xref: /linux/drivers/gpu/drm/msm/disp/dpu1/dpu_kms.c (revision eb2f932100288dbb881eadfed02e1459c6b9504c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2013 Red Hat
4  * Copyright (c) 2014-2018, The Linux Foundation. All rights reserved.
5  * Copyright (c) 2022 Qualcomm Innovation Center, Inc. All rights reserved.
6  *
7  * Author: Rob Clark <robdclark@gmail.com>
8  */
9 
10 #define pr_fmt(fmt)	"[drm:%s:%d] " fmt, __func__, __LINE__
11 
12 #include <linux/debugfs.h>
13 #include <linux/dma-buf.h>
14 #include <linux/of_irq.h>
15 #include <linux/pm_opp.h>
16 
17 #include <drm/drm_crtc.h>
18 #include <drm/drm_file.h>
19 #include <drm/drm_framebuffer.h>
20 #include <drm/drm_vblank.h>
21 #include <drm/drm_writeback.h>
22 
23 #include "msm_drv.h"
24 #include "msm_mmu.h"
25 #include "msm_mdss.h"
26 #include "msm_gem.h"
27 #include "disp/msm_disp_snapshot.h"
28 
29 #include "dpu_core_irq.h"
30 #include "dpu_crtc.h"
31 #include "dpu_encoder.h"
32 #include "dpu_formats.h"
33 #include "dpu_hw_vbif.h"
34 #include "dpu_kms.h"
35 #include "dpu_plane.h"
36 #include "dpu_vbif.h"
37 #include "dpu_writeback.h"
38 
39 #define CREATE_TRACE_POINTS
40 #include "dpu_trace.h"
41 
42 /*
43  * To enable overall DRM driver logging
44  * # echo 0x2 > /sys/module/drm/parameters/debug
45  *
46  * To enable DRM driver h/w logging
47  * # echo <mask> > /sys/kernel/debug/dri/0/debug/hw_log_mask
48  *
49  * See dpu_hw_mdss.h for h/w logging mask definitions (search for DPU_DBG_MASK_)
50  */
51 #define DPU_DEBUGFS_DIR "msm_dpu"
52 #define DPU_DEBUGFS_HWMASKNAME "hw_log_mask"
53 
54 static int dpu_kms_hw_init(struct msm_kms *kms);
55 static void _dpu_kms_mmu_destroy(struct dpu_kms *dpu_kms);
56 
57 #ifdef CONFIG_DEBUG_FS
58 static int _dpu_danger_signal_status(struct seq_file *s,
59 		bool danger_status)
60 {
61 	struct dpu_danger_safe_status status;
62 	struct dpu_kms *kms = s->private;
63 	int i;
64 
65 	if (!kms->hw_mdp) {
66 		DPU_ERROR("invalid arg(s)\n");
67 		return 0;
68 	}
69 
70 	memset(&status, 0, sizeof(struct dpu_danger_safe_status));
71 
72 	pm_runtime_get_sync(&kms->pdev->dev);
73 	if (danger_status) {
74 		seq_puts(s, "\nDanger signal status:\n");
75 		if (kms->hw_mdp->ops.get_danger_status)
76 			kms->hw_mdp->ops.get_danger_status(kms->hw_mdp,
77 					&status);
78 	} else {
79 		seq_puts(s, "\nSafe signal status:\n");
80 		if (kms->hw_mdp->ops.get_safe_status)
81 			kms->hw_mdp->ops.get_safe_status(kms->hw_mdp,
82 					&status);
83 	}
84 	pm_runtime_put_sync(&kms->pdev->dev);
85 
86 	seq_printf(s, "MDP     :  0x%x\n", status.mdp);
87 
88 	for (i = SSPP_VIG0; i < SSPP_MAX; i++)
89 		seq_printf(s, "SSPP%d   :  0x%x  \n", i - SSPP_VIG0,
90 				status.sspp[i]);
91 	seq_puts(s, "\n");
92 
93 	return 0;
94 }
95 
96 static int dpu_debugfs_danger_stats_show(struct seq_file *s, void *v)
97 {
98 	return _dpu_danger_signal_status(s, true);
99 }
100 DEFINE_SHOW_ATTRIBUTE(dpu_debugfs_danger_stats);
101 
102 static int dpu_debugfs_safe_stats_show(struct seq_file *s, void *v)
103 {
104 	return _dpu_danger_signal_status(s, false);
105 }
106 DEFINE_SHOW_ATTRIBUTE(dpu_debugfs_safe_stats);
107 
108 static ssize_t _dpu_plane_danger_read(struct file *file,
109 			char __user *buff, size_t count, loff_t *ppos)
110 {
111 	struct dpu_kms *kms = file->private_data;
112 	int len;
113 	char buf[40];
114 
115 	len = scnprintf(buf, sizeof(buf), "%d\n", !kms->has_danger_ctrl);
116 
117 	return simple_read_from_buffer(buff, count, ppos, buf, len);
118 }
119 
120 static void _dpu_plane_set_danger_state(struct dpu_kms *kms, bool enable)
121 {
122 	struct drm_plane *plane;
123 
124 	drm_for_each_plane(plane, kms->dev) {
125 		if (plane->fb && plane->state) {
126 			dpu_plane_danger_signal_ctrl(plane, enable);
127 			DPU_DEBUG("plane:%d img:%dx%d ",
128 				plane->base.id, plane->fb->width,
129 				plane->fb->height);
130 			DPU_DEBUG("src[%d,%d,%d,%d] dst[%d,%d,%d,%d]\n",
131 				plane->state->src_x >> 16,
132 				plane->state->src_y >> 16,
133 				plane->state->src_w >> 16,
134 				plane->state->src_h >> 16,
135 				plane->state->crtc_x, plane->state->crtc_y,
136 				plane->state->crtc_w, plane->state->crtc_h);
137 		} else {
138 			DPU_DEBUG("Inactive plane:%d\n", plane->base.id);
139 		}
140 	}
141 }
142 
143 static ssize_t _dpu_plane_danger_write(struct file *file,
144 		    const char __user *user_buf, size_t count, loff_t *ppos)
145 {
146 	struct dpu_kms *kms = file->private_data;
147 	int disable_panic;
148 	int ret;
149 
150 	ret = kstrtouint_from_user(user_buf, count, 0, &disable_panic);
151 	if (ret)
152 		return ret;
153 
154 	if (disable_panic) {
155 		/* Disable panic signal for all active pipes */
156 		DPU_DEBUG("Disabling danger:\n");
157 		_dpu_plane_set_danger_state(kms, false);
158 		kms->has_danger_ctrl = false;
159 	} else {
160 		/* Enable panic signal for all active pipes */
161 		DPU_DEBUG("Enabling danger:\n");
162 		kms->has_danger_ctrl = true;
163 		_dpu_plane_set_danger_state(kms, true);
164 	}
165 
166 	return count;
167 }
168 
169 static const struct file_operations dpu_plane_danger_enable = {
170 	.open = simple_open,
171 	.read = _dpu_plane_danger_read,
172 	.write = _dpu_plane_danger_write,
173 };
174 
175 static void dpu_debugfs_danger_init(struct dpu_kms *dpu_kms,
176 		struct dentry *parent)
177 {
178 	struct dentry *entry = debugfs_create_dir("danger", parent);
179 
180 	debugfs_create_file("danger_status", 0600, entry,
181 			dpu_kms, &dpu_debugfs_danger_stats_fops);
182 	debugfs_create_file("safe_status", 0600, entry,
183 			dpu_kms, &dpu_debugfs_safe_stats_fops);
184 	debugfs_create_file("disable_danger", 0600, entry,
185 			dpu_kms, &dpu_plane_danger_enable);
186 
187 }
188 
189 /*
190  * Companion structure for dpu_debugfs_create_regset32.
191  */
192 struct dpu_debugfs_regset32 {
193 	uint32_t offset;
194 	uint32_t blk_len;
195 	struct dpu_kms *dpu_kms;
196 };
197 
198 static int dpu_regset32_show(struct seq_file *s, void *data)
199 {
200 	struct dpu_debugfs_regset32 *regset = s->private;
201 	struct dpu_kms *dpu_kms = regset->dpu_kms;
202 	void __iomem *base;
203 	uint32_t i, addr;
204 
205 	if (!dpu_kms->mmio)
206 		return 0;
207 
208 	base = dpu_kms->mmio + regset->offset;
209 
210 	/* insert padding spaces, if needed */
211 	if (regset->offset & 0xF) {
212 		seq_printf(s, "[%x]", regset->offset & ~0xF);
213 		for (i = 0; i < (regset->offset & 0xF); i += 4)
214 			seq_puts(s, "         ");
215 	}
216 
217 	pm_runtime_get_sync(&dpu_kms->pdev->dev);
218 
219 	/* main register output */
220 	for (i = 0; i < regset->blk_len; i += 4) {
221 		addr = regset->offset + i;
222 		if ((addr & 0xF) == 0x0)
223 			seq_printf(s, i ? "\n[%x]" : "[%x]", addr);
224 		seq_printf(s, " %08x", readl_relaxed(base + i));
225 	}
226 	seq_puts(s, "\n");
227 	pm_runtime_put_sync(&dpu_kms->pdev->dev);
228 
229 	return 0;
230 }
231 DEFINE_SHOW_ATTRIBUTE(dpu_regset32);
232 
233 void dpu_debugfs_create_regset32(const char *name, umode_t mode,
234 		void *parent,
235 		uint32_t offset, uint32_t length, struct dpu_kms *dpu_kms)
236 {
237 	struct dpu_debugfs_regset32 *regset;
238 
239 	if (WARN_ON(!name || !dpu_kms || !length))
240 		return;
241 
242 	regset = devm_kzalloc(&dpu_kms->pdev->dev, sizeof(*regset), GFP_KERNEL);
243 	if (!regset)
244 		return;
245 
246 	/* make sure offset is a multiple of 4 */
247 	regset->offset = round_down(offset, 4);
248 	regset->blk_len = length;
249 	regset->dpu_kms = dpu_kms;
250 
251 	debugfs_create_file(name, mode, parent, regset, &dpu_regset32_fops);
252 }
253 
254 static void dpu_debugfs_sspp_init(struct dpu_kms *dpu_kms, struct dentry *debugfs_root)
255 {
256 	struct dentry *entry = debugfs_create_dir("sspp", debugfs_root);
257 	int i;
258 
259 	if (IS_ERR(entry))
260 		return;
261 
262 	for (i = SSPP_NONE; i < SSPP_MAX; i++) {
263 		struct dpu_hw_sspp *hw = dpu_rm_get_sspp(&dpu_kms->rm, i);
264 
265 		if (!hw)
266 			continue;
267 
268 		_dpu_hw_sspp_init_debugfs(hw, dpu_kms, entry);
269 	}
270 }
271 
272 static int dpu_kms_debugfs_init(struct msm_kms *kms, struct drm_minor *minor)
273 {
274 	struct dpu_kms *dpu_kms = to_dpu_kms(kms);
275 	void *p = dpu_hw_util_get_log_mask_ptr();
276 	struct dentry *entry;
277 
278 	if (!p)
279 		return -EINVAL;
280 
281 	/* Only create a set of debugfs for the primary node, ignore render nodes */
282 	if (minor->type != DRM_MINOR_PRIMARY)
283 		return 0;
284 
285 	entry = debugfs_create_dir("debug", minor->debugfs_root);
286 
287 	debugfs_create_x32(DPU_DEBUGFS_HWMASKNAME, 0600, entry, p);
288 
289 	dpu_debugfs_danger_init(dpu_kms, entry);
290 	dpu_debugfs_vbif_init(dpu_kms, entry);
291 	dpu_debugfs_core_irq_init(dpu_kms, entry);
292 	dpu_debugfs_sspp_init(dpu_kms, entry);
293 
294 	return dpu_core_perf_debugfs_init(dpu_kms, entry);
295 }
296 #endif
297 
298 /* Global/shared object state funcs */
299 
300 /*
301  * This is a helper that returns the private state currently in operation.
302  * Note that this would return the "old_state" if called in the atomic check
303  * path, and the "new_state" after the atomic swap has been done.
304  */
305 struct dpu_global_state *
306 dpu_kms_get_existing_global_state(struct dpu_kms *dpu_kms)
307 {
308 	return to_dpu_global_state(dpu_kms->global_state.state);
309 }
310 
311 /*
312  * This acquires the modeset lock set aside for global state, creates
313  * a new duplicated private object state.
314  */
315 struct dpu_global_state *dpu_kms_get_global_state(struct drm_atomic_state *s)
316 {
317 	struct msm_drm_private *priv = s->dev->dev_private;
318 	struct dpu_kms *dpu_kms = to_dpu_kms(priv->kms);
319 	struct drm_private_state *priv_state;
320 	int ret;
321 
322 	ret = drm_modeset_lock(&dpu_kms->global_state_lock, s->acquire_ctx);
323 	if (ret)
324 		return ERR_PTR(ret);
325 
326 	priv_state = drm_atomic_get_private_obj_state(s,
327 						&dpu_kms->global_state);
328 	if (IS_ERR(priv_state))
329 		return ERR_CAST(priv_state);
330 
331 	return to_dpu_global_state(priv_state);
332 }
333 
334 static struct drm_private_state *
335 dpu_kms_global_duplicate_state(struct drm_private_obj *obj)
336 {
337 	struct dpu_global_state *state;
338 
339 	state = kmemdup(obj->state, sizeof(*state), GFP_KERNEL);
340 	if (!state)
341 		return NULL;
342 
343 	__drm_atomic_helper_private_obj_duplicate_state(obj, &state->base);
344 
345 	return &state->base;
346 }
347 
348 static void dpu_kms_global_destroy_state(struct drm_private_obj *obj,
349 				      struct drm_private_state *state)
350 {
351 	struct dpu_global_state *dpu_state = to_dpu_global_state(state);
352 
353 	kfree(dpu_state);
354 }
355 
356 static const struct drm_private_state_funcs dpu_kms_global_state_funcs = {
357 	.atomic_duplicate_state = dpu_kms_global_duplicate_state,
358 	.atomic_destroy_state = dpu_kms_global_destroy_state,
359 };
360 
361 static int dpu_kms_global_obj_init(struct dpu_kms *dpu_kms)
362 {
363 	struct dpu_global_state *state;
364 
365 	drm_modeset_lock_init(&dpu_kms->global_state_lock);
366 
367 	state = kzalloc(sizeof(*state), GFP_KERNEL);
368 	if (!state)
369 		return -ENOMEM;
370 
371 	drm_atomic_private_obj_init(dpu_kms->dev, &dpu_kms->global_state,
372 				    &state->base,
373 				    &dpu_kms_global_state_funcs);
374 	return 0;
375 }
376 
377 static int dpu_kms_parse_data_bus_icc_path(struct dpu_kms *dpu_kms)
378 {
379 	struct icc_path *path0;
380 	struct icc_path *path1;
381 	struct device *dpu_dev = &dpu_kms->pdev->dev;
382 
383 	path0 = msm_icc_get(dpu_dev, "mdp0-mem");
384 	path1 = msm_icc_get(dpu_dev, "mdp1-mem");
385 
386 	if (IS_ERR_OR_NULL(path0))
387 		return PTR_ERR_OR_ZERO(path0);
388 
389 	dpu_kms->path[0] = path0;
390 	dpu_kms->num_paths = 1;
391 
392 	if (!IS_ERR_OR_NULL(path1)) {
393 		dpu_kms->path[1] = path1;
394 		dpu_kms->num_paths++;
395 	}
396 	return 0;
397 }
398 
399 static int dpu_kms_enable_vblank(struct msm_kms *kms, struct drm_crtc *crtc)
400 {
401 	return dpu_crtc_vblank(crtc, true);
402 }
403 
404 static void dpu_kms_disable_vblank(struct msm_kms *kms, struct drm_crtc *crtc)
405 {
406 	dpu_crtc_vblank(crtc, false);
407 }
408 
409 static void dpu_kms_enable_commit(struct msm_kms *kms)
410 {
411 	struct dpu_kms *dpu_kms = to_dpu_kms(kms);
412 	pm_runtime_get_sync(&dpu_kms->pdev->dev);
413 }
414 
415 static void dpu_kms_disable_commit(struct msm_kms *kms)
416 {
417 	struct dpu_kms *dpu_kms = to_dpu_kms(kms);
418 	pm_runtime_put_sync(&dpu_kms->pdev->dev);
419 }
420 
421 static void dpu_kms_flush_commit(struct msm_kms *kms, unsigned crtc_mask)
422 {
423 	struct dpu_kms *dpu_kms = to_dpu_kms(kms);
424 	struct drm_crtc *crtc;
425 
426 	for_each_crtc_mask(dpu_kms->dev, crtc, crtc_mask) {
427 		if (!crtc->state->active)
428 			continue;
429 
430 		trace_dpu_kms_commit(DRMID(crtc));
431 		dpu_crtc_commit_kickoff(crtc);
432 	}
433 }
434 
435 static void dpu_kms_complete_commit(struct msm_kms *kms, unsigned crtc_mask)
436 {
437 	struct dpu_kms *dpu_kms = to_dpu_kms(kms);
438 	struct drm_crtc *crtc;
439 
440 	DPU_ATRACE_BEGIN("kms_complete_commit");
441 
442 	for_each_crtc_mask(dpu_kms->dev, crtc, crtc_mask)
443 		dpu_crtc_complete_commit(crtc);
444 
445 	DPU_ATRACE_END("kms_complete_commit");
446 }
447 
448 static void dpu_kms_wait_for_commit_done(struct msm_kms *kms,
449 		struct drm_crtc *crtc)
450 {
451 	struct drm_encoder *encoder;
452 	struct drm_device *dev;
453 	int ret;
454 
455 	if (!kms || !crtc || !crtc->state) {
456 		DPU_ERROR("invalid params\n");
457 		return;
458 	}
459 
460 	dev = crtc->dev;
461 
462 	if (!crtc->state->enable) {
463 		DPU_DEBUG("[crtc:%d] not enable\n", crtc->base.id);
464 		return;
465 	}
466 
467 	if (!drm_atomic_crtc_effectively_active(crtc->state)) {
468 		DPU_DEBUG("[crtc:%d] not active\n", crtc->base.id);
469 		return;
470 	}
471 
472 	list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
473 		if (encoder->crtc != crtc)
474 			continue;
475 		/*
476 		 * Wait for post-flush if necessary to delay before
477 		 * plane_cleanup. For example, wait for vsync in case of video
478 		 * mode panels. This may be a no-op for command mode panels.
479 		 */
480 		trace_dpu_kms_wait_for_commit_done(DRMID(crtc));
481 		ret = dpu_encoder_wait_for_event(encoder, MSM_ENC_COMMIT_DONE);
482 		if (ret && ret != -EWOULDBLOCK) {
483 			DPU_ERROR("wait for commit done returned %d\n", ret);
484 			break;
485 		}
486 	}
487 }
488 
489 static void dpu_kms_wait_flush(struct msm_kms *kms, unsigned crtc_mask)
490 {
491 	struct dpu_kms *dpu_kms = to_dpu_kms(kms);
492 	struct drm_crtc *crtc;
493 
494 	for_each_crtc_mask(dpu_kms->dev, crtc, crtc_mask)
495 		dpu_kms_wait_for_commit_done(kms, crtc);
496 }
497 
498 static int _dpu_kms_initialize_dsi(struct drm_device *dev,
499 				    struct msm_drm_private *priv,
500 				    struct dpu_kms *dpu_kms)
501 {
502 	struct drm_encoder *encoder = NULL;
503 	struct msm_display_info info;
504 	int i, rc = 0;
505 
506 	if (!(priv->dsi[0] || priv->dsi[1]))
507 		return rc;
508 
509 	/*
510 	 * We support following confiurations:
511 	 * - Single DSI host (dsi0 or dsi1)
512 	 * - Two independent DSI hosts
513 	 * - Bonded DSI0 and DSI1 hosts
514 	 *
515 	 * TODO: Support swapping DSI0 and DSI1 in the bonded setup.
516 	 */
517 	for (i = 0; i < ARRAY_SIZE(priv->dsi); i++) {
518 		int other = (i + 1) % 2;
519 
520 		if (!priv->dsi[i])
521 			continue;
522 
523 		if (msm_dsi_is_bonded_dsi(priv->dsi[i]) &&
524 		    !msm_dsi_is_master_dsi(priv->dsi[i]))
525 			continue;
526 
527 		memset(&info, 0, sizeof(info));
528 		info.intf_type = INTF_DSI;
529 
530 		info.h_tile_instance[info.num_of_h_tiles++] = i;
531 		if (msm_dsi_is_bonded_dsi(priv->dsi[i]))
532 			info.h_tile_instance[info.num_of_h_tiles++] = other;
533 
534 		info.is_cmd_mode = msm_dsi_is_cmd_mode(priv->dsi[i]);
535 
536 		encoder = dpu_encoder_init(dev, DRM_MODE_ENCODER_DSI, &info);
537 		if (IS_ERR(encoder)) {
538 			DPU_ERROR("encoder init failed for dsi display\n");
539 			return PTR_ERR(encoder);
540 		}
541 
542 		rc = msm_dsi_modeset_init(priv->dsi[i], dev, encoder);
543 		if (rc) {
544 			DPU_ERROR("modeset_init failed for dsi[%d], rc = %d\n",
545 				i, rc);
546 			break;
547 		}
548 
549 		if (msm_dsi_is_bonded_dsi(priv->dsi[i]) && priv->dsi[other]) {
550 			rc = msm_dsi_modeset_init(priv->dsi[other], dev, encoder);
551 			if (rc) {
552 				DPU_ERROR("modeset_init failed for dsi[%d], rc = %d\n",
553 					other, rc);
554 				break;
555 			}
556 		}
557 	}
558 
559 	return rc;
560 }
561 
562 static int _dpu_kms_initialize_displayport(struct drm_device *dev,
563 					    struct msm_drm_private *priv,
564 					    struct dpu_kms *dpu_kms)
565 {
566 	struct drm_encoder *encoder = NULL;
567 	struct msm_display_info info;
568 	int rc;
569 	int i;
570 
571 	for (i = 0; i < ARRAY_SIZE(priv->dp); i++) {
572 		if (!priv->dp[i])
573 			continue;
574 
575 		memset(&info, 0, sizeof(info));
576 		info.num_of_h_tiles = 1;
577 		info.h_tile_instance[0] = i;
578 		info.intf_type = INTF_DP;
579 
580 		encoder = dpu_encoder_init(dev, DRM_MODE_ENCODER_TMDS, &info);
581 		if (IS_ERR(encoder)) {
582 			DPU_ERROR("encoder init failed for dsi display\n");
583 			return PTR_ERR(encoder);
584 		}
585 
586 		rc = msm_dp_modeset_init(priv->dp[i], dev, encoder);
587 		if (rc) {
588 			DPU_ERROR("modeset_init failed for DP, rc = %d\n", rc);
589 			return rc;
590 		}
591 	}
592 
593 	return 0;
594 }
595 
596 static int _dpu_kms_initialize_hdmi(struct drm_device *dev,
597 				    struct msm_drm_private *priv,
598 				    struct dpu_kms *dpu_kms)
599 {
600 	struct drm_encoder *encoder = NULL;
601 	struct msm_display_info info;
602 	int rc;
603 
604 	if (!priv->hdmi)
605 		return 0;
606 
607 	memset(&info, 0, sizeof(info));
608 	info.num_of_h_tiles = 1;
609 	info.h_tile_instance[0] = 0;
610 	info.intf_type = INTF_HDMI;
611 
612 	encoder = dpu_encoder_init(dev, DRM_MODE_ENCODER_TMDS, &info);
613 	if (IS_ERR(encoder)) {
614 		DPU_ERROR("encoder init failed for HDMI display\n");
615 		return PTR_ERR(encoder);
616 	}
617 
618 	rc = msm_hdmi_modeset_init(priv->hdmi, dev, encoder);
619 	if (rc) {
620 		DPU_ERROR("modeset_init failed for DP, rc = %d\n", rc);
621 		return rc;
622 	}
623 
624 	return 0;
625 }
626 
627 static int _dpu_kms_initialize_writeback(struct drm_device *dev,
628 		struct msm_drm_private *priv, struct dpu_kms *dpu_kms,
629 		const u32 *wb_formats, int n_formats)
630 {
631 	struct drm_encoder *encoder = NULL;
632 	struct msm_display_info info;
633 	int rc;
634 
635 	memset(&info, 0, sizeof(info));
636 
637 	info.num_of_h_tiles = 1;
638 	/* use only WB idx 2 instance for DPU */
639 	info.h_tile_instance[0] = WB_2;
640 	info.intf_type = INTF_WB;
641 
642 	encoder = dpu_encoder_init(dev, DRM_MODE_ENCODER_VIRTUAL, &info);
643 	if (IS_ERR(encoder)) {
644 		DPU_ERROR("encoder init failed for dsi display\n");
645 		return PTR_ERR(encoder);
646 	}
647 
648 	rc = dpu_writeback_init(dev, encoder, wb_formats,
649 			n_formats);
650 	if (rc) {
651 		DPU_ERROR("dpu_writeback_init, rc = %d\n", rc);
652 		return rc;
653 	}
654 
655 	return 0;
656 }
657 
658 /**
659  * _dpu_kms_setup_displays - create encoders, bridges and connectors
660  *                           for underlying displays
661  * @dev:        Pointer to drm device structure
662  * @priv:       Pointer to private drm device data
663  * @dpu_kms:    Pointer to dpu kms structure
664  * Returns:     Zero on success
665  */
666 static int _dpu_kms_setup_displays(struct drm_device *dev,
667 				    struct msm_drm_private *priv,
668 				    struct dpu_kms *dpu_kms)
669 {
670 	int rc = 0;
671 	int i;
672 
673 	rc = _dpu_kms_initialize_dsi(dev, priv, dpu_kms);
674 	if (rc) {
675 		DPU_ERROR("initialize_dsi failed, rc = %d\n", rc);
676 		return rc;
677 	}
678 
679 	rc = _dpu_kms_initialize_displayport(dev, priv, dpu_kms);
680 	if (rc) {
681 		DPU_ERROR("initialize_DP failed, rc = %d\n", rc);
682 		return rc;
683 	}
684 
685 	rc = _dpu_kms_initialize_hdmi(dev, priv, dpu_kms);
686 	if (rc) {
687 		DPU_ERROR("initialize HDMI failed, rc = %d\n", rc);
688 		return rc;
689 	}
690 
691 	/* Since WB isn't a driver check the catalog before initializing */
692 	if (dpu_kms->catalog->wb_count) {
693 		for (i = 0; i < dpu_kms->catalog->wb_count; i++) {
694 			if (dpu_kms->catalog->wb[i].id == WB_2) {
695 				rc = _dpu_kms_initialize_writeback(dev, priv, dpu_kms,
696 						dpu_kms->catalog->wb[i].format_list,
697 						dpu_kms->catalog->wb[i].num_formats);
698 				if (rc) {
699 					DPU_ERROR("initialize_WB failed, rc = %d\n", rc);
700 					return rc;
701 				}
702 			}
703 		}
704 	}
705 
706 	return rc;
707 }
708 
709 #define MAX_PLANES 20
710 static int _dpu_kms_drm_obj_init(struct dpu_kms *dpu_kms)
711 {
712 	struct drm_device *dev;
713 	struct drm_plane *primary_planes[MAX_PLANES], *plane;
714 	struct drm_plane *cursor_planes[MAX_PLANES] = { NULL };
715 	struct drm_crtc *crtc;
716 	struct drm_encoder *encoder;
717 	unsigned int num_encoders;
718 
719 	struct msm_drm_private *priv;
720 	const struct dpu_mdss_cfg *catalog;
721 
722 	int primary_planes_idx = 0, cursor_planes_idx = 0, i, ret;
723 	int max_crtc_count;
724 	dev = dpu_kms->dev;
725 	priv = dev->dev_private;
726 	catalog = dpu_kms->catalog;
727 
728 	/*
729 	 * Create encoder and query display drivers to create
730 	 * bridges and connectors
731 	 */
732 	ret = _dpu_kms_setup_displays(dev, priv, dpu_kms);
733 	if (ret)
734 		return ret;
735 
736 	num_encoders = 0;
737 	drm_for_each_encoder(encoder, dev)
738 		num_encoders++;
739 
740 	max_crtc_count = min(catalog->mixer_count, num_encoders);
741 
742 	/* Create the planes, keeping track of one primary/cursor per crtc */
743 	for (i = 0; i < catalog->sspp_count; i++) {
744 		enum drm_plane_type type;
745 
746 		if ((catalog->sspp[i].features & BIT(DPU_SSPP_CURSOR))
747 			&& cursor_planes_idx < max_crtc_count)
748 			type = DRM_PLANE_TYPE_CURSOR;
749 		else if (primary_planes_idx < max_crtc_count)
750 			type = DRM_PLANE_TYPE_PRIMARY;
751 		else
752 			type = DRM_PLANE_TYPE_OVERLAY;
753 
754 		DPU_DEBUG("Create plane type %d with features %lx (cur %lx)\n",
755 			  type, catalog->sspp[i].features,
756 			  catalog->sspp[i].features & BIT(DPU_SSPP_CURSOR));
757 
758 		plane = dpu_plane_init(dev, catalog->sspp[i].id, type,
759 				       (1UL << max_crtc_count) - 1);
760 		if (IS_ERR(plane)) {
761 			DPU_ERROR("dpu_plane_init failed\n");
762 			ret = PTR_ERR(plane);
763 			return ret;
764 		}
765 
766 		if (type == DRM_PLANE_TYPE_CURSOR)
767 			cursor_planes[cursor_planes_idx++] = plane;
768 		else if (type == DRM_PLANE_TYPE_PRIMARY)
769 			primary_planes[primary_planes_idx++] = plane;
770 	}
771 
772 	max_crtc_count = min(max_crtc_count, primary_planes_idx);
773 
774 	/* Create one CRTC per encoder */
775 	for (i = 0; i < max_crtc_count; i++) {
776 		crtc = dpu_crtc_init(dev, primary_planes[i], cursor_planes[i]);
777 		if (IS_ERR(crtc)) {
778 			ret = PTR_ERR(crtc);
779 			return ret;
780 		}
781 		priv->num_crtcs++;
782 	}
783 
784 	/* All CRTCs are compatible with all encoders */
785 	drm_for_each_encoder(encoder, dev)
786 		encoder->possible_crtcs = (1 << priv->num_crtcs) - 1;
787 
788 	return 0;
789 }
790 
791 static void _dpu_kms_hw_destroy(struct dpu_kms *dpu_kms)
792 {
793 	int i;
794 
795 	dpu_kms->hw_intr = NULL;
796 
797 	/* safe to call these more than once during shutdown */
798 	_dpu_kms_mmu_destroy(dpu_kms);
799 
800 	for (i = 0; i < ARRAY_SIZE(dpu_kms->hw_vbif); i++) {
801 		dpu_kms->hw_vbif[i] = NULL;
802 	}
803 
804 	dpu_kms->catalog = NULL;
805 
806 	dpu_kms->hw_mdp = NULL;
807 }
808 
809 static void dpu_kms_destroy(struct msm_kms *kms)
810 {
811 	struct dpu_kms *dpu_kms;
812 
813 	if (!kms) {
814 		DPU_ERROR("invalid kms\n");
815 		return;
816 	}
817 
818 	dpu_kms = to_dpu_kms(kms);
819 
820 	_dpu_kms_hw_destroy(dpu_kms);
821 
822 	msm_kms_destroy(&dpu_kms->base);
823 
824 	if (dpu_kms->rpm_enabled)
825 		pm_runtime_disable(&dpu_kms->pdev->dev);
826 }
827 
828 static int dpu_irq_postinstall(struct msm_kms *kms)
829 {
830 	struct msm_drm_private *priv;
831 	struct dpu_kms *dpu_kms = to_dpu_kms(kms);
832 
833 	if (!dpu_kms || !dpu_kms->dev)
834 		return -EINVAL;
835 
836 	priv = dpu_kms->dev->dev_private;
837 	if (!priv)
838 		return -EINVAL;
839 
840 	return 0;
841 }
842 
843 static void dpu_kms_mdp_snapshot(struct msm_disp_state *disp_state, struct msm_kms *kms)
844 {
845 	int i;
846 	struct dpu_kms *dpu_kms;
847 	const struct dpu_mdss_cfg *cat;
848 	void __iomem *base;
849 
850 	dpu_kms = to_dpu_kms(kms);
851 
852 	cat = dpu_kms->catalog;
853 
854 	pm_runtime_get_sync(&dpu_kms->pdev->dev);
855 
856 	/* dump CTL sub-blocks HW regs info */
857 	for (i = 0; i < cat->ctl_count; i++)
858 		msm_disp_snapshot_add_block(disp_state, cat->ctl[i].len,
859 				dpu_kms->mmio + cat->ctl[i].base, cat->ctl[i].name);
860 
861 	/* dump DSPP sub-blocks HW regs info */
862 	for (i = 0; i < cat->dspp_count; i++) {
863 		base = dpu_kms->mmio + cat->dspp[i].base;
864 		msm_disp_snapshot_add_block(disp_state, cat->dspp[i].len, base, cat->dspp[i].name);
865 
866 		if (cat->dspp[i].sblk && cat->dspp[i].sblk->pcc.len > 0)
867 			msm_disp_snapshot_add_block(disp_state, cat->dspp[i].sblk->pcc.len,
868 						    base + cat->dspp[i].sblk->pcc.base, "%s_%s",
869 						    cat->dspp[i].name,
870 						    cat->dspp[i].sblk->pcc.name);
871 	}
872 
873 	/* dump INTF sub-blocks HW regs info */
874 	for (i = 0; i < cat->intf_count; i++)
875 		msm_disp_snapshot_add_block(disp_state, cat->intf[i].len,
876 				dpu_kms->mmio + cat->intf[i].base, cat->intf[i].name);
877 
878 	/* dump PP sub-blocks HW regs info */
879 	for (i = 0; i < cat->pingpong_count; i++) {
880 		base = dpu_kms->mmio + cat->pingpong[i].base;
881 		msm_disp_snapshot_add_block(disp_state, cat->pingpong[i].len, base,
882 					    cat->pingpong[i].name);
883 
884 		/* TE2 sub-block has length of 0, so will not print it */
885 
886 		if (cat->pingpong[i].sblk && cat->pingpong[i].sblk->dither.len > 0)
887 			msm_disp_snapshot_add_block(disp_state, cat->pingpong[i].sblk->dither.len,
888 						    base + cat->pingpong[i].sblk->dither.base,
889 						    "%s_%s", cat->pingpong[i].name,
890 						    cat->pingpong[i].sblk->dither.name);
891 	}
892 
893 	/* dump SSPP sub-blocks HW regs info */
894 	for (i = 0; i < cat->sspp_count; i++) {
895 		base = dpu_kms->mmio + cat->sspp[i].base;
896 		msm_disp_snapshot_add_block(disp_state, cat->sspp[i].len, base, cat->sspp[i].name);
897 
898 		if (cat->sspp[i].sblk && cat->sspp[i].sblk->scaler_blk.len > 0)
899 			msm_disp_snapshot_add_block(disp_state, cat->sspp[i].sblk->scaler_blk.len,
900 						    base + cat->sspp[i].sblk->scaler_blk.base,
901 						    "%s_%s", cat->sspp[i].name,
902 						    cat->sspp[i].sblk->scaler_blk.name);
903 
904 		if (cat->sspp[i].sblk && cat->sspp[i].sblk->csc_blk.len > 0)
905 			msm_disp_snapshot_add_block(disp_state, cat->sspp[i].sblk->csc_blk.len,
906 						    base + cat->sspp[i].sblk->csc_blk.base,
907 						    "%s_%s", cat->sspp[i].name,
908 						    cat->sspp[i].sblk->csc_blk.name);
909 	}
910 
911 	/* dump LM sub-blocks HW regs info */
912 	for (i = 0; i < cat->mixer_count; i++)
913 		msm_disp_snapshot_add_block(disp_state, cat->mixer[i].len,
914 				dpu_kms->mmio + cat->mixer[i].base, cat->mixer[i].name);
915 
916 	/* dump WB sub-blocks HW regs info */
917 	for (i = 0; i < cat->wb_count; i++)
918 		msm_disp_snapshot_add_block(disp_state, cat->wb[i].len,
919 				dpu_kms->mmio + cat->wb[i].base, cat->wb[i].name);
920 
921 	if (cat->mdp[0].features & BIT(DPU_MDP_PERIPH_0_REMOVED)) {
922 		msm_disp_snapshot_add_block(disp_state, MDP_PERIPH_TOP0,
923 				dpu_kms->mmio + cat->mdp[0].base, "top");
924 		msm_disp_snapshot_add_block(disp_state, cat->mdp[0].len - MDP_PERIPH_TOP0_END,
925 				dpu_kms->mmio + cat->mdp[0].base + MDP_PERIPH_TOP0_END, "top_2");
926 	} else {
927 		msm_disp_snapshot_add_block(disp_state, cat->mdp[0].len,
928 				dpu_kms->mmio + cat->mdp[0].base, "top");
929 	}
930 
931 	/* dump DSC sub-blocks HW regs info */
932 	for (i = 0; i < cat->dsc_count; i++) {
933 		base = dpu_kms->mmio + cat->dsc[i].base;
934 		msm_disp_snapshot_add_block(disp_state, cat->dsc[i].len, base, cat->dsc[i].name);
935 
936 		if (cat->dsc[i].features & BIT(DPU_DSC_HW_REV_1_2)) {
937 			struct dpu_dsc_blk enc = cat->dsc[i].sblk->enc;
938 			struct dpu_dsc_blk ctl = cat->dsc[i].sblk->ctl;
939 
940 			msm_disp_snapshot_add_block(disp_state, enc.len, base + enc.base, "%s_%s",
941 						    cat->dsc[i].name, enc.name);
942 			msm_disp_snapshot_add_block(disp_state, ctl.len, base + ctl.base, "%s_%s",
943 						    cat->dsc[i].name, ctl.name);
944 		}
945 	}
946 
947 	if (cat->cdm)
948 		msm_disp_snapshot_add_block(disp_state, cat->cdm->len,
949 					    dpu_kms->mmio + cat->cdm->base, cat->cdm->name);
950 
951 	pm_runtime_put_sync(&dpu_kms->pdev->dev);
952 }
953 
954 static const struct msm_kms_funcs kms_funcs = {
955 	.hw_init         = dpu_kms_hw_init,
956 	.irq_preinstall  = dpu_core_irq_preinstall,
957 	.irq_postinstall = dpu_irq_postinstall,
958 	.irq_uninstall   = dpu_core_irq_uninstall,
959 	.irq             = dpu_core_irq,
960 	.enable_commit   = dpu_kms_enable_commit,
961 	.disable_commit  = dpu_kms_disable_commit,
962 	.flush_commit    = dpu_kms_flush_commit,
963 	.wait_flush      = dpu_kms_wait_flush,
964 	.complete_commit = dpu_kms_complete_commit,
965 	.enable_vblank   = dpu_kms_enable_vblank,
966 	.disable_vblank  = dpu_kms_disable_vblank,
967 	.check_modified_format = dpu_format_check_modified_format,
968 	.get_format      = dpu_get_msm_format,
969 	.destroy         = dpu_kms_destroy,
970 	.snapshot        = dpu_kms_mdp_snapshot,
971 #ifdef CONFIG_DEBUG_FS
972 	.debugfs_init    = dpu_kms_debugfs_init,
973 #endif
974 };
975 
976 static void _dpu_kms_mmu_destroy(struct dpu_kms *dpu_kms)
977 {
978 	struct msm_mmu *mmu;
979 
980 	if (!dpu_kms->base.aspace)
981 		return;
982 
983 	mmu = dpu_kms->base.aspace->mmu;
984 
985 	mmu->funcs->detach(mmu);
986 	msm_gem_address_space_put(dpu_kms->base.aspace);
987 
988 	dpu_kms->base.aspace = NULL;
989 }
990 
991 static int _dpu_kms_mmu_init(struct dpu_kms *dpu_kms)
992 {
993 	struct msm_gem_address_space *aspace;
994 
995 	aspace = msm_kms_init_aspace(dpu_kms->dev);
996 	if (IS_ERR(aspace))
997 		return PTR_ERR(aspace);
998 
999 	dpu_kms->base.aspace = aspace;
1000 
1001 	return 0;
1002 }
1003 
1004 unsigned long dpu_kms_get_clk_rate(struct dpu_kms *dpu_kms, char *clock_name)
1005 {
1006 	struct clk *clk;
1007 
1008 	clk = msm_clk_bulk_get_clock(dpu_kms->clocks, dpu_kms->num_clocks, clock_name);
1009 	if (!clk)
1010 		return 0;
1011 
1012 	return clk_get_rate(clk);
1013 }
1014 
1015 #define	DPU_PERF_DEFAULT_MAX_CORE_CLK_RATE	412500000
1016 
1017 static int dpu_kms_hw_init(struct msm_kms *kms)
1018 {
1019 	struct dpu_kms *dpu_kms;
1020 	struct drm_device *dev;
1021 	int i, rc = -EINVAL;
1022 	unsigned long max_core_clk_rate;
1023 	u32 core_rev;
1024 
1025 	if (!kms) {
1026 		DPU_ERROR("invalid kms\n");
1027 		return rc;
1028 	}
1029 
1030 	dpu_kms = to_dpu_kms(kms);
1031 	dev = dpu_kms->dev;
1032 
1033 	dev->mode_config.cursor_width = 512;
1034 	dev->mode_config.cursor_height = 512;
1035 
1036 	rc = dpu_kms_global_obj_init(dpu_kms);
1037 	if (rc)
1038 		return rc;
1039 
1040 	atomic_set(&dpu_kms->bandwidth_ref, 0);
1041 
1042 	rc = pm_runtime_resume_and_get(&dpu_kms->pdev->dev);
1043 	if (rc < 0)
1044 		goto error;
1045 
1046 	core_rev = readl_relaxed(dpu_kms->mmio + 0x0);
1047 
1048 	pr_info("dpu hardware revision:0x%x\n", core_rev);
1049 
1050 	dpu_kms->catalog = of_device_get_match_data(dev->dev);
1051 	if (!dpu_kms->catalog) {
1052 		DPU_ERROR("device config not known!\n");
1053 		rc = -EINVAL;
1054 		goto err_pm_put;
1055 	}
1056 
1057 	/*
1058 	 * Now we need to read the HW catalog and initialize resources such as
1059 	 * clocks, regulators, GDSC/MMAGIC, ioremap the register ranges etc
1060 	 */
1061 	rc = _dpu_kms_mmu_init(dpu_kms);
1062 	if (rc) {
1063 		DPU_ERROR("dpu_kms_mmu_init failed: %d\n", rc);
1064 		goto err_pm_put;
1065 	}
1066 
1067 	dpu_kms->mdss = msm_mdss_get_mdss_data(dpu_kms->pdev->dev.parent);
1068 	if (IS_ERR(dpu_kms->mdss)) {
1069 		rc = PTR_ERR(dpu_kms->mdss);
1070 		DPU_ERROR("failed to get MDSS data: %d\n", rc);
1071 		goto err_pm_put;
1072 	}
1073 
1074 	if (!dpu_kms->mdss) {
1075 		rc = -EINVAL;
1076 		DPU_ERROR("NULL MDSS data\n");
1077 		goto err_pm_put;
1078 	}
1079 
1080 	rc = dpu_rm_init(dev, &dpu_kms->rm, dpu_kms->catalog, dpu_kms->mdss, dpu_kms->mmio);
1081 	if (rc) {
1082 		DPU_ERROR("rm init failed: %d\n", rc);
1083 		goto err_pm_put;
1084 	}
1085 
1086 	dpu_kms->hw_mdp = dpu_hw_mdptop_init(dev,
1087 					     dpu_kms->catalog->mdp,
1088 					     dpu_kms->mmio,
1089 					     dpu_kms->catalog);
1090 	if (IS_ERR(dpu_kms->hw_mdp)) {
1091 		rc = PTR_ERR(dpu_kms->hw_mdp);
1092 		DPU_ERROR("failed to get hw_mdp: %d\n", rc);
1093 		dpu_kms->hw_mdp = NULL;
1094 		goto err_pm_put;
1095 	}
1096 
1097 	for (i = 0; i < dpu_kms->catalog->vbif_count; i++) {
1098 		struct dpu_hw_vbif *hw;
1099 		const struct dpu_vbif_cfg *vbif = &dpu_kms->catalog->vbif[i];
1100 
1101 		hw = dpu_hw_vbif_init(dev, vbif, dpu_kms->vbif[vbif->id]);
1102 		if (IS_ERR(hw)) {
1103 			rc = PTR_ERR(hw);
1104 			DPU_ERROR("failed to init vbif %d: %d\n", vbif->id, rc);
1105 			goto err_pm_put;
1106 		}
1107 
1108 		dpu_kms->hw_vbif[vbif->id] = hw;
1109 	}
1110 
1111 	/* TODO: use the same max_freq as in dpu_kms_hw_init */
1112 	max_core_clk_rate = dpu_kms_get_clk_rate(dpu_kms, "core");
1113 	if (!max_core_clk_rate) {
1114 		DPU_DEBUG("max core clk rate not determined, using default\n");
1115 		max_core_clk_rate = DPU_PERF_DEFAULT_MAX_CORE_CLK_RATE;
1116 	}
1117 
1118 	rc = dpu_core_perf_init(&dpu_kms->perf, dpu_kms->catalog->perf, max_core_clk_rate);
1119 	if (rc) {
1120 		DPU_ERROR("failed to init perf %d\n", rc);
1121 		goto err_pm_put;
1122 	}
1123 
1124 	dpu_kms->hw_intr = dpu_hw_intr_init(dev, dpu_kms->mmio, dpu_kms->catalog);
1125 	if (IS_ERR(dpu_kms->hw_intr)) {
1126 		rc = PTR_ERR(dpu_kms->hw_intr);
1127 		DPU_ERROR("hw_intr init failed: %d\n", rc);
1128 		dpu_kms->hw_intr = NULL;
1129 		goto err_pm_put;
1130 	}
1131 
1132 	dev->mode_config.min_width = 0;
1133 	dev->mode_config.min_height = 0;
1134 
1135 	/*
1136 	 * max crtc width is equal to the max mixer width * 2 and max height is
1137 	 * is 4K
1138 	 */
1139 	dev->mode_config.max_width =
1140 			dpu_kms->catalog->caps->max_mixer_width * 2;
1141 	dev->mode_config.max_height = 4096;
1142 
1143 	dev->max_vblank_count = 0xffffffff;
1144 	/* Disable vblank irqs aggressively for power-saving */
1145 	dev->vblank_disable_immediate = true;
1146 
1147 	/*
1148 	 * _dpu_kms_drm_obj_init should create the DRM related objects
1149 	 * i.e. CRTCs, planes, encoders, connectors and so forth
1150 	 */
1151 	rc = _dpu_kms_drm_obj_init(dpu_kms);
1152 	if (rc) {
1153 		DPU_ERROR("modeset init failed: %d\n", rc);
1154 		goto err_pm_put;
1155 	}
1156 
1157 	dpu_vbif_init_memtypes(dpu_kms);
1158 
1159 	pm_runtime_put_sync(&dpu_kms->pdev->dev);
1160 
1161 	return 0;
1162 
1163 err_pm_put:
1164 	pm_runtime_put_sync(&dpu_kms->pdev->dev);
1165 error:
1166 	_dpu_kms_hw_destroy(dpu_kms);
1167 
1168 	return rc;
1169 }
1170 
1171 static int dpu_kms_init(struct drm_device *ddev)
1172 {
1173 	struct msm_drm_private *priv = ddev->dev_private;
1174 	struct device *dev = ddev->dev;
1175 	struct platform_device *pdev = to_platform_device(dev);
1176 	struct dpu_kms *dpu_kms = to_dpu_kms(priv->kms);
1177 	struct dev_pm_opp *opp;
1178 	int ret = 0;
1179 	unsigned long max_freq = ULONG_MAX;
1180 
1181 	opp = dev_pm_opp_find_freq_floor(dev, &max_freq);
1182 	if (!IS_ERR(opp))
1183 		dev_pm_opp_put(opp);
1184 
1185 	dev_pm_opp_set_rate(dev, max_freq);
1186 
1187 	ret = msm_kms_init(&dpu_kms->base, &kms_funcs);
1188 	if (ret) {
1189 		DPU_ERROR("failed to init kms, ret=%d\n", ret);
1190 		return ret;
1191 	}
1192 	dpu_kms->dev = ddev;
1193 
1194 	pm_runtime_enable(&pdev->dev);
1195 	dpu_kms->rpm_enabled = true;
1196 
1197 	return 0;
1198 }
1199 
1200 static int dpu_dev_probe(struct platform_device *pdev)
1201 {
1202 	struct device *dev = &pdev->dev;
1203 	struct dpu_kms *dpu_kms;
1204 	int irq;
1205 	int ret = 0;
1206 
1207 	dpu_kms = devm_kzalloc(dev, sizeof(*dpu_kms), GFP_KERNEL);
1208 	if (!dpu_kms)
1209 		return -ENOMEM;
1210 
1211 	dpu_kms->pdev = pdev;
1212 
1213 	ret = devm_pm_opp_set_clkname(dev, "core");
1214 	if (ret)
1215 		return ret;
1216 	/* OPP table is optional */
1217 	ret = devm_pm_opp_of_add_table(dev);
1218 	if (ret && ret != -ENODEV)
1219 		return dev_err_probe(dev, ret, "invalid OPP table in device tree\n");
1220 
1221 	ret = devm_clk_bulk_get_all(&pdev->dev, &dpu_kms->clocks);
1222 	if (ret < 0)
1223 		return dev_err_probe(dev, ret, "failed to parse clocks\n");
1224 
1225 	dpu_kms->num_clocks = ret;
1226 
1227 	irq = platform_get_irq(pdev, 0);
1228 	if (irq < 0)
1229 		return dev_err_probe(dev, irq, "failed to get irq\n");
1230 
1231 	dpu_kms->base.irq = irq;
1232 
1233 	dpu_kms->mmio = msm_ioremap(pdev, "mdp");
1234 	if (IS_ERR(dpu_kms->mmio)) {
1235 		ret = PTR_ERR(dpu_kms->mmio);
1236 		DPU_ERROR("mdp register memory map failed: %d\n", ret);
1237 		dpu_kms->mmio = NULL;
1238 		return ret;
1239 	}
1240 	DRM_DEBUG("mapped dpu address space @%pK\n", dpu_kms->mmio);
1241 
1242 	dpu_kms->vbif[VBIF_RT] = msm_ioremap(pdev, "vbif");
1243 	if (IS_ERR(dpu_kms->vbif[VBIF_RT])) {
1244 		ret = PTR_ERR(dpu_kms->vbif[VBIF_RT]);
1245 		DPU_ERROR("vbif register memory map failed: %d\n", ret);
1246 		dpu_kms->vbif[VBIF_RT] = NULL;
1247 		return ret;
1248 	}
1249 
1250 	dpu_kms->vbif[VBIF_NRT] = msm_ioremap_quiet(pdev, "vbif_nrt");
1251 	if (IS_ERR(dpu_kms->vbif[VBIF_NRT])) {
1252 		dpu_kms->vbif[VBIF_NRT] = NULL;
1253 		DPU_DEBUG("VBIF NRT is not defined");
1254 	}
1255 
1256 	ret = dpu_kms_parse_data_bus_icc_path(dpu_kms);
1257 	if (ret)
1258 		return ret;
1259 
1260 	return msm_drv_probe(&pdev->dev, dpu_kms_init, &dpu_kms->base);
1261 }
1262 
1263 static void dpu_dev_remove(struct platform_device *pdev)
1264 {
1265 	component_master_del(&pdev->dev, &msm_drm_ops);
1266 }
1267 
1268 static int __maybe_unused dpu_runtime_suspend(struct device *dev)
1269 {
1270 	int i;
1271 	struct platform_device *pdev = to_platform_device(dev);
1272 	struct msm_drm_private *priv = platform_get_drvdata(pdev);
1273 	struct dpu_kms *dpu_kms = to_dpu_kms(priv->kms);
1274 
1275 	/* Drop the performance state vote */
1276 	dev_pm_opp_set_rate(dev, 0);
1277 	clk_bulk_disable_unprepare(dpu_kms->num_clocks, dpu_kms->clocks);
1278 
1279 	for (i = 0; i < dpu_kms->num_paths; i++)
1280 		icc_set_bw(dpu_kms->path[i], 0, 0);
1281 
1282 	return 0;
1283 }
1284 
1285 static int __maybe_unused dpu_runtime_resume(struct device *dev)
1286 {
1287 	int rc = -1;
1288 	struct platform_device *pdev = to_platform_device(dev);
1289 	struct msm_drm_private *priv = platform_get_drvdata(pdev);
1290 	struct dpu_kms *dpu_kms = to_dpu_kms(priv->kms);
1291 	struct drm_encoder *encoder;
1292 	struct drm_device *ddev;
1293 
1294 	ddev = dpu_kms->dev;
1295 
1296 	rc = clk_bulk_prepare_enable(dpu_kms->num_clocks, dpu_kms->clocks);
1297 	if (rc) {
1298 		DPU_ERROR("clock enable failed rc:%d\n", rc);
1299 		return rc;
1300 	}
1301 
1302 	dpu_vbif_init_memtypes(dpu_kms);
1303 
1304 	drm_for_each_encoder(encoder, ddev)
1305 		dpu_encoder_virt_runtime_resume(encoder);
1306 
1307 	return rc;
1308 }
1309 
1310 static const struct dev_pm_ops dpu_pm_ops = {
1311 	SET_RUNTIME_PM_OPS(dpu_runtime_suspend, dpu_runtime_resume, NULL)
1312 	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1313 				pm_runtime_force_resume)
1314 	.prepare = msm_kms_pm_prepare,
1315 	.complete = msm_kms_pm_complete,
1316 };
1317 
1318 static const struct of_device_id dpu_dt_match[] = {
1319 	{ .compatible = "qcom,msm8998-dpu", .data = &dpu_msm8998_cfg, },
1320 	{ .compatible = "qcom,qcm2290-dpu", .data = &dpu_qcm2290_cfg, },
1321 	{ .compatible = "qcom,sdm670-dpu", .data = &dpu_sdm670_cfg, },
1322 	{ .compatible = "qcom,sdm845-dpu", .data = &dpu_sdm845_cfg, },
1323 	{ .compatible = "qcom,sc7180-dpu", .data = &dpu_sc7180_cfg, },
1324 	{ .compatible = "qcom,sc7280-dpu", .data = &dpu_sc7280_cfg, },
1325 	{ .compatible = "qcom,sc8180x-dpu", .data = &dpu_sc8180x_cfg, },
1326 	{ .compatible = "qcom,sc8280xp-dpu", .data = &dpu_sc8280xp_cfg, },
1327 	{ .compatible = "qcom,sm6115-dpu", .data = &dpu_sm6115_cfg, },
1328 	{ .compatible = "qcom,sm6125-dpu", .data = &dpu_sm6125_cfg, },
1329 	{ .compatible = "qcom,sm6350-dpu", .data = &dpu_sm6350_cfg, },
1330 	{ .compatible = "qcom,sm6375-dpu", .data = &dpu_sm6375_cfg, },
1331 	{ .compatible = "qcom,sm8150-dpu", .data = &dpu_sm8150_cfg, },
1332 	{ .compatible = "qcom,sm8250-dpu", .data = &dpu_sm8250_cfg, },
1333 	{ .compatible = "qcom,sm8350-dpu", .data = &dpu_sm8350_cfg, },
1334 	{ .compatible = "qcom,sm8450-dpu", .data = &dpu_sm8450_cfg, },
1335 	{ .compatible = "qcom,sm8550-dpu", .data = &dpu_sm8550_cfg, },
1336 	{ .compatible = "qcom,sm8650-dpu", .data = &dpu_sm8650_cfg, },
1337 	{}
1338 };
1339 MODULE_DEVICE_TABLE(of, dpu_dt_match);
1340 
1341 static struct platform_driver dpu_driver = {
1342 	.probe = dpu_dev_probe,
1343 	.remove_new = dpu_dev_remove,
1344 	.shutdown = msm_kms_shutdown,
1345 	.driver = {
1346 		.name = "msm_dpu",
1347 		.of_match_table = dpu_dt_match,
1348 		.pm = &dpu_pm_ops,
1349 	},
1350 };
1351 
1352 void __init msm_dpu_register(void)
1353 {
1354 	platform_driver_register(&dpu_driver);
1355 }
1356 
1357 void __exit msm_dpu_unregister(void)
1358 {
1359 	platform_driver_unregister(&dpu_driver);
1360 }
1361