xref: /linux/drivers/gpu/drm/msm/disp/dpu1/dpu_hw_top.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2015-2018, The Linux Foundation. All rights reserved.
3  */
4 
5 #include <drm/drm_managed.h>
6 
7 #include "dpu_hwio.h"
8 #include "dpu_hw_catalog.h"
9 #include "dpu_hw_top.h"
10 #include "dpu_kms.h"
11 
12 #define FLD_SPLIT_DISPLAY_CMD             BIT(1)
13 #define FLD_SMART_PANEL_FREE_RUN          BIT(2)
14 #define FLD_INTF_1_SW_TRG_MUX             BIT(4)
15 #define FLD_INTF_2_SW_TRG_MUX             BIT(8)
16 #define FLD_TE_LINE_INTER_WATERLEVEL_MASK 0xFFFF
17 
18 #define TRAFFIC_SHAPER_EN                 BIT(31)
19 #define TRAFFIC_SHAPER_RD_CLIENT(num)     (0x030 + (num * 4))
20 #define TRAFFIC_SHAPER_WR_CLIENT(num)     (0x060 + (num * 4))
21 #define TRAFFIC_SHAPER_FIXPOINT_FACTOR    4
22 
23 #define MDP_TICK_COUNT                    16
24 #define XO_CLK_RATE                       19200
25 #define MS_TICKS_IN_SEC                   1000
26 
27 #define CALCULATE_WD_LOAD_VALUE(fps) \
28 	((uint32_t)((MS_TICKS_IN_SEC * XO_CLK_RATE)/(MDP_TICK_COUNT * fps)))
29 
30 static void dpu_hw_setup_split_pipe(struct dpu_hw_mdp *mdp,
31 		struct split_pipe_cfg *cfg)
32 {
33 	struct dpu_hw_blk_reg_map *c;
34 	u32 upper_pipe = 0;
35 	u32 lower_pipe = 0;
36 
37 	if (!mdp || !cfg)
38 		return;
39 
40 	c = &mdp->hw;
41 
42 	if (cfg->en) {
43 		if (cfg->mode == INTF_MODE_CMD) {
44 			lower_pipe = FLD_SPLIT_DISPLAY_CMD;
45 			/* interface controlling sw trigger */
46 			if (cfg->intf == INTF_2)
47 				lower_pipe |= FLD_INTF_1_SW_TRG_MUX;
48 			else
49 				lower_pipe |= FLD_INTF_2_SW_TRG_MUX;
50 			upper_pipe = lower_pipe;
51 		} else {
52 			if (cfg->intf == INTF_2) {
53 				lower_pipe = FLD_INTF_1_SW_TRG_MUX;
54 				upper_pipe = FLD_INTF_2_SW_TRG_MUX;
55 			} else {
56 				lower_pipe = FLD_INTF_2_SW_TRG_MUX;
57 				upper_pipe = FLD_INTF_1_SW_TRG_MUX;
58 			}
59 		}
60 	}
61 
62 	DPU_REG_WRITE(c, SSPP_SPARE, cfg->split_flush_en ? 0x1 : 0x0);
63 	DPU_REG_WRITE(c, SPLIT_DISPLAY_LOWER_PIPE_CTRL, lower_pipe);
64 	DPU_REG_WRITE(c, SPLIT_DISPLAY_UPPER_PIPE_CTRL, upper_pipe);
65 	DPU_REG_WRITE(c, SPLIT_DISPLAY_EN, cfg->en & 0x1);
66 }
67 
68 static bool dpu_hw_setup_clk_force_ctrl(struct dpu_hw_mdp *mdp,
69 		enum dpu_clk_ctrl_type clk_ctrl, bool enable)
70 {
71 	if (!mdp)
72 		return false;
73 
74 	if (clk_ctrl <= DPU_CLK_CTRL_NONE || clk_ctrl >= DPU_CLK_CTRL_MAX)
75 		return false;
76 
77 	return dpu_hw_clk_force_ctrl(&mdp->hw, &mdp->caps->clk_ctrls[clk_ctrl], enable);
78 }
79 
80 
81 static void dpu_hw_get_danger_status(struct dpu_hw_mdp *mdp,
82 		struct dpu_danger_safe_status *status)
83 {
84 	struct dpu_hw_blk_reg_map *c;
85 	u32 value;
86 
87 	if (!mdp || !status)
88 		return;
89 
90 	c = &mdp->hw;
91 
92 	value = DPU_REG_READ(c, DANGER_STATUS);
93 	status->mdp = (value >> 0) & 0x3;
94 	status->sspp[SSPP_VIG0] = (value >> 4) & 0x3;
95 	status->sspp[SSPP_VIG1] = (value >> 6) & 0x3;
96 	status->sspp[SSPP_VIG2] = (value >> 8) & 0x3;
97 	status->sspp[SSPP_VIG3] = (value >> 10) & 0x3;
98 	status->sspp[SSPP_RGB0] = (value >> 12) & 0x3;
99 	status->sspp[SSPP_RGB1] = (value >> 14) & 0x3;
100 	status->sspp[SSPP_RGB2] = (value >> 16) & 0x3;
101 	status->sspp[SSPP_RGB3] = (value >> 18) & 0x3;
102 	status->sspp[SSPP_DMA0] = (value >> 20) & 0x3;
103 	status->sspp[SSPP_DMA1] = (value >> 22) & 0x3;
104 	status->sspp[SSPP_DMA2] = (value >> 28) & 0x3;
105 	status->sspp[SSPP_DMA3] = (value >> 30) & 0x3;
106 	status->sspp[SSPP_CURSOR0] = (value >> 24) & 0x3;
107 	status->sspp[SSPP_CURSOR1] = (value >> 26) & 0x3;
108 }
109 
110 static void dpu_hw_setup_vsync_source(struct dpu_hw_mdp *mdp,
111 		struct dpu_vsync_source_cfg *cfg)
112 {
113 	struct dpu_hw_blk_reg_map *c;
114 	u32 reg, wd_load_value, wd_ctl, wd_ctl2;
115 
116 	if (!mdp || !cfg)
117 		return;
118 
119 	c = &mdp->hw;
120 
121 	if (cfg->vsync_source >= DPU_VSYNC_SOURCE_WD_TIMER_4 &&
122 			cfg->vsync_source <= DPU_VSYNC_SOURCE_WD_TIMER_0) {
123 		switch (cfg->vsync_source) {
124 		case DPU_VSYNC_SOURCE_WD_TIMER_4:
125 			wd_load_value = MDP_WD_TIMER_4_LOAD_VALUE;
126 			wd_ctl = MDP_WD_TIMER_4_CTL;
127 			wd_ctl2 = MDP_WD_TIMER_4_CTL2;
128 			break;
129 		case DPU_VSYNC_SOURCE_WD_TIMER_3:
130 			wd_load_value = MDP_WD_TIMER_3_LOAD_VALUE;
131 			wd_ctl = MDP_WD_TIMER_3_CTL;
132 			wd_ctl2 = MDP_WD_TIMER_3_CTL2;
133 			break;
134 		case DPU_VSYNC_SOURCE_WD_TIMER_2:
135 			wd_load_value = MDP_WD_TIMER_2_LOAD_VALUE;
136 			wd_ctl = MDP_WD_TIMER_2_CTL;
137 			wd_ctl2 = MDP_WD_TIMER_2_CTL2;
138 			break;
139 		case DPU_VSYNC_SOURCE_WD_TIMER_1:
140 			wd_load_value = MDP_WD_TIMER_1_LOAD_VALUE;
141 			wd_ctl = MDP_WD_TIMER_1_CTL;
142 			wd_ctl2 = MDP_WD_TIMER_1_CTL2;
143 			break;
144 		case DPU_VSYNC_SOURCE_WD_TIMER_0:
145 		default:
146 			wd_load_value = MDP_WD_TIMER_0_LOAD_VALUE;
147 			wd_ctl = MDP_WD_TIMER_0_CTL;
148 			wd_ctl2 = MDP_WD_TIMER_0_CTL2;
149 			break;
150 		}
151 
152 		DPU_REG_WRITE(c, wd_load_value,
153 			CALCULATE_WD_LOAD_VALUE(cfg->frame_rate));
154 
155 		DPU_REG_WRITE(c, wd_ctl, BIT(0)); /* clear timer */
156 		reg = DPU_REG_READ(c, wd_ctl2);
157 		reg |= BIT(8);		/* enable heartbeat timer */
158 		reg |= BIT(0);		/* enable WD timer */
159 		DPU_REG_WRITE(c, wd_ctl2, reg);
160 
161 		/* make sure that timers are enabled/disabled for vsync state */
162 		wmb();
163 	}
164 }
165 
166 static void dpu_hw_setup_vsync_source_and_vsync_sel(struct dpu_hw_mdp *mdp,
167 		struct dpu_vsync_source_cfg *cfg)
168 {
169 	struct dpu_hw_blk_reg_map *c;
170 	u32 reg, i;
171 	static const u32 pp_offset[PINGPONG_MAX] = {0xC, 0x8, 0x4, 0x13, 0x18};
172 
173 	if (!mdp || !cfg || (cfg->pp_count > ARRAY_SIZE(cfg->ppnumber)))
174 		return;
175 
176 	c = &mdp->hw;
177 
178 	reg = DPU_REG_READ(c, MDP_VSYNC_SEL);
179 	for (i = 0; i < cfg->pp_count; i++) {
180 		int pp_idx = cfg->ppnumber[i] - PINGPONG_0;
181 
182 		if (pp_idx >= ARRAY_SIZE(pp_offset))
183 			continue;
184 
185 		reg &= ~(0xf << pp_offset[pp_idx]);
186 		reg |= (cfg->vsync_source & 0xf) << pp_offset[pp_idx];
187 	}
188 	DPU_REG_WRITE(c, MDP_VSYNC_SEL, reg);
189 
190 	dpu_hw_setup_vsync_source(mdp, cfg);
191 }
192 
193 static void dpu_hw_get_safe_status(struct dpu_hw_mdp *mdp,
194 		struct dpu_danger_safe_status *status)
195 {
196 	struct dpu_hw_blk_reg_map *c;
197 	u32 value;
198 
199 	if (!mdp || !status)
200 		return;
201 
202 	c = &mdp->hw;
203 
204 	value = DPU_REG_READ(c, SAFE_STATUS);
205 	status->mdp = (value >> 0) & 0x1;
206 	status->sspp[SSPP_VIG0] = (value >> 4) & 0x1;
207 	status->sspp[SSPP_VIG1] = (value >> 6) & 0x1;
208 	status->sspp[SSPP_VIG2] = (value >> 8) & 0x1;
209 	status->sspp[SSPP_VIG3] = (value >> 10) & 0x1;
210 	status->sspp[SSPP_RGB0] = (value >> 12) & 0x1;
211 	status->sspp[SSPP_RGB1] = (value >> 14) & 0x1;
212 	status->sspp[SSPP_RGB2] = (value >> 16) & 0x1;
213 	status->sspp[SSPP_RGB3] = (value >> 18) & 0x1;
214 	status->sspp[SSPP_DMA0] = (value >> 20) & 0x1;
215 	status->sspp[SSPP_DMA1] = (value >> 22) & 0x1;
216 	status->sspp[SSPP_DMA2] = (value >> 28) & 0x1;
217 	status->sspp[SSPP_DMA3] = (value >> 30) & 0x1;
218 	status->sspp[SSPP_CURSOR0] = (value >> 24) & 0x1;
219 	status->sspp[SSPP_CURSOR1] = (value >> 26) & 0x1;
220 }
221 
222 static void dpu_hw_intf_audio_select(struct dpu_hw_mdp *mdp)
223 {
224 	struct dpu_hw_blk_reg_map *c;
225 
226 	if (!mdp)
227 		return;
228 
229 	c = &mdp->hw;
230 
231 	DPU_REG_WRITE(c, HDMI_DP_CORE_SELECT, 0x1);
232 }
233 
234 static void _setup_mdp_ops(struct dpu_hw_mdp_ops *ops,
235 		unsigned long cap)
236 {
237 	ops->setup_split_pipe = dpu_hw_setup_split_pipe;
238 	ops->setup_clk_force_ctrl = dpu_hw_setup_clk_force_ctrl;
239 	ops->get_danger_status = dpu_hw_get_danger_status;
240 
241 	if (cap & BIT(DPU_MDP_VSYNC_SEL))
242 		ops->setup_vsync_source = dpu_hw_setup_vsync_source_and_vsync_sel;
243 	else
244 		ops->setup_vsync_source = dpu_hw_setup_vsync_source;
245 
246 	ops->get_safe_status = dpu_hw_get_safe_status;
247 
248 	if (cap & BIT(DPU_MDP_AUDIO_SELECT))
249 		ops->intf_audio_select = dpu_hw_intf_audio_select;
250 }
251 
252 struct dpu_hw_mdp *dpu_hw_mdptop_init(struct drm_device *dev,
253 				      const struct dpu_mdp_cfg *cfg,
254 				      void __iomem *addr,
255 				      const struct dpu_mdss_cfg *m)
256 {
257 	struct dpu_hw_mdp *mdp;
258 
259 	if (!addr)
260 		return ERR_PTR(-EINVAL);
261 
262 	mdp = drmm_kzalloc(dev, sizeof(*mdp), GFP_KERNEL);
263 	if (!mdp)
264 		return ERR_PTR(-ENOMEM);
265 
266 	mdp->hw.blk_addr = addr + cfg->base;
267 	mdp->hw.log_mask = DPU_DBG_MASK_TOP;
268 
269 	/*
270 	 * Assign ops
271 	 */
272 	mdp->caps = cfg;
273 	_setup_mdp_ops(&mdp->ops, mdp->caps->features);
274 
275 	return mdp;
276 }
277