1 /* 2 * Copyright (c) 2014-2018, The Linux Foundation. All rights reserved. 3 * Copyright (C) 2013 Red Hat 4 * Author: Rob Clark <robdclark@gmail.com> 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published by 8 * the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program. If not, see <http://www.gnu.org/licenses/>. 17 */ 18 19 #define pr_fmt(fmt) "[drm:%s:%d] " fmt, __func__, __LINE__ 20 #include <linux/kthread.h> 21 #include <linux/debugfs.h> 22 #include <linux/seq_file.h> 23 24 #include "msm_drv.h" 25 #include "dpu_kms.h" 26 #include <drm/drm_crtc.h> 27 #include <drm/drm_probe_helper.h> 28 #include "dpu_hwio.h" 29 #include "dpu_hw_catalog.h" 30 #include "dpu_hw_intf.h" 31 #include "dpu_hw_ctl.h" 32 #include "dpu_formats.h" 33 #include "dpu_encoder_phys.h" 34 #include "dpu_crtc.h" 35 #include "dpu_trace.h" 36 #include "dpu_core_irq.h" 37 38 #define DPU_DEBUG_ENC(e, fmt, ...) DPU_DEBUG("enc%d " fmt,\ 39 (e) ? (e)->base.base.id : -1, ##__VA_ARGS__) 40 41 #define DPU_ERROR_ENC(e, fmt, ...) DPU_ERROR("enc%d " fmt,\ 42 (e) ? (e)->base.base.id : -1, ##__VA_ARGS__) 43 44 #define DPU_DEBUG_PHYS(p, fmt, ...) DPU_DEBUG("enc%d intf%d pp%d " fmt,\ 45 (p) ? (p)->parent->base.id : -1, \ 46 (p) ? (p)->intf_idx - INTF_0 : -1, \ 47 (p) ? ((p)->hw_pp ? (p)->hw_pp->idx - PINGPONG_0 : -1) : -1, \ 48 ##__VA_ARGS__) 49 50 #define DPU_ERROR_PHYS(p, fmt, ...) DPU_ERROR("enc%d intf%d pp%d " fmt,\ 51 (p) ? (p)->parent->base.id : -1, \ 52 (p) ? (p)->intf_idx - INTF_0 : -1, \ 53 (p) ? ((p)->hw_pp ? (p)->hw_pp->idx - PINGPONG_0 : -1) : -1, \ 54 ##__VA_ARGS__) 55 56 /* 57 * Two to anticipate panels that can do cmd/vid dynamic switching 58 * plan is to create all possible physical encoder types, and switch between 59 * them at runtime 60 */ 61 #define NUM_PHYS_ENCODER_TYPES 2 62 63 #define MAX_PHYS_ENCODERS_PER_VIRTUAL \ 64 (MAX_H_TILES_PER_DISPLAY * NUM_PHYS_ENCODER_TYPES) 65 66 #define MAX_CHANNELS_PER_ENC 2 67 68 #define IDLE_SHORT_TIMEOUT 1 69 70 #define MAX_VDISPLAY_SPLIT 1080 71 72 /** 73 * enum dpu_enc_rc_events - events for resource control state machine 74 * @DPU_ENC_RC_EVENT_KICKOFF: 75 * This event happens at NORMAL priority. 76 * Event that signals the start of the transfer. When this event is 77 * received, enable MDP/DSI core clocks. Regardless of the previous 78 * state, the resource should be in ON state at the end of this event. 79 * @DPU_ENC_RC_EVENT_FRAME_DONE: 80 * This event happens at INTERRUPT level. 81 * Event signals the end of the data transfer after the PP FRAME_DONE 82 * event. At the end of this event, a delayed work is scheduled to go to 83 * IDLE_PC state after IDLE_TIMEOUT time. 84 * @DPU_ENC_RC_EVENT_PRE_STOP: 85 * This event happens at NORMAL priority. 86 * This event, when received during the ON state, leave the RC STATE 87 * in the PRE_OFF state. It should be followed by the STOP event as 88 * part of encoder disable. 89 * If received during IDLE or OFF states, it will do nothing. 90 * @DPU_ENC_RC_EVENT_STOP: 91 * This event happens at NORMAL priority. 92 * When this event is received, disable all the MDP/DSI core clocks, and 93 * disable IRQs. It should be called from the PRE_OFF or IDLE states. 94 * IDLE is expected when IDLE_PC has run, and PRE_OFF did nothing. 95 * PRE_OFF is expected when PRE_STOP was executed during the ON state. 96 * Resource state should be in OFF at the end of the event. 97 * @DPU_ENC_RC_EVENT_ENTER_IDLE: 98 * This event happens at NORMAL priority from a work item. 99 * Event signals that there were no frame updates for IDLE_TIMEOUT time. 100 * This would disable MDP/DSI core clocks and change the resource state 101 * to IDLE. 102 */ 103 enum dpu_enc_rc_events { 104 DPU_ENC_RC_EVENT_KICKOFF = 1, 105 DPU_ENC_RC_EVENT_FRAME_DONE, 106 DPU_ENC_RC_EVENT_PRE_STOP, 107 DPU_ENC_RC_EVENT_STOP, 108 DPU_ENC_RC_EVENT_ENTER_IDLE 109 }; 110 111 /* 112 * enum dpu_enc_rc_states - states that the resource control maintains 113 * @DPU_ENC_RC_STATE_OFF: Resource is in OFF state 114 * @DPU_ENC_RC_STATE_PRE_OFF: Resource is transitioning to OFF state 115 * @DPU_ENC_RC_STATE_ON: Resource is in ON state 116 * @DPU_ENC_RC_STATE_MODESET: Resource is in modeset state 117 * @DPU_ENC_RC_STATE_IDLE: Resource is in IDLE state 118 */ 119 enum dpu_enc_rc_states { 120 DPU_ENC_RC_STATE_OFF, 121 DPU_ENC_RC_STATE_PRE_OFF, 122 DPU_ENC_RC_STATE_ON, 123 DPU_ENC_RC_STATE_IDLE 124 }; 125 126 /** 127 * struct dpu_encoder_virt - virtual encoder. Container of one or more physical 128 * encoders. Virtual encoder manages one "logical" display. Physical 129 * encoders manage one intf block, tied to a specific panel/sub-panel. 130 * Virtual encoder defers as much as possible to the physical encoders. 131 * Virtual encoder registers itself with the DRM Framework as the encoder. 132 * @base: drm_encoder base class for registration with DRM 133 * @enc_spinlock: Virtual-Encoder-Wide Spin Lock for IRQ purposes 134 * @bus_scaling_client: Client handle to the bus scaling interface 135 * @enabled: True if the encoder is active, protected by enc_lock 136 * @num_phys_encs: Actual number of physical encoders contained. 137 * @phys_encs: Container of physical encoders managed. 138 * @cur_master: Pointer to the current master in this mode. Optimization 139 * Only valid after enable. Cleared as disable. 140 * @hw_pp Handle to the pingpong blocks used for the display. No. 141 * pingpong blocks can be different than num_phys_encs. 142 * @intfs_swapped Whether or not the phys_enc interfaces have been swapped 143 * for partial update right-only cases, such as pingpong 144 * split where virtual pingpong does not generate IRQs 145 * @crtc: Pointer to the currently assigned crtc. Normally you 146 * would use crtc->state->encoder_mask to determine the 147 * link between encoder/crtc. However in this case we need 148 * to track crtc in the disable() hook which is called 149 * _after_ encoder_mask is cleared. 150 * @crtc_kickoff_cb: Callback into CRTC that will flush & start 151 * all CTL paths 152 * @crtc_kickoff_cb_data: Opaque user data given to crtc_kickoff_cb 153 * @debugfs_root: Debug file system root file node 154 * @enc_lock: Lock around physical encoder 155 * create/destroy/enable/disable 156 * @frame_busy_mask: Bitmask tracking which phys_enc we are still 157 * busy processing current command. 158 * Bit0 = phys_encs[0] etc. 159 * @crtc_frame_event_cb: callback handler for frame event 160 * @crtc_frame_event_cb_data: callback handler private data 161 * @frame_done_timeout: frame done timeout in Hz 162 * @frame_done_timer: watchdog timer for frame done event 163 * @vsync_event_timer: vsync timer 164 * @disp_info: local copy of msm_display_info struct 165 * @idle_pc_supported: indicate if idle power collaps is supported 166 * @rc_lock: resource control mutex lock to protect 167 * virt encoder over various state changes 168 * @rc_state: resource controller state 169 * @delayed_off_work: delayed worker to schedule disabling of 170 * clks and resources after IDLE_TIMEOUT time. 171 * @vsync_event_work: worker to handle vsync event for autorefresh 172 * @topology: topology of the display 173 * @mode_set_complete: flag to indicate modeset completion 174 * @idle_timeout: idle timeout duration in milliseconds 175 */ 176 struct dpu_encoder_virt { 177 struct drm_encoder base; 178 spinlock_t enc_spinlock; 179 uint32_t bus_scaling_client; 180 181 bool enabled; 182 183 unsigned int num_phys_encs; 184 struct dpu_encoder_phys *phys_encs[MAX_PHYS_ENCODERS_PER_VIRTUAL]; 185 struct dpu_encoder_phys *cur_master; 186 struct dpu_encoder_phys *cur_slave; 187 struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC]; 188 189 bool intfs_swapped; 190 191 struct drm_crtc *crtc; 192 193 struct dentry *debugfs_root; 194 struct mutex enc_lock; 195 DECLARE_BITMAP(frame_busy_mask, MAX_PHYS_ENCODERS_PER_VIRTUAL); 196 void (*crtc_frame_event_cb)(void *, u32 event); 197 void *crtc_frame_event_cb_data; 198 199 atomic_t frame_done_timeout; 200 struct timer_list frame_done_timer; 201 struct timer_list vsync_event_timer; 202 203 struct msm_display_info disp_info; 204 205 bool idle_pc_supported; 206 struct mutex rc_lock; 207 enum dpu_enc_rc_states rc_state; 208 struct delayed_work delayed_off_work; 209 struct kthread_work vsync_event_work; 210 struct msm_display_topology topology; 211 bool mode_set_complete; 212 213 u32 idle_timeout; 214 }; 215 216 #define to_dpu_encoder_virt(x) container_of(x, struct dpu_encoder_virt, base) 217 218 void dpu_encoder_helper_report_irq_timeout(struct dpu_encoder_phys *phys_enc, 219 enum dpu_intr_idx intr_idx) 220 { 221 DRM_ERROR("irq timeout id=%u, intf=%d, pp=%d, intr=%d\n", 222 DRMID(phys_enc->parent), phys_enc->intf_idx - INTF_0, 223 phys_enc->hw_pp->idx - PINGPONG_0, intr_idx); 224 225 if (phys_enc->parent_ops->handle_frame_done) 226 phys_enc->parent_ops->handle_frame_done( 227 phys_enc->parent, phys_enc, 228 DPU_ENCODER_FRAME_EVENT_ERROR); 229 } 230 231 static int dpu_encoder_helper_wait_event_timeout(int32_t drm_id, 232 int32_t hw_id, struct dpu_encoder_wait_info *info); 233 234 int dpu_encoder_helper_wait_for_irq(struct dpu_encoder_phys *phys_enc, 235 enum dpu_intr_idx intr_idx, 236 struct dpu_encoder_wait_info *wait_info) 237 { 238 struct dpu_encoder_irq *irq; 239 u32 irq_status; 240 int ret; 241 242 if (!phys_enc || !wait_info || intr_idx >= INTR_IDX_MAX) { 243 DPU_ERROR("invalid params\n"); 244 return -EINVAL; 245 } 246 irq = &phys_enc->irq[intr_idx]; 247 248 /* note: do master / slave checking outside */ 249 250 /* return EWOULDBLOCK since we know the wait isn't necessary */ 251 if (phys_enc->enable_state == DPU_ENC_DISABLED) { 252 DRM_ERROR("encoder is disabled id=%u, intr=%d, hw=%d, irq=%d", 253 DRMID(phys_enc->parent), intr_idx, irq->hw_idx, 254 irq->irq_idx); 255 return -EWOULDBLOCK; 256 } 257 258 if (irq->irq_idx < 0) { 259 DRM_DEBUG_KMS("skip irq wait id=%u, intr=%d, hw=%d, irq=%s", 260 DRMID(phys_enc->parent), intr_idx, irq->hw_idx, 261 irq->name); 262 return 0; 263 } 264 265 DRM_DEBUG_KMS("id=%u, intr=%d, hw=%d, irq=%d, pp=%d, pending_cnt=%d", 266 DRMID(phys_enc->parent), intr_idx, irq->hw_idx, 267 irq->irq_idx, phys_enc->hw_pp->idx - PINGPONG_0, 268 atomic_read(wait_info->atomic_cnt)); 269 270 ret = dpu_encoder_helper_wait_event_timeout( 271 DRMID(phys_enc->parent), 272 irq->hw_idx, 273 wait_info); 274 275 if (ret <= 0) { 276 irq_status = dpu_core_irq_read(phys_enc->dpu_kms, 277 irq->irq_idx, true); 278 if (irq_status) { 279 unsigned long flags; 280 281 DRM_DEBUG_KMS("irq not triggered id=%u, intr=%d, " 282 "hw=%d, irq=%d, pp=%d, atomic_cnt=%d", 283 DRMID(phys_enc->parent), intr_idx, 284 irq->hw_idx, irq->irq_idx, 285 phys_enc->hw_pp->idx - PINGPONG_0, 286 atomic_read(wait_info->atomic_cnt)); 287 local_irq_save(flags); 288 irq->cb.func(phys_enc, irq->irq_idx); 289 local_irq_restore(flags); 290 ret = 0; 291 } else { 292 ret = -ETIMEDOUT; 293 DRM_DEBUG_KMS("irq timeout id=%u, intr=%d, " 294 "hw=%d, irq=%d, pp=%d, atomic_cnt=%d", 295 DRMID(phys_enc->parent), intr_idx, 296 irq->hw_idx, irq->irq_idx, 297 phys_enc->hw_pp->idx - PINGPONG_0, 298 atomic_read(wait_info->atomic_cnt)); 299 } 300 } else { 301 ret = 0; 302 trace_dpu_enc_irq_wait_success(DRMID(phys_enc->parent), 303 intr_idx, irq->hw_idx, irq->irq_idx, 304 phys_enc->hw_pp->idx - PINGPONG_0, 305 atomic_read(wait_info->atomic_cnt)); 306 } 307 308 return ret; 309 } 310 311 int dpu_encoder_helper_register_irq(struct dpu_encoder_phys *phys_enc, 312 enum dpu_intr_idx intr_idx) 313 { 314 struct dpu_encoder_irq *irq; 315 int ret = 0; 316 317 if (!phys_enc || intr_idx >= INTR_IDX_MAX) { 318 DPU_ERROR("invalid params\n"); 319 return -EINVAL; 320 } 321 irq = &phys_enc->irq[intr_idx]; 322 323 if (irq->irq_idx >= 0) { 324 DPU_DEBUG_PHYS(phys_enc, 325 "skipping already registered irq %s type %d\n", 326 irq->name, irq->intr_type); 327 return 0; 328 } 329 330 irq->irq_idx = dpu_core_irq_idx_lookup(phys_enc->dpu_kms, 331 irq->intr_type, irq->hw_idx); 332 if (irq->irq_idx < 0) { 333 DPU_ERROR_PHYS(phys_enc, 334 "failed to lookup IRQ index for %s type:%d\n", 335 irq->name, irq->intr_type); 336 return -EINVAL; 337 } 338 339 ret = dpu_core_irq_register_callback(phys_enc->dpu_kms, irq->irq_idx, 340 &irq->cb); 341 if (ret) { 342 DPU_ERROR_PHYS(phys_enc, 343 "failed to register IRQ callback for %s\n", 344 irq->name); 345 irq->irq_idx = -EINVAL; 346 return ret; 347 } 348 349 ret = dpu_core_irq_enable(phys_enc->dpu_kms, &irq->irq_idx, 1); 350 if (ret) { 351 DRM_ERROR("enable failed id=%u, intr=%d, hw=%d, irq=%d", 352 DRMID(phys_enc->parent), intr_idx, irq->hw_idx, 353 irq->irq_idx); 354 dpu_core_irq_unregister_callback(phys_enc->dpu_kms, 355 irq->irq_idx, &irq->cb); 356 irq->irq_idx = -EINVAL; 357 return ret; 358 } 359 360 trace_dpu_enc_irq_register_success(DRMID(phys_enc->parent), intr_idx, 361 irq->hw_idx, irq->irq_idx); 362 363 return ret; 364 } 365 366 int dpu_encoder_helper_unregister_irq(struct dpu_encoder_phys *phys_enc, 367 enum dpu_intr_idx intr_idx) 368 { 369 struct dpu_encoder_irq *irq; 370 int ret; 371 372 if (!phys_enc) { 373 DPU_ERROR("invalid encoder\n"); 374 return -EINVAL; 375 } 376 irq = &phys_enc->irq[intr_idx]; 377 378 /* silently skip irqs that weren't registered */ 379 if (irq->irq_idx < 0) { 380 DRM_ERROR("duplicate unregister id=%u, intr=%d, hw=%d, irq=%d", 381 DRMID(phys_enc->parent), intr_idx, irq->hw_idx, 382 irq->irq_idx); 383 return 0; 384 } 385 386 ret = dpu_core_irq_disable(phys_enc->dpu_kms, &irq->irq_idx, 1); 387 if (ret) { 388 DRM_ERROR("disable failed id=%u, intr=%d, hw=%d, irq=%d ret=%d", 389 DRMID(phys_enc->parent), intr_idx, irq->hw_idx, 390 irq->irq_idx, ret); 391 } 392 393 ret = dpu_core_irq_unregister_callback(phys_enc->dpu_kms, irq->irq_idx, 394 &irq->cb); 395 if (ret) { 396 DRM_ERROR("unreg cb fail id=%u, intr=%d, hw=%d, irq=%d ret=%d", 397 DRMID(phys_enc->parent), intr_idx, irq->hw_idx, 398 irq->irq_idx, ret); 399 } 400 401 trace_dpu_enc_irq_unregister_success(DRMID(phys_enc->parent), intr_idx, 402 irq->hw_idx, irq->irq_idx); 403 404 irq->irq_idx = -EINVAL; 405 406 return 0; 407 } 408 409 void dpu_encoder_get_hw_resources(struct drm_encoder *drm_enc, 410 struct dpu_encoder_hw_resources *hw_res) 411 { 412 struct dpu_encoder_virt *dpu_enc = NULL; 413 int i = 0; 414 415 dpu_enc = to_dpu_encoder_virt(drm_enc); 416 DPU_DEBUG_ENC(dpu_enc, "\n"); 417 418 /* Query resources used by phys encs, expected to be without overlap */ 419 memset(hw_res, 0, sizeof(*hw_res)); 420 421 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 422 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 423 424 if (phys && phys->ops.get_hw_resources) 425 phys->ops.get_hw_resources(phys, hw_res); 426 } 427 } 428 429 static void dpu_encoder_destroy(struct drm_encoder *drm_enc) 430 { 431 struct dpu_encoder_virt *dpu_enc = NULL; 432 int i = 0; 433 434 if (!drm_enc) { 435 DPU_ERROR("invalid encoder\n"); 436 return; 437 } 438 439 dpu_enc = to_dpu_encoder_virt(drm_enc); 440 DPU_DEBUG_ENC(dpu_enc, "\n"); 441 442 mutex_lock(&dpu_enc->enc_lock); 443 444 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 445 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 446 447 if (phys && phys->ops.destroy) { 448 phys->ops.destroy(phys); 449 --dpu_enc->num_phys_encs; 450 dpu_enc->phys_encs[i] = NULL; 451 } 452 } 453 454 if (dpu_enc->num_phys_encs) 455 DPU_ERROR_ENC(dpu_enc, "expected 0 num_phys_encs not %d\n", 456 dpu_enc->num_phys_encs); 457 dpu_enc->num_phys_encs = 0; 458 mutex_unlock(&dpu_enc->enc_lock); 459 460 drm_encoder_cleanup(drm_enc); 461 mutex_destroy(&dpu_enc->enc_lock); 462 } 463 464 void dpu_encoder_helper_split_config( 465 struct dpu_encoder_phys *phys_enc, 466 enum dpu_intf interface) 467 { 468 struct dpu_encoder_virt *dpu_enc; 469 struct split_pipe_cfg cfg = { 0 }; 470 struct dpu_hw_mdp *hw_mdptop; 471 struct msm_display_info *disp_info; 472 473 if (!phys_enc || !phys_enc->hw_mdptop || !phys_enc->parent) { 474 DPU_ERROR("invalid arg(s), encoder %d\n", phys_enc != 0); 475 return; 476 } 477 478 dpu_enc = to_dpu_encoder_virt(phys_enc->parent); 479 hw_mdptop = phys_enc->hw_mdptop; 480 disp_info = &dpu_enc->disp_info; 481 482 if (disp_info->intf_type != DRM_MODE_ENCODER_DSI) 483 return; 484 485 /** 486 * disable split modes since encoder will be operating in as the only 487 * encoder, either for the entire use case in the case of, for example, 488 * single DSI, or for this frame in the case of left/right only partial 489 * update. 490 */ 491 if (phys_enc->split_role == ENC_ROLE_SOLO) { 492 if (hw_mdptop->ops.setup_split_pipe) 493 hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg); 494 return; 495 } 496 497 cfg.en = true; 498 cfg.mode = phys_enc->intf_mode; 499 cfg.intf = interface; 500 501 if (cfg.en && phys_enc->ops.needs_single_flush && 502 phys_enc->ops.needs_single_flush(phys_enc)) 503 cfg.split_flush_en = true; 504 505 if (phys_enc->split_role == ENC_ROLE_MASTER) { 506 DPU_DEBUG_ENC(dpu_enc, "enable %d\n", cfg.en); 507 508 if (hw_mdptop->ops.setup_split_pipe) 509 hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg); 510 } 511 } 512 513 static void _dpu_encoder_adjust_mode(struct drm_connector *connector, 514 struct drm_display_mode *adj_mode) 515 { 516 struct drm_display_mode *cur_mode; 517 518 if (!connector || !adj_mode) 519 return; 520 521 list_for_each_entry(cur_mode, &connector->modes, head) { 522 if (cur_mode->vdisplay == adj_mode->vdisplay && 523 cur_mode->hdisplay == adj_mode->hdisplay && 524 cur_mode->vrefresh == adj_mode->vrefresh) { 525 adj_mode->private = cur_mode->private; 526 adj_mode->private_flags |= cur_mode->private_flags; 527 } 528 } 529 } 530 531 static struct msm_display_topology dpu_encoder_get_topology( 532 struct dpu_encoder_virt *dpu_enc, 533 struct dpu_kms *dpu_kms, 534 struct drm_display_mode *mode) 535 { 536 struct msm_display_topology topology; 537 int i, intf_count = 0; 538 539 for (i = 0; i < MAX_PHYS_ENCODERS_PER_VIRTUAL; i++) 540 if (dpu_enc->phys_encs[i]) 541 intf_count++; 542 543 /* User split topology for width > 1080 */ 544 topology.num_lm = (mode->vdisplay > MAX_VDISPLAY_SPLIT) ? 2 : 1; 545 topology.num_enc = 0; 546 topology.num_intf = intf_count; 547 548 return topology; 549 } 550 static int dpu_encoder_virt_atomic_check( 551 struct drm_encoder *drm_enc, 552 struct drm_crtc_state *crtc_state, 553 struct drm_connector_state *conn_state) 554 { 555 struct dpu_encoder_virt *dpu_enc; 556 struct msm_drm_private *priv; 557 struct dpu_kms *dpu_kms; 558 const struct drm_display_mode *mode; 559 struct drm_display_mode *adj_mode; 560 struct msm_display_topology topology; 561 int i = 0; 562 int ret = 0; 563 564 if (!drm_enc || !crtc_state || !conn_state) { 565 DPU_ERROR("invalid arg(s), drm_enc %d, crtc/conn state %d/%d\n", 566 drm_enc != 0, crtc_state != 0, conn_state != 0); 567 return -EINVAL; 568 } 569 570 dpu_enc = to_dpu_encoder_virt(drm_enc); 571 DPU_DEBUG_ENC(dpu_enc, "\n"); 572 573 priv = drm_enc->dev->dev_private; 574 dpu_kms = to_dpu_kms(priv->kms); 575 mode = &crtc_state->mode; 576 adj_mode = &crtc_state->adjusted_mode; 577 trace_dpu_enc_atomic_check(DRMID(drm_enc)); 578 579 /* 580 * display drivers may populate private fields of the drm display mode 581 * structure while registering possible modes of a connector with DRM. 582 * These private fields are not populated back while DRM invokes 583 * the mode_set callbacks. This module retrieves and populates the 584 * private fields of the given mode. 585 */ 586 _dpu_encoder_adjust_mode(conn_state->connector, adj_mode); 587 588 /* perform atomic check on the first physical encoder (master) */ 589 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 590 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 591 592 if (phys && phys->ops.atomic_check) 593 ret = phys->ops.atomic_check(phys, crtc_state, 594 conn_state); 595 else if (phys && phys->ops.mode_fixup) 596 if (!phys->ops.mode_fixup(phys, mode, adj_mode)) 597 ret = -EINVAL; 598 599 if (ret) { 600 DPU_ERROR_ENC(dpu_enc, 601 "mode unsupported, phys idx %d\n", i); 602 break; 603 } 604 } 605 606 topology = dpu_encoder_get_topology(dpu_enc, dpu_kms, adj_mode); 607 608 /* Reserve dynamic resources now. Indicating AtomicTest phase */ 609 if (!ret) { 610 /* 611 * Avoid reserving resources when mode set is pending. Topology 612 * info may not be available to complete reservation. 613 */ 614 if (drm_atomic_crtc_needs_modeset(crtc_state) 615 && dpu_enc->mode_set_complete) { 616 ret = dpu_rm_reserve(&dpu_kms->rm, drm_enc, crtc_state, 617 topology, true); 618 dpu_enc->mode_set_complete = false; 619 } 620 } 621 622 if (!ret) 623 drm_mode_set_crtcinfo(adj_mode, 0); 624 625 trace_dpu_enc_atomic_check_flags(DRMID(drm_enc), adj_mode->flags, 626 adj_mode->private_flags); 627 628 return ret; 629 } 630 631 static void _dpu_encoder_update_vsync_source(struct dpu_encoder_virt *dpu_enc, 632 struct msm_display_info *disp_info) 633 { 634 struct dpu_vsync_source_cfg vsync_cfg = { 0 }; 635 struct msm_drm_private *priv; 636 struct dpu_kms *dpu_kms; 637 struct dpu_hw_mdp *hw_mdptop; 638 struct drm_encoder *drm_enc; 639 int i; 640 641 if (!dpu_enc || !disp_info) { 642 DPU_ERROR("invalid param dpu_enc:%d or disp_info:%d\n", 643 dpu_enc != NULL, disp_info != NULL); 644 return; 645 } else if (dpu_enc->num_phys_encs > ARRAY_SIZE(dpu_enc->hw_pp)) { 646 DPU_ERROR("invalid num phys enc %d/%d\n", 647 dpu_enc->num_phys_encs, 648 (int) ARRAY_SIZE(dpu_enc->hw_pp)); 649 return; 650 } 651 652 drm_enc = &dpu_enc->base; 653 /* this pointers are checked in virt_enable_helper */ 654 priv = drm_enc->dev->dev_private; 655 656 dpu_kms = to_dpu_kms(priv->kms); 657 if (!dpu_kms) { 658 DPU_ERROR("invalid dpu_kms\n"); 659 return; 660 } 661 662 hw_mdptop = dpu_kms->hw_mdp; 663 if (!hw_mdptop) { 664 DPU_ERROR("invalid mdptop\n"); 665 return; 666 } 667 668 if (hw_mdptop->ops.setup_vsync_source && 669 disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE) { 670 for (i = 0; i < dpu_enc->num_phys_encs; i++) 671 vsync_cfg.ppnumber[i] = dpu_enc->hw_pp[i]->idx; 672 673 vsync_cfg.pp_count = dpu_enc->num_phys_encs; 674 if (disp_info->is_te_using_watchdog_timer) 675 vsync_cfg.vsync_source = DPU_VSYNC_SOURCE_WD_TIMER_0; 676 else 677 vsync_cfg.vsync_source = DPU_VSYNC0_SOURCE_GPIO; 678 679 hw_mdptop->ops.setup_vsync_source(hw_mdptop, &vsync_cfg); 680 } 681 } 682 683 static void _dpu_encoder_irq_control(struct drm_encoder *drm_enc, bool enable) 684 { 685 struct dpu_encoder_virt *dpu_enc; 686 int i; 687 688 if (!drm_enc) { 689 DPU_ERROR("invalid encoder\n"); 690 return; 691 } 692 693 dpu_enc = to_dpu_encoder_virt(drm_enc); 694 695 DPU_DEBUG_ENC(dpu_enc, "enable:%d\n", enable); 696 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 697 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 698 699 if (phys && phys->ops.irq_control) 700 phys->ops.irq_control(phys, enable); 701 } 702 703 } 704 705 static void _dpu_encoder_resource_control_helper(struct drm_encoder *drm_enc, 706 bool enable) 707 { 708 struct msm_drm_private *priv; 709 struct dpu_kms *dpu_kms; 710 struct dpu_encoder_virt *dpu_enc; 711 712 dpu_enc = to_dpu_encoder_virt(drm_enc); 713 priv = drm_enc->dev->dev_private; 714 dpu_kms = to_dpu_kms(priv->kms); 715 716 trace_dpu_enc_rc_helper(DRMID(drm_enc), enable); 717 718 if (!dpu_enc->cur_master) { 719 DPU_ERROR("encoder master not set\n"); 720 return; 721 } 722 723 if (enable) { 724 /* enable DPU core clks */ 725 pm_runtime_get_sync(&dpu_kms->pdev->dev); 726 727 /* enable all the irq */ 728 _dpu_encoder_irq_control(drm_enc, true); 729 730 } else { 731 /* disable all the irq */ 732 _dpu_encoder_irq_control(drm_enc, false); 733 734 /* disable DPU core clks */ 735 pm_runtime_put_sync(&dpu_kms->pdev->dev); 736 } 737 738 } 739 740 static int dpu_encoder_resource_control(struct drm_encoder *drm_enc, 741 u32 sw_event) 742 { 743 struct dpu_encoder_virt *dpu_enc; 744 struct msm_drm_private *priv; 745 bool is_vid_mode = false; 746 747 if (!drm_enc || !drm_enc->dev || !drm_enc->dev->dev_private || 748 !drm_enc->crtc) { 749 DPU_ERROR("invalid parameters\n"); 750 return -EINVAL; 751 } 752 dpu_enc = to_dpu_encoder_virt(drm_enc); 753 priv = drm_enc->dev->dev_private; 754 is_vid_mode = dpu_enc->disp_info.capabilities & 755 MSM_DISPLAY_CAP_VID_MODE; 756 757 /* 758 * when idle_pc is not supported, process only KICKOFF, STOP and MODESET 759 * events and return early for other events (ie wb display). 760 */ 761 if (!dpu_enc->idle_pc_supported && 762 (sw_event != DPU_ENC_RC_EVENT_KICKOFF && 763 sw_event != DPU_ENC_RC_EVENT_STOP && 764 sw_event != DPU_ENC_RC_EVENT_PRE_STOP)) 765 return 0; 766 767 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, dpu_enc->idle_pc_supported, 768 dpu_enc->rc_state, "begin"); 769 770 switch (sw_event) { 771 case DPU_ENC_RC_EVENT_KICKOFF: 772 /* cancel delayed off work, if any */ 773 if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work)) 774 DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n", 775 sw_event); 776 777 mutex_lock(&dpu_enc->rc_lock); 778 779 /* return if the resource control is already in ON state */ 780 if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) { 781 DRM_DEBUG_KMS("id;%u, sw_event:%d, rc in ON state\n", 782 DRMID(drm_enc), sw_event); 783 mutex_unlock(&dpu_enc->rc_lock); 784 return 0; 785 } else if (dpu_enc->rc_state != DPU_ENC_RC_STATE_OFF && 786 dpu_enc->rc_state != DPU_ENC_RC_STATE_IDLE) { 787 DRM_DEBUG_KMS("id;%u, sw_event:%d, rc in state %d\n", 788 DRMID(drm_enc), sw_event, 789 dpu_enc->rc_state); 790 mutex_unlock(&dpu_enc->rc_lock); 791 return -EINVAL; 792 } 793 794 if (is_vid_mode && dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) 795 _dpu_encoder_irq_control(drm_enc, true); 796 else 797 _dpu_encoder_resource_control_helper(drm_enc, true); 798 799 dpu_enc->rc_state = DPU_ENC_RC_STATE_ON; 800 801 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, 802 dpu_enc->idle_pc_supported, dpu_enc->rc_state, 803 "kickoff"); 804 805 mutex_unlock(&dpu_enc->rc_lock); 806 break; 807 808 case DPU_ENC_RC_EVENT_FRAME_DONE: 809 /* 810 * mutex lock is not used as this event happens at interrupt 811 * context. And locking is not required as, the other events 812 * like KICKOFF and STOP does a wait-for-idle before executing 813 * the resource_control 814 */ 815 if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) { 816 DRM_DEBUG_KMS("id:%d, sw_event:%d,rc:%d-unexpected\n", 817 DRMID(drm_enc), sw_event, 818 dpu_enc->rc_state); 819 return -EINVAL; 820 } 821 822 /* 823 * schedule off work item only when there are no 824 * frames pending 825 */ 826 if (dpu_crtc_frame_pending(drm_enc->crtc) > 1) { 827 DRM_DEBUG_KMS("id:%d skip schedule work\n", 828 DRMID(drm_enc)); 829 return 0; 830 } 831 832 queue_delayed_work(priv->wq, &dpu_enc->delayed_off_work, 833 msecs_to_jiffies(dpu_enc->idle_timeout)); 834 835 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, 836 dpu_enc->idle_pc_supported, dpu_enc->rc_state, 837 "frame done"); 838 break; 839 840 case DPU_ENC_RC_EVENT_PRE_STOP: 841 /* cancel delayed off work, if any */ 842 if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work)) 843 DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n", 844 sw_event); 845 846 mutex_lock(&dpu_enc->rc_lock); 847 848 if (is_vid_mode && 849 dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) { 850 _dpu_encoder_irq_control(drm_enc, true); 851 } 852 /* skip if is already OFF or IDLE, resources are off already */ 853 else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF || 854 dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) { 855 DRM_DEBUG_KMS("id:%u, sw_event:%d, rc in %d state\n", 856 DRMID(drm_enc), sw_event, 857 dpu_enc->rc_state); 858 mutex_unlock(&dpu_enc->rc_lock); 859 return 0; 860 } 861 862 dpu_enc->rc_state = DPU_ENC_RC_STATE_PRE_OFF; 863 864 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, 865 dpu_enc->idle_pc_supported, dpu_enc->rc_state, 866 "pre stop"); 867 868 mutex_unlock(&dpu_enc->rc_lock); 869 break; 870 871 case DPU_ENC_RC_EVENT_STOP: 872 mutex_lock(&dpu_enc->rc_lock); 873 874 /* return if the resource control is already in OFF state */ 875 if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF) { 876 DRM_DEBUG_KMS("id: %u, sw_event:%d, rc in OFF state\n", 877 DRMID(drm_enc), sw_event); 878 mutex_unlock(&dpu_enc->rc_lock); 879 return 0; 880 } else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) { 881 DRM_ERROR("id: %u, sw_event:%d, rc in state %d\n", 882 DRMID(drm_enc), sw_event, dpu_enc->rc_state); 883 mutex_unlock(&dpu_enc->rc_lock); 884 return -EINVAL; 885 } 886 887 /** 888 * expect to arrive here only if in either idle state or pre-off 889 * and in IDLE state the resources are already disabled 890 */ 891 if (dpu_enc->rc_state == DPU_ENC_RC_STATE_PRE_OFF) 892 _dpu_encoder_resource_control_helper(drm_enc, false); 893 894 dpu_enc->rc_state = DPU_ENC_RC_STATE_OFF; 895 896 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, 897 dpu_enc->idle_pc_supported, dpu_enc->rc_state, 898 "stop"); 899 900 mutex_unlock(&dpu_enc->rc_lock); 901 break; 902 903 case DPU_ENC_RC_EVENT_ENTER_IDLE: 904 mutex_lock(&dpu_enc->rc_lock); 905 906 if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) { 907 DRM_ERROR("id: %u, sw_event:%d, rc:%d !ON state\n", 908 DRMID(drm_enc), sw_event, dpu_enc->rc_state); 909 mutex_unlock(&dpu_enc->rc_lock); 910 return 0; 911 } 912 913 /* 914 * if we are in ON but a frame was just kicked off, 915 * ignore the IDLE event, it's probably a stale timer event 916 */ 917 if (dpu_enc->frame_busy_mask[0]) { 918 DRM_ERROR("id:%u, sw_event:%d, rc:%d frame pending\n", 919 DRMID(drm_enc), sw_event, dpu_enc->rc_state); 920 mutex_unlock(&dpu_enc->rc_lock); 921 return 0; 922 } 923 924 if (is_vid_mode) 925 _dpu_encoder_irq_control(drm_enc, false); 926 else 927 _dpu_encoder_resource_control_helper(drm_enc, false); 928 929 dpu_enc->rc_state = DPU_ENC_RC_STATE_IDLE; 930 931 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, 932 dpu_enc->idle_pc_supported, dpu_enc->rc_state, 933 "idle"); 934 935 mutex_unlock(&dpu_enc->rc_lock); 936 break; 937 938 default: 939 DRM_ERROR("id:%u, unexpected sw_event: %d\n", DRMID(drm_enc), 940 sw_event); 941 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, 942 dpu_enc->idle_pc_supported, dpu_enc->rc_state, 943 "error"); 944 break; 945 } 946 947 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, 948 dpu_enc->idle_pc_supported, dpu_enc->rc_state, 949 "end"); 950 return 0; 951 } 952 953 static void dpu_encoder_virt_mode_set(struct drm_encoder *drm_enc, 954 struct drm_display_mode *mode, 955 struct drm_display_mode *adj_mode) 956 { 957 struct dpu_encoder_virt *dpu_enc; 958 struct msm_drm_private *priv; 959 struct dpu_kms *dpu_kms; 960 struct list_head *connector_list; 961 struct drm_connector *conn = NULL, *conn_iter; 962 struct dpu_rm_hw_iter pp_iter, ctl_iter; 963 struct msm_display_topology topology; 964 struct dpu_hw_ctl *hw_ctl[MAX_CHANNELS_PER_ENC] = { NULL }; 965 int i = 0, ret; 966 967 if (!drm_enc) { 968 DPU_ERROR("invalid encoder\n"); 969 return; 970 } 971 972 dpu_enc = to_dpu_encoder_virt(drm_enc); 973 DPU_DEBUG_ENC(dpu_enc, "\n"); 974 975 priv = drm_enc->dev->dev_private; 976 dpu_kms = to_dpu_kms(priv->kms); 977 connector_list = &dpu_kms->dev->mode_config.connector_list; 978 979 trace_dpu_enc_mode_set(DRMID(drm_enc)); 980 981 list_for_each_entry(conn_iter, connector_list, head) 982 if (conn_iter->encoder == drm_enc) 983 conn = conn_iter; 984 985 if (!conn) { 986 DPU_ERROR_ENC(dpu_enc, "failed to find attached connector\n"); 987 return; 988 } else if (!conn->state) { 989 DPU_ERROR_ENC(dpu_enc, "invalid connector state\n"); 990 return; 991 } 992 993 topology = dpu_encoder_get_topology(dpu_enc, dpu_kms, adj_mode); 994 995 /* Reserve dynamic resources now. Indicating non-AtomicTest phase */ 996 ret = dpu_rm_reserve(&dpu_kms->rm, drm_enc, drm_enc->crtc->state, 997 topology, false); 998 if (ret) { 999 DPU_ERROR_ENC(dpu_enc, 1000 "failed to reserve hw resources, %d\n", ret); 1001 return; 1002 } 1003 1004 dpu_rm_init_hw_iter(&pp_iter, drm_enc->base.id, DPU_HW_BLK_PINGPONG); 1005 for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) { 1006 dpu_enc->hw_pp[i] = NULL; 1007 if (!dpu_rm_get_hw(&dpu_kms->rm, &pp_iter)) 1008 break; 1009 dpu_enc->hw_pp[i] = (struct dpu_hw_pingpong *) pp_iter.hw; 1010 } 1011 1012 dpu_rm_init_hw_iter(&ctl_iter, drm_enc->base.id, DPU_HW_BLK_CTL); 1013 for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) { 1014 if (!dpu_rm_get_hw(&dpu_kms->rm, &ctl_iter)) 1015 break; 1016 hw_ctl[i] = (struct dpu_hw_ctl *)ctl_iter.hw; 1017 } 1018 1019 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1020 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 1021 1022 if (phys) { 1023 if (!dpu_enc->hw_pp[i]) { 1024 DPU_ERROR_ENC(dpu_enc, "no pp block assigned" 1025 "at idx: %d\n", i); 1026 return; 1027 } 1028 1029 if (!hw_ctl[i]) { 1030 DPU_ERROR_ENC(dpu_enc, "no ctl block assigned" 1031 "at idx: %d\n", i); 1032 return; 1033 } 1034 1035 phys->hw_pp = dpu_enc->hw_pp[i]; 1036 phys->hw_ctl = hw_ctl[i]; 1037 1038 phys->connector = conn->state->connector; 1039 if (phys->ops.mode_set) 1040 phys->ops.mode_set(phys, mode, adj_mode); 1041 } 1042 } 1043 1044 dpu_enc->mode_set_complete = true; 1045 } 1046 1047 static void _dpu_encoder_virt_enable_helper(struct drm_encoder *drm_enc) 1048 { 1049 struct dpu_encoder_virt *dpu_enc = NULL; 1050 struct msm_drm_private *priv; 1051 struct dpu_kms *dpu_kms; 1052 1053 if (!drm_enc || !drm_enc->dev || !drm_enc->dev->dev_private) { 1054 DPU_ERROR("invalid parameters\n"); 1055 return; 1056 } 1057 1058 priv = drm_enc->dev->dev_private; 1059 dpu_kms = to_dpu_kms(priv->kms); 1060 if (!dpu_kms) { 1061 DPU_ERROR("invalid dpu_kms\n"); 1062 return; 1063 } 1064 1065 dpu_enc = to_dpu_encoder_virt(drm_enc); 1066 if (!dpu_enc || !dpu_enc->cur_master) { 1067 DPU_ERROR("invalid dpu encoder/master\n"); 1068 return; 1069 } 1070 1071 if (dpu_enc->cur_master->hw_mdptop && 1072 dpu_enc->cur_master->hw_mdptop->ops.reset_ubwc) 1073 dpu_enc->cur_master->hw_mdptop->ops.reset_ubwc( 1074 dpu_enc->cur_master->hw_mdptop, 1075 dpu_kms->catalog); 1076 1077 _dpu_encoder_update_vsync_source(dpu_enc, &dpu_enc->disp_info); 1078 } 1079 1080 void dpu_encoder_virt_runtime_resume(struct drm_encoder *drm_enc) 1081 { 1082 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); 1083 1084 mutex_lock(&dpu_enc->enc_lock); 1085 1086 if (!dpu_enc->enabled) 1087 goto out; 1088 1089 if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.restore) 1090 dpu_enc->cur_slave->ops.restore(dpu_enc->cur_slave); 1091 if (dpu_enc->cur_master && dpu_enc->cur_master->ops.restore) 1092 dpu_enc->cur_master->ops.restore(dpu_enc->cur_master); 1093 1094 _dpu_encoder_virt_enable_helper(drm_enc); 1095 1096 out: 1097 mutex_unlock(&dpu_enc->enc_lock); 1098 } 1099 1100 static void dpu_encoder_virt_enable(struct drm_encoder *drm_enc) 1101 { 1102 struct dpu_encoder_virt *dpu_enc = NULL; 1103 int ret = 0; 1104 struct drm_display_mode *cur_mode = NULL; 1105 1106 if (!drm_enc) { 1107 DPU_ERROR("invalid encoder\n"); 1108 return; 1109 } 1110 dpu_enc = to_dpu_encoder_virt(drm_enc); 1111 1112 mutex_lock(&dpu_enc->enc_lock); 1113 cur_mode = &dpu_enc->base.crtc->state->adjusted_mode; 1114 1115 trace_dpu_enc_enable(DRMID(drm_enc), cur_mode->hdisplay, 1116 cur_mode->vdisplay); 1117 1118 /* always enable slave encoder before master */ 1119 if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.enable) 1120 dpu_enc->cur_slave->ops.enable(dpu_enc->cur_slave); 1121 1122 if (dpu_enc->cur_master && dpu_enc->cur_master->ops.enable) 1123 dpu_enc->cur_master->ops.enable(dpu_enc->cur_master); 1124 1125 ret = dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF); 1126 if (ret) { 1127 DPU_ERROR_ENC(dpu_enc, "dpu resource control failed: %d\n", 1128 ret); 1129 goto out; 1130 } 1131 1132 _dpu_encoder_virt_enable_helper(drm_enc); 1133 1134 dpu_enc->enabled = true; 1135 1136 out: 1137 mutex_unlock(&dpu_enc->enc_lock); 1138 } 1139 1140 static void dpu_encoder_virt_disable(struct drm_encoder *drm_enc) 1141 { 1142 struct dpu_encoder_virt *dpu_enc = NULL; 1143 struct msm_drm_private *priv; 1144 struct dpu_kms *dpu_kms; 1145 struct drm_display_mode *mode; 1146 int i = 0; 1147 1148 if (!drm_enc) { 1149 DPU_ERROR("invalid encoder\n"); 1150 return; 1151 } else if (!drm_enc->dev) { 1152 DPU_ERROR("invalid dev\n"); 1153 return; 1154 } else if (!drm_enc->dev->dev_private) { 1155 DPU_ERROR("invalid dev_private\n"); 1156 return; 1157 } 1158 1159 dpu_enc = to_dpu_encoder_virt(drm_enc); 1160 DPU_DEBUG_ENC(dpu_enc, "\n"); 1161 1162 mutex_lock(&dpu_enc->enc_lock); 1163 dpu_enc->enabled = false; 1164 1165 mode = &drm_enc->crtc->state->adjusted_mode; 1166 1167 priv = drm_enc->dev->dev_private; 1168 dpu_kms = to_dpu_kms(priv->kms); 1169 1170 trace_dpu_enc_disable(DRMID(drm_enc)); 1171 1172 /* wait for idle */ 1173 dpu_encoder_wait_for_event(drm_enc, MSM_ENC_TX_COMPLETE); 1174 1175 dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_PRE_STOP); 1176 1177 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1178 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 1179 1180 if (phys && phys->ops.disable) 1181 phys->ops.disable(phys); 1182 } 1183 1184 /* after phys waits for frame-done, should be no more frames pending */ 1185 if (atomic_xchg(&dpu_enc->frame_done_timeout, 0)) { 1186 DPU_ERROR("enc%d timeout pending\n", drm_enc->base.id); 1187 del_timer_sync(&dpu_enc->frame_done_timer); 1188 } 1189 1190 dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_STOP); 1191 1192 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1193 if (dpu_enc->phys_encs[i]) 1194 dpu_enc->phys_encs[i]->connector = NULL; 1195 } 1196 1197 DPU_DEBUG_ENC(dpu_enc, "encoder disabled\n"); 1198 1199 dpu_rm_release(&dpu_kms->rm, drm_enc); 1200 1201 mutex_unlock(&dpu_enc->enc_lock); 1202 } 1203 1204 static enum dpu_intf dpu_encoder_get_intf(struct dpu_mdss_cfg *catalog, 1205 enum dpu_intf_type type, u32 controller_id) 1206 { 1207 int i = 0; 1208 1209 for (i = 0; i < catalog->intf_count; i++) { 1210 if (catalog->intf[i].type == type 1211 && catalog->intf[i].controller_id == controller_id) { 1212 return catalog->intf[i].id; 1213 } 1214 } 1215 1216 return INTF_MAX; 1217 } 1218 1219 static void dpu_encoder_vblank_callback(struct drm_encoder *drm_enc, 1220 struct dpu_encoder_phys *phy_enc) 1221 { 1222 struct dpu_encoder_virt *dpu_enc = NULL; 1223 unsigned long lock_flags; 1224 1225 if (!drm_enc || !phy_enc) 1226 return; 1227 1228 DPU_ATRACE_BEGIN("encoder_vblank_callback"); 1229 dpu_enc = to_dpu_encoder_virt(drm_enc); 1230 1231 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags); 1232 if (dpu_enc->crtc) 1233 dpu_crtc_vblank_callback(dpu_enc->crtc); 1234 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags); 1235 1236 atomic_inc(&phy_enc->vsync_cnt); 1237 DPU_ATRACE_END("encoder_vblank_callback"); 1238 } 1239 1240 static void dpu_encoder_underrun_callback(struct drm_encoder *drm_enc, 1241 struct dpu_encoder_phys *phy_enc) 1242 { 1243 if (!phy_enc) 1244 return; 1245 1246 DPU_ATRACE_BEGIN("encoder_underrun_callback"); 1247 atomic_inc(&phy_enc->underrun_cnt); 1248 trace_dpu_enc_underrun_cb(DRMID(drm_enc), 1249 atomic_read(&phy_enc->underrun_cnt)); 1250 DPU_ATRACE_END("encoder_underrun_callback"); 1251 } 1252 1253 void dpu_encoder_assign_crtc(struct drm_encoder *drm_enc, struct drm_crtc *crtc) 1254 { 1255 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); 1256 unsigned long lock_flags; 1257 1258 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags); 1259 /* crtc should always be cleared before re-assigning */ 1260 WARN_ON(crtc && dpu_enc->crtc); 1261 dpu_enc->crtc = crtc; 1262 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags); 1263 } 1264 1265 void dpu_encoder_toggle_vblank_for_crtc(struct drm_encoder *drm_enc, 1266 struct drm_crtc *crtc, bool enable) 1267 { 1268 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); 1269 unsigned long lock_flags; 1270 int i; 1271 1272 trace_dpu_enc_vblank_cb(DRMID(drm_enc), enable); 1273 1274 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags); 1275 if (dpu_enc->crtc != crtc) { 1276 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags); 1277 return; 1278 } 1279 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags); 1280 1281 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1282 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 1283 1284 if (phys && phys->ops.control_vblank_irq) 1285 phys->ops.control_vblank_irq(phys, enable); 1286 } 1287 } 1288 1289 void dpu_encoder_register_frame_event_callback(struct drm_encoder *drm_enc, 1290 void (*frame_event_cb)(void *, u32 event), 1291 void *frame_event_cb_data) 1292 { 1293 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); 1294 unsigned long lock_flags; 1295 bool enable; 1296 1297 enable = frame_event_cb ? true : false; 1298 1299 if (!drm_enc) { 1300 DPU_ERROR("invalid encoder\n"); 1301 return; 1302 } 1303 trace_dpu_enc_frame_event_cb(DRMID(drm_enc), enable); 1304 1305 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags); 1306 dpu_enc->crtc_frame_event_cb = frame_event_cb; 1307 dpu_enc->crtc_frame_event_cb_data = frame_event_cb_data; 1308 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags); 1309 } 1310 1311 static void dpu_encoder_frame_done_callback( 1312 struct drm_encoder *drm_enc, 1313 struct dpu_encoder_phys *ready_phys, u32 event) 1314 { 1315 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); 1316 unsigned int i; 1317 1318 if (event & (DPU_ENCODER_FRAME_EVENT_DONE 1319 | DPU_ENCODER_FRAME_EVENT_ERROR 1320 | DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)) { 1321 1322 if (!dpu_enc->frame_busy_mask[0]) { 1323 /** 1324 * suppress frame_done without waiter, 1325 * likely autorefresh 1326 */ 1327 trace_dpu_enc_frame_done_cb_not_busy(DRMID(drm_enc), 1328 event, ready_phys->intf_idx); 1329 return; 1330 } 1331 1332 /* One of the physical encoders has become idle */ 1333 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1334 if (dpu_enc->phys_encs[i] == ready_phys) { 1335 trace_dpu_enc_frame_done_cb(DRMID(drm_enc), i, 1336 dpu_enc->frame_busy_mask[0]); 1337 clear_bit(i, dpu_enc->frame_busy_mask); 1338 } 1339 } 1340 1341 if (!dpu_enc->frame_busy_mask[0]) { 1342 atomic_set(&dpu_enc->frame_done_timeout, 0); 1343 del_timer(&dpu_enc->frame_done_timer); 1344 1345 dpu_encoder_resource_control(drm_enc, 1346 DPU_ENC_RC_EVENT_FRAME_DONE); 1347 1348 if (dpu_enc->crtc_frame_event_cb) 1349 dpu_enc->crtc_frame_event_cb( 1350 dpu_enc->crtc_frame_event_cb_data, 1351 event); 1352 } 1353 } else { 1354 if (dpu_enc->crtc_frame_event_cb) 1355 dpu_enc->crtc_frame_event_cb( 1356 dpu_enc->crtc_frame_event_cb_data, event); 1357 } 1358 } 1359 1360 static void dpu_encoder_off_work(struct work_struct *work) 1361 { 1362 struct dpu_encoder_virt *dpu_enc = container_of(work, 1363 struct dpu_encoder_virt, delayed_off_work.work); 1364 1365 if (!dpu_enc) { 1366 DPU_ERROR("invalid dpu encoder\n"); 1367 return; 1368 } 1369 1370 dpu_encoder_resource_control(&dpu_enc->base, 1371 DPU_ENC_RC_EVENT_ENTER_IDLE); 1372 1373 dpu_encoder_frame_done_callback(&dpu_enc->base, NULL, 1374 DPU_ENCODER_FRAME_EVENT_IDLE); 1375 } 1376 1377 /** 1378 * _dpu_encoder_trigger_flush - trigger flush for a physical encoder 1379 * drm_enc: Pointer to drm encoder structure 1380 * phys: Pointer to physical encoder structure 1381 * extra_flush_bits: Additional bit mask to include in flush trigger 1382 */ 1383 static void _dpu_encoder_trigger_flush(struct drm_encoder *drm_enc, 1384 struct dpu_encoder_phys *phys, uint32_t extra_flush_bits, 1385 bool async) 1386 { 1387 struct dpu_hw_ctl *ctl; 1388 int pending_kickoff_cnt; 1389 u32 ret = UINT_MAX; 1390 1391 if (!drm_enc || !phys) { 1392 DPU_ERROR("invalid argument(s), drm_enc %d, phys_enc %d\n", 1393 drm_enc != 0, phys != 0); 1394 return; 1395 } 1396 1397 if (!phys->hw_pp) { 1398 DPU_ERROR("invalid pingpong hw\n"); 1399 return; 1400 } 1401 1402 ctl = phys->hw_ctl; 1403 if (!ctl || !ctl->ops.trigger_flush) { 1404 DPU_ERROR("missing trigger cb\n"); 1405 return; 1406 } 1407 1408 if (!async) 1409 pending_kickoff_cnt = dpu_encoder_phys_inc_pending(phys); 1410 else 1411 pending_kickoff_cnt = atomic_read(&phys->pending_kickoff_cnt); 1412 1413 if (extra_flush_bits && ctl->ops.update_pending_flush) 1414 ctl->ops.update_pending_flush(ctl, extra_flush_bits); 1415 1416 ctl->ops.trigger_flush(ctl); 1417 1418 if (ctl->ops.get_pending_flush) 1419 ret = ctl->ops.get_pending_flush(ctl); 1420 1421 trace_dpu_enc_trigger_flush(DRMID(drm_enc), phys->intf_idx, 1422 pending_kickoff_cnt, ctl->idx, 1423 extra_flush_bits, ret); 1424 } 1425 1426 /** 1427 * _dpu_encoder_trigger_start - trigger start for a physical encoder 1428 * phys: Pointer to physical encoder structure 1429 */ 1430 static void _dpu_encoder_trigger_start(struct dpu_encoder_phys *phys) 1431 { 1432 if (!phys) { 1433 DPU_ERROR("invalid argument(s)\n"); 1434 return; 1435 } 1436 1437 if (!phys->hw_pp) { 1438 DPU_ERROR("invalid pingpong hw\n"); 1439 return; 1440 } 1441 1442 if (phys->ops.trigger_start && phys->enable_state != DPU_ENC_DISABLED) 1443 phys->ops.trigger_start(phys); 1444 } 1445 1446 void dpu_encoder_helper_trigger_start(struct dpu_encoder_phys *phys_enc) 1447 { 1448 struct dpu_hw_ctl *ctl; 1449 1450 if (!phys_enc) { 1451 DPU_ERROR("invalid encoder\n"); 1452 return; 1453 } 1454 1455 ctl = phys_enc->hw_ctl; 1456 if (ctl && ctl->ops.trigger_start) { 1457 ctl->ops.trigger_start(ctl); 1458 trace_dpu_enc_trigger_start(DRMID(phys_enc->parent), ctl->idx); 1459 } 1460 } 1461 1462 static int dpu_encoder_helper_wait_event_timeout( 1463 int32_t drm_id, 1464 int32_t hw_id, 1465 struct dpu_encoder_wait_info *info) 1466 { 1467 int rc = 0; 1468 s64 expected_time = ktime_to_ms(ktime_get()) + info->timeout_ms; 1469 s64 jiffies = msecs_to_jiffies(info->timeout_ms); 1470 s64 time; 1471 1472 do { 1473 rc = wait_event_timeout(*(info->wq), 1474 atomic_read(info->atomic_cnt) == 0, jiffies); 1475 time = ktime_to_ms(ktime_get()); 1476 1477 trace_dpu_enc_wait_event_timeout(drm_id, hw_id, rc, time, 1478 expected_time, 1479 atomic_read(info->atomic_cnt)); 1480 /* If we timed out, counter is valid and time is less, wait again */ 1481 } while (atomic_read(info->atomic_cnt) && (rc == 0) && 1482 (time < expected_time)); 1483 1484 return rc; 1485 } 1486 1487 static void dpu_encoder_helper_hw_reset(struct dpu_encoder_phys *phys_enc) 1488 { 1489 struct dpu_encoder_virt *dpu_enc; 1490 struct dpu_hw_ctl *ctl; 1491 int rc; 1492 1493 if (!phys_enc) { 1494 DPU_ERROR("invalid encoder\n"); 1495 return; 1496 } 1497 dpu_enc = to_dpu_encoder_virt(phys_enc->parent); 1498 ctl = phys_enc->hw_ctl; 1499 1500 if (!ctl || !ctl->ops.reset) 1501 return; 1502 1503 DRM_DEBUG_KMS("id:%u ctl %d reset\n", DRMID(phys_enc->parent), 1504 ctl->idx); 1505 1506 rc = ctl->ops.reset(ctl); 1507 if (rc) 1508 DPU_ERROR_ENC(dpu_enc, "ctl %d reset failure\n", ctl->idx); 1509 1510 phys_enc->enable_state = DPU_ENC_ENABLED; 1511 } 1512 1513 /** 1514 * _dpu_encoder_kickoff_phys - handle physical encoder kickoff 1515 * Iterate through the physical encoders and perform consolidated flush 1516 * and/or control start triggering as needed. This is done in the virtual 1517 * encoder rather than the individual physical ones in order to handle 1518 * use cases that require visibility into multiple physical encoders at 1519 * a time. 1520 * dpu_enc: Pointer to virtual encoder structure 1521 */ 1522 static void _dpu_encoder_kickoff_phys(struct dpu_encoder_virt *dpu_enc, 1523 bool async) 1524 { 1525 struct dpu_hw_ctl *ctl; 1526 uint32_t i, pending_flush; 1527 unsigned long lock_flags; 1528 1529 if (!dpu_enc) { 1530 DPU_ERROR("invalid encoder\n"); 1531 return; 1532 } 1533 1534 pending_flush = 0x0; 1535 1536 /* update pending counts and trigger kickoff ctl flush atomically */ 1537 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags); 1538 1539 /* don't perform flush/start operations for slave encoders */ 1540 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1541 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 1542 1543 if (!phys || phys->enable_state == DPU_ENC_DISABLED) 1544 continue; 1545 1546 ctl = phys->hw_ctl; 1547 if (!ctl) 1548 continue; 1549 1550 if (phys->split_role != ENC_ROLE_SLAVE) 1551 set_bit(i, dpu_enc->frame_busy_mask); 1552 if (!phys->ops.needs_single_flush || 1553 !phys->ops.needs_single_flush(phys)) 1554 _dpu_encoder_trigger_flush(&dpu_enc->base, phys, 0x0, 1555 async); 1556 else if (ctl->ops.get_pending_flush) 1557 pending_flush |= ctl->ops.get_pending_flush(ctl); 1558 } 1559 1560 /* for split flush, combine pending flush masks and send to master */ 1561 if (pending_flush && dpu_enc->cur_master) { 1562 _dpu_encoder_trigger_flush( 1563 &dpu_enc->base, 1564 dpu_enc->cur_master, 1565 pending_flush, async); 1566 } 1567 1568 _dpu_encoder_trigger_start(dpu_enc->cur_master); 1569 1570 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags); 1571 } 1572 1573 void dpu_encoder_trigger_kickoff_pending(struct drm_encoder *drm_enc) 1574 { 1575 struct dpu_encoder_virt *dpu_enc; 1576 struct dpu_encoder_phys *phys; 1577 unsigned int i; 1578 struct dpu_hw_ctl *ctl; 1579 struct msm_display_info *disp_info; 1580 1581 if (!drm_enc) { 1582 DPU_ERROR("invalid encoder\n"); 1583 return; 1584 } 1585 dpu_enc = to_dpu_encoder_virt(drm_enc); 1586 disp_info = &dpu_enc->disp_info; 1587 1588 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1589 phys = dpu_enc->phys_encs[i]; 1590 1591 if (phys && phys->hw_ctl) { 1592 ctl = phys->hw_ctl; 1593 if (ctl->ops.clear_pending_flush) 1594 ctl->ops.clear_pending_flush(ctl); 1595 1596 /* update only for command mode primary ctl */ 1597 if ((phys == dpu_enc->cur_master) && 1598 (disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE) 1599 && ctl->ops.trigger_pending) 1600 ctl->ops.trigger_pending(ctl); 1601 } 1602 } 1603 } 1604 1605 static u32 _dpu_encoder_calculate_linetime(struct dpu_encoder_virt *dpu_enc, 1606 struct drm_display_mode *mode) 1607 { 1608 u64 pclk_rate; 1609 u32 pclk_period; 1610 u32 line_time; 1611 1612 /* 1613 * For linetime calculation, only operate on master encoder. 1614 */ 1615 if (!dpu_enc->cur_master) 1616 return 0; 1617 1618 if (!dpu_enc->cur_master->ops.get_line_count) { 1619 DPU_ERROR("get_line_count function not defined\n"); 1620 return 0; 1621 } 1622 1623 pclk_rate = mode->clock; /* pixel clock in kHz */ 1624 if (pclk_rate == 0) { 1625 DPU_ERROR("pclk is 0, cannot calculate line time\n"); 1626 return 0; 1627 } 1628 1629 pclk_period = DIV_ROUND_UP_ULL(1000000000ull, pclk_rate); 1630 if (pclk_period == 0) { 1631 DPU_ERROR("pclk period is 0\n"); 1632 return 0; 1633 } 1634 1635 /* 1636 * Line time calculation based on Pixel clock and HTOTAL. 1637 * Final unit is in ns. 1638 */ 1639 line_time = (pclk_period * mode->htotal) / 1000; 1640 if (line_time == 0) { 1641 DPU_ERROR("line time calculation is 0\n"); 1642 return 0; 1643 } 1644 1645 DPU_DEBUG_ENC(dpu_enc, 1646 "clk_rate=%lldkHz, clk_period=%d, linetime=%dns\n", 1647 pclk_rate, pclk_period, line_time); 1648 1649 return line_time; 1650 } 1651 1652 static int _dpu_encoder_wakeup_time(struct drm_encoder *drm_enc, 1653 ktime_t *wakeup_time) 1654 { 1655 struct drm_display_mode *mode; 1656 struct dpu_encoder_virt *dpu_enc; 1657 u32 cur_line; 1658 u32 line_time; 1659 u32 vtotal, time_to_vsync; 1660 ktime_t cur_time; 1661 1662 dpu_enc = to_dpu_encoder_virt(drm_enc); 1663 1664 if (!drm_enc->crtc || !drm_enc->crtc->state) { 1665 DPU_ERROR("crtc/crtc state object is NULL\n"); 1666 return -EINVAL; 1667 } 1668 mode = &drm_enc->crtc->state->adjusted_mode; 1669 1670 line_time = _dpu_encoder_calculate_linetime(dpu_enc, mode); 1671 if (!line_time) 1672 return -EINVAL; 1673 1674 cur_line = dpu_enc->cur_master->ops.get_line_count(dpu_enc->cur_master); 1675 1676 vtotal = mode->vtotal; 1677 if (cur_line >= vtotal) 1678 time_to_vsync = line_time * vtotal; 1679 else 1680 time_to_vsync = line_time * (vtotal - cur_line); 1681 1682 if (time_to_vsync == 0) { 1683 DPU_ERROR("time to vsync should not be zero, vtotal=%d\n", 1684 vtotal); 1685 return -EINVAL; 1686 } 1687 1688 cur_time = ktime_get(); 1689 *wakeup_time = ktime_add_ns(cur_time, time_to_vsync); 1690 1691 DPU_DEBUG_ENC(dpu_enc, 1692 "cur_line=%u vtotal=%u time_to_vsync=%u, cur_time=%lld, wakeup_time=%lld\n", 1693 cur_line, vtotal, time_to_vsync, 1694 ktime_to_ms(cur_time), 1695 ktime_to_ms(*wakeup_time)); 1696 return 0; 1697 } 1698 1699 static void dpu_encoder_vsync_event_handler(struct timer_list *t) 1700 { 1701 struct dpu_encoder_virt *dpu_enc = from_timer(dpu_enc, t, 1702 vsync_event_timer); 1703 struct drm_encoder *drm_enc = &dpu_enc->base; 1704 struct msm_drm_private *priv; 1705 struct msm_drm_thread *event_thread; 1706 1707 if (!drm_enc->dev || !drm_enc->dev->dev_private || 1708 !drm_enc->crtc) { 1709 DPU_ERROR("invalid parameters\n"); 1710 return; 1711 } 1712 1713 priv = drm_enc->dev->dev_private; 1714 1715 if (drm_enc->crtc->index >= ARRAY_SIZE(priv->event_thread)) { 1716 DPU_ERROR("invalid crtc index\n"); 1717 return; 1718 } 1719 event_thread = &priv->event_thread[drm_enc->crtc->index]; 1720 if (!event_thread) { 1721 DPU_ERROR("event_thread not found for crtc:%d\n", 1722 drm_enc->crtc->index); 1723 return; 1724 } 1725 1726 del_timer(&dpu_enc->vsync_event_timer); 1727 } 1728 1729 static void dpu_encoder_vsync_event_work_handler(struct kthread_work *work) 1730 { 1731 struct dpu_encoder_virt *dpu_enc = container_of(work, 1732 struct dpu_encoder_virt, vsync_event_work); 1733 ktime_t wakeup_time; 1734 1735 if (!dpu_enc) { 1736 DPU_ERROR("invalid dpu encoder\n"); 1737 return; 1738 } 1739 1740 if (_dpu_encoder_wakeup_time(&dpu_enc->base, &wakeup_time)) 1741 return; 1742 1743 trace_dpu_enc_vsync_event_work(DRMID(&dpu_enc->base), wakeup_time); 1744 mod_timer(&dpu_enc->vsync_event_timer, 1745 nsecs_to_jiffies(ktime_to_ns(wakeup_time))); 1746 } 1747 1748 void dpu_encoder_prepare_for_kickoff(struct drm_encoder *drm_enc, bool async) 1749 { 1750 struct dpu_encoder_virt *dpu_enc; 1751 struct dpu_encoder_phys *phys; 1752 bool needs_hw_reset = false; 1753 unsigned int i; 1754 1755 if (!drm_enc) { 1756 DPU_ERROR("invalid args\n"); 1757 return; 1758 } 1759 dpu_enc = to_dpu_encoder_virt(drm_enc); 1760 1761 trace_dpu_enc_prepare_kickoff(DRMID(drm_enc)); 1762 1763 /* prepare for next kickoff, may include waiting on previous kickoff */ 1764 DPU_ATRACE_BEGIN("enc_prepare_for_kickoff"); 1765 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1766 phys = dpu_enc->phys_encs[i]; 1767 if (phys) { 1768 if (phys->ops.prepare_for_kickoff) 1769 phys->ops.prepare_for_kickoff(phys); 1770 if (phys->enable_state == DPU_ENC_ERR_NEEDS_HW_RESET) 1771 needs_hw_reset = true; 1772 } 1773 } 1774 DPU_ATRACE_END("enc_prepare_for_kickoff"); 1775 1776 dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF); 1777 1778 /* if any phys needs reset, reset all phys, in-order */ 1779 if (needs_hw_reset) { 1780 trace_dpu_enc_prepare_kickoff_reset(DRMID(drm_enc)); 1781 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1782 dpu_encoder_helper_hw_reset(dpu_enc->phys_encs[i]); 1783 } 1784 } 1785 } 1786 1787 void dpu_encoder_kickoff(struct drm_encoder *drm_enc, bool async) 1788 { 1789 struct dpu_encoder_virt *dpu_enc; 1790 struct dpu_encoder_phys *phys; 1791 ktime_t wakeup_time; 1792 unsigned int i; 1793 1794 if (!drm_enc) { 1795 DPU_ERROR("invalid encoder\n"); 1796 return; 1797 } 1798 DPU_ATRACE_BEGIN("encoder_kickoff"); 1799 dpu_enc = to_dpu_encoder_virt(drm_enc); 1800 1801 trace_dpu_enc_kickoff(DRMID(drm_enc)); 1802 1803 atomic_set(&dpu_enc->frame_done_timeout, 1804 DPU_FRAME_DONE_TIMEOUT * 1000 / 1805 drm_enc->crtc->state->adjusted_mode.vrefresh); 1806 mod_timer(&dpu_enc->frame_done_timer, jiffies + 1807 ((atomic_read(&dpu_enc->frame_done_timeout) * HZ) / 1000)); 1808 1809 /* All phys encs are ready to go, trigger the kickoff */ 1810 _dpu_encoder_kickoff_phys(dpu_enc, async); 1811 1812 /* allow phys encs to handle any post-kickoff business */ 1813 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1814 phys = dpu_enc->phys_encs[i]; 1815 if (phys && phys->ops.handle_post_kickoff) 1816 phys->ops.handle_post_kickoff(phys); 1817 } 1818 1819 if (dpu_enc->disp_info.intf_type == DRM_MODE_ENCODER_DSI && 1820 !_dpu_encoder_wakeup_time(drm_enc, &wakeup_time)) { 1821 trace_dpu_enc_early_kickoff(DRMID(drm_enc), 1822 ktime_to_ms(wakeup_time)); 1823 mod_timer(&dpu_enc->vsync_event_timer, 1824 nsecs_to_jiffies(ktime_to_ns(wakeup_time))); 1825 } 1826 1827 DPU_ATRACE_END("encoder_kickoff"); 1828 } 1829 1830 void dpu_encoder_prepare_commit(struct drm_encoder *drm_enc) 1831 { 1832 struct dpu_encoder_virt *dpu_enc; 1833 struct dpu_encoder_phys *phys; 1834 int i; 1835 1836 if (!drm_enc) { 1837 DPU_ERROR("invalid encoder\n"); 1838 return; 1839 } 1840 dpu_enc = to_dpu_encoder_virt(drm_enc); 1841 1842 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1843 phys = dpu_enc->phys_encs[i]; 1844 if (phys && phys->ops.prepare_commit) 1845 phys->ops.prepare_commit(phys); 1846 } 1847 } 1848 1849 #ifdef CONFIG_DEBUG_FS 1850 static int _dpu_encoder_status_show(struct seq_file *s, void *data) 1851 { 1852 struct dpu_encoder_virt *dpu_enc = s->private; 1853 int i; 1854 1855 mutex_lock(&dpu_enc->enc_lock); 1856 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1857 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 1858 1859 if (!phys) 1860 continue; 1861 1862 seq_printf(s, "intf:%d vsync:%8d underrun:%8d ", 1863 phys->intf_idx - INTF_0, 1864 atomic_read(&phys->vsync_cnt), 1865 atomic_read(&phys->underrun_cnt)); 1866 1867 switch (phys->intf_mode) { 1868 case INTF_MODE_VIDEO: 1869 seq_puts(s, "mode: video\n"); 1870 break; 1871 case INTF_MODE_CMD: 1872 seq_puts(s, "mode: command\n"); 1873 break; 1874 default: 1875 seq_puts(s, "mode: ???\n"); 1876 break; 1877 } 1878 } 1879 mutex_unlock(&dpu_enc->enc_lock); 1880 1881 return 0; 1882 } 1883 1884 static int _dpu_encoder_debugfs_status_open(struct inode *inode, 1885 struct file *file) 1886 { 1887 return single_open(file, _dpu_encoder_status_show, inode->i_private); 1888 } 1889 1890 static int _dpu_encoder_init_debugfs(struct drm_encoder *drm_enc) 1891 { 1892 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); 1893 struct msm_drm_private *priv; 1894 struct dpu_kms *dpu_kms; 1895 int i; 1896 1897 static const struct file_operations debugfs_status_fops = { 1898 .open = _dpu_encoder_debugfs_status_open, 1899 .read = seq_read, 1900 .llseek = seq_lseek, 1901 .release = single_release, 1902 }; 1903 1904 char name[DPU_NAME_SIZE]; 1905 1906 if (!drm_enc->dev || !drm_enc->dev->dev_private) { 1907 DPU_ERROR("invalid encoder or kms\n"); 1908 return -EINVAL; 1909 } 1910 1911 priv = drm_enc->dev->dev_private; 1912 dpu_kms = to_dpu_kms(priv->kms); 1913 1914 snprintf(name, DPU_NAME_SIZE, "encoder%u", drm_enc->base.id); 1915 1916 /* create overall sub-directory for the encoder */ 1917 dpu_enc->debugfs_root = debugfs_create_dir(name, 1918 drm_enc->dev->primary->debugfs_root); 1919 if (!dpu_enc->debugfs_root) 1920 return -ENOMEM; 1921 1922 /* don't error check these */ 1923 debugfs_create_file("status", 0600, 1924 dpu_enc->debugfs_root, dpu_enc, &debugfs_status_fops); 1925 1926 for (i = 0; i < dpu_enc->num_phys_encs; i++) 1927 if (dpu_enc->phys_encs[i] && 1928 dpu_enc->phys_encs[i]->ops.late_register) 1929 dpu_enc->phys_encs[i]->ops.late_register( 1930 dpu_enc->phys_encs[i], 1931 dpu_enc->debugfs_root); 1932 1933 return 0; 1934 } 1935 #else 1936 static int _dpu_encoder_init_debugfs(struct drm_encoder *drm_enc) 1937 { 1938 return 0; 1939 } 1940 #endif 1941 1942 static int dpu_encoder_late_register(struct drm_encoder *encoder) 1943 { 1944 return _dpu_encoder_init_debugfs(encoder); 1945 } 1946 1947 static void dpu_encoder_early_unregister(struct drm_encoder *encoder) 1948 { 1949 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(encoder); 1950 1951 debugfs_remove_recursive(dpu_enc->debugfs_root); 1952 } 1953 1954 static int dpu_encoder_virt_add_phys_encs( 1955 u32 display_caps, 1956 struct dpu_encoder_virt *dpu_enc, 1957 struct dpu_enc_phys_init_params *params) 1958 { 1959 struct dpu_encoder_phys *enc = NULL; 1960 1961 DPU_DEBUG_ENC(dpu_enc, "\n"); 1962 1963 /* 1964 * We may create up to NUM_PHYS_ENCODER_TYPES physical encoder types 1965 * in this function, check up-front. 1966 */ 1967 if (dpu_enc->num_phys_encs + NUM_PHYS_ENCODER_TYPES >= 1968 ARRAY_SIZE(dpu_enc->phys_encs)) { 1969 DPU_ERROR_ENC(dpu_enc, "too many physical encoders %d\n", 1970 dpu_enc->num_phys_encs); 1971 return -EINVAL; 1972 } 1973 1974 if (display_caps & MSM_DISPLAY_CAP_VID_MODE) { 1975 enc = dpu_encoder_phys_vid_init(params); 1976 1977 if (IS_ERR_OR_NULL(enc)) { 1978 DPU_ERROR_ENC(dpu_enc, "failed to init vid enc: %ld\n", 1979 PTR_ERR(enc)); 1980 return enc == 0 ? -EINVAL : PTR_ERR(enc); 1981 } 1982 1983 dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc; 1984 ++dpu_enc->num_phys_encs; 1985 } 1986 1987 if (display_caps & MSM_DISPLAY_CAP_CMD_MODE) { 1988 enc = dpu_encoder_phys_cmd_init(params); 1989 1990 if (IS_ERR_OR_NULL(enc)) { 1991 DPU_ERROR_ENC(dpu_enc, "failed to init cmd enc: %ld\n", 1992 PTR_ERR(enc)); 1993 return enc == 0 ? -EINVAL : PTR_ERR(enc); 1994 } 1995 1996 dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc; 1997 ++dpu_enc->num_phys_encs; 1998 } 1999 2000 if (params->split_role == ENC_ROLE_SLAVE) 2001 dpu_enc->cur_slave = enc; 2002 else 2003 dpu_enc->cur_master = enc; 2004 2005 return 0; 2006 } 2007 2008 static const struct dpu_encoder_virt_ops dpu_encoder_parent_ops = { 2009 .handle_vblank_virt = dpu_encoder_vblank_callback, 2010 .handle_underrun_virt = dpu_encoder_underrun_callback, 2011 .handle_frame_done = dpu_encoder_frame_done_callback, 2012 }; 2013 2014 static int dpu_encoder_setup_display(struct dpu_encoder_virt *dpu_enc, 2015 struct dpu_kms *dpu_kms, 2016 struct msm_display_info *disp_info) 2017 { 2018 int ret = 0; 2019 int i = 0; 2020 enum dpu_intf_type intf_type; 2021 struct dpu_enc_phys_init_params phys_params; 2022 2023 if (!dpu_enc || !dpu_kms) { 2024 DPU_ERROR("invalid arg(s), enc %d kms %d\n", 2025 dpu_enc != 0, dpu_kms != 0); 2026 return -EINVAL; 2027 } 2028 2029 dpu_enc->cur_master = NULL; 2030 2031 memset(&phys_params, 0, sizeof(phys_params)); 2032 phys_params.dpu_kms = dpu_kms; 2033 phys_params.parent = &dpu_enc->base; 2034 phys_params.parent_ops = &dpu_encoder_parent_ops; 2035 phys_params.enc_spinlock = &dpu_enc->enc_spinlock; 2036 2037 DPU_DEBUG("\n"); 2038 2039 switch (disp_info->intf_type) { 2040 case DRM_MODE_ENCODER_DSI: 2041 intf_type = INTF_DSI; 2042 break; 2043 default: 2044 DPU_ERROR_ENC(dpu_enc, "unsupported display interface type\n"); 2045 return -EINVAL; 2046 } 2047 2048 WARN_ON(disp_info->num_of_h_tiles < 1); 2049 2050 DPU_DEBUG("dsi_info->num_of_h_tiles %d\n", disp_info->num_of_h_tiles); 2051 2052 if ((disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE) || 2053 (disp_info->capabilities & MSM_DISPLAY_CAP_VID_MODE)) 2054 dpu_enc->idle_pc_supported = 2055 dpu_kms->catalog->caps->has_idle_pc; 2056 2057 mutex_lock(&dpu_enc->enc_lock); 2058 for (i = 0; i < disp_info->num_of_h_tiles && !ret; i++) { 2059 /* 2060 * Left-most tile is at index 0, content is controller id 2061 * h_tile_instance_ids[2] = {0, 1}; DSI0 = left, DSI1 = right 2062 * h_tile_instance_ids[2] = {1, 0}; DSI1 = left, DSI0 = right 2063 */ 2064 u32 controller_id = disp_info->h_tile_instance[i]; 2065 2066 if (disp_info->num_of_h_tiles > 1) { 2067 if (i == 0) 2068 phys_params.split_role = ENC_ROLE_MASTER; 2069 else 2070 phys_params.split_role = ENC_ROLE_SLAVE; 2071 } else { 2072 phys_params.split_role = ENC_ROLE_SOLO; 2073 } 2074 2075 DPU_DEBUG("h_tile_instance %d = %d, split_role %d\n", 2076 i, controller_id, phys_params.split_role); 2077 2078 phys_params.intf_idx = dpu_encoder_get_intf(dpu_kms->catalog, 2079 intf_type, 2080 controller_id); 2081 if (phys_params.intf_idx == INTF_MAX) { 2082 DPU_ERROR_ENC(dpu_enc, "could not get intf: type %d, id %d\n", 2083 intf_type, controller_id); 2084 ret = -EINVAL; 2085 } 2086 2087 if (!ret) { 2088 ret = dpu_encoder_virt_add_phys_encs(disp_info->capabilities, 2089 dpu_enc, 2090 &phys_params); 2091 if (ret) 2092 DPU_ERROR_ENC(dpu_enc, "failed to add phys encs\n"); 2093 } 2094 } 2095 2096 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 2097 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 2098 2099 if (phys) { 2100 atomic_set(&phys->vsync_cnt, 0); 2101 atomic_set(&phys->underrun_cnt, 0); 2102 } 2103 } 2104 mutex_unlock(&dpu_enc->enc_lock); 2105 2106 return ret; 2107 } 2108 2109 static void dpu_encoder_frame_done_timeout(struct timer_list *t) 2110 { 2111 struct dpu_encoder_virt *dpu_enc = from_timer(dpu_enc, t, 2112 frame_done_timer); 2113 struct drm_encoder *drm_enc = &dpu_enc->base; 2114 struct msm_drm_private *priv; 2115 u32 event; 2116 2117 if (!drm_enc->dev || !drm_enc->dev->dev_private) { 2118 DPU_ERROR("invalid parameters\n"); 2119 return; 2120 } 2121 priv = drm_enc->dev->dev_private; 2122 2123 if (!dpu_enc->frame_busy_mask[0] || !dpu_enc->crtc_frame_event_cb) { 2124 DRM_DEBUG_KMS("id:%u invalid timeout frame_busy_mask=%lu\n", 2125 DRMID(drm_enc), dpu_enc->frame_busy_mask[0]); 2126 return; 2127 } else if (!atomic_xchg(&dpu_enc->frame_done_timeout, 0)) { 2128 DRM_DEBUG_KMS("id:%u invalid timeout\n", DRMID(drm_enc)); 2129 return; 2130 } 2131 2132 DPU_ERROR_ENC(dpu_enc, "frame done timeout\n"); 2133 2134 event = DPU_ENCODER_FRAME_EVENT_ERROR; 2135 trace_dpu_enc_frame_done_timeout(DRMID(drm_enc), event); 2136 dpu_enc->crtc_frame_event_cb(dpu_enc->crtc_frame_event_cb_data, event); 2137 } 2138 2139 static const struct drm_encoder_helper_funcs dpu_encoder_helper_funcs = { 2140 .mode_set = dpu_encoder_virt_mode_set, 2141 .disable = dpu_encoder_virt_disable, 2142 .enable = dpu_kms_encoder_enable, 2143 .atomic_check = dpu_encoder_virt_atomic_check, 2144 2145 /* This is called by dpu_kms_encoder_enable */ 2146 .commit = dpu_encoder_virt_enable, 2147 }; 2148 2149 static const struct drm_encoder_funcs dpu_encoder_funcs = { 2150 .destroy = dpu_encoder_destroy, 2151 .late_register = dpu_encoder_late_register, 2152 .early_unregister = dpu_encoder_early_unregister, 2153 }; 2154 2155 int dpu_encoder_setup(struct drm_device *dev, struct drm_encoder *enc, 2156 struct msm_display_info *disp_info) 2157 { 2158 struct msm_drm_private *priv = dev->dev_private; 2159 struct dpu_kms *dpu_kms = to_dpu_kms(priv->kms); 2160 struct drm_encoder *drm_enc = NULL; 2161 struct dpu_encoder_virt *dpu_enc = NULL; 2162 int ret = 0; 2163 2164 dpu_enc = to_dpu_encoder_virt(enc); 2165 2166 mutex_init(&dpu_enc->enc_lock); 2167 ret = dpu_encoder_setup_display(dpu_enc, dpu_kms, disp_info); 2168 if (ret) 2169 goto fail; 2170 2171 spin_lock_init(&dpu_enc->enc_spinlock); 2172 2173 atomic_set(&dpu_enc->frame_done_timeout, 0); 2174 timer_setup(&dpu_enc->frame_done_timer, 2175 dpu_encoder_frame_done_timeout, 0); 2176 2177 if (disp_info->intf_type == DRM_MODE_ENCODER_DSI) 2178 timer_setup(&dpu_enc->vsync_event_timer, 2179 dpu_encoder_vsync_event_handler, 2180 0); 2181 2182 2183 mutex_init(&dpu_enc->rc_lock); 2184 INIT_DELAYED_WORK(&dpu_enc->delayed_off_work, 2185 dpu_encoder_off_work); 2186 dpu_enc->idle_timeout = IDLE_TIMEOUT; 2187 2188 kthread_init_work(&dpu_enc->vsync_event_work, 2189 dpu_encoder_vsync_event_work_handler); 2190 2191 memcpy(&dpu_enc->disp_info, disp_info, sizeof(*disp_info)); 2192 2193 DPU_DEBUG_ENC(dpu_enc, "created\n"); 2194 2195 return ret; 2196 2197 fail: 2198 DPU_ERROR("failed to create encoder\n"); 2199 if (drm_enc) 2200 dpu_encoder_destroy(drm_enc); 2201 2202 return ret; 2203 2204 2205 } 2206 2207 struct drm_encoder *dpu_encoder_init(struct drm_device *dev, 2208 int drm_enc_mode) 2209 { 2210 struct dpu_encoder_virt *dpu_enc = NULL; 2211 int rc = 0; 2212 2213 dpu_enc = devm_kzalloc(dev->dev, sizeof(*dpu_enc), GFP_KERNEL); 2214 if (!dpu_enc) 2215 return ERR_PTR(ENOMEM); 2216 2217 rc = drm_encoder_init(dev, &dpu_enc->base, &dpu_encoder_funcs, 2218 drm_enc_mode, NULL); 2219 if (rc) { 2220 devm_kfree(dev->dev, dpu_enc); 2221 return ERR_PTR(rc); 2222 } 2223 2224 drm_encoder_helper_add(&dpu_enc->base, &dpu_encoder_helper_funcs); 2225 2226 dpu_enc->enabled = false; 2227 2228 return &dpu_enc->base; 2229 } 2230 2231 int dpu_encoder_wait_for_event(struct drm_encoder *drm_enc, 2232 enum msm_event_wait event) 2233 { 2234 int (*fn_wait)(struct dpu_encoder_phys *phys_enc) = NULL; 2235 struct dpu_encoder_virt *dpu_enc = NULL; 2236 int i, ret = 0; 2237 2238 if (!drm_enc) { 2239 DPU_ERROR("invalid encoder\n"); 2240 return -EINVAL; 2241 } 2242 dpu_enc = to_dpu_encoder_virt(drm_enc); 2243 DPU_DEBUG_ENC(dpu_enc, "\n"); 2244 2245 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 2246 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 2247 if (!phys) 2248 continue; 2249 2250 switch (event) { 2251 case MSM_ENC_COMMIT_DONE: 2252 fn_wait = phys->ops.wait_for_commit_done; 2253 break; 2254 case MSM_ENC_TX_COMPLETE: 2255 fn_wait = phys->ops.wait_for_tx_complete; 2256 break; 2257 case MSM_ENC_VBLANK: 2258 fn_wait = phys->ops.wait_for_vblank; 2259 break; 2260 default: 2261 DPU_ERROR_ENC(dpu_enc, "unknown wait event %d\n", 2262 event); 2263 return -EINVAL; 2264 }; 2265 2266 if (fn_wait) { 2267 DPU_ATRACE_BEGIN("wait_for_completion_event"); 2268 ret = fn_wait(phys); 2269 DPU_ATRACE_END("wait_for_completion_event"); 2270 if (ret) 2271 return ret; 2272 } 2273 } 2274 2275 return ret; 2276 } 2277 2278 enum dpu_intf_mode dpu_encoder_get_intf_mode(struct drm_encoder *encoder) 2279 { 2280 struct dpu_encoder_virt *dpu_enc = NULL; 2281 int i; 2282 2283 if (!encoder) { 2284 DPU_ERROR("invalid encoder\n"); 2285 return INTF_MODE_NONE; 2286 } 2287 dpu_enc = to_dpu_encoder_virt(encoder); 2288 2289 if (dpu_enc->cur_master) 2290 return dpu_enc->cur_master->intf_mode; 2291 2292 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 2293 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 2294 2295 if (phys) 2296 return phys->intf_mode; 2297 } 2298 2299 return INTF_MODE_NONE; 2300 } 2301