1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2015-2018, The Linux Foundation. All rights reserved. 3 */ 4 5 #include <linux/bitfield.h> 6 7 #include <drm/drm_managed.h> 8 9 #include "dpu_hwio.h" 10 #include "dpu_hw_catalog.h" 11 #include "dpu_hw_top.h" 12 #include "dpu_kms.h" 13 14 #define FLD_SPLIT_DISPLAY_CMD BIT(1) 15 #define FLD_SMART_PANEL_FREE_RUN BIT(2) 16 #define FLD_INTF_1_SW_TRG_MUX BIT(4) 17 #define FLD_INTF_2_SW_TRG_MUX BIT(8) 18 #define FLD_TE_LINE_INTER_WATERLEVEL_MASK 0xFFFF 19 20 #define TRAFFIC_SHAPER_EN BIT(31) 21 #define TRAFFIC_SHAPER_RD_CLIENT(num) (0x030 + (num * 4)) 22 #define TRAFFIC_SHAPER_WR_CLIENT(num) (0x060 + (num * 4)) 23 #define TRAFFIC_SHAPER_FIXPOINT_FACTOR 4 24 25 #define MDP_TICK_COUNT 16 26 #define XO_CLK_RATE 19200 27 #define MS_TICKS_IN_SEC 1000 28 29 #define CALCULATE_WD_LOAD_VALUE(fps) \ 30 ((uint32_t)((MS_TICKS_IN_SEC * XO_CLK_RATE)/(MDP_TICK_COUNT * fps))) 31 32 static void dpu_hw_setup_split_pipe(struct dpu_hw_mdp *mdp, 33 struct split_pipe_cfg *cfg) 34 { 35 struct dpu_hw_blk_reg_map *c; 36 u32 upper_pipe = 0; 37 u32 lower_pipe = 0; 38 39 if (!mdp || !cfg) 40 return; 41 42 c = &mdp->hw; 43 44 if (cfg->en) { 45 if (cfg->mode == INTF_MODE_CMD) { 46 lower_pipe = FLD_SPLIT_DISPLAY_CMD; 47 /* interface controlling sw trigger */ 48 if (cfg->intf == INTF_2) 49 lower_pipe |= FLD_INTF_1_SW_TRG_MUX; 50 else 51 lower_pipe |= FLD_INTF_2_SW_TRG_MUX; 52 upper_pipe = lower_pipe; 53 } else { 54 if (cfg->intf == INTF_2) { 55 lower_pipe = FLD_INTF_1_SW_TRG_MUX; 56 upper_pipe = FLD_INTF_2_SW_TRG_MUX; 57 } else { 58 lower_pipe = FLD_INTF_2_SW_TRG_MUX; 59 upper_pipe = FLD_INTF_1_SW_TRG_MUX; 60 } 61 } 62 } 63 64 DPU_REG_WRITE(c, SSPP_SPARE, cfg->split_flush_en ? 0x1 : 0x0); 65 DPU_REG_WRITE(c, SPLIT_DISPLAY_LOWER_PIPE_CTRL, lower_pipe); 66 DPU_REG_WRITE(c, SPLIT_DISPLAY_UPPER_PIPE_CTRL, upper_pipe); 67 DPU_REG_WRITE(c, SPLIT_DISPLAY_EN, cfg->en & 0x1); 68 } 69 70 static bool dpu_hw_setup_clk_force_ctrl(struct dpu_hw_mdp *mdp, 71 enum dpu_clk_ctrl_type clk_ctrl, bool enable) 72 { 73 if (!mdp) 74 return false; 75 76 if (clk_ctrl <= DPU_CLK_CTRL_NONE || clk_ctrl >= DPU_CLK_CTRL_MAX) 77 return false; 78 79 return dpu_hw_clk_force_ctrl(&mdp->hw, &mdp->caps->clk_ctrls[clk_ctrl], enable); 80 } 81 82 83 static void dpu_hw_get_danger_status(struct dpu_hw_mdp *mdp, 84 struct dpu_danger_safe_status *status) 85 { 86 struct dpu_hw_blk_reg_map *c; 87 u32 value; 88 89 if (!mdp || !status) 90 return; 91 92 c = &mdp->hw; 93 94 value = DPU_REG_READ(c, DANGER_STATUS); 95 status->mdp = (value >> 0) & 0x3; 96 status->sspp[SSPP_VIG0] = (value >> 4) & 0x3; 97 status->sspp[SSPP_VIG1] = (value >> 6) & 0x3; 98 status->sspp[SSPP_VIG2] = (value >> 8) & 0x3; 99 status->sspp[SSPP_VIG3] = (value >> 10) & 0x3; 100 status->sspp[SSPP_RGB0] = (value >> 12) & 0x3; 101 status->sspp[SSPP_RGB1] = (value >> 14) & 0x3; 102 status->sspp[SSPP_RGB2] = (value >> 16) & 0x3; 103 status->sspp[SSPP_RGB3] = (value >> 18) & 0x3; 104 status->sspp[SSPP_DMA0] = (value >> 20) & 0x3; 105 status->sspp[SSPP_DMA1] = (value >> 22) & 0x3; 106 status->sspp[SSPP_DMA2] = (value >> 28) & 0x3; 107 status->sspp[SSPP_DMA3] = (value >> 30) & 0x3; 108 status->sspp[SSPP_CURSOR0] = (value >> 24) & 0x3; 109 status->sspp[SSPP_CURSOR1] = (value >> 26) & 0x3; 110 } 111 112 static void dpu_hw_setup_wd_timer(struct dpu_hw_mdp *mdp, 113 struct dpu_vsync_source_cfg *cfg) 114 { 115 struct dpu_hw_blk_reg_map *c; 116 u32 reg, wd_load_value, wd_ctl, wd_ctl2; 117 118 if (!mdp || !cfg) 119 return; 120 121 c = &mdp->hw; 122 123 if (cfg->vsync_source >= DPU_VSYNC_SOURCE_WD_TIMER_4 && 124 cfg->vsync_source <= DPU_VSYNC_SOURCE_WD_TIMER_0) { 125 switch (cfg->vsync_source) { 126 case DPU_VSYNC_SOURCE_WD_TIMER_4: 127 wd_load_value = MDP_WD_TIMER_4_LOAD_VALUE; 128 wd_ctl = MDP_WD_TIMER_4_CTL; 129 wd_ctl2 = MDP_WD_TIMER_4_CTL2; 130 break; 131 case DPU_VSYNC_SOURCE_WD_TIMER_3: 132 wd_load_value = MDP_WD_TIMER_3_LOAD_VALUE; 133 wd_ctl = MDP_WD_TIMER_3_CTL; 134 wd_ctl2 = MDP_WD_TIMER_3_CTL2; 135 break; 136 case DPU_VSYNC_SOURCE_WD_TIMER_2: 137 wd_load_value = MDP_WD_TIMER_2_LOAD_VALUE; 138 wd_ctl = MDP_WD_TIMER_2_CTL; 139 wd_ctl2 = MDP_WD_TIMER_2_CTL2; 140 break; 141 case DPU_VSYNC_SOURCE_WD_TIMER_1: 142 wd_load_value = MDP_WD_TIMER_1_LOAD_VALUE; 143 wd_ctl = MDP_WD_TIMER_1_CTL; 144 wd_ctl2 = MDP_WD_TIMER_1_CTL2; 145 break; 146 case DPU_VSYNC_SOURCE_WD_TIMER_0: 147 default: 148 wd_load_value = MDP_WD_TIMER_0_LOAD_VALUE; 149 wd_ctl = MDP_WD_TIMER_0_CTL; 150 wd_ctl2 = MDP_WD_TIMER_0_CTL2; 151 break; 152 } 153 154 DPU_REG_WRITE(c, wd_load_value, 155 CALCULATE_WD_LOAD_VALUE(cfg->frame_rate)); 156 157 DPU_REG_WRITE(c, wd_ctl, BIT(0)); /* clear timer */ 158 reg = DPU_REG_READ(c, wd_ctl2); 159 reg |= BIT(8); /* enable heartbeat timer */ 160 reg |= BIT(0); /* enable WD timer */ 161 DPU_REG_WRITE(c, wd_ctl2, reg); 162 163 /* make sure that timers are enabled/disabled for vsync state */ 164 wmb(); 165 } 166 } 167 168 static void dpu_hw_setup_vsync_sel(struct dpu_hw_mdp *mdp, 169 struct dpu_vsync_source_cfg *cfg) 170 { 171 struct dpu_hw_blk_reg_map *c; 172 u32 reg, i; 173 static const u32 pp_offset[PINGPONG_MAX] = {0xC, 0x8, 0x4, 0x13, 0x18}; 174 175 if (!mdp || !cfg || (cfg->pp_count > ARRAY_SIZE(cfg->ppnumber))) 176 return; 177 178 c = &mdp->hw; 179 180 reg = DPU_REG_READ(c, MDP_VSYNC_SEL); 181 for (i = 0; i < cfg->pp_count; i++) { 182 int pp_idx = cfg->ppnumber[i] - PINGPONG_0; 183 184 if (pp_idx >= ARRAY_SIZE(pp_offset)) 185 continue; 186 187 reg &= ~(0xf << pp_offset[pp_idx]); 188 reg |= (cfg->vsync_source & 0xf) << pp_offset[pp_idx]; 189 } 190 DPU_REG_WRITE(c, MDP_VSYNC_SEL, reg); 191 192 dpu_hw_setup_wd_timer(mdp, cfg); 193 } 194 195 static void dpu_hw_get_safe_status(struct dpu_hw_mdp *mdp, 196 struct dpu_danger_safe_status *status) 197 { 198 struct dpu_hw_blk_reg_map *c; 199 u32 value; 200 201 if (!mdp || !status) 202 return; 203 204 c = &mdp->hw; 205 206 value = DPU_REG_READ(c, SAFE_STATUS); 207 status->mdp = (value >> 0) & 0x1; 208 status->sspp[SSPP_VIG0] = (value >> 4) & 0x1; 209 status->sspp[SSPP_VIG1] = (value >> 6) & 0x1; 210 status->sspp[SSPP_VIG2] = (value >> 8) & 0x1; 211 status->sspp[SSPP_VIG3] = (value >> 10) & 0x1; 212 status->sspp[SSPP_RGB0] = (value >> 12) & 0x1; 213 status->sspp[SSPP_RGB1] = (value >> 14) & 0x1; 214 status->sspp[SSPP_RGB2] = (value >> 16) & 0x1; 215 status->sspp[SSPP_RGB3] = (value >> 18) & 0x1; 216 status->sspp[SSPP_DMA0] = (value >> 20) & 0x1; 217 status->sspp[SSPP_DMA1] = (value >> 22) & 0x1; 218 status->sspp[SSPP_DMA2] = (value >> 28) & 0x1; 219 status->sspp[SSPP_DMA3] = (value >> 30) & 0x1; 220 status->sspp[SSPP_CURSOR0] = (value >> 24) & 0x1; 221 status->sspp[SSPP_CURSOR1] = (value >> 26) & 0x1; 222 } 223 224 static void dpu_hw_intf_audio_select(struct dpu_hw_mdp *mdp) 225 { 226 struct dpu_hw_blk_reg_map *c; 227 228 if (!mdp) 229 return; 230 231 c = &mdp->hw; 232 233 DPU_REG_WRITE(c, HDMI_DP_CORE_SELECT, 0x1); 234 } 235 236 static void dpu_hw_dp_phy_intf_sel(struct dpu_hw_mdp *mdp, 237 enum dpu_dp_phy_sel phys[2]) 238 { 239 struct dpu_hw_blk_reg_map *c = &mdp->hw; 240 unsigned int intf; 241 u32 sel = 0; 242 243 sel |= FIELD_PREP(MDP_DP_PHY_INTF_SEL_INTF0, phys[0]); 244 sel |= FIELD_PREP(MDP_DP_PHY_INTF_SEL_INTF1, phys[1]); 245 246 for (intf = 0; intf < 2; intf++) { 247 switch (phys[intf]) { 248 case DPU_DP_PHY_0: 249 sel |= FIELD_PREP(MDP_DP_PHY_INTF_SEL_PHY0, intf + 1); 250 break; 251 case DPU_DP_PHY_1: 252 sel |= FIELD_PREP(MDP_DP_PHY_INTF_SEL_PHY1, intf + 1); 253 break; 254 case DPU_DP_PHY_2: 255 sel |= FIELD_PREP(MDP_DP_PHY_INTF_SEL_PHY2, intf + 1); 256 break; 257 default: 258 /* ignore */ 259 break; 260 } 261 } 262 263 DPU_REG_WRITE(c, MDP_DP_PHY_INTF_SEL, sel); 264 } 265 266 static void _setup_mdp_ops(struct dpu_hw_mdp_ops *ops, 267 unsigned long cap, const struct dpu_mdss_version *mdss_rev) 268 { 269 ops->setup_split_pipe = dpu_hw_setup_split_pipe; 270 ops->setup_clk_force_ctrl = dpu_hw_setup_clk_force_ctrl; 271 ops->get_danger_status = dpu_hw_get_danger_status; 272 273 if (cap & BIT(DPU_MDP_VSYNC_SEL)) 274 ops->setup_vsync_source = dpu_hw_setup_vsync_sel; 275 else 276 ops->setup_vsync_source = dpu_hw_setup_wd_timer; 277 278 ops->get_safe_status = dpu_hw_get_safe_status; 279 280 if (mdss_rev->core_major_ver >= 5) 281 ops->dp_phy_intf_sel = dpu_hw_dp_phy_intf_sel; 282 283 if (cap & BIT(DPU_MDP_AUDIO_SELECT)) 284 ops->intf_audio_select = dpu_hw_intf_audio_select; 285 } 286 287 /** 288 * dpu_hw_mdptop_init - initializes the top driver for the passed config 289 * @dev: Corresponding device for devres management 290 * @cfg: MDP TOP configuration from catalog 291 * @addr: Mapped register io address of MDP 292 * @mdss_rev: dpu core's major and minor versions 293 */ 294 struct dpu_hw_mdp *dpu_hw_mdptop_init(struct drm_device *dev, 295 const struct dpu_mdp_cfg *cfg, 296 void __iomem *addr, 297 const struct dpu_mdss_version *mdss_rev) 298 { 299 struct dpu_hw_mdp *mdp; 300 301 if (!addr) 302 return ERR_PTR(-EINVAL); 303 304 mdp = drmm_kzalloc(dev, sizeof(*mdp), GFP_KERNEL); 305 if (!mdp) 306 return ERR_PTR(-ENOMEM); 307 308 mdp->hw.blk_addr = addr + cfg->base; 309 mdp->hw.log_mask = DPU_DBG_MASK_TOP; 310 311 /* 312 * Assign ops 313 */ 314 mdp->caps = cfg; 315 _setup_mdp_ops(&mdp->ops, mdp->caps->features, mdss_rev); 316 317 return mdp; 318 } 319