_DELAY_MS); /* make sure reset happen */ 1041 dsi_write(msm_host, REG_DSI_RESET, 0); 1042 wmb(); /* controller out of reset */ 1043 1044 if (ctrl & DSI_CTRL_ENABLE) { 1045 dsi_write(msm_host, REG_DSI_CTRL, ctrl); 1046 wmb(); /* make sure dsi controller enabled again */ 1047 } 1048 } 1049 1050 static void dsi_op_mode_config(struct msm_dsi_host *msm_host, 1051 bool video_mode, bool enable) 1052 { 1053 u32 dsi_ctrl; 1054 1055 dsi_ctrl = dsi_read(msm_host, REG_DSI_CTRL); 1056 1057 if (!enable) { 1058 dsi_ctrl &= ~(DSI_CTRL_ENABLE | DSI_CTRL_VID_MODE_EN | 1059 DSI_CTRL_CMD_MODE_EN); 1060 dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_CMD_MDP_DONE | 1061 DSI_IRQ_MASK_VIDEO_DONE, 0); 1062 } else { 1063 if (video_mode) { 1064 dsi_ctrl |= DSI_CTRL_VID_MODE_EN; 1065 } else { /* command mode */ 1066 dsi_ctrl |= DSI_CTRL_CMD_MODE_EN; 1067 dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_CMD_MDP_DONE, 1); 1068 } 1069 dsi_ctrl |= DSI_CTRL_ENABLE; 1070 } 1071 1072 dsi_write(msm_host, REG_DSI_CTRL, dsi_ctrl); 1073 } 1074 1075 static void dsi_set_tx_power_mode(int mode, struct msm_dsi_host *msm_host) 1076 { 1077 u32 data; 1078 1079 data = dsi_read(msm_host, REG_DSI_CMD_DMA_CTRL); 1080 1081 if (mode == 0) 1082 data &= ~DSI_CMD_DMA_CTRL_LOW_POWER; 1083 else 1084 data |= DSI_CMD_DMA_CTRL_LOW_POWER; 1085 1086 dsi_write(msm_host, REG_DSI_CMD_DMA_CTRL, data); 1087 } 1088 1089 static void dsi_wait4video_done(struct msm_dsi_host *msm_host) 1090 { 1091 u32 ret = 0; 1092 struct device *dev = &msm_host->pdev->dev; 1093 1094 dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_VIDEO_DONE, 1); 1095 1096 reinit_completion(&msm_host->video_comp); 1097 1098 ret = wait_for_completion_timeout(&msm_host->video_comp, 1099 msecs_to_jiffies(70)); 1100 1101 if (ret == 0) 1102 DRM_DEV_ERROR(dev, "wait for video done timed out\n"); 1103 1104 dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_VIDEO_DONE, 0); 1105 } 1106 1107 static void dsi_wait4video_eng_busy(struct msm_dsi_host *msm_host) 1108 { 1109 u32 data; 1110 1111 if (!(msm_host->mode_flags & MIPI_DSI_MODE_VIDEO)) 1112 return; 1113 1114 data = dsi_read(msm_host, REG_DSI_STATUS0); 1115 1116 /* if video mode engine is not busy, its because 1117 * either timing engine was not turned on or the 1118 * DSI controller has finished transmitting the video 1119 * data already, so no need to wait in those cases 1120 */ 1121 if (!(data & DSI_STATUS0_VIDEO_MODE_ENGINE_BUSY)) 1122 return; 1123 1124 if (msm_host->power_on && msm_host->enabled) { 1125 dsi_wait4video_done(msm_host); 1126 /* delay 4 ms to skip BLLP */ 1127 usleep_range(2000, 4000); 1128 } 1129 } 1130 1131 int dsi_tx_buf_alloc_6g(struct msm_dsi_host *msm_host, int size) 1132 { 1133 struct drm_device *dev = msm_host->dev; 1134 struct msm_drm_private *priv = dev->dev_private; 1135 uint64_t iova; 1136 u8 *data; 1137 1138 msm_host->aspace = msm_gem_address_space_get(priv->kms->aspace); 1139 1140 data = msm_gem_kernel_new(dev, size, MSM_BO_WC, 1141 msm_host->aspace, 1142 &msm_host->tx_gem_obj, &iova); 1143 1144 if (IS_ERR(data)) { 1145 msm_host->tx_gem_obj = NULL; 1146 return PTR_ERR(data); 1147 } 1148 1149 msm_gem_object_set_name(msm_host->tx_gem_obj, "tx_gem"); 1150 1151 msm_host->tx_size = msm_host->tx_gem_obj->size; 1152 1153 return 0; 1154 } 1155 1156 int dsi_tx_buf_alloc_v2(struct msm_dsi_host *msm_host, int size) 1157 { 1158 struct drm_device *dev = msm_host->dev; 1159 1160 msm_host->tx_buf = dma_alloc_coherent(dev->dev, size, 1161 &msm_host->tx_buf_paddr, GFP_KERNEL); 1162 if (!msm_host->tx_buf) 1163 return -ENOMEM; 1164 1165 msm_host->tx_size = size; 1166 1167 return 0; 1168 } 1169 1170 void msm_dsi_tx_buf_free(struct mipi_dsi_host *host) 1171 { 1172 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 1173 struct drm_device *dev = msm_host->dev; 1174 1175 /* 1176 * This is possible if we're tearing down before we've had a chance to 1177 * fully initialize. A very real possibility if our probe is deferred, 1178 * in which case we'll hit msm_dsi_host_destroy() without having run 1179 * through the dsi_tx_buf_alloc(). 1180 */ 1181 if (!dev) 1182 return; 1183 1184 if (msm_host->tx_gem_obj) { 1185 msm_gem_kernel_put(msm_host->tx_gem_obj, msm_host->aspace); 1186 msm_gem_address_space_put(msm_host->aspace); 1187 msm_host->tx_gem_obj = NULL; 1188 msm_host->aspace = NULL; 1189 } 1190 1191 if (msm_host->tx_buf) 1192 dma_free_coherent(dev->dev, msm_host->tx_size, msm_host->tx_buf, 1193 msm_host->tx_buf_paddr); 1194 } 1195 1196 void *dsi_tx_buf_get_6g(struct msm_dsi_host *msm_host) 1197 { 1198 return msm_gem_get_vaddr(msm_host->tx_gem_obj); 1199 } 1200 1201 void *dsi_tx_buf_get_v2(struct msm_dsi_host *msm_host) 1202 { 1203 return msm_host->tx_buf; 1204 } 1205 1206 void dsi_tx_buf_put_6g(struct msm_dsi_host *msm_host) 1207 { 1208 msm_gem_put_vaddr(msm_host->tx_gem_obj); 1209 } 1210 1211 /* 1212 * prepare cmd buffer to be txed 1213 */ 1214 static int dsi_cmd_dma_add(struct msm_dsi_host *msm_host, 1215 const struct mipi_dsi_msg *msg) 1216 { 1217 const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd; 1218 struct mipi_dsi_packet packet; 1219 int len; 1220 int ret; 1221 u8 *data; 1222 1223 ret = mipi_dsi_create_packet(&packet, msg); 1224 if (ret) { 1225 pr_err("%s: create packet failed, %d\n", __func__, ret); 1226 return ret; 1227 } 1228 len = (packet.size + 3) & (~0x3); 1229 1230 if (len > msm_host->tx_size) { 1231 pr_err("%s: packet size is too big\n", __func__); 1232 return -EINVAL; 1233 } 1234 1235 data = cfg_hnd->ops->tx_buf_get(msm_host); 1236 if (IS_ERR(data)) { 1237 ret = PTR_ERR(data); 1238 pr_err("%s: get vaddr failed, %d\n", __func__, ret); 1239 return ret; 1240 } 1241 1242 /* MSM specific command format in memory */ 1243 data[0] = packet.header[1]; 1244 data[1] = packet.header[2]; 1245 data[2] = packet.header[0]; 1246 data[3] = BIT(7); /* Last packet */ 1247 if (mipi_dsi_packet_format_is_long(msg->type)) 1248 data[3] |= BIT(6); 1249 if (msg->rx_buf && msg->rx_len) 1250 data[3] |= BIT(5); 1251 1252 /* Long packet */ 1253 if (packet.payload && packet.payload_length) 1254 memcpy(data + 4, packet.payload, packet.payload_length); 1255 1256 /* Append 0xff to the end */ 1257 if (packet.size < len) 1258 memset(data + packet.size, 0xff, len - packet.size); 1259 1260 if (cfg_hnd->ops->tx_buf_put) 1261 cfg_hnd->ops->tx_buf_put(msm_host); 1262 1263 return len; 1264 } 1265 1266 /* 1267 * dsi_short_read1_resp: 1 parameter 1268 */ 1269 static int dsi_short_read1_resp(u8 *buf, const struct mipi_dsi_msg *msg) 1270 { 1271 u8 *data = msg->rx_buf; 1272 if (data && (msg->rx_len >= 1)) { 1273 *data = buf[1]; /* strip out dcs type */ 1274 return 1; 1275 } else { 1276 pr_err("%s: read data does not match with rx_buf len %zu\n", 1277 __func__, msg->rx_len); 1278 return -EINVAL; 1279 } 1280 } 1281 1282 /* 1283 * dsi_short_read2_resp: 2 parameter 1284 */ 1285 static int dsi_short_read2_resp(u8 *buf, const struct mipi_dsi_msg *msg) 1286 { 1287 u8 *data = msg->rx_buf; 1288 if (data && (msg->rx_len >= 2)) { 1289 data[0] = buf[1]; /* strip out dcs type */ 1290 data[1] = buf[2]; 1291 return 2; 1292 } else { 1293 pr_err("%s: read data does not match with rx_buf len %zu\n", 1294 __func__, msg->rx_len); 1295 return -EINVAL; 1296 } 1297 } 1298 1299 static int dsi_long_read_resp(u8 *buf, const struct mipi_dsi_msg *msg) 1300 { 1301 /* strip out 4 byte dcs header */ 1302 if (msg->rx_buf && msg->rx_len) 1303 memcpy(msg->rx_buf, buf + 4, msg->rx_len); 1304 1305 return msg->rx_len; 1306 } 1307 1308 int dsi_dma_base_get_6g(struct msm_dsi_host *msm_host, uint64_t *dma_base) 1309 { 1310 struct drm_device *dev = msm_host->dev; 1311 struct msm_drm_private *priv = dev->dev_private; 1312 1313 if (!dma_base) 1314 return -EINVAL; 1315 1316 return msm_gem_get_and_pin_iova(msm_host->tx_gem_obj, 1317 priv->kms->aspace, dma_base); 1318 } 1319 1320 int dsi_dma_base_get_v2(struct msm_dsi_host *msm_host, uint64_t *dma_base) 1321 { 1322 if (!dma_base) 1323 return -EINVAL; 1324 1325 *dma_base = msm_host->tx_buf_paddr; 1326 return 0; 1327 } 1328 1329 static int dsi_cmd_dma_tx(struct msm_dsi_host *msm_host, int len) 1330 { 1331 const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd; 1332 int ret; 1333 uint64_t dma_base; 1334 bool triggered; 1335 1336 ret = cfg_hnd->ops->dma_base_get(msm_host, &dma_base); 1337 if (ret) { 1338 pr_err("%s: failed to get iova: %d\n", __func__, ret); 1339 return ret; 1340 } 1341 1342 reinit_completion(&msm_host->dma_comp); 1343 1344 dsi_wait4video_eng_busy(msm_host); 1345 1346 triggered = msm_dsi_manager_cmd_xfer_trigger( 1347 msm_host->id, dma_base, len); 1348 if (triggered) { 1349 ret = wait_for_completion_timeout(&msm_host->dma_comp, 1350 msecs_to_jiffies(200)); 1351 DBG("ret=%d", ret); 1352 if (ret == 0) 1353 ret = -ETIMEDOUT; 1354 else 1355 ret = len; 1356 } else 1357 ret = len; 1358 1359 return ret; 1360 } 1361 1362 static int dsi_cmd_dma_rx(struct msm_dsi_host *msm_host, 1363 u8 *buf, int rx_byte, int pkt_size) 1364 { 1365 u32 *temp, data; 1366 int i, j = 0, cnt; 1367 u32 read_cnt; 1368 u8 reg[16]; 1369 int repeated_bytes = 0; 1370 int buf_offset = buf - msm_host->rx_buf; 1371 1372 temp = (u32 *)reg; 1373 cnt = (rx_byte + 3) >> 2; 1374 if (cnt > 4) 1375 cnt = 4; /* 4 x 32 bits registers only */ 1376 1377 if (rx_byte == 4) 1378 read_cnt = 4; 1379 else 1380 read_cnt = pkt_size + 6; 1381 1382 /* 1383 * In case of multiple reads from the panel, after the first read, there 1384 * is possibility that there are some bytes in the payload repeating in 1385 * the RDBK_DATA registers. Since we read all the parameters from the 1386 * panel right from the first byte for every pass. We need to skip the 1387 * repeating bytes and then append the new parameters to the rx buffer. 1388 */ 1389 if (read_cnt > 16) { 1390 int bytes_shifted; 1391 /* Any data more than 16 bytes will be shifted out. 1392 * The temp read buffer should already contain these bytes. 1393 * The remaining bytes in read buffer are the repeated bytes. 1394 */ 1395 bytes_shifted = read_cnt - 16; 1396 repeated_bytes = buf_offset - bytes_shifted; 1397 } 1398 1399 for (i = cnt - 1; i >= 0; i--) { 1400 data = dsi_read(msm_host, REG_DSI_RDBK_DATA(i)); 1401 *temp++ = ntohl(data); /* to host byte order */ 1402 DBG("data = 0x%x and ntohl(data) = 0x%x", data, ntohl(data)); 1403 } 1404 1405 for (i = repeated_bytes; i < 16; i++) 1406 buf[j++] = reg[i]; 1407 1408 return j; 1409 } 1410 1411 static int dsi_cmds2buf_tx(struct msm_dsi_host *msm_host, 1412 const struct mipi_dsi_msg *msg) 1413 { 1414 int len, ret; 1415 int bllp_len = msm_host->mode->hdisplay * 1416 dsi_get_bpp(msm_host->format) / 8; 1417 1418 len = dsi_cmd_dma_add(msm_host, msg); 1419 if (len < 0) { 1420 pr_err("%s: failed to add cmd type = 0x%x\n", 1421 __func__, msg->type); 1422 return len; 1423 } 1424 1425 /* for video mode, do not send cmds more than 1426 * one pixel line, since it only transmit it 1427 * during BLLP. 1428 */ 1429 /* TODO: if the command is sent in LP mode, the bit rate is only 1430 * half of esc clk rate. In this case, if the video is already 1431 * actively streaming, we need to check more carefully if the 1432 * command can be fit into one BLLP. 1433 */ 1434 if ((msm_host->mode_flags & MIPI_DSI_MODE_VIDEO) && (len > bllp_len)) { 1435 pr_err("%s: cmd cannot fit into BLLP period, len=%d\n", 1436 __func__, len); 1437 return -EINVAL; 1438 } 1439 1440 ret = dsi_cmd_dma_tx(msm_host, len); 1441 if (ret < 0) { 1442 pr_err("%s: cmd dma tx failed, type=0x%x, data0=0x%x, len=%d, ret=%d\n", 1443 __func__, msg->type, (*(u8 *)(msg->tx_buf)), len, ret); 1444 return ret; 1445 } else if (ret < len) { 1446 pr_err("%s: cmd dma tx failed, type=0x%x, data0=0x%x, ret=%d len=%d\n", 1447 __func__, msg->type, (*(u8 *)(msg->tx_buf)), ret, len); 1448 return -EIO; 1449 } 1450 1451 return len; 1452 } 1453 1454 static void dsi_err_worker(struct work_struct *work) 1455 { 1456 struct msm_dsi_host *msm_host = 1457 container_of(work, struct msm_dsi_host, err_work); 1458 u32 status = msm_host->err_work_state; 1459 1460 pr_err_ratelimited("%s: status=%x\n", __func__, status); 1461 if (status & DSI_ERR_STATE_MDP_FIFO_UNDERFLOW) 1462 dsi_sw_reset(msm_host); 1463 1464 /* It is safe to clear here because error irq is disabled. */ 1465 msm_host->err_work_state = 0; 1466 1467 /* enable dsi error interrupt */ 1468 dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_ERROR, 1); 1469 } 1470 1471 static void dsi_ack_err_status(struct msm_dsi_host *msm_host) 1472 { 1473 u32 status; 1474 1475 status = dsi_read(msm_host, REG_DSI_ACK_ERR_STATUS); 1476 1477 if (status) { 1478 dsi_write(msm_host, REG_DSI_ACK_ERR_STATUS, status); 1479 /* Writing of an extra 0 needed to clear error bits */ 1480 dsi_write(msm_host, REG_DSI_ACK_ERR_STATUS, 0); 1481 msm_host->err_work_state |= DSI_ERR_STATE_ACK; 1482 } 1483 } 1484 1485 static void dsi_timeout_status(struct msm_dsi_host *msm_host) 1486 { 1487 u32 status; 1488 1489 status = dsi_read(msm_host, REG_DSI_TIMEOUT_STATUS); 1490 1491 if (status) { 1492 dsi_write(msm_host, REG_DSI_TIMEOUT_STATUS, status); 1493 msm_host->err_work_state |= DSI_ERR_STATE_TIMEOUT; 1494 } 1495 } 1496 1497 static void dsi_dln0_phy_err(struct msm_dsi_host *msm_host) 1498 { 1499 u32 status; 1500 1501 status = dsi_read(msm_host, REG_DSI_DLN0_PHY_ERR); 1502 1503 if (status & (DSI_DLN0_PHY_ERR_DLN0_ERR_ESC | 1504 DSI_DLN0_PHY_ERR_DLN0_ERR_SYNC_ESC | 1505 DSI_DLN0_PHY_ERR_DLN0_ERR_CONTROL | 1506 DSI_DLN0_PHY_ERR_DLN0_ERR_CONTENTION_LP0 | 1507 DSI_DLN0_PHY_ERR_DLN0_ERR_CONTENTION_LP1)) { 1508 dsi_write(msm_host, REG_DSI_DLN0_PHY_ERR, status); 1509 msm_host->err_work_state |= DSI_ERR_STATE_DLN0_PHY; 1510 } 1511 } 1512 1513 static void dsi_fifo_status(struct msm_dsi_host *msm_host) 1514 { 1515 u32 status; 1516 1517 status = dsi_read(msm_host, REG_DSI_FIFO_STATUS); 1518 1519 /* fifo underflow, overflow */ 1520 if (status) { 1521 dsi_write(msm_host, REG_DSI_FIFO_STATUS, status); 1522 msm_host->err_work_state |= DSI_ERR_STATE_FIFO; 1523 if (status & DSI_FIFO_STATUS_CMD_MDP_FIFO_UNDERFLOW) 1524 msm_host->err_work_state |= 1525 DSI_ERR_STATE_MDP_FIFO_UNDERFLOW; 1526 } 1527 } 1528 1529 static void dsi_status(struct msm_dsi_host *msm_host) 1530 { 1531 u32 status; 1532 1533 status = dsi_read(msm_host, REG_DSI_STATUS0); 1534 1535 if (status & DSI_STATUS0_INTERLEAVE_OP_CONTENTION) { 1536 dsi_write(msm_host, REG_DSI_STATUS0, status); 1537 msm_host->err_work_state |= 1538 DSI_ERR_STATE_INTERLEAVE_OP_CONTENTION; 1539 } 1540 } 1541 1542 static void dsi_clk_status(struct msm_dsi_host *msm_host) 1543 { 1544 u32 status; 1545 1546 status = dsi_read(msm_host, REG_DSI_CLK_STATUS); 1547 1548 if (status & DSI_CLK_STATUS_PLL_UNLOCKED) { 1549 dsi_write(msm_host, REG_DSI_CLK_STATUS, status); 1550 msm_host->err_work_state |= DSI_ERR_STATE_PLL_UNLOCKED; 1551 } 1552 } 1553 1554 static void dsi_error(struct msm_dsi_host *msm_host) 1555 { 1556 /* disable dsi error interrupt */ 1557 dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_ERROR, 0); 1558 1559 dsi_clk_status(msm_host); 1560 dsi_fifo_status(msm_host); 1561 dsi_ack_err_status(msm_host); 1562 dsi_timeout_status(msm_host); 1563 dsi_status(msm_host); 1564 dsi_dln0_phy_err(msm_host); 1565 1566 queue_work(msm_host->workqueue, &msm_host->err_work); 1567 } 1568 1569 static irqreturn_t dsi_host_irq(int irq, void *ptr) 1570 { 1571 struct msm_dsi_host *msm_host = ptr; 1572 u32 isr; 1573 unsigned long flags; 1574 1575 if (!msm_host->ctrl_base) 1576 return IRQ_HANDLED; 1577 1578 spin_lock_irqsave(&msm_host->intr_lock, flags); 1579 isr = dsi_read(msm_host, REG_DSI_INTR_CTRL); 1580 dsi_write(msm_host, REG_DSI_INTR_CTRL, isr); 1581 spin_unlock_irqrestore(&msm_host->intr_lock, flags); 1582 1583 DBG("isr=0x%x, id=%d", isr, msm_host->id); 1584 1585 if (isr & DSI_IRQ_ERROR) 1586 dsi_error(msm_host); 1587 1588 if (isr & DSI_IRQ_VIDEO_DONE) 1589 complete(&msm_host->video_comp); 1590 1591 if (isr & DSI_IRQ_CMD_DMA_DONE) 1592 complete(&msm_host->dma_comp); 1593 1594 return IRQ_HANDLED; 1595 } 1596 1597 static int dsi_host_init_panel_gpios(struct msm_dsi_host *msm_host, 1598 struct device *panel_device) 1599 { 1600 msm_host->disp_en_gpio = devm_gpiod_get_optional(panel_device, 1601 "disp-enable", 1602 GPIOD_OUT_LOW); 1603 if (IS_ERR(msm_host->disp_en_gpio)) { 1604 DBG("cannot get disp-enable-gpios %ld", 1605 PTR_ERR(msm_host->disp_en_gpio)); 1606 return PTR_ERR(msm_host->disp_en_gpio); 1607 } 1608 1609 msm_host->te_gpio = devm_gpiod_get_optional(panel_device, "disp-te", 1610 GPIOD_IN); 1611 if (IS_ERR(msm_host->te_gpio)) { 1612 DBG("cannot get disp-te-gpios %ld", PTR_ERR(msm_host->te_gpio)); 1613 return PTR_ERR(msm_host->te_gpio); 1614 } 1615 1616 return 0; 1617 } 1618 1619 static int dsi_host_attach(struct mipi_dsi_host *host, 1620 struct mipi_dsi_device *dsi) 1621 { 1622 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 1623 int ret; 1624 1625 if (dsi->lanes > msm_host->num_data_lanes) 1626 return -EINVAL; 1627 1628 msm_host->channel = dsi->channel; 1629 msm_host->lanes = dsi->lanes; 1630 msm_host->format = dsi->format; 1631 msm_host->mode_flags = dsi->mode_flags; 1632 if (dsi->dsc) 1633 msm_host->dsc = dsi->dsc; 1634 1635 /* Some gpios defined in panel DT need to be controlled by host */ 1636 ret = dsi_host_init_panel_gpios(msm_host, &dsi->dev); 1637 if (ret) 1638 return ret; 1639 1640 ret = dsi_dev_attach(msm_host->pdev); 1641 if (ret) 1642 return ret; 1643 1644 DBG("id=%d", msm_host->id); 1645 1646 return 0; 1647 } 1648 1649 static int dsi_host_detach(struct mipi_dsi_host *host, 1650 struct mipi_dsi_device *dsi) 1651 { 1652 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 1653 1654 dsi_dev_detach(msm_host->pdev); 1655 1656 DBG("id=%d", msm_host->id); 1657 1658 return 0; 1659 } 1660 1661 static ssize_t dsi_host_transfer(struct mipi_dsi_host *host, 1662 const struct mipi_dsi_msg *msg) 1663 { 1664 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 1665 int ret; 1666 1667 if (!msg || !msm_host->power_on) 1668 return -EINVAL; 1669 1670 mutex_lock(&msm_host->cmd_mutex); 1671 ret = msm_dsi_manager_cmd_xfer(msm_host->id, msg); 1672 mutex_unlock(&msm_host->cmd_mutex); 1673 1674 return ret; 1675 } 1676 1677 static const struct mipi_dsi_host_ops dsi_host_ops = { 1678 .attach = dsi_host_attach, 1679 .detach = dsi_host_detach, 1680 .transfer = dsi_host_transfer, 1681 }; 1682 1683 /* 1684 * List of supported physical to logical lane mappings. 1685 * For example, the 2nd entry represents the following mapping: 1686 * 1687 * "3012": Logic 3->Phys 0; Logic 0->Phys 1; Logic 1->Phys 2; Logic 2->Phys 3; 1688 */ 1689 static const int supported_data_lane_swaps[][4] = { 1690 { 0, 1, 2, 3 }, 1691 { 3, 0, 1, 2 }, 1692 { 2, 3, 0, 1 }, 1693 { 1, 2, 3, 0 }, 1694 { 0, 3, 2, 1 }, 1695 { 1, 0, 3, 2 }, 1696 { 2, 1, 0, 3 }, 1697 { 3, 2, 1, 0 }, 1698 }; 1699 1700 static int dsi_host_parse_lane_data(struct msm_dsi_host *msm_host, 1701 struct device_node *ep) 1702 { 1703 struct device *dev = &msm_host->pdev->dev; 1704 struct property *prop; 1705 u32 lane_map[4]; 1706 int ret, i, len, num_lanes; 1707 1708 prop = of_find_property(ep, "data-lanes", &len); 1709 if (!prop) { 1710 DRM_DEV_DEBUG(dev, 1711 "failed to find data lane mapping, using default\n"); 1712 /* Set the number of date lanes to 4 by default. */ 1713 msm_host->num_data_lanes = 4; 1714 return 0; 1715 } 1716 1717 num_lanes = drm_of_get_data_lanes_count(ep, 1, 4); 1718 if (num_lanes < 0) { 1719 DRM_DEV_ERROR(dev, "bad number of data lanes\n"); 1720 return num_lanes; 1721 } 1722 1723 msm_host->num_data_lanes = num_lanes; 1724 1725 ret = of_property_read_u32_array(ep, "data-lanes", lane_map, 1726 num_lanes); 1727 if (ret) { 1728 DRM_DEV_ERROR(dev, "failed to read lane data\n"); 1729 return ret; 1730 } 1731 1732 /* 1733 * compare DT specified physical-logical lane mappings with the ones 1734 * supported by hardware 1735 */ 1736 for (i = 0; i < ARRAY_SIZE(supported_data_lane_swaps); i++) { 1737 const int *swap = supported_data_lane_swaps[i]; 1738 int j; 1739 1740 /* 1741 * the data-lanes array we get from DT has a logical->physical 1742 * mapping. The "data lane swap" register field represents 1743 * supported configurations in a physical->logical mapping. 1744 * Translate the DT mapping to what we understand and find a 1745 * configuration that works. 1746 */ 1747 for (j = 0; j < num_lanes; j++) { 1748 if (lane_map[j] < 0 || lane_map[j] > 3) 1749 DRM_DEV_ERROR(dev, "bad physical lane entry %u\n", 1750 lane_map[j]); 1751 1752 if (swap[lane_map[j]] != j) 1753 break; 1754 } 1755 1756 if (j == num_lanes) { 1757 msm_host->dlane_swap = i; 1758 return 0; 1759 } 1760 } 1761 1762 return -EINVAL; 1763 } 1764 1765 static int dsi_populate_dsc_params(struct msm_dsi_host *msm_host, struct drm_dsc_config *dsc) 1766 { 1767 int ret; 1768 1769 if (dsc->bits_per_pixel & 0xf) { 1770 DRM_DEV_ERROR(&msm_host->pdev->dev, "DSI does not support fractional bits_per_pixel\n"); 1771 return -EINVAL; 1772 } 1773 1774 if (dsc->bits_per_component != 8) { 1775 DRM_DEV_ERROR(&msm_host->pdev->dev, "DSI does not support bits_per_component != 8 yet\n"); 1776 return -EOPNOTSUPP; 1777 } 1778 1779 dsc->simple_422 = 0; 1780 dsc->convert_rgb = 1; 1781 dsc->vbr_enable = 0; 1782 1783 drm_dsc_set_const_params(dsc); 1784 drm_dsc_set_rc_buf_thresh(dsc); 1785 1786 /* handle only bpp = bpc = 8, pre-SCR panels */ 1787 ret = drm_dsc_setup_rc_params(dsc, DRM_DSC_1_1_PRE_SCR); 1788 if (ret) { 1789 DRM_DEV_ERROR(&msm_host->pdev->dev, "could not find DSC RC parameters\n"); 1790 return ret; 1791 } 1792 1793 dsc->initial_scale_value = drm_dsc_initial_scale_value(dsc); 1794 dsc->line_buf_depth = dsc->bits_per_component + 1; 1795 1796 return drm_dsc_compute_rc_parameters(dsc); 1797 } 1798 1799 static int dsi_host_parse_dt(struct msm_dsi_host *msm_host) 1800 { 1801 struct device *dev = &msm_host->pdev->dev; 1802 struct device_node *np = dev->of_node; 1803 struct device_node *endpoint; 1804 int ret = 0; 1805 1806 /* 1807 * Get the endpoint of the output port of the DSI host. In our case, 1808 * this is mapped to port number with reg = 1. Don't return an error if 1809 * the remote endpoint isn't defined. It's possible that there is 1810 * nothing connected to the dsi output. 1811 */ 1812 endpoint = of_graph_get_endpoint_by_regs(np, 1, -1); 1813 if (!endpoint) { 1814 DRM_DEV_DEBUG(dev, "%s: no endpoint\n", __func__); 1815 return 0; 1816 } 1817 1818 ret = dsi_host_parse_lane_data(msm_host, endpoint); 1819 if (ret) { 1820 DRM_DEV_ERROR(dev, "%s: invalid lane configuration %d\n", 1821 __func__, ret); 1822 ret = -EINVAL; 1823 goto err; 1824 } 1825 1826 if (of_property_read_bool(np, "syscon-sfpb")) { 1827 msm_host->sfpb = syscon_regmap_lookup_by_phandle(np, 1828 "syscon-sfpb"); 1829 if (IS_ERR(msm_host->sfpb)) { 1830 DRM_DEV_ERROR(dev, "%s: failed to get sfpb regmap\n", 1831 __func__); 1832 ret = PTR_ERR(msm_host->sfpb); 1833 } 1834 } 1835 1836 err: 1837 of_node_put(endpoint); 1838 1839 return ret; 1840 } 1841 1842 static int dsi_host_get_id(struct msm_dsi_host *msm_host) 1843 { 1844 struct platform_device *pdev = msm_host->pdev; 1845 const struct msm_dsi_config *cfg = msm_host->cfg_hnd->cfg; 1846 struct resource *res; 1847 int i, j; 1848 1849 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dsi_ctrl"); 1850 if (!res) 1851 return -EINVAL; 1852 1853 for (i = 0; i < VARIANTS_MAX; i++) 1854 for (j = 0; j < DSI_MAX; j++) 1855 if (cfg->io_start[i][j] == res->start) 1856 return j; 1857 1858 return -EINVAL; 1859 } 1860 1861 int msm_dsi_host_init(struct msm_dsi *msm_dsi) 1862 { 1863 struct msm_dsi_host *msm_host = NULL; 1864 struct platform_device *pdev = msm_dsi->pdev; 1865 const struct msm_dsi_config *cfg; 1866 int ret; 1867 1868 msm_host = devm_kzalloc(&pdev->dev, sizeof(*msm_host), GFP_KERNEL); 1869 if (!msm_host) { 1870 return -ENOMEM; 1871 } 1872 1873 msm_host->pdev = pdev; 1874 msm_dsi->host = &msm_host->base; 1875 1876 ret = dsi_host_parse_dt(msm_host); 1877 if (ret) { 1878 pr_err("%s: failed to parse dt\n", __func__); 1879 return ret; 1880 } 1881 1882 msm_host->ctrl_base = msm_ioremap_size(pdev, "dsi_ctrl", &msm_host->ctrl_size); 1883 if (IS_ERR(msm_host->ctrl_base)) { 1884 pr_err("%s: unable to map Dsi ctrl base\n", __func__); 1885 return PTR_ERR(msm_host->ctrl_base); 1886 } 1887 1888 pm_runtime_enable(&pdev->dev); 1889 1890 msm_host->cfg_hnd = dsi_get_config(msm_host); 1891 if (!msm_host->cfg_hnd) { 1892 pr_err("%s: get config failed\n", __func__); 1893 return -EINVAL; 1894 } 1895 cfg = msm_host->cfg_hnd->cfg; 1896 1897 msm_host->id = dsi_host_get_id(msm_host); 1898 if (msm_host->id < 0) { 1899 pr_err("%s: unable to identify DSI host index\n", __func__); 1900 return msm_host->id; 1901 } 1902 1903 /* fixup base address by io offset */ 1904 msm_host->ctrl_base += cfg->io_offset; 1905 1906 ret = devm_regulator_bulk_get_const(&pdev->dev, cfg->num_regulators, 1907 cfg->regulator_data, 1908 &msm_host->supplies); 1909 if (ret) 1910 return ret; 1911 1912 ret = dsi_clk_init(msm_host); 1913 if (ret) { 1914 pr_err("%s: unable to initialize dsi clks\n", __func__); 1915 return ret; 1916 } 1917 1918 msm_host->rx_buf = devm_kzalloc(&pdev->dev, SZ_4K, GFP_KERNEL); 1919 if (!msm_host->rx_buf) { 1920 pr_err("%s: alloc rx temp buf failed\n", __func__); 1921 return -ENOMEM; 1922 } 1923 1924 ret = devm_pm_opp_set_clkname(&pdev->dev, "byte"); 1925 if (ret) 1926 return ret; 1927 /* OPP table is optional */ 1928 ret = devm_pm_opp_of_add_table(&pdev->dev); 1929 if (ret && ret != -ENODEV) { 1930 dev_err(&pdev->dev, "invalid OPP table in device tree\n"); 1931 return ret; 1932 } 1933 1934 msm_host->irq = irq_of_parse_and_map(pdev->dev.of_node, 0); 1935 if (!msm_host->irq) { 1936 dev_err(&pdev->dev, "failed to get irq\n"); 1937 return -EINVAL; 1938 } 1939 1940 /* do not autoenable, will be enabled later */ 1941 ret = devm_request_irq(&pdev->dev, msm_host->irq, dsi_host_irq, 1942 IRQF_TRIGGER_HIGH | IRQF_NO_AUTOEN, 1943 "dsi_isr", msm_host); 1944 if (ret < 0) { 1945 dev_err(&pdev->dev, "failed to request IRQ%u: %d\n", 1946 msm_host->irq, ret); 1947 return ret; 1948 } 1949 1950 init_completion(&msm_host->dma_comp); 1951 init_completion(&msm_host->video_comp); 1952 mutex_init(&msm_host->dev_mutex); 1953 mutex_init(&msm_host->cmd_mutex); 1954 spin_lock_init(&msm_host->intr_lock); 1955 1956 /* setup workqueue */ 1957 msm_host->workqueue = alloc_ordered_workqueue("dsi_drm_work", 0); 1958 if (!msm_host->workqueue) 1959 return -ENOMEM; 1960 1961 INIT_WORK(&msm_host->err_work, dsi_err_worker); 1962 1963 msm_dsi->id = msm_host->id; 1964 1965 DBG("Dsi Host %d initialized", msm_host->id); 1966 return 0; 1967 } 1968 1969 void msm_dsi_host_destroy(struct mipi_dsi_host *host) 1970 { 1971 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 1972 1973 DBG(""); 1974 if (msm_host->workqueue) { 1975 destroy_workqueue(msm_host->workqueue); 1976 msm_host->workqueue = NULL; 1977 } 1978 1979 mutex_destroy(&msm_host->cmd_mutex); 1980 mutex_destroy(&msm_host->dev_mutex); 1981 1982 pm_runtime_disable(&msm_host->pdev->dev); 1983 } 1984 1985 int msm_dsi_host_modeset_init(struct mipi_dsi_host *host, 1986 struct drm_device *dev) 1987 { 1988 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 1989 const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd; 1990 int ret; 1991 1992 msm_host->dev = dev; 1993 1994 ret = cfg_hnd->ops->tx_buf_alloc(msm_host, SZ_4K); 1995 if (ret) { 1996 pr_err("%s: alloc tx gem obj failed, %d\n", __func__, ret); 1997 return ret; 1998 } 1999 2000 return 0; 2001 } 2002 2003 int msm_dsi_host_register(struct mipi_dsi_host *host) 2004 { 2005 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2006 int ret; 2007 2008 /* Register mipi dsi host */ 2009 if (!msm_host->registered) { 2010 host->dev = &msm_host->pdev->dev; 2011 host->ops = &dsi_host_ops; 2012 ret = mipi_dsi_host_register(host); 2013 if (ret) 2014 return ret; 2015 2016 msm_host->registered = true; 2017 } 2018 2019 return 0; 2020 } 2021 2022 void msm_dsi_host_unregister(struct mipi_dsi_host *host) 2023 { 2024 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2025 2026 if (msm_host->registered) { 2027 mipi_dsi_host_unregister(host); 2028 host->dev = NULL; 2029 host->ops = NULL; 2030 msm_host->registered = false; 2031 } 2032 } 2033 2034 int msm_dsi_host_xfer_prepare(struct mipi_dsi_host *host, 2035 const struct mipi_dsi_msg *msg) 2036 { 2037 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2038 const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd; 2039 2040 /* TODO: make sure dsi_cmd_mdp is idle. 2041 * Since DSI6G v1.2.0, we can set DSI_TRIG_CTRL.BLOCK_DMA_WITHIN_FRAME 2042 * to ask H/W to wait until cmd mdp is idle. S/W wait is not needed. 2043 * How to handle the old versions? Wait for mdp cmd done? 2044 */ 2045 2046 /* 2047 * mdss interrupt is generated in mdp core clock domain 2048 * mdp clock need to be enabled to receive dsi interrupt 2049 */ 2050 pm_runtime_get_sync(&msm_host->pdev->dev); 2051 cfg_hnd->ops->link_clk_set_rate(msm_host); 2052 cfg_hnd->ops->link_clk_enable(msm_host); 2053 2054 /* TODO: vote for bus bandwidth */ 2055 2056 if (!(msg->flags & MIPI_DSI_MSG_USE_LPM)) 2057 dsi_set_tx_power_mode(0, msm_host); 2058 2059 msm_host->dma_cmd_ctrl_restore = dsi_read(msm_host, REG_DSI_CTRL); 2060 dsi_write(msm_host, REG_DSI_CTRL, 2061 msm_host->dma_cmd_ctrl_restore | 2062 DSI_CTRL_CMD_MODE_EN | 2063 DSI_CTRL_ENABLE); 2064 dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_CMD_DMA_DONE, 1); 2065 2066 return 0; 2067 } 2068 2069 void msm_dsi_host_xfer_restore(struct mipi_dsi_host *host, 2070 const struct mipi_dsi_msg *msg) 2071 { 2072 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2073 const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd; 2074 2075 dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_CMD_DMA_DONE, 0); 2076 dsi_write(msm_host, REG_DSI_CTRL, msm_host->dma_cmd_ctrl_restore); 2077 2078 if (!(msg->flags & MIPI_DSI_MSG_USE_LPM)) 2079 dsi_set_tx_power_mode(1, msm_host); 2080 2081 /* TODO: unvote for bus bandwidth */ 2082 2083 cfg_hnd->ops->link_clk_disable(msm_host); 2084 pm_runtime_put(&msm_host->pdev->dev); 2085 } 2086 2087 int msm_dsi_host_cmd_tx(struct mipi_dsi_host *host, 2088 const struct mipi_dsi_msg *msg) 2089 { 2090 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2091 2092 return dsi_cmds2buf_tx(msm_host, msg); 2093 } 2094 2095 int msm_dsi_host_cmd_rx(struct mipi_dsi_host *host, 2096 const struct mipi_dsi_msg *msg) 2097 { 2098 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2099 const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd; 2100 int data_byte, rx_byte, dlen, end; 2101 int short_response, diff, pkt_size, ret = 0; 2102 char cmd; 2103 int rlen = msg->rx_len; 2104 u8 *buf; 2105 2106 if (rlen <= 2) { 2107 short_response = 1; 2108 pkt_size = rlen; 2109 rx_byte = 4; 2110 } else { 2111 short_response = 0; 2112 data_byte = 10; /* first read */ 2113 if (rlen < data_byte) 2114 pkt_size = rlen; 2115 else 2116 pkt_size = data_byte; 2117 rx_byte = data_byte + 6; /* 4 header + 2 crc */ 2118 } 2119 2120 buf = msm_host->rx_buf; 2121 end = 0; 2122 while (!end) { 2123 u8 tx[2] = {pkt_size & 0xff, pkt_size >> 8}; 2124 struct mipi_dsi_msg max_pkt_size_msg = { 2125 .channel = msg->channel, 2126 .type = MIPI_DSI_SET_MAXIMUM_RETURN_PACKET_SIZE, 2127 .tx_len = 2, 2128 .tx_buf = tx, 2129 }; 2130 2131 DBG("rlen=%d pkt_size=%d rx_byte=%d", 2132 rlen, pkt_size, rx_byte); 2133 2134 ret = dsi_cmds2buf_tx(msm_host, &max_pkt_size_msg); 2135 if (ret < 2) { 2136 pr_err("%s: Set max pkt size failed, %d\n", 2137 __func__, ret); 2138 return -EINVAL; 2139 } 2140 2141 if ((cfg_hnd->major == MSM_DSI_VER_MAJOR_6G) && 2142 (cfg_hnd->minor >= MSM_DSI_6G_VER_MINOR_V1_1)) { 2143 /* Clear the RDBK_DATA registers */ 2144 dsi_write(msm_host, REG_DSI_RDBK_DATA_CTRL, 2145 DSI_RDBK_DATA_CTRL_CLR); 2146 wmb(); /* make sure the RDBK registers are cleared */ 2147 dsi_write(msm_host, REG_DSI_RDBK_DATA_CTRL, 0); 2148 wmb(); /* release cleared status before transfer */ 2149 } 2150 2151 ret = dsi_cmds2buf_tx(msm_host, msg); 2152 if (ret < 0) { 2153 pr_err("%s: Read cmd Tx failed, %d\n", __func__, ret); 2154 return ret; 2155 } else if (ret < msg->tx_len) { 2156 pr_err("%s: Read cmd Tx failed, too short: %d\n", __func__, ret); 2157 return -ECOMM; 2158 } 2159 2160 /* 2161 * once cmd_dma_done interrupt received, 2162 * return data from client is ready and stored 2163 * at RDBK_DATA register already 2164 * since rx fifo is 16 bytes, dcs header is kept at first loop, 2165 * after that dcs header lost during shift into registers 2166 */ 2167 dlen = dsi_cmd_dma_rx(msm_host, buf, rx_byte, pkt_size); 2168 2169 if (dlen <= 0) 2170 return 0; 2171 2172 if (short_response) 2173 break; 2174 2175 if (rlen <= data_byte) { 2176 diff = data_byte - rlen; 2177 end = 1; 2178 } else { 2179 diff = 0; 2180 rlen -= data_byte; 2181 } 2182 2183 if (!end) { 2184 dlen -= 2; /* 2 crc */ 2185 dlen -= diff; 2186 buf += dlen; /* next start position */ 2187 data_byte = 14; /* NOT first read */ 2188 if (rlen < data_byte) 2189 pkt_size += rlen; 2190 else 2191 pkt_size += data_byte; 2192 DBG("buf=%p dlen=%d diff=%d", buf, dlen, diff); 2193 } 2194 } 2195 2196 /* 2197 * For single Long read, if the requested rlen < 10, 2198 * we need to shift the start position of rx 2199 * data buffer to skip the bytes which are not 2200 * updated. 2201 */ 2202 if (pkt_size < 10 && !short_response) 2203 buf = msm_host->rx_buf + (10 - rlen); 2204 else 2205 buf = msm_host->rx_buf; 2206 2207 cmd = buf[0]; 2208 switch (cmd) { 2209 case MIPI_DSI_RX_ACKNOWLEDGE_AND_ERROR_REPORT: 2210 pr_err("%s: rx ACK_ERR_PACLAGE\n", __func__); 2211 ret = 0; 2212 break; 2213 case MIPI_DSI_RX_GENERIC_SHORT_READ_RESPONSE_1BYTE: 2214 case MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_1BYTE: 2215 ret = dsi_short_read1_resp(buf, msg); 2216 break; 2217 case MIPI_DSI_RX_GENERIC_SHORT_READ_RESPONSE_2BYTE: 2218 case MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_2BYTE: 2219 ret = dsi_short_read2_resp(buf, msg); 2220 break; 2221 case MIPI_DSI_RX_GENERIC_LONG_READ_RESPONSE: 2222 case MIPI_DSI_RX_DCS_LONG_READ_RESPONSE: 2223 ret = dsi_long_read_resp(buf, msg); 2224 break; 2225 default: 2226 pr_warn("%s:Invalid response cmd\n", __func__); 2227 ret = 0; 2228 } 2229 2230 return ret; 2231 } 2232 2233 void msm_dsi_host_cmd_xfer_commit(struct mipi_dsi_host *host, u32 dma_base, 2234 u32 len) 2235 { 2236 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2237 2238 dsi_write(msm_host, REG_DSI_DMA_BASE, dma_base); 2239 dsi_write(msm_host, REG_DSI_DMA_LEN, len); 2240 dsi_write(msm_host, REG_DSI_TRIG_DMA, 1); 2241 2242 /* Make sure trigger happens */ 2243 wmb(); 2244 } 2245 2246 void msm_dsi_host_set_phy_mode(struct mipi_dsi_host *host, 2247 struct msm_dsi_phy *src_phy) 2248 { 2249 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2250 2251 msm_host->cphy_mode = src_phy->cphy_mode; 2252 } 2253 2254 void msm_dsi_host_reset_phy(struct mipi_dsi_host *host) 2255 { 2256 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2257 2258 DBG(""); 2259 dsi_write(msm_host, REG_DSI_PHY_RESET, DSI_PHY_RESET_RESET); 2260 /* Make sure fully reset */ 2261 wmb(); 2262 udelay(1000); 2263 dsi_write(msm_host, REG_DSI_PHY_RESET, 0); 2264 udelay(100); 2265 } 2266 2267 void msm_dsi_host_get_phy_clk_req(struct mipi_dsi_host *host, 2268 struct msm_dsi_phy_clk_request *clk_req, 2269 bool is_bonded_dsi) 2270 { 2271 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2272 const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd; 2273 int ret; 2274 2275 ret = cfg_hnd->ops->calc_clk_rate(msm_host, is_bonded_dsi); 2276 if (ret) { 2277 pr_err("%s: unable to calc clk rate, %d\n", __func__, ret); 2278 return; 2279 } 2280 2281 /* CPHY transmits 16 bits over 7 clock cycles 2282 * "byte_clk" is in units of 16-bits (see dsi_calc_pclk), 2283 * so multiply by 7 to get the "bitclk rate" 2284 */ 2285 if (msm_host->cphy_mode) 2286 clk_req->bitclk_rate = msm_host->byte_clk_rate * 7; 2287 else 2288 clk_req->bitclk_rate = msm_host->byte_clk_rate * 8; 2289 clk_req->escclk_rate = msm_host->esc_clk_rate; 2290 } 2291 2292 void msm_dsi_host_enable_irq(struct mipi_dsi_host *host) 2293 { 2294 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2295 2296 enable_irq(msm_host->irq); 2297 } 2298 2299 void msm_dsi_host_disable_irq(struct mipi_dsi_host *host) 2300 { 2301 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2302 2303 disable_irq(msm_host->irq); 2304 } 2305 2306 int msm_dsi_host_enable(struct mipi_dsi_host *host) 2307 { 2308 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2309 2310 dsi_op_mode_config(msm_host, 2311 !!(msm_host->mode_flags & MIPI_DSI_MODE_VIDEO), true); 2312 2313 /* TODO: clock should be turned off for command mode, 2314 * and only turned on before MDP START. 2315 * This part of code should be enabled once mdp driver support it. 2316 */ 2317 /* if (msm_panel->mode == MSM_DSI_CMD_MODE) { 2318 * dsi_link_clk_disable(msm_host); 2319 * pm_runtime_put(&msm_host->pdev->dev); 2320 * } 2321 */ 2322 msm_host->enabled = true; 2323 return 0; 2324 } 2325 2326 int msm_dsi_host_disable(struct mipi_dsi_host *host) 2327 { 2328 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2329 2330 msm_host->enabled = false; 2331 dsi_op_mode_config(msm_host, 2332 !!(msm_host->mode_flags & MIPI_DSI_MODE_VIDEO), false); 2333 2334 /* Since we have disabled INTF, the video engine won't stop so that 2335 * the cmd engine will be blocked. 2336 * Reset to disable video engine so that we can send off cmd. 2337 */ 2338 dsi_sw_reset(msm_host); 2339 2340 return 0; 2341 } 2342 2343 static void msm_dsi_sfpb_config(struct msm_dsi_host *msm_host, bool enable) 2344 { 2345 enum sfpb_ahb_arb_master_port_en en; 2346 2347 if (!msm_host->sfpb) 2348 return; 2349 2350 en = enable ? SFPB_MASTER_PORT_ENABLE : SFPB_MASTER_PORT_DISABLE; 2351 2352 regmap_update_bits(msm_host->sfpb, REG_SFPB_GPREG, 2353 SFPB_GPREG_MASTER_PORT_EN__MASK, 2354 SFPB_GPREG_MASTER_PORT_EN(en)); 2355 } 2356 2357 int msm_dsi_host_power_on(struct mipi_dsi_host *host, 2358 struct msm_dsi_phy_shared_timings *phy_shared_timings, 2359 bool is_bonded_dsi, struct msm_dsi_phy *phy) 2360 { 2361 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2362 const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd; 2363 int ret = 0; 2364 2365 mutex_lock(&msm_host->dev_mutex); 2366 if (msm_host->power_on) { 2367 DBG("dsi host already on"); 2368 goto unlock_ret; 2369 } 2370 2371 msm_host->byte_intf_clk_rate = msm_host->byte_clk_rate; 2372 if (phy_shared_timings->byte_intf_clk_div_2) 2373 msm_host->byte_intf_clk_rate /= 2; 2374 2375 msm_dsi_sfpb_config(msm_host, true); 2376 2377 ret = regulator_bulk_enable(msm_host->cfg_hnd->cfg->num_regulators, 2378 msm_host->supplies); 2379 if (ret) { 2380 pr_err("%s:Failed to enable vregs.ret=%d\n", 2381 __func__, ret); 2382 goto unlock_ret; 2383 } 2384 2385 pm_runtime_get_sync(&msm_host->pdev->dev); 2386 ret = cfg_hnd->ops->link_clk_set_rate(msm_host); 2387 if (!ret) 2388 ret = cfg_hnd->ops->link_clk_enable(msm_host); 2389 if (ret) { 2390 pr_err("%s: failed to enable link clocks. ret=%d\n", 2391 __func__, ret); 2392 goto fail_disable_reg; 2393 } 2394 2395 ret = pinctrl_pm_select_default_state(&msm_host->pdev->dev); 2396 if (ret) { 2397 pr_err("%s: failed to set pinctrl default state, %d\n", 2398 __func__, ret); 2399 goto fail_disable_clk; 2400 } 2401 2402 dsi_timing_setup(msm_host, is_bonded_dsi); 2403 dsi_sw_reset(msm_host); 2404 dsi_ctrl_enable(msm_host, phy_shared_timings, phy); 2405 2406 if (msm_host->disp_en_gpio) 2407 gpiod_set_value(msm_host->disp_en_gpio, 1); 2408 2409 msm_host->power_on = true; 2410 mutex_unlock(&msm_host->dev_mutex); 2411 2412 return 0; 2413 2414 fail_disable_clk: 2415 cfg_hnd->ops->link_clk_disable(msm_host); 2416 pm_runtime_put(&msm_host->pdev->dev); 2417 fail_disable_reg: 2418 regulator_bulk_disable(msm_host->cfg_hnd->cfg->num_regulators, 2419 msm_host->supplies); 2420 unlock_ret: 2421 mutex_unlock(&msm_host->dev_mutex); 2422 return ret; 2423 } 2424 2425 int msm_dsi_host_power_off(struct mipi_dsi_host *host) 2426 { 2427 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2428 const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd; 2429 2430 mutex_lock(&msm_host->dev_mutex); 2431 if (!msm_host->power_on) { 2432 DBG("dsi host already off"); 2433 goto unlock_ret; 2434 } 2435 2436 dsi_ctrl_disable(msm_host); 2437 2438 if (msm_host->disp_en_gpio) 2439 gpiod_set_value(msm_host->disp_en_gpio, 0); 2440 2441 pinctrl_pm_select_sleep_state(&msm_host->pdev->dev); 2442 2443 cfg_hnd->ops->link_clk_disable(msm_host); 2444 pm_runtime_put(&msm_host->pdev->dev); 2445 2446 regulator_bulk_disable(msm_host->cfg_hnd->cfg->num_regulators, 2447 msm_host->supplies); 2448 2449 msm_dsi_sfpb_config(msm_host, false); 2450 2451 DBG("-"); 2452 2453 msm_host->power_on = false; 2454 2455 unlock_ret: 2456 mutex_unlock(&msm_host->dev_mutex); 2457 return 0; 2458 } 2459 2460 int msm_dsi_host_set_display_mode(struct mipi_dsi_host *host, 2461 const struct drm_display_mode *mode) 2462 { 2463 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2464 2465 if (msm_host->mode) { 2466 drm_mode_destroy(msm_host->dev, msm_host->mode); 2467 msm_host->mode = NULL; 2468 } 2469 2470 msm_host->mode = drm_mode_duplicate(msm_host->dev, mode); 2471 if (!msm_host->mode) { 2472 pr_err("%s: cannot duplicate mode\n", __func__); 2473 return -ENOMEM; 2474 } 2475 2476 return 0; 2477 } 2478 2479 enum drm_mode_status msm_dsi_host_check_dsc(struct mipi_dsi_host *host, 2480 const struct drm_display_mode *mode) 2481 { 2482 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2483 struct drm_dsc_config *dsc = msm_host->dsc; 2484 int pic_width = mode->hdisplay; 2485 int pic_height = mode->vdisplay; 2486 2487 if (!msm_host->dsc) 2488 return MODE_OK; 2489 2490 if (pic_width % dsc->slice_width) { 2491 pr_err("DSI: pic_width %d has to be multiple of slice %d\n", 2492 pic_width, dsc->slice_width); 2493 return MODE_H_ILLEGAL; 2494 } 2495 2496 if (pic_height % dsc->slice_height) { 2497 pr_err("DSI: pic_height %d has to be multiple of slice %d\n", 2498 pic_height, dsc->slice_height); 2499 return MODE_V_ILLEGAL; 2500 } 2501 2502 return MODE_OK; 2503 } 2504 2505 unsigned long msm_dsi_host_get_mode_flags(struct mipi_dsi_host *host) 2506 { 2507 return to_msm_dsi_host(host)->mode_flags; 2508 } 2509 2510 void msm_dsi_host_snapshot(struct msm_disp_state *disp_state, struct mipi_dsi_host *host) 2511 { 2512 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2513 2514 pm_runtime_get_sync(&msm_host->pdev->dev); 2515 2516 msm_disp_snapshot_add_block(disp_state, msm_host->ctrl_size, 2517 msm_host->ctrl_base, "dsi%d_ctrl", msm_host->id); 2518 2519 pm_runtime_put_sync(&msm_host->pdev->dev); 2520 } 2521 2522 static void msm_dsi_host_video_test_pattern_setup(struct msm_dsi_host *msm_host) 2523 { 2524 u32 reg; 2525 2526 reg = dsi_read(msm_host, REG_DSI_TEST_PATTERN_GEN_CTRL); 2527 2528 dsi_write(msm_host, REG_DSI_TEST_PATTERN_GEN_VIDEO_INIT_VAL, 0xff); 2529 /* draw checkered rectangle pattern */ 2530 dsi_write(msm_host, REG_DSI_TPG_MAIN_CONTROL, 2531 DSI_TPG_MAIN_CONTROL_CHECKERED_RECTANGLE_PATTERN); 2532 /* use 24-bit RGB test pttern */ 2533 dsi_write(msm_host, REG_DSI_TPG_VIDEO_CONFIG, 2534 DSI_TPG_VIDEO_CONFIG_BPP(VIDEO_CONFIG_24BPP) | 2535 DSI_TPG_VIDEO_CONFIG_RGB); 2536 2537 reg |= DSI_TEST_PATTERN_GEN_CTRL_VIDEO_PATTERN_SEL(VID_MDSS_GENERAL_PATTERN); 2538 dsi_write(msm_host, REG_DSI_TEST_PATTERN_GEN_CTRL, reg); 2539 2540 DBG("Video test pattern setup done\n"); 2541 } 2542 2543 static void msm_dsi_host_cmd_test_pattern_setup(struct msm_dsi_host *msm_host) 2544 { 2545 u32 reg; 2546 2547 reg = dsi_read(msm_host, REG_DSI_TEST_PATTERN_GEN_CTRL); 2548 2549 /* initial value for test pattern */ 2550 dsi_write(msm_host, REG_DSI_TEST_PATTERN_GEN_CMD_MDP_INIT_VAL0, 0xff); 2551 2552 reg |= DSI_TEST_PATTERN_GEN_CTRL_CMD_MDP_STREAM0_PATTERN_SEL(CMD_MDP_MDSS_GENERAL_PATTERN); 2553 2554 dsi_write(msm_host, REG_DSI_TEST_PATTERN_GEN_CTRL, reg); 2555 /* draw checkered rectangle pattern */ 2556 dsi_write(msm_host, REG_DSI_TPG_MAIN_CONTROL2, 2557 DSI_TPG_MAIN_CONTROL2_CMD_MDP0_CHECKERED_RECTANGLE_PATTERN); 2558 2559 DBG("Cmd test pattern setup done\n"); 2560 } 2561 2562 void msm_dsi_host_test_pattern_en(struct mipi_dsi_host *host) 2563 { 2564 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2565 bool is_video_mode = !!(msm_host->mode_flags & MIPI_DSI_MODE_VIDEO); 2566 u32 reg; 2567 2568 if (is_video_mode) 2569 msm_dsi_host_video_test_pattern_setup(msm_host); 2570 else 2571 msm_dsi_host_cmd_test_pattern_setup(msm_host); 2572 2573 reg = dsi_read(msm_host, REG_DSI_TEST_PATTERN_GEN_CTRL); 2574 /* enable the test pattern generator */ 2575 dsi_write(msm_host, REG_DSI_TEST_PATTERN_GEN_CTRL, (reg | DSI_TEST_PATTERN_GEN_CTRL_EN)); 2576 2577 /* for command mode need to trigger one frame from tpg */ 2578 if (!is_video_mode) 2579 dsi_write(msm_host, REG_DSI_TEST_PATTERN_GEN_CMD_STREAM0_TRIGGER, 2580 DSI_TEST_PATTERN_GEN_CMD_STREAM0_TRIGGER_SW_TRIGGER); 2581 } 2582 2583 struct drm_dsc_config *msm_dsi_host_get_dsc_config(struct mipi_dsi_host *host) 2584 { 2585 struct msm_dsi_host *msm_host = to_msm_dsi_host(host); 2586 2587 return msm_host->dsc; 2588 } 2589