1 /* 2 * Copyright (C) 2013 Red Hat 3 * Author: Rob Clark <robdclark@gmail.com> 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 as published by 7 * the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 * 14 * You should have received a copy of the GNU General Public License along with 15 * this program. If not, see <http://www.gnu.org/licenses/>. 16 */ 17 18 #include <drm/drm_crtc.h> 19 #include <drm/drm_crtc_helper.h> 20 #include <drm/drm_flip_work.h> 21 #include <drm/drm_mode.h> 22 23 #include "mdp4_kms.h" 24 25 struct mdp4_crtc { 26 struct drm_crtc base; 27 char name[8]; 28 int id; 29 int ovlp; 30 enum mdp4_dma dma; 31 bool enabled; 32 33 /* which mixer/encoder we route output to: */ 34 int mixer; 35 36 struct { 37 spinlock_t lock; 38 bool stale; 39 uint32_t width, height; 40 uint32_t x, y; 41 42 /* next cursor to scan-out: */ 43 uint32_t next_iova; 44 struct drm_gem_object *next_bo; 45 46 /* current cursor being scanned out: */ 47 struct drm_gem_object *scanout_bo; 48 } cursor; 49 50 51 /* if there is a pending flip, these will be non-null: */ 52 struct drm_pending_vblank_event *event; 53 54 /* Bits have been flushed at the last commit, 55 * used to decide if a vsync has happened since last commit. 56 */ 57 u32 flushed_mask; 58 59 #define PENDING_CURSOR 0x1 60 #define PENDING_FLIP 0x2 61 atomic_t pending; 62 63 /* for unref'ing cursor bo's after scanout completes: */ 64 struct drm_flip_work unref_cursor_work; 65 66 struct mdp_irq vblank; 67 struct mdp_irq err; 68 }; 69 #define to_mdp4_crtc(x) container_of(x, struct mdp4_crtc, base) 70 71 static struct mdp4_kms *get_kms(struct drm_crtc *crtc) 72 { 73 struct msm_drm_private *priv = crtc->dev->dev_private; 74 return to_mdp4_kms(to_mdp_kms(priv->kms)); 75 } 76 77 static void request_pending(struct drm_crtc *crtc, uint32_t pending) 78 { 79 struct mdp4_crtc *mdp4_crtc = to_mdp4_crtc(crtc); 80 81 atomic_or(pending, &mdp4_crtc->pending); 82 mdp_irq_register(&get_kms(crtc)->base, &mdp4_crtc->vblank); 83 } 84 85 static void crtc_flush(struct drm_crtc *crtc) 86 { 87 struct mdp4_crtc *mdp4_crtc = to_mdp4_crtc(crtc); 88 struct mdp4_kms *mdp4_kms = get_kms(crtc); 89 struct drm_plane *plane; 90 uint32_t flush = 0; 91 92 drm_atomic_crtc_for_each_plane(plane, crtc) { 93 enum mdp4_pipe pipe_id = mdp4_plane_pipe(plane); 94 flush |= pipe2flush(pipe_id); 95 } 96 97 flush |= ovlp2flush(mdp4_crtc->ovlp); 98 99 DBG("%s: flush=%08x", mdp4_crtc->name, flush); 100 101 mdp4_crtc->flushed_mask = flush; 102 103 mdp4_write(mdp4_kms, REG_MDP4_OVERLAY_FLUSH, flush); 104 } 105 106 /* if file!=NULL, this is preclose potential cancel-flip path */ 107 static void complete_flip(struct drm_crtc *crtc, struct drm_file *file) 108 { 109 struct mdp4_crtc *mdp4_crtc = to_mdp4_crtc(crtc); 110 struct drm_device *dev = crtc->dev; 111 struct drm_pending_vblank_event *event; 112 unsigned long flags; 113 114 spin_lock_irqsave(&dev->event_lock, flags); 115 event = mdp4_crtc->event; 116 if (event) { 117 mdp4_crtc->event = NULL; 118 DBG("%s: send event: %p", mdp4_crtc->name, event); 119 drm_crtc_send_vblank_event(crtc, event); 120 } 121 spin_unlock_irqrestore(&dev->event_lock, flags); 122 } 123 124 static void unref_cursor_worker(struct drm_flip_work *work, void *val) 125 { 126 struct mdp4_crtc *mdp4_crtc = 127 container_of(work, struct mdp4_crtc, unref_cursor_work); 128 struct mdp4_kms *mdp4_kms = get_kms(&mdp4_crtc->base); 129 struct msm_kms *kms = &mdp4_kms->base.base; 130 131 msm_gem_put_iova(val, kms->aspace); 132 drm_gem_object_put_unlocked(val); 133 } 134 135 static void mdp4_crtc_destroy(struct drm_crtc *crtc) 136 { 137 struct mdp4_crtc *mdp4_crtc = to_mdp4_crtc(crtc); 138 139 drm_crtc_cleanup(crtc); 140 drm_flip_work_cleanup(&mdp4_crtc->unref_cursor_work); 141 142 kfree(mdp4_crtc); 143 } 144 145 /* statically (for now) map planes to mixer stage (z-order): */ 146 static const int idxs[] = { 147 [VG1] = 1, 148 [VG2] = 2, 149 [RGB1] = 0, 150 [RGB2] = 0, 151 [RGB3] = 0, 152 [VG3] = 3, 153 [VG4] = 4, 154 155 }; 156 157 /* setup mixer config, for which we need to consider all crtc's and 158 * the planes attached to them 159 * 160 * TODO may possibly need some extra locking here 161 */ 162 static void setup_mixer(struct mdp4_kms *mdp4_kms) 163 { 164 struct drm_mode_config *config = &mdp4_kms->dev->mode_config; 165 struct drm_crtc *crtc; 166 uint32_t mixer_cfg = 0; 167 static const enum mdp_mixer_stage_id stages[] = { 168 STAGE_BASE, STAGE0, STAGE1, STAGE2, STAGE3, 169 }; 170 171 list_for_each_entry(crtc, &config->crtc_list, head) { 172 struct mdp4_crtc *mdp4_crtc = to_mdp4_crtc(crtc); 173 struct drm_plane *plane; 174 175 drm_atomic_crtc_for_each_plane(plane, crtc) { 176 enum mdp4_pipe pipe_id = mdp4_plane_pipe(plane); 177 int idx = idxs[pipe_id]; 178 mixer_cfg = mixercfg(mixer_cfg, mdp4_crtc->mixer, 179 pipe_id, stages[idx]); 180 } 181 } 182 183 mdp4_write(mdp4_kms, REG_MDP4_LAYERMIXER_IN_CFG, mixer_cfg); 184 } 185 186 static void blend_setup(struct drm_crtc *crtc) 187 { 188 struct mdp4_crtc *mdp4_crtc = to_mdp4_crtc(crtc); 189 struct mdp4_kms *mdp4_kms = get_kms(crtc); 190 struct drm_plane *plane; 191 int i, ovlp = mdp4_crtc->ovlp; 192 bool alpha[4]= { false, false, false, false }; 193 194 mdp4_write(mdp4_kms, REG_MDP4_OVLP_TRANSP_LOW0(ovlp), 0); 195 mdp4_write(mdp4_kms, REG_MDP4_OVLP_TRANSP_LOW1(ovlp), 0); 196 mdp4_write(mdp4_kms, REG_MDP4_OVLP_TRANSP_HIGH0(ovlp), 0); 197 mdp4_write(mdp4_kms, REG_MDP4_OVLP_TRANSP_HIGH1(ovlp), 0); 198 199 drm_atomic_crtc_for_each_plane(plane, crtc) { 200 enum mdp4_pipe pipe_id = mdp4_plane_pipe(plane); 201 int idx = idxs[pipe_id]; 202 if (idx > 0) { 203 const struct mdp_format *format = 204 to_mdp_format(msm_framebuffer_format(plane->state->fb)); 205 alpha[idx-1] = format->alpha_enable; 206 } 207 } 208 209 for (i = 0; i < 4; i++) { 210 uint32_t op; 211 212 if (alpha[i]) { 213 op = MDP4_OVLP_STAGE_OP_FG_ALPHA(FG_PIXEL) | 214 MDP4_OVLP_STAGE_OP_BG_ALPHA(FG_PIXEL) | 215 MDP4_OVLP_STAGE_OP_BG_INV_ALPHA; 216 } else { 217 op = MDP4_OVLP_STAGE_OP_FG_ALPHA(FG_CONST) | 218 MDP4_OVLP_STAGE_OP_BG_ALPHA(BG_CONST); 219 } 220 221 mdp4_write(mdp4_kms, REG_MDP4_OVLP_STAGE_FG_ALPHA(ovlp, i), 0xff); 222 mdp4_write(mdp4_kms, REG_MDP4_OVLP_STAGE_BG_ALPHA(ovlp, i), 0x00); 223 mdp4_write(mdp4_kms, REG_MDP4_OVLP_STAGE_OP(ovlp, i), op); 224 mdp4_write(mdp4_kms, REG_MDP4_OVLP_STAGE_CO3(ovlp, i), 1); 225 mdp4_write(mdp4_kms, REG_MDP4_OVLP_STAGE_TRANSP_LOW0(ovlp, i), 0); 226 mdp4_write(mdp4_kms, REG_MDP4_OVLP_STAGE_TRANSP_LOW1(ovlp, i), 0); 227 mdp4_write(mdp4_kms, REG_MDP4_OVLP_STAGE_TRANSP_HIGH0(ovlp, i), 0); 228 mdp4_write(mdp4_kms, REG_MDP4_OVLP_STAGE_TRANSP_HIGH1(ovlp, i), 0); 229 } 230 231 setup_mixer(mdp4_kms); 232 } 233 234 static void mdp4_crtc_mode_set_nofb(struct drm_crtc *crtc) 235 { 236 struct mdp4_crtc *mdp4_crtc = to_mdp4_crtc(crtc); 237 struct mdp4_kms *mdp4_kms = get_kms(crtc); 238 enum mdp4_dma dma = mdp4_crtc->dma; 239 int ovlp = mdp4_crtc->ovlp; 240 struct drm_display_mode *mode; 241 242 if (WARN_ON(!crtc->state)) 243 return; 244 245 mode = &crtc->state->adjusted_mode; 246 247 DBG("%s: set mode: %d:\"%s\" %d %d %d %d %d %d %d %d %d %d 0x%x 0x%x", 248 mdp4_crtc->name, mode->base.id, mode->name, 249 mode->vrefresh, mode->clock, 250 mode->hdisplay, mode->hsync_start, 251 mode->hsync_end, mode->htotal, 252 mode->vdisplay, mode->vsync_start, 253 mode->vsync_end, mode->vtotal, 254 mode->type, mode->flags); 255 256 mdp4_write(mdp4_kms, REG_MDP4_DMA_SRC_SIZE(dma), 257 MDP4_DMA_SRC_SIZE_WIDTH(mode->hdisplay) | 258 MDP4_DMA_SRC_SIZE_HEIGHT(mode->vdisplay)); 259 260 /* take data from pipe: */ 261 mdp4_write(mdp4_kms, REG_MDP4_DMA_SRC_BASE(dma), 0); 262 mdp4_write(mdp4_kms, REG_MDP4_DMA_SRC_STRIDE(dma), 0); 263 mdp4_write(mdp4_kms, REG_MDP4_DMA_DST_SIZE(dma), 264 MDP4_DMA_DST_SIZE_WIDTH(0) | 265 MDP4_DMA_DST_SIZE_HEIGHT(0)); 266 267 mdp4_write(mdp4_kms, REG_MDP4_OVLP_BASE(ovlp), 0); 268 mdp4_write(mdp4_kms, REG_MDP4_OVLP_SIZE(ovlp), 269 MDP4_OVLP_SIZE_WIDTH(mode->hdisplay) | 270 MDP4_OVLP_SIZE_HEIGHT(mode->vdisplay)); 271 mdp4_write(mdp4_kms, REG_MDP4_OVLP_STRIDE(ovlp), 0); 272 273 mdp4_write(mdp4_kms, REG_MDP4_OVLP_CFG(ovlp), 1); 274 275 if (dma == DMA_E) { 276 mdp4_write(mdp4_kms, REG_MDP4_DMA_E_QUANT(0), 0x00ff0000); 277 mdp4_write(mdp4_kms, REG_MDP4_DMA_E_QUANT(1), 0x00ff0000); 278 mdp4_write(mdp4_kms, REG_MDP4_DMA_E_QUANT(2), 0x00ff0000); 279 } 280 } 281 282 static void mdp4_crtc_atomic_disable(struct drm_crtc *crtc, 283 struct drm_crtc_state *old_state) 284 { 285 struct mdp4_crtc *mdp4_crtc = to_mdp4_crtc(crtc); 286 struct mdp4_kms *mdp4_kms = get_kms(crtc); 287 288 DBG("%s", mdp4_crtc->name); 289 290 if (WARN_ON(!mdp4_crtc->enabled)) 291 return; 292 293 /* Disable/save vblank irq handling before power is disabled */ 294 drm_crtc_vblank_off(crtc); 295 296 mdp_irq_unregister(&mdp4_kms->base, &mdp4_crtc->err); 297 mdp4_disable(mdp4_kms); 298 299 mdp4_crtc->enabled = false; 300 } 301 302 static void mdp4_crtc_atomic_enable(struct drm_crtc *crtc, 303 struct drm_crtc_state *old_state) 304 { 305 struct mdp4_crtc *mdp4_crtc = to_mdp4_crtc(crtc); 306 struct mdp4_kms *mdp4_kms = get_kms(crtc); 307 308 DBG("%s", mdp4_crtc->name); 309 310 if (WARN_ON(mdp4_crtc->enabled)) 311 return; 312 313 mdp4_enable(mdp4_kms); 314 315 /* Restore vblank irq handling after power is enabled */ 316 drm_crtc_vblank_on(crtc); 317 318 mdp_irq_register(&mdp4_kms->base, &mdp4_crtc->err); 319 320 crtc_flush(crtc); 321 322 mdp4_crtc->enabled = true; 323 } 324 325 static int mdp4_crtc_atomic_check(struct drm_crtc *crtc, 326 struct drm_crtc_state *state) 327 { 328 struct mdp4_crtc *mdp4_crtc = to_mdp4_crtc(crtc); 329 DBG("%s: check", mdp4_crtc->name); 330 // TODO anything else to check? 331 return 0; 332 } 333 334 static void mdp4_crtc_atomic_begin(struct drm_crtc *crtc, 335 struct drm_crtc_state *old_crtc_state) 336 { 337 struct mdp4_crtc *mdp4_crtc = to_mdp4_crtc(crtc); 338 DBG("%s: begin", mdp4_crtc->name); 339 } 340 341 static void mdp4_crtc_atomic_flush(struct drm_crtc *crtc, 342 struct drm_crtc_state *old_crtc_state) 343 { 344 struct mdp4_crtc *mdp4_crtc = to_mdp4_crtc(crtc); 345 struct drm_device *dev = crtc->dev; 346 unsigned long flags; 347 348 DBG("%s: event: %p", mdp4_crtc->name, crtc->state->event); 349 350 WARN_ON(mdp4_crtc->event); 351 352 spin_lock_irqsave(&dev->event_lock, flags); 353 mdp4_crtc->event = crtc->state->event; 354 crtc->state->event = NULL; 355 spin_unlock_irqrestore(&dev->event_lock, flags); 356 357 blend_setup(crtc); 358 crtc_flush(crtc); 359 request_pending(crtc, PENDING_FLIP); 360 } 361 362 #define CURSOR_WIDTH 64 363 #define CURSOR_HEIGHT 64 364 365 /* called from IRQ to update cursor related registers (if needed). The 366 * cursor registers, other than x/y position, appear not to be double 367 * buffered, and changing them other than from vblank seems to trigger 368 * underflow. 369 */ 370 static void update_cursor(struct drm_crtc *crtc) 371 { 372 struct mdp4_crtc *mdp4_crtc = to_mdp4_crtc(crtc); 373 struct mdp4_kms *mdp4_kms = get_kms(crtc); 374 struct msm_kms *kms = &mdp4_kms->base.base; 375 enum mdp4_dma dma = mdp4_crtc->dma; 376 unsigned long flags; 377 378 spin_lock_irqsave(&mdp4_crtc->cursor.lock, flags); 379 if (mdp4_crtc->cursor.stale) { 380 struct drm_gem_object *next_bo = mdp4_crtc->cursor.next_bo; 381 struct drm_gem_object *prev_bo = mdp4_crtc->cursor.scanout_bo; 382 uint64_t iova = mdp4_crtc->cursor.next_iova; 383 384 if (next_bo) { 385 /* take a obj ref + iova ref when we start scanning out: */ 386 drm_gem_object_get(next_bo); 387 msm_gem_get_iova(next_bo, kms->aspace, &iova); 388 389 /* enable cursor: */ 390 mdp4_write(mdp4_kms, REG_MDP4_DMA_CURSOR_SIZE(dma), 391 MDP4_DMA_CURSOR_SIZE_WIDTH(mdp4_crtc->cursor.width) | 392 MDP4_DMA_CURSOR_SIZE_HEIGHT(mdp4_crtc->cursor.height)); 393 mdp4_write(mdp4_kms, REG_MDP4_DMA_CURSOR_BASE(dma), iova); 394 mdp4_write(mdp4_kms, REG_MDP4_DMA_CURSOR_BLEND_CONFIG(dma), 395 MDP4_DMA_CURSOR_BLEND_CONFIG_FORMAT(CURSOR_ARGB) | 396 MDP4_DMA_CURSOR_BLEND_CONFIG_CURSOR_EN); 397 } else { 398 /* disable cursor: */ 399 mdp4_write(mdp4_kms, REG_MDP4_DMA_CURSOR_BASE(dma), 400 mdp4_kms->blank_cursor_iova); 401 } 402 403 /* and drop the iova ref + obj rev when done scanning out: */ 404 if (prev_bo) 405 drm_flip_work_queue(&mdp4_crtc->unref_cursor_work, prev_bo); 406 407 mdp4_crtc->cursor.scanout_bo = next_bo; 408 mdp4_crtc->cursor.stale = false; 409 } 410 411 mdp4_write(mdp4_kms, REG_MDP4_DMA_CURSOR_POS(dma), 412 MDP4_DMA_CURSOR_POS_X(mdp4_crtc->cursor.x) | 413 MDP4_DMA_CURSOR_POS_Y(mdp4_crtc->cursor.y)); 414 415 spin_unlock_irqrestore(&mdp4_crtc->cursor.lock, flags); 416 } 417 418 static int mdp4_crtc_cursor_set(struct drm_crtc *crtc, 419 struct drm_file *file_priv, uint32_t handle, 420 uint32_t width, uint32_t height) 421 { 422 struct mdp4_crtc *mdp4_crtc = to_mdp4_crtc(crtc); 423 struct mdp4_kms *mdp4_kms = get_kms(crtc); 424 struct msm_kms *kms = &mdp4_kms->base.base; 425 struct drm_device *dev = crtc->dev; 426 struct drm_gem_object *cursor_bo, *old_bo; 427 unsigned long flags; 428 uint64_t iova; 429 int ret; 430 431 if ((width > CURSOR_WIDTH) || (height > CURSOR_HEIGHT)) { 432 dev_err(dev->dev, "bad cursor size: %dx%d\n", width, height); 433 return -EINVAL; 434 } 435 436 if (handle) { 437 cursor_bo = drm_gem_object_lookup(file_priv, handle); 438 if (!cursor_bo) 439 return -ENOENT; 440 } else { 441 cursor_bo = NULL; 442 } 443 444 if (cursor_bo) { 445 ret = msm_gem_get_iova(cursor_bo, kms->aspace, &iova); 446 if (ret) 447 goto fail; 448 } else { 449 iova = 0; 450 } 451 452 spin_lock_irqsave(&mdp4_crtc->cursor.lock, flags); 453 old_bo = mdp4_crtc->cursor.next_bo; 454 mdp4_crtc->cursor.next_bo = cursor_bo; 455 mdp4_crtc->cursor.next_iova = iova; 456 mdp4_crtc->cursor.width = width; 457 mdp4_crtc->cursor.height = height; 458 mdp4_crtc->cursor.stale = true; 459 spin_unlock_irqrestore(&mdp4_crtc->cursor.lock, flags); 460 461 if (old_bo) { 462 /* drop our previous reference: */ 463 drm_flip_work_queue(&mdp4_crtc->unref_cursor_work, old_bo); 464 } 465 466 request_pending(crtc, PENDING_CURSOR); 467 468 return 0; 469 470 fail: 471 drm_gem_object_put_unlocked(cursor_bo); 472 return ret; 473 } 474 475 static int mdp4_crtc_cursor_move(struct drm_crtc *crtc, int x, int y) 476 { 477 struct mdp4_crtc *mdp4_crtc = to_mdp4_crtc(crtc); 478 unsigned long flags; 479 480 spin_lock_irqsave(&mdp4_crtc->cursor.lock, flags); 481 mdp4_crtc->cursor.x = x; 482 mdp4_crtc->cursor.y = y; 483 spin_unlock_irqrestore(&mdp4_crtc->cursor.lock, flags); 484 485 crtc_flush(crtc); 486 request_pending(crtc, PENDING_CURSOR); 487 488 return 0; 489 } 490 491 static const struct drm_crtc_funcs mdp4_crtc_funcs = { 492 .set_config = drm_atomic_helper_set_config, 493 .destroy = mdp4_crtc_destroy, 494 .page_flip = drm_atomic_helper_page_flip, 495 .cursor_set = mdp4_crtc_cursor_set, 496 .cursor_move = mdp4_crtc_cursor_move, 497 .reset = drm_atomic_helper_crtc_reset, 498 .atomic_duplicate_state = drm_atomic_helper_crtc_duplicate_state, 499 .atomic_destroy_state = drm_atomic_helper_crtc_destroy_state, 500 }; 501 502 static const struct drm_crtc_helper_funcs mdp4_crtc_helper_funcs = { 503 .mode_set_nofb = mdp4_crtc_mode_set_nofb, 504 .atomic_check = mdp4_crtc_atomic_check, 505 .atomic_begin = mdp4_crtc_atomic_begin, 506 .atomic_flush = mdp4_crtc_atomic_flush, 507 .atomic_enable = mdp4_crtc_atomic_enable, 508 .atomic_disable = mdp4_crtc_atomic_disable, 509 }; 510 511 static void mdp4_crtc_vblank_irq(struct mdp_irq *irq, uint32_t irqstatus) 512 { 513 struct mdp4_crtc *mdp4_crtc = container_of(irq, struct mdp4_crtc, vblank); 514 struct drm_crtc *crtc = &mdp4_crtc->base; 515 struct msm_drm_private *priv = crtc->dev->dev_private; 516 unsigned pending; 517 518 mdp_irq_unregister(&get_kms(crtc)->base, &mdp4_crtc->vblank); 519 520 pending = atomic_xchg(&mdp4_crtc->pending, 0); 521 522 if (pending & PENDING_FLIP) { 523 complete_flip(crtc, NULL); 524 } 525 526 if (pending & PENDING_CURSOR) { 527 update_cursor(crtc); 528 drm_flip_work_commit(&mdp4_crtc->unref_cursor_work, priv->wq); 529 } 530 } 531 532 static void mdp4_crtc_err_irq(struct mdp_irq *irq, uint32_t irqstatus) 533 { 534 struct mdp4_crtc *mdp4_crtc = container_of(irq, struct mdp4_crtc, err); 535 struct drm_crtc *crtc = &mdp4_crtc->base; 536 DBG("%s: error: %08x", mdp4_crtc->name, irqstatus); 537 crtc_flush(crtc); 538 } 539 540 static void mdp4_crtc_wait_for_flush_done(struct drm_crtc *crtc) 541 { 542 struct drm_device *dev = crtc->dev; 543 struct mdp4_crtc *mdp4_crtc = to_mdp4_crtc(crtc); 544 struct mdp4_kms *mdp4_kms = get_kms(crtc); 545 int ret; 546 547 ret = drm_crtc_vblank_get(crtc); 548 if (ret) 549 return; 550 551 ret = wait_event_timeout(dev->vblank[drm_crtc_index(crtc)].queue, 552 !(mdp4_read(mdp4_kms, REG_MDP4_OVERLAY_FLUSH) & 553 mdp4_crtc->flushed_mask), 554 msecs_to_jiffies(50)); 555 if (ret <= 0) 556 dev_warn(dev->dev, "vblank time out, crtc=%d\n", mdp4_crtc->id); 557 558 mdp4_crtc->flushed_mask = 0; 559 560 drm_crtc_vblank_put(crtc); 561 } 562 563 uint32_t mdp4_crtc_vblank(struct drm_crtc *crtc) 564 { 565 struct mdp4_crtc *mdp4_crtc = to_mdp4_crtc(crtc); 566 return mdp4_crtc->vblank.irqmask; 567 } 568 569 /* set dma config, ie. the format the encoder wants. */ 570 void mdp4_crtc_set_config(struct drm_crtc *crtc, uint32_t config) 571 { 572 struct mdp4_crtc *mdp4_crtc = to_mdp4_crtc(crtc); 573 struct mdp4_kms *mdp4_kms = get_kms(crtc); 574 575 mdp4_write(mdp4_kms, REG_MDP4_DMA_CONFIG(mdp4_crtc->dma), config); 576 } 577 578 /* set interface for routing crtc->encoder: */ 579 void mdp4_crtc_set_intf(struct drm_crtc *crtc, enum mdp4_intf intf, int mixer) 580 { 581 struct mdp4_crtc *mdp4_crtc = to_mdp4_crtc(crtc); 582 struct mdp4_kms *mdp4_kms = get_kms(crtc); 583 uint32_t intf_sel; 584 585 intf_sel = mdp4_read(mdp4_kms, REG_MDP4_DISP_INTF_SEL); 586 587 switch (mdp4_crtc->dma) { 588 case DMA_P: 589 intf_sel &= ~MDP4_DISP_INTF_SEL_PRIM__MASK; 590 intf_sel |= MDP4_DISP_INTF_SEL_PRIM(intf); 591 break; 592 case DMA_S: 593 intf_sel &= ~MDP4_DISP_INTF_SEL_SEC__MASK; 594 intf_sel |= MDP4_DISP_INTF_SEL_SEC(intf); 595 break; 596 case DMA_E: 597 intf_sel &= ~MDP4_DISP_INTF_SEL_EXT__MASK; 598 intf_sel |= MDP4_DISP_INTF_SEL_EXT(intf); 599 break; 600 } 601 602 if (intf == INTF_DSI_VIDEO) { 603 intf_sel &= ~MDP4_DISP_INTF_SEL_DSI_CMD; 604 intf_sel |= MDP4_DISP_INTF_SEL_DSI_VIDEO; 605 } else if (intf == INTF_DSI_CMD) { 606 intf_sel &= ~MDP4_DISP_INTF_SEL_DSI_VIDEO; 607 intf_sel |= MDP4_DISP_INTF_SEL_DSI_CMD; 608 } 609 610 mdp4_crtc->mixer = mixer; 611 612 blend_setup(crtc); 613 614 DBG("%s: intf_sel=%08x", mdp4_crtc->name, intf_sel); 615 616 mdp4_write(mdp4_kms, REG_MDP4_DISP_INTF_SEL, intf_sel); 617 } 618 619 void mdp4_crtc_wait_for_commit_done(struct drm_crtc *crtc) 620 { 621 /* wait_for_flush_done is the only case for now. 622 * Later we will have command mode CRTC to wait for 623 * other event. 624 */ 625 mdp4_crtc_wait_for_flush_done(crtc); 626 } 627 628 static const char *dma_names[] = { 629 "DMA_P", "DMA_S", "DMA_E", 630 }; 631 632 /* initialize crtc */ 633 struct drm_crtc *mdp4_crtc_init(struct drm_device *dev, 634 struct drm_plane *plane, int id, int ovlp_id, 635 enum mdp4_dma dma_id) 636 { 637 struct drm_crtc *crtc = NULL; 638 struct mdp4_crtc *mdp4_crtc; 639 640 mdp4_crtc = kzalloc(sizeof(*mdp4_crtc), GFP_KERNEL); 641 if (!mdp4_crtc) 642 return ERR_PTR(-ENOMEM); 643 644 crtc = &mdp4_crtc->base; 645 646 mdp4_crtc->id = id; 647 648 mdp4_crtc->ovlp = ovlp_id; 649 mdp4_crtc->dma = dma_id; 650 651 mdp4_crtc->vblank.irqmask = dma2irq(mdp4_crtc->dma); 652 mdp4_crtc->vblank.irq = mdp4_crtc_vblank_irq; 653 654 mdp4_crtc->err.irqmask = dma2err(mdp4_crtc->dma); 655 mdp4_crtc->err.irq = mdp4_crtc_err_irq; 656 657 snprintf(mdp4_crtc->name, sizeof(mdp4_crtc->name), "%s:%d", 658 dma_names[dma_id], ovlp_id); 659 660 spin_lock_init(&mdp4_crtc->cursor.lock); 661 662 drm_flip_work_init(&mdp4_crtc->unref_cursor_work, 663 "unref cursor", unref_cursor_worker); 664 665 drm_crtc_init_with_planes(dev, crtc, plane, NULL, &mdp4_crtc_funcs, 666 NULL); 667 drm_crtc_helper_add(crtc, &mdp4_crtc_helper_funcs); 668 669 return crtc; 670 } 671