xref: /linux/drivers/gpu/drm/msm/disp/dpu1/dpu_hw_ctl.c (revision 2993c9b04e616df0848b655d7202a707a70fc876)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2015-2018, The Linux Foundation. All rights reserved.
3  */
4 
5 #include <linux/delay.h>
6 #include "dpu_hwio.h"
7 #include "dpu_hw_ctl.h"
8 #include "dpu_kms.h"
9 #include "dpu_trace.h"
10 
11 #define   CTL_LAYER(lm)                 \
12 	(((lm) == LM_5) ? (0x024) : (((lm) - LM_0) * 0x004))
13 #define   CTL_LAYER_EXT(lm)             \
14 	(0x40 + (((lm) - LM_0) * 0x004))
15 #define   CTL_LAYER_EXT2(lm)             \
16 	(0x70 + (((lm) - LM_0) * 0x004))
17 #define   CTL_LAYER_EXT3(lm)             \
18 	(0xA0 + (((lm) - LM_0) * 0x004))
19 #define   CTL_TOP                       0x014
20 #define   CTL_FLUSH                     0x018
21 #define   CTL_START                     0x01C
22 #define   CTL_PREPARE                   0x0d0
23 #define   CTL_SW_RESET                  0x030
24 #define   CTL_LAYER_EXTN_OFFSET         0x40
25 
26 #define CTL_MIXER_BORDER_OUT            BIT(24)
27 #define CTL_FLUSH_MASK_CTL              BIT(17)
28 
29 #define DPU_REG_RESET_TIMEOUT_US        2000
30 
31 static struct dpu_ctl_cfg *_ctl_offset(enum dpu_ctl ctl,
32 		struct dpu_mdss_cfg *m,
33 		void __iomem *addr,
34 		struct dpu_hw_blk_reg_map *b)
35 {
36 	int i;
37 
38 	for (i = 0; i < m->ctl_count; i++) {
39 		if (ctl == m->ctl[i].id) {
40 			b->base_off = addr;
41 			b->blk_off = m->ctl[i].base;
42 			b->length = m->ctl[i].len;
43 			b->hwversion = m->hwversion;
44 			b->log_mask = DPU_DBG_MASK_CTL;
45 			return &m->ctl[i];
46 		}
47 	}
48 	return ERR_PTR(-ENOMEM);
49 }
50 
51 static int _mixer_stages(const struct dpu_lm_cfg *mixer, int count,
52 		enum dpu_lm lm)
53 {
54 	int i;
55 	int stages = -EINVAL;
56 
57 	for (i = 0; i < count; i++) {
58 		if (lm == mixer[i].id) {
59 			stages = mixer[i].sblk->maxblendstages;
60 			break;
61 		}
62 	}
63 
64 	return stages;
65 }
66 
67 static inline u32 dpu_hw_ctl_get_flush_register(struct dpu_hw_ctl *ctx)
68 {
69 	struct dpu_hw_blk_reg_map *c = &ctx->hw;
70 
71 	return DPU_REG_READ(c, CTL_FLUSH);
72 }
73 
74 static inline void dpu_hw_ctl_trigger_start(struct dpu_hw_ctl *ctx)
75 {
76 	trace_dpu_hw_ctl_trigger_start(ctx->pending_flush_mask,
77 				       dpu_hw_ctl_get_flush_register(ctx));
78 	DPU_REG_WRITE(&ctx->hw, CTL_START, 0x1);
79 }
80 
81 static inline void dpu_hw_ctl_trigger_pending(struct dpu_hw_ctl *ctx)
82 {
83 	trace_dpu_hw_ctl_trigger_prepare(ctx->pending_flush_mask,
84 					 dpu_hw_ctl_get_flush_register(ctx));
85 	DPU_REG_WRITE(&ctx->hw, CTL_PREPARE, 0x1);
86 }
87 
88 static inline void dpu_hw_ctl_clear_pending_flush(struct dpu_hw_ctl *ctx)
89 {
90 	trace_dpu_hw_ctl_clear_pending_flush(ctx->pending_flush_mask,
91 				     dpu_hw_ctl_get_flush_register(ctx));
92 	ctx->pending_flush_mask = 0x0;
93 }
94 
95 static inline void dpu_hw_ctl_update_pending_flush(struct dpu_hw_ctl *ctx,
96 		u32 flushbits)
97 {
98 	trace_dpu_hw_ctl_update_pending_flush(flushbits,
99 					      ctx->pending_flush_mask);
100 	ctx->pending_flush_mask |= flushbits;
101 }
102 
103 static u32 dpu_hw_ctl_get_pending_flush(struct dpu_hw_ctl *ctx)
104 {
105 	return ctx->pending_flush_mask;
106 }
107 
108 static inline void dpu_hw_ctl_trigger_flush(struct dpu_hw_ctl *ctx)
109 {
110 	trace_dpu_hw_ctl_trigger_pending_flush(ctx->pending_flush_mask,
111 				     dpu_hw_ctl_get_flush_register(ctx));
112 	DPU_REG_WRITE(&ctx->hw, CTL_FLUSH, ctx->pending_flush_mask);
113 }
114 
115 static uint32_t dpu_hw_ctl_get_bitmask_sspp(struct dpu_hw_ctl *ctx,
116 	enum dpu_sspp sspp)
117 {
118 	uint32_t flushbits = 0;
119 
120 	switch (sspp) {
121 	case SSPP_VIG0:
122 		flushbits =  BIT(0);
123 		break;
124 	case SSPP_VIG1:
125 		flushbits = BIT(1);
126 		break;
127 	case SSPP_VIG2:
128 		flushbits = BIT(2);
129 		break;
130 	case SSPP_VIG3:
131 		flushbits = BIT(18);
132 		break;
133 	case SSPP_RGB0:
134 		flushbits = BIT(3);
135 		break;
136 	case SSPP_RGB1:
137 		flushbits = BIT(4);
138 		break;
139 	case SSPP_RGB2:
140 		flushbits = BIT(5);
141 		break;
142 	case SSPP_RGB3:
143 		flushbits = BIT(19);
144 		break;
145 	case SSPP_DMA0:
146 		flushbits = BIT(11);
147 		break;
148 	case SSPP_DMA1:
149 		flushbits = BIT(12);
150 		break;
151 	case SSPP_DMA2:
152 		flushbits = BIT(24);
153 		break;
154 	case SSPP_DMA3:
155 		flushbits = BIT(25);
156 		break;
157 	case SSPP_CURSOR0:
158 		flushbits = BIT(22);
159 		break;
160 	case SSPP_CURSOR1:
161 		flushbits = BIT(23);
162 		break;
163 	default:
164 		break;
165 	}
166 
167 	return flushbits;
168 }
169 
170 static uint32_t dpu_hw_ctl_get_bitmask_mixer(struct dpu_hw_ctl *ctx,
171 	enum dpu_lm lm)
172 {
173 	uint32_t flushbits = 0;
174 
175 	switch (lm) {
176 	case LM_0:
177 		flushbits = BIT(6);
178 		break;
179 	case LM_1:
180 		flushbits = BIT(7);
181 		break;
182 	case LM_2:
183 		flushbits = BIT(8);
184 		break;
185 	case LM_3:
186 		flushbits = BIT(9);
187 		break;
188 	case LM_4:
189 		flushbits = BIT(10);
190 		break;
191 	case LM_5:
192 		flushbits = BIT(20);
193 		break;
194 	default:
195 		return -EINVAL;
196 	}
197 
198 	flushbits |= CTL_FLUSH_MASK_CTL;
199 
200 	return flushbits;
201 }
202 
203 static int dpu_hw_ctl_get_bitmask_intf(struct dpu_hw_ctl *ctx,
204 		u32 *flushbits, enum dpu_intf intf)
205 {
206 	switch (intf) {
207 	case INTF_0:
208 		*flushbits |= BIT(31);
209 		break;
210 	case INTF_1:
211 		*flushbits |= BIT(30);
212 		break;
213 	case INTF_2:
214 		*flushbits |= BIT(29);
215 		break;
216 	case INTF_3:
217 		*flushbits |= BIT(28);
218 		break;
219 	default:
220 		return -EINVAL;
221 	}
222 	return 0;
223 }
224 
225 static u32 dpu_hw_ctl_poll_reset_status(struct dpu_hw_ctl *ctx, u32 timeout_us)
226 {
227 	struct dpu_hw_blk_reg_map *c = &ctx->hw;
228 	ktime_t timeout;
229 	u32 status;
230 
231 	timeout = ktime_add_us(ktime_get(), timeout_us);
232 
233 	/*
234 	 * it takes around 30us to have mdp finish resetting its ctl path
235 	 * poll every 50us so that reset should be completed at 1st poll
236 	 */
237 	do {
238 		status = DPU_REG_READ(c, CTL_SW_RESET);
239 		status &= 0x1;
240 		if (status)
241 			usleep_range(20, 50);
242 	} while (status && ktime_compare_safe(ktime_get(), timeout) < 0);
243 
244 	return status;
245 }
246 
247 static int dpu_hw_ctl_reset_control(struct dpu_hw_ctl *ctx)
248 {
249 	struct dpu_hw_blk_reg_map *c = &ctx->hw;
250 
251 	pr_debug("issuing hw ctl reset for ctl:%d\n", ctx->idx);
252 	DPU_REG_WRITE(c, CTL_SW_RESET, 0x1);
253 	if (dpu_hw_ctl_poll_reset_status(ctx, DPU_REG_RESET_TIMEOUT_US))
254 		return -EINVAL;
255 
256 	return 0;
257 }
258 
259 static int dpu_hw_ctl_wait_reset_status(struct dpu_hw_ctl *ctx)
260 {
261 	struct dpu_hw_blk_reg_map *c = &ctx->hw;
262 	u32 status;
263 
264 	status = DPU_REG_READ(c, CTL_SW_RESET);
265 	status &= 0x01;
266 	if (!status)
267 		return 0;
268 
269 	pr_debug("hw ctl reset is set for ctl:%d\n", ctx->idx);
270 	if (dpu_hw_ctl_poll_reset_status(ctx, DPU_REG_RESET_TIMEOUT_US)) {
271 		pr_err("hw recovery is not complete for ctl:%d\n", ctx->idx);
272 		return -EINVAL;
273 	}
274 
275 	return 0;
276 }
277 
278 static void dpu_hw_ctl_clear_all_blendstages(struct dpu_hw_ctl *ctx)
279 {
280 	struct dpu_hw_blk_reg_map *c = &ctx->hw;
281 	int i;
282 
283 	for (i = 0; i < ctx->mixer_count; i++) {
284 		DPU_REG_WRITE(c, CTL_LAYER(LM_0 + i), 0);
285 		DPU_REG_WRITE(c, CTL_LAYER_EXT(LM_0 + i), 0);
286 		DPU_REG_WRITE(c, CTL_LAYER_EXT2(LM_0 + i), 0);
287 		DPU_REG_WRITE(c, CTL_LAYER_EXT3(LM_0 + i), 0);
288 	}
289 }
290 
291 static void dpu_hw_ctl_setup_blendstage(struct dpu_hw_ctl *ctx,
292 	enum dpu_lm lm, struct dpu_hw_stage_cfg *stage_cfg)
293 {
294 	struct dpu_hw_blk_reg_map *c = &ctx->hw;
295 	u32 mixercfg = 0, mixercfg_ext = 0, mix, ext;
296 	u32 mixercfg_ext2 = 0, mixercfg_ext3 = 0;
297 	int i, j;
298 	int stages;
299 	int pipes_per_stage;
300 
301 	stages = _mixer_stages(ctx->mixer_hw_caps, ctx->mixer_count, lm);
302 	if (stages < 0)
303 		return;
304 
305 	if (test_bit(DPU_MIXER_SOURCESPLIT,
306 		&ctx->mixer_hw_caps->features))
307 		pipes_per_stage = PIPES_PER_STAGE;
308 	else
309 		pipes_per_stage = 1;
310 
311 	mixercfg = CTL_MIXER_BORDER_OUT; /* always set BORDER_OUT */
312 
313 	if (!stage_cfg)
314 		goto exit;
315 
316 	for (i = 0; i <= stages; i++) {
317 		/* overflow to ext register if 'i + 1 > 7' */
318 		mix = (i + 1) & 0x7;
319 		ext = i >= 7;
320 
321 		for (j = 0 ; j < pipes_per_stage; j++) {
322 			enum dpu_sspp_multirect_index rect_index =
323 				stage_cfg->multirect_index[i][j];
324 
325 			switch (stage_cfg->stage[i][j]) {
326 			case SSPP_VIG0:
327 				if (rect_index == DPU_SSPP_RECT_1) {
328 					mixercfg_ext3 |= ((i + 1) & 0xF) << 0;
329 				} else {
330 					mixercfg |= mix << 0;
331 					mixercfg_ext |= ext << 0;
332 				}
333 				break;
334 			case SSPP_VIG1:
335 				if (rect_index == DPU_SSPP_RECT_1) {
336 					mixercfg_ext3 |= ((i + 1) & 0xF) << 4;
337 				} else {
338 					mixercfg |= mix << 3;
339 					mixercfg_ext |= ext << 2;
340 				}
341 				break;
342 			case SSPP_VIG2:
343 				if (rect_index == DPU_SSPP_RECT_1) {
344 					mixercfg_ext3 |= ((i + 1) & 0xF) << 8;
345 				} else {
346 					mixercfg |= mix << 6;
347 					mixercfg_ext |= ext << 4;
348 				}
349 				break;
350 			case SSPP_VIG3:
351 				if (rect_index == DPU_SSPP_RECT_1) {
352 					mixercfg_ext3 |= ((i + 1) & 0xF) << 12;
353 				} else {
354 					mixercfg |= mix << 26;
355 					mixercfg_ext |= ext << 6;
356 				}
357 				break;
358 			case SSPP_RGB0:
359 				mixercfg |= mix << 9;
360 				mixercfg_ext |= ext << 8;
361 				break;
362 			case SSPP_RGB1:
363 				mixercfg |= mix << 12;
364 				mixercfg_ext |= ext << 10;
365 				break;
366 			case SSPP_RGB2:
367 				mixercfg |= mix << 15;
368 				mixercfg_ext |= ext << 12;
369 				break;
370 			case SSPP_RGB3:
371 				mixercfg |= mix << 29;
372 				mixercfg_ext |= ext << 14;
373 				break;
374 			case SSPP_DMA0:
375 				if (rect_index == DPU_SSPP_RECT_1) {
376 					mixercfg_ext2 |= ((i + 1) & 0xF) << 8;
377 				} else {
378 					mixercfg |= mix << 18;
379 					mixercfg_ext |= ext << 16;
380 				}
381 				break;
382 			case SSPP_DMA1:
383 				if (rect_index == DPU_SSPP_RECT_1) {
384 					mixercfg_ext2 |= ((i + 1) & 0xF) << 12;
385 				} else {
386 					mixercfg |= mix << 21;
387 					mixercfg_ext |= ext << 18;
388 				}
389 				break;
390 			case SSPP_DMA2:
391 				if (rect_index == DPU_SSPP_RECT_1) {
392 					mixercfg_ext2 |= ((i + 1) & 0xF) << 16;
393 				} else {
394 					mix |= (i + 1) & 0xF;
395 					mixercfg_ext2 |= mix << 0;
396 				}
397 				break;
398 			case SSPP_DMA3:
399 				if (rect_index == DPU_SSPP_RECT_1) {
400 					mixercfg_ext2 |= ((i + 1) & 0xF) << 20;
401 				} else {
402 					mix |= (i + 1) & 0xF;
403 					mixercfg_ext2 |= mix << 4;
404 				}
405 				break;
406 			case SSPP_CURSOR0:
407 				mixercfg_ext |= ((i + 1) & 0xF) << 20;
408 				break;
409 			case SSPP_CURSOR1:
410 				mixercfg_ext |= ((i + 1) & 0xF) << 26;
411 				break;
412 			default:
413 				break;
414 			}
415 		}
416 	}
417 
418 exit:
419 	DPU_REG_WRITE(c, CTL_LAYER(lm), mixercfg);
420 	DPU_REG_WRITE(c, CTL_LAYER_EXT(lm), mixercfg_ext);
421 	DPU_REG_WRITE(c, CTL_LAYER_EXT2(lm), mixercfg_ext2);
422 	DPU_REG_WRITE(c, CTL_LAYER_EXT3(lm), mixercfg_ext3);
423 }
424 
425 static void dpu_hw_ctl_intf_cfg(struct dpu_hw_ctl *ctx,
426 		struct dpu_hw_intf_cfg *cfg)
427 {
428 	struct dpu_hw_blk_reg_map *c = &ctx->hw;
429 	u32 intf_cfg = 0;
430 
431 	intf_cfg |= (cfg->intf & 0xF) << 4;
432 
433 	if (cfg->mode_3d) {
434 		intf_cfg |= BIT(19);
435 		intf_cfg |= (cfg->mode_3d - 0x1) << 20;
436 	}
437 
438 	switch (cfg->intf_mode_sel) {
439 	case DPU_CTL_MODE_SEL_VID:
440 		intf_cfg &= ~BIT(17);
441 		intf_cfg &= ~(0x3 << 15);
442 		break;
443 	case DPU_CTL_MODE_SEL_CMD:
444 		intf_cfg |= BIT(17);
445 		intf_cfg |= ((cfg->stream_sel & 0x3) << 15);
446 		break;
447 	default:
448 		pr_err("unknown interface type %d\n", cfg->intf_mode_sel);
449 		return;
450 	}
451 
452 	DPU_REG_WRITE(c, CTL_TOP, intf_cfg);
453 }
454 
455 static void _setup_ctl_ops(struct dpu_hw_ctl_ops *ops,
456 		unsigned long cap)
457 {
458 	ops->clear_pending_flush = dpu_hw_ctl_clear_pending_flush;
459 	ops->update_pending_flush = dpu_hw_ctl_update_pending_flush;
460 	ops->get_pending_flush = dpu_hw_ctl_get_pending_flush;
461 	ops->trigger_flush = dpu_hw_ctl_trigger_flush;
462 	ops->get_flush_register = dpu_hw_ctl_get_flush_register;
463 	ops->trigger_start = dpu_hw_ctl_trigger_start;
464 	ops->trigger_pending = dpu_hw_ctl_trigger_pending;
465 	ops->setup_intf_cfg = dpu_hw_ctl_intf_cfg;
466 	ops->reset = dpu_hw_ctl_reset_control;
467 	ops->wait_reset_status = dpu_hw_ctl_wait_reset_status;
468 	ops->clear_all_blendstages = dpu_hw_ctl_clear_all_blendstages;
469 	ops->setup_blendstage = dpu_hw_ctl_setup_blendstage;
470 	ops->get_bitmask_sspp = dpu_hw_ctl_get_bitmask_sspp;
471 	ops->get_bitmask_mixer = dpu_hw_ctl_get_bitmask_mixer;
472 	ops->get_bitmask_intf = dpu_hw_ctl_get_bitmask_intf;
473 };
474 
475 static struct dpu_hw_blk_ops dpu_hw_ops;
476 
477 struct dpu_hw_ctl *dpu_hw_ctl_init(enum dpu_ctl idx,
478 		void __iomem *addr,
479 		struct dpu_mdss_cfg *m)
480 {
481 	struct dpu_hw_ctl *c;
482 	struct dpu_ctl_cfg *cfg;
483 
484 	c = kzalloc(sizeof(*c), GFP_KERNEL);
485 	if (!c)
486 		return ERR_PTR(-ENOMEM);
487 
488 	cfg = _ctl_offset(idx, m, addr, &c->hw);
489 	if (IS_ERR_OR_NULL(cfg)) {
490 		kfree(c);
491 		pr_err("failed to create dpu_hw_ctl %d\n", idx);
492 		return ERR_PTR(-EINVAL);
493 	}
494 
495 	c->caps = cfg;
496 	_setup_ctl_ops(&c->ops, c->caps->features);
497 	c->idx = idx;
498 	c->mixer_count = m->mixer_count;
499 	c->mixer_hw_caps = m->mixer;
500 
501 	dpu_hw_blk_init(&c->base, DPU_HW_BLK_CTL, idx, &dpu_hw_ops);
502 
503 	return c;
504 }
505 
506 void dpu_hw_ctl_destroy(struct dpu_hw_ctl *ctx)
507 {
508 	if (ctx)
509 		dpu_hw_blk_destroy(&ctx->base);
510 	kfree(ctx);
511 }
512