xref: /linux/drivers/gpu/drm/msm/disp/dpu1/dpu_hw_ctl.c (revision 9f2c9170934eace462499ba0bfe042cc72900173)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2015-2018, The Linux Foundation. All rights reserved.
3  * Copyright (c) 2022 Qualcomm Innovation Center, Inc. All rights reserved.
4  */
5 
6 #include <linux/delay.h>
7 #include "dpu_hwio.h"
8 #include "dpu_hw_ctl.h"
9 #include "dpu_kms.h"
10 #include "dpu_trace.h"
11 
12 #define   CTL_LAYER(lm)                 \
13 	(((lm) == LM_5) ? (0x024) : (((lm) - LM_0) * 0x004))
14 #define   CTL_LAYER_EXT(lm)             \
15 	(0x40 + (((lm) - LM_0) * 0x004))
16 #define   CTL_LAYER_EXT2(lm)             \
17 	(0x70 + (((lm) - LM_0) * 0x004))
18 #define   CTL_LAYER_EXT3(lm)             \
19 	(0xA0 + (((lm) - LM_0) * 0x004))
20 #define   CTL_TOP                       0x014
21 #define   CTL_FLUSH                     0x018
22 #define   CTL_START                     0x01C
23 #define   CTL_PREPARE                   0x0d0
24 #define   CTL_SW_RESET                  0x030
25 #define   CTL_LAYER_EXTN_OFFSET         0x40
26 #define   CTL_MERGE_3D_ACTIVE           0x0E4
27 #define   CTL_WB_ACTIVE                 0x0EC
28 #define   CTL_INTF_ACTIVE               0x0F4
29 #define   CTL_MERGE_3D_FLUSH            0x100
30 #define   CTL_DSC_ACTIVE                0x0E8
31 #define   CTL_DSC_FLUSH                0x104
32 #define   CTL_WB_FLUSH                  0x108
33 #define   CTL_INTF_FLUSH                0x110
34 #define   CTL_INTF_MASTER               0x134
35 #define   CTL_FETCH_PIPE_ACTIVE         0x0FC
36 
37 #define CTL_MIXER_BORDER_OUT            BIT(24)
38 #define CTL_FLUSH_MASK_CTL              BIT(17)
39 
40 #define DPU_REG_RESET_TIMEOUT_US        2000
41 #define  MERGE_3D_IDX   23
42 #define  DSC_IDX        22
43 #define  INTF_IDX       31
44 #define WB_IDX          16
45 #define CTL_INVALID_BIT                 0xffff
46 #define CTL_DEFAULT_GROUP_ID		0xf
47 
48 static const u32 fetch_tbl[SSPP_MAX] = {CTL_INVALID_BIT, 16, 17, 18, 19,
49 	CTL_INVALID_BIT, CTL_INVALID_BIT, CTL_INVALID_BIT, CTL_INVALID_BIT, 0,
50 	1, 2, 3, CTL_INVALID_BIT, CTL_INVALID_BIT};
51 
52 static const struct dpu_ctl_cfg *_ctl_offset(enum dpu_ctl ctl,
53 		const struct dpu_mdss_cfg *m,
54 		void __iomem *addr,
55 		struct dpu_hw_blk_reg_map *b)
56 {
57 	int i;
58 
59 	for (i = 0; i < m->ctl_count; i++) {
60 		if (ctl == m->ctl[i].id) {
61 			b->blk_addr = addr + m->ctl[i].base;
62 			b->log_mask = DPU_DBG_MASK_CTL;
63 			return &m->ctl[i];
64 		}
65 	}
66 	return ERR_PTR(-ENOMEM);
67 }
68 
69 static int _mixer_stages(const struct dpu_lm_cfg *mixer, int count,
70 		enum dpu_lm lm)
71 {
72 	int i;
73 	int stages = -EINVAL;
74 
75 	for (i = 0; i < count; i++) {
76 		if (lm == mixer[i].id) {
77 			stages = mixer[i].sblk->maxblendstages;
78 			break;
79 		}
80 	}
81 
82 	return stages;
83 }
84 
85 static inline u32 dpu_hw_ctl_get_flush_register(struct dpu_hw_ctl *ctx)
86 {
87 	struct dpu_hw_blk_reg_map *c = &ctx->hw;
88 
89 	return DPU_REG_READ(c, CTL_FLUSH);
90 }
91 
92 static inline void dpu_hw_ctl_trigger_start(struct dpu_hw_ctl *ctx)
93 {
94 	trace_dpu_hw_ctl_trigger_start(ctx->pending_flush_mask,
95 				       dpu_hw_ctl_get_flush_register(ctx));
96 	DPU_REG_WRITE(&ctx->hw, CTL_START, 0x1);
97 }
98 
99 static inline bool dpu_hw_ctl_is_started(struct dpu_hw_ctl *ctx)
100 {
101 	return !!(DPU_REG_READ(&ctx->hw, CTL_START) & BIT(0));
102 }
103 
104 static inline void dpu_hw_ctl_trigger_pending(struct dpu_hw_ctl *ctx)
105 {
106 	trace_dpu_hw_ctl_trigger_prepare(ctx->pending_flush_mask,
107 					 dpu_hw_ctl_get_flush_register(ctx));
108 	DPU_REG_WRITE(&ctx->hw, CTL_PREPARE, 0x1);
109 }
110 
111 static inline void dpu_hw_ctl_clear_pending_flush(struct dpu_hw_ctl *ctx)
112 {
113 	trace_dpu_hw_ctl_clear_pending_flush(ctx->pending_flush_mask,
114 				     dpu_hw_ctl_get_flush_register(ctx));
115 	ctx->pending_flush_mask = 0x0;
116 }
117 
118 static inline void dpu_hw_ctl_update_pending_flush(struct dpu_hw_ctl *ctx,
119 		u32 flushbits)
120 {
121 	trace_dpu_hw_ctl_update_pending_flush(flushbits,
122 					      ctx->pending_flush_mask);
123 	ctx->pending_flush_mask |= flushbits;
124 }
125 
126 static u32 dpu_hw_ctl_get_pending_flush(struct dpu_hw_ctl *ctx)
127 {
128 	return ctx->pending_flush_mask;
129 }
130 
131 static inline void dpu_hw_ctl_trigger_flush_v1(struct dpu_hw_ctl *ctx)
132 {
133 	if (ctx->pending_flush_mask & BIT(MERGE_3D_IDX))
134 		DPU_REG_WRITE(&ctx->hw, CTL_MERGE_3D_FLUSH,
135 				ctx->pending_merge_3d_flush_mask);
136 	if (ctx->pending_flush_mask & BIT(INTF_IDX))
137 		DPU_REG_WRITE(&ctx->hw, CTL_INTF_FLUSH,
138 				ctx->pending_intf_flush_mask);
139 	if (ctx->pending_flush_mask & BIT(WB_IDX))
140 		DPU_REG_WRITE(&ctx->hw, CTL_WB_FLUSH,
141 				ctx->pending_wb_flush_mask);
142 
143 	DPU_REG_WRITE(&ctx->hw, CTL_FLUSH, ctx->pending_flush_mask);
144 }
145 
146 static inline void dpu_hw_ctl_trigger_flush(struct dpu_hw_ctl *ctx)
147 {
148 	trace_dpu_hw_ctl_trigger_pending_flush(ctx->pending_flush_mask,
149 				     dpu_hw_ctl_get_flush_register(ctx));
150 	DPU_REG_WRITE(&ctx->hw, CTL_FLUSH, ctx->pending_flush_mask);
151 }
152 
153 static void dpu_hw_ctl_update_pending_flush_sspp(struct dpu_hw_ctl *ctx,
154 	enum dpu_sspp sspp)
155 {
156 	switch (sspp) {
157 	case SSPP_VIG0:
158 		ctx->pending_flush_mask |=  BIT(0);
159 		break;
160 	case SSPP_VIG1:
161 		ctx->pending_flush_mask |= BIT(1);
162 		break;
163 	case SSPP_VIG2:
164 		ctx->pending_flush_mask |= BIT(2);
165 		break;
166 	case SSPP_VIG3:
167 		ctx->pending_flush_mask |= BIT(18);
168 		break;
169 	case SSPP_RGB0:
170 		ctx->pending_flush_mask |= BIT(3);
171 		break;
172 	case SSPP_RGB1:
173 		ctx->pending_flush_mask |= BIT(4);
174 		break;
175 	case SSPP_RGB2:
176 		ctx->pending_flush_mask |= BIT(5);
177 		break;
178 	case SSPP_RGB3:
179 		ctx->pending_flush_mask |= BIT(19);
180 		break;
181 	case SSPP_DMA0:
182 		ctx->pending_flush_mask |= BIT(11);
183 		break;
184 	case SSPP_DMA1:
185 		ctx->pending_flush_mask |= BIT(12);
186 		break;
187 	case SSPP_DMA2:
188 		ctx->pending_flush_mask |= BIT(24);
189 		break;
190 	case SSPP_DMA3:
191 		ctx->pending_flush_mask |= BIT(25);
192 		break;
193 	case SSPP_CURSOR0:
194 		ctx->pending_flush_mask |= BIT(22);
195 		break;
196 	case SSPP_CURSOR1:
197 		ctx->pending_flush_mask |= BIT(23);
198 		break;
199 	default:
200 		break;
201 	}
202 }
203 
204 static void dpu_hw_ctl_update_pending_flush_mixer(struct dpu_hw_ctl *ctx,
205 	enum dpu_lm lm)
206 {
207 	switch (lm) {
208 	case LM_0:
209 		ctx->pending_flush_mask |= BIT(6);
210 		break;
211 	case LM_1:
212 		ctx->pending_flush_mask |= BIT(7);
213 		break;
214 	case LM_2:
215 		ctx->pending_flush_mask |= BIT(8);
216 		break;
217 	case LM_3:
218 		ctx->pending_flush_mask |= BIT(9);
219 		break;
220 	case LM_4:
221 		ctx->pending_flush_mask |= BIT(10);
222 		break;
223 	case LM_5:
224 		ctx->pending_flush_mask |= BIT(20);
225 		break;
226 	default:
227 		break;
228 	}
229 
230 	ctx->pending_flush_mask |= CTL_FLUSH_MASK_CTL;
231 }
232 
233 static void dpu_hw_ctl_update_pending_flush_intf(struct dpu_hw_ctl *ctx,
234 		enum dpu_intf intf)
235 {
236 	switch (intf) {
237 	case INTF_0:
238 		ctx->pending_flush_mask |= BIT(31);
239 		break;
240 	case INTF_1:
241 		ctx->pending_flush_mask |= BIT(30);
242 		break;
243 	case INTF_2:
244 		ctx->pending_flush_mask |= BIT(29);
245 		break;
246 	case INTF_3:
247 		ctx->pending_flush_mask |= BIT(28);
248 		break;
249 	default:
250 		break;
251 	}
252 }
253 
254 static void dpu_hw_ctl_update_pending_flush_wb(struct dpu_hw_ctl *ctx,
255 		enum dpu_wb wb)
256 {
257 	switch (wb) {
258 	case WB_0:
259 	case WB_1:
260 	case WB_2:
261 		ctx->pending_flush_mask |= BIT(WB_IDX);
262 		break;
263 	default:
264 		break;
265 	}
266 }
267 
268 static void dpu_hw_ctl_update_pending_flush_wb_v1(struct dpu_hw_ctl *ctx,
269 		enum dpu_wb wb)
270 {
271 	ctx->pending_wb_flush_mask |= BIT(wb - WB_0);
272 	ctx->pending_flush_mask |= BIT(WB_IDX);
273 }
274 
275 static void dpu_hw_ctl_update_pending_flush_intf_v1(struct dpu_hw_ctl *ctx,
276 		enum dpu_intf intf)
277 {
278 	ctx->pending_intf_flush_mask |= BIT(intf - INTF_0);
279 	ctx->pending_flush_mask |= BIT(INTF_IDX);
280 }
281 
282 static void dpu_hw_ctl_update_pending_flush_merge_3d_v1(struct dpu_hw_ctl *ctx,
283 		enum dpu_merge_3d merge_3d)
284 {
285 	ctx->pending_merge_3d_flush_mask |= BIT(merge_3d - MERGE_3D_0);
286 	ctx->pending_flush_mask |= BIT(MERGE_3D_IDX);
287 }
288 
289 static void dpu_hw_ctl_update_pending_flush_dspp(struct dpu_hw_ctl *ctx,
290 	enum dpu_dspp dspp)
291 {
292 	switch (dspp) {
293 	case DSPP_0:
294 		ctx->pending_flush_mask |= BIT(13);
295 		break;
296 	case DSPP_1:
297 		ctx->pending_flush_mask |= BIT(14);
298 		break;
299 	case DSPP_2:
300 		ctx->pending_flush_mask |= BIT(15);
301 		break;
302 	case DSPP_3:
303 		ctx->pending_flush_mask |= BIT(21);
304 		break;
305 	default:
306 		break;
307 	}
308 }
309 
310 static u32 dpu_hw_ctl_poll_reset_status(struct dpu_hw_ctl *ctx, u32 timeout_us)
311 {
312 	struct dpu_hw_blk_reg_map *c = &ctx->hw;
313 	ktime_t timeout;
314 	u32 status;
315 
316 	timeout = ktime_add_us(ktime_get(), timeout_us);
317 
318 	/*
319 	 * it takes around 30us to have mdp finish resetting its ctl path
320 	 * poll every 50us so that reset should be completed at 1st poll
321 	 */
322 	do {
323 		status = DPU_REG_READ(c, CTL_SW_RESET);
324 		status &= 0x1;
325 		if (status)
326 			usleep_range(20, 50);
327 	} while (status && ktime_compare_safe(ktime_get(), timeout) < 0);
328 
329 	return status;
330 }
331 
332 static int dpu_hw_ctl_reset_control(struct dpu_hw_ctl *ctx)
333 {
334 	struct dpu_hw_blk_reg_map *c = &ctx->hw;
335 
336 	pr_debug("issuing hw ctl reset for ctl:%d\n", ctx->idx);
337 	DPU_REG_WRITE(c, CTL_SW_RESET, 0x1);
338 	if (dpu_hw_ctl_poll_reset_status(ctx, DPU_REG_RESET_TIMEOUT_US))
339 		return -EINVAL;
340 
341 	return 0;
342 }
343 
344 static int dpu_hw_ctl_wait_reset_status(struct dpu_hw_ctl *ctx)
345 {
346 	struct dpu_hw_blk_reg_map *c = &ctx->hw;
347 	u32 status;
348 
349 	status = DPU_REG_READ(c, CTL_SW_RESET);
350 	status &= 0x01;
351 	if (!status)
352 		return 0;
353 
354 	pr_debug("hw ctl reset is set for ctl:%d\n", ctx->idx);
355 	if (dpu_hw_ctl_poll_reset_status(ctx, DPU_REG_RESET_TIMEOUT_US)) {
356 		pr_err("hw recovery is not complete for ctl:%d\n", ctx->idx);
357 		return -EINVAL;
358 	}
359 
360 	return 0;
361 }
362 
363 static void dpu_hw_ctl_clear_all_blendstages(struct dpu_hw_ctl *ctx)
364 {
365 	struct dpu_hw_blk_reg_map *c = &ctx->hw;
366 	int i;
367 
368 	for (i = 0; i < ctx->mixer_count; i++) {
369 		enum dpu_lm mixer_id = ctx->mixer_hw_caps[i].id;
370 
371 		DPU_REG_WRITE(c, CTL_LAYER(mixer_id), 0);
372 		DPU_REG_WRITE(c, CTL_LAYER_EXT(mixer_id), 0);
373 		DPU_REG_WRITE(c, CTL_LAYER_EXT2(mixer_id), 0);
374 		DPU_REG_WRITE(c, CTL_LAYER_EXT3(mixer_id), 0);
375 	}
376 
377 	DPU_REG_WRITE(c, CTL_FETCH_PIPE_ACTIVE, 0);
378 }
379 
380 static void dpu_hw_ctl_setup_blendstage(struct dpu_hw_ctl *ctx,
381 	enum dpu_lm lm, struct dpu_hw_stage_cfg *stage_cfg)
382 {
383 	struct dpu_hw_blk_reg_map *c = &ctx->hw;
384 	u32 mixercfg = 0, mixercfg_ext = 0, mix, ext;
385 	u32 mixercfg_ext2 = 0, mixercfg_ext3 = 0;
386 	int i, j;
387 	int stages;
388 	int pipes_per_stage;
389 
390 	stages = _mixer_stages(ctx->mixer_hw_caps, ctx->mixer_count, lm);
391 	if (stages < 0)
392 		return;
393 
394 	if (test_bit(DPU_MIXER_SOURCESPLIT,
395 		&ctx->mixer_hw_caps->features))
396 		pipes_per_stage = PIPES_PER_STAGE;
397 	else
398 		pipes_per_stage = 1;
399 
400 	mixercfg = CTL_MIXER_BORDER_OUT; /* always set BORDER_OUT */
401 
402 	if (!stage_cfg)
403 		goto exit;
404 
405 	for (i = 0; i <= stages; i++) {
406 		/* overflow to ext register if 'i + 1 > 7' */
407 		mix = (i + 1) & 0x7;
408 		ext = i >= 7;
409 
410 		for (j = 0 ; j < pipes_per_stage; j++) {
411 			enum dpu_sspp_multirect_index rect_index =
412 				stage_cfg->multirect_index[i][j];
413 
414 			switch (stage_cfg->stage[i][j]) {
415 			case SSPP_VIG0:
416 				if (rect_index == DPU_SSPP_RECT_1) {
417 					mixercfg_ext3 |= ((i + 1) & 0xF) << 0;
418 				} else {
419 					mixercfg |= mix << 0;
420 					mixercfg_ext |= ext << 0;
421 				}
422 				break;
423 			case SSPP_VIG1:
424 				if (rect_index == DPU_SSPP_RECT_1) {
425 					mixercfg_ext3 |= ((i + 1) & 0xF) << 4;
426 				} else {
427 					mixercfg |= mix << 3;
428 					mixercfg_ext |= ext << 2;
429 				}
430 				break;
431 			case SSPP_VIG2:
432 				if (rect_index == DPU_SSPP_RECT_1) {
433 					mixercfg_ext3 |= ((i + 1) & 0xF) << 8;
434 				} else {
435 					mixercfg |= mix << 6;
436 					mixercfg_ext |= ext << 4;
437 				}
438 				break;
439 			case SSPP_VIG3:
440 				if (rect_index == DPU_SSPP_RECT_1) {
441 					mixercfg_ext3 |= ((i + 1) & 0xF) << 12;
442 				} else {
443 					mixercfg |= mix << 26;
444 					mixercfg_ext |= ext << 6;
445 				}
446 				break;
447 			case SSPP_RGB0:
448 				mixercfg |= mix << 9;
449 				mixercfg_ext |= ext << 8;
450 				break;
451 			case SSPP_RGB1:
452 				mixercfg |= mix << 12;
453 				mixercfg_ext |= ext << 10;
454 				break;
455 			case SSPP_RGB2:
456 				mixercfg |= mix << 15;
457 				mixercfg_ext |= ext << 12;
458 				break;
459 			case SSPP_RGB3:
460 				mixercfg |= mix << 29;
461 				mixercfg_ext |= ext << 14;
462 				break;
463 			case SSPP_DMA0:
464 				if (rect_index == DPU_SSPP_RECT_1) {
465 					mixercfg_ext2 |= ((i + 1) & 0xF) << 8;
466 				} else {
467 					mixercfg |= mix << 18;
468 					mixercfg_ext |= ext << 16;
469 				}
470 				break;
471 			case SSPP_DMA1:
472 				if (rect_index == DPU_SSPP_RECT_1) {
473 					mixercfg_ext2 |= ((i + 1) & 0xF) << 12;
474 				} else {
475 					mixercfg |= mix << 21;
476 					mixercfg_ext |= ext << 18;
477 				}
478 				break;
479 			case SSPP_DMA2:
480 				if (rect_index == DPU_SSPP_RECT_1) {
481 					mixercfg_ext2 |= ((i + 1) & 0xF) << 16;
482 				} else {
483 					mix |= (i + 1) & 0xF;
484 					mixercfg_ext2 |= mix << 0;
485 				}
486 				break;
487 			case SSPP_DMA3:
488 				if (rect_index == DPU_SSPP_RECT_1) {
489 					mixercfg_ext2 |= ((i + 1) & 0xF) << 20;
490 				} else {
491 					mix |= (i + 1) & 0xF;
492 					mixercfg_ext2 |= mix << 4;
493 				}
494 				break;
495 			case SSPP_CURSOR0:
496 				mixercfg_ext |= ((i + 1) & 0xF) << 20;
497 				break;
498 			case SSPP_CURSOR1:
499 				mixercfg_ext |= ((i + 1) & 0xF) << 26;
500 				break;
501 			default:
502 				break;
503 			}
504 		}
505 	}
506 
507 exit:
508 	DPU_REG_WRITE(c, CTL_LAYER(lm), mixercfg);
509 	DPU_REG_WRITE(c, CTL_LAYER_EXT(lm), mixercfg_ext);
510 	DPU_REG_WRITE(c, CTL_LAYER_EXT2(lm), mixercfg_ext2);
511 	DPU_REG_WRITE(c, CTL_LAYER_EXT3(lm), mixercfg_ext3);
512 }
513 
514 
515 static void dpu_hw_ctl_intf_cfg_v1(struct dpu_hw_ctl *ctx,
516 		struct dpu_hw_intf_cfg *cfg)
517 {
518 	struct dpu_hw_blk_reg_map *c = &ctx->hw;
519 	u32 intf_active = 0;
520 	u32 wb_active = 0;
521 	u32 mode_sel = 0;
522 
523 	/* CTL_TOP[31:28] carries group_id to collate CTL paths
524 	 * per VM. Explicitly disable it until VM support is
525 	 * added in SW. Power on reset value is not disable.
526 	 */
527 	if ((test_bit(DPU_CTL_VM_CFG, &ctx->caps->features)))
528 		mode_sel = CTL_DEFAULT_GROUP_ID  << 28;
529 
530 	if (cfg->dsc)
531 		DPU_REG_WRITE(&ctx->hw, CTL_DSC_FLUSH, cfg->dsc);
532 
533 	if (cfg->intf_mode_sel == DPU_CTL_MODE_SEL_CMD)
534 		mode_sel |= BIT(17);
535 
536 	intf_active = DPU_REG_READ(c, CTL_INTF_ACTIVE);
537 	wb_active = DPU_REG_READ(c, CTL_WB_ACTIVE);
538 
539 	if (cfg->intf)
540 		intf_active |= BIT(cfg->intf - INTF_0);
541 
542 	if (cfg->wb)
543 		wb_active |= BIT(cfg->wb - WB_0);
544 
545 	DPU_REG_WRITE(c, CTL_TOP, mode_sel);
546 	DPU_REG_WRITE(c, CTL_INTF_ACTIVE, intf_active);
547 	DPU_REG_WRITE(c, CTL_WB_ACTIVE, wb_active);
548 
549 	if (cfg->merge_3d)
550 		DPU_REG_WRITE(c, CTL_MERGE_3D_ACTIVE,
551 			      BIT(cfg->merge_3d - MERGE_3D_0));
552 	if (cfg->dsc) {
553 		DPU_REG_WRITE(&ctx->hw, CTL_FLUSH, DSC_IDX);
554 		DPU_REG_WRITE(c, CTL_DSC_ACTIVE, cfg->dsc);
555 	}
556 }
557 
558 static void dpu_hw_ctl_intf_cfg(struct dpu_hw_ctl *ctx,
559 		struct dpu_hw_intf_cfg *cfg)
560 {
561 	struct dpu_hw_blk_reg_map *c = &ctx->hw;
562 	u32 intf_cfg = 0;
563 
564 	intf_cfg |= (cfg->intf & 0xF) << 4;
565 
566 	if (cfg->mode_3d) {
567 		intf_cfg |= BIT(19);
568 		intf_cfg |= (cfg->mode_3d - 0x1) << 20;
569 	}
570 
571 	if (cfg->wb)
572 		intf_cfg |= (cfg->wb & 0x3) + 2;
573 
574 	switch (cfg->intf_mode_sel) {
575 	case DPU_CTL_MODE_SEL_VID:
576 		intf_cfg &= ~BIT(17);
577 		intf_cfg &= ~(0x3 << 15);
578 		break;
579 	case DPU_CTL_MODE_SEL_CMD:
580 		intf_cfg |= BIT(17);
581 		intf_cfg |= ((cfg->stream_sel & 0x3) << 15);
582 		break;
583 	default:
584 		pr_err("unknown interface type %d\n", cfg->intf_mode_sel);
585 		return;
586 	}
587 
588 	DPU_REG_WRITE(c, CTL_TOP, intf_cfg);
589 }
590 
591 static void dpu_hw_ctl_reset_intf_cfg_v1(struct dpu_hw_ctl *ctx,
592 		struct dpu_hw_intf_cfg *cfg)
593 {
594 	struct dpu_hw_blk_reg_map *c = &ctx->hw;
595 	u32 intf_active = 0;
596 	u32 wb_active = 0;
597 	u32 merge3d_active = 0;
598 
599 	/*
600 	 * This API resets each portion of the CTL path namely,
601 	 * clearing the sspps staged on the lm, merge_3d block,
602 	 * interfaces , writeback etc to ensure clean teardown of the pipeline.
603 	 * This will be used for writeback to begin with to have a
604 	 * proper teardown of the writeback session but upon further
605 	 * validation, this can be extended to all interfaces.
606 	 */
607 	if (cfg->merge_3d) {
608 		merge3d_active = DPU_REG_READ(c, CTL_MERGE_3D_ACTIVE);
609 		merge3d_active &= ~BIT(cfg->merge_3d - MERGE_3D_0);
610 		DPU_REG_WRITE(c, CTL_MERGE_3D_ACTIVE,
611 				merge3d_active);
612 	}
613 
614 	dpu_hw_ctl_clear_all_blendstages(ctx);
615 
616 	if (cfg->intf) {
617 		intf_active = DPU_REG_READ(c, CTL_INTF_ACTIVE);
618 		intf_active &= ~BIT(cfg->intf - INTF_0);
619 		DPU_REG_WRITE(c, CTL_INTF_ACTIVE, intf_active);
620 	}
621 
622 	if (cfg->wb) {
623 		wb_active = DPU_REG_READ(c, CTL_WB_ACTIVE);
624 		wb_active &= ~BIT(cfg->wb - WB_0);
625 		DPU_REG_WRITE(c, CTL_WB_ACTIVE, wb_active);
626 	}
627 }
628 
629 static void dpu_hw_ctl_set_fetch_pipe_active(struct dpu_hw_ctl *ctx,
630 	unsigned long *fetch_active)
631 {
632 	int i;
633 	u32 val = 0;
634 
635 	if (fetch_active) {
636 		for (i = 0; i < SSPP_MAX; i++) {
637 			if (test_bit(i, fetch_active) &&
638 				fetch_tbl[i] != CTL_INVALID_BIT)
639 				val |= BIT(fetch_tbl[i]);
640 		}
641 	}
642 
643 	DPU_REG_WRITE(&ctx->hw, CTL_FETCH_PIPE_ACTIVE, val);
644 }
645 
646 static void _setup_ctl_ops(struct dpu_hw_ctl_ops *ops,
647 		unsigned long cap)
648 {
649 	if (cap & BIT(DPU_CTL_ACTIVE_CFG)) {
650 		ops->trigger_flush = dpu_hw_ctl_trigger_flush_v1;
651 		ops->setup_intf_cfg = dpu_hw_ctl_intf_cfg_v1;
652 		ops->reset_intf_cfg = dpu_hw_ctl_reset_intf_cfg_v1;
653 		ops->update_pending_flush_intf =
654 			dpu_hw_ctl_update_pending_flush_intf_v1;
655 		ops->update_pending_flush_merge_3d =
656 			dpu_hw_ctl_update_pending_flush_merge_3d_v1;
657 		ops->update_pending_flush_wb = dpu_hw_ctl_update_pending_flush_wb_v1;
658 	} else {
659 		ops->trigger_flush = dpu_hw_ctl_trigger_flush;
660 		ops->setup_intf_cfg = dpu_hw_ctl_intf_cfg;
661 		ops->update_pending_flush_intf =
662 			dpu_hw_ctl_update_pending_flush_intf;
663 		ops->update_pending_flush_wb = dpu_hw_ctl_update_pending_flush_wb;
664 	}
665 	ops->clear_pending_flush = dpu_hw_ctl_clear_pending_flush;
666 	ops->update_pending_flush = dpu_hw_ctl_update_pending_flush;
667 	ops->get_pending_flush = dpu_hw_ctl_get_pending_flush;
668 	ops->get_flush_register = dpu_hw_ctl_get_flush_register;
669 	ops->trigger_start = dpu_hw_ctl_trigger_start;
670 	ops->is_started = dpu_hw_ctl_is_started;
671 	ops->trigger_pending = dpu_hw_ctl_trigger_pending;
672 	ops->reset = dpu_hw_ctl_reset_control;
673 	ops->wait_reset_status = dpu_hw_ctl_wait_reset_status;
674 	ops->clear_all_blendstages = dpu_hw_ctl_clear_all_blendstages;
675 	ops->setup_blendstage = dpu_hw_ctl_setup_blendstage;
676 	ops->update_pending_flush_sspp = dpu_hw_ctl_update_pending_flush_sspp;
677 	ops->update_pending_flush_mixer = dpu_hw_ctl_update_pending_flush_mixer;
678 	ops->update_pending_flush_dspp = dpu_hw_ctl_update_pending_flush_dspp;
679 	if (cap & BIT(DPU_CTL_FETCH_ACTIVE))
680 		ops->set_active_pipes = dpu_hw_ctl_set_fetch_pipe_active;
681 };
682 
683 struct dpu_hw_ctl *dpu_hw_ctl_init(enum dpu_ctl idx,
684 		void __iomem *addr,
685 		const struct dpu_mdss_cfg *m)
686 {
687 	struct dpu_hw_ctl *c;
688 	const struct dpu_ctl_cfg *cfg;
689 
690 	c = kzalloc(sizeof(*c), GFP_KERNEL);
691 	if (!c)
692 		return ERR_PTR(-ENOMEM);
693 
694 	cfg = _ctl_offset(idx, m, addr, &c->hw);
695 	if (IS_ERR_OR_NULL(cfg)) {
696 		kfree(c);
697 		pr_err("failed to create dpu_hw_ctl %d\n", idx);
698 		return ERR_PTR(-EINVAL);
699 	}
700 
701 	c->caps = cfg;
702 	_setup_ctl_ops(&c->ops, c->caps->features);
703 	c->idx = idx;
704 	c->mixer_count = m->mixer_count;
705 	c->mixer_hw_caps = m->mixer;
706 
707 	return c;
708 }
709 
710 void dpu_hw_ctl_destroy(struct dpu_hw_ctl *ctx)
711 {
712 	kfree(ctx);
713 }
714