1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2013 Red Hat 4 * Copyright (c) 2014-2018, 2020-2021 The Linux Foundation. All rights reserved. 5 * Copyright (c) 2022-2023 Qualcomm Innovation Center, Inc. All rights reserved. 6 * 7 * Author: Rob Clark <robdclark@gmail.com> 8 */ 9 10 #define pr_fmt(fmt) "[drm:%s:%d] " fmt, __func__, __LINE__ 11 #include <linux/debugfs.h> 12 #include <linux/kthread.h> 13 #include <linux/seq_file.h> 14 15 #include <drm/drm_atomic.h> 16 #include <drm/drm_crtc.h> 17 #include <drm/drm_file.h> 18 #include <drm/drm_probe_helper.h> 19 #include <drm/drm_framebuffer.h> 20 21 #include "msm_drv.h" 22 #include "dpu_kms.h" 23 #include "dpu_hwio.h" 24 #include "dpu_hw_catalog.h" 25 #include "dpu_hw_intf.h" 26 #include "dpu_hw_ctl.h" 27 #include "dpu_hw_dspp.h" 28 #include "dpu_hw_dsc.h" 29 #include "dpu_hw_merge3d.h" 30 #include "dpu_hw_cdm.h" 31 #include "dpu_formats.h" 32 #include "dpu_encoder_phys.h" 33 #include "dpu_crtc.h" 34 #include "dpu_trace.h" 35 #include "dpu_core_irq.h" 36 #include "disp/msm_disp_snapshot.h" 37 38 #define DPU_DEBUG_ENC(e, fmt, ...) DRM_DEBUG_ATOMIC("enc%d " fmt,\ 39 (e) ? (e)->base.base.id : -1, ##__VA_ARGS__) 40 41 #define DPU_ERROR_ENC(e, fmt, ...) DPU_ERROR("enc%d " fmt,\ 42 (e) ? (e)->base.base.id : -1, ##__VA_ARGS__) 43 44 #define DPU_ERROR_ENC_RATELIMITED(e, fmt, ...) DPU_ERROR_RATELIMITED("enc%d " fmt,\ 45 (e) ? (e)->base.base.id : -1, ##__VA_ARGS__) 46 47 /* 48 * Two to anticipate panels that can do cmd/vid dynamic switching 49 * plan is to create all possible physical encoder types, and switch between 50 * them at runtime 51 */ 52 #define NUM_PHYS_ENCODER_TYPES 2 53 54 #define MAX_PHYS_ENCODERS_PER_VIRTUAL \ 55 (MAX_H_TILES_PER_DISPLAY * NUM_PHYS_ENCODER_TYPES) 56 57 #define MAX_CHANNELS_PER_ENC 2 58 59 #define IDLE_SHORT_TIMEOUT 1 60 61 #define MAX_HDISPLAY_SPLIT 1080 62 63 /* timeout in frames waiting for frame done */ 64 #define DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES 5 65 66 /** 67 * enum dpu_enc_rc_events - events for resource control state machine 68 * @DPU_ENC_RC_EVENT_KICKOFF: 69 * This event happens at NORMAL priority. 70 * Event that signals the start of the transfer. When this event is 71 * received, enable MDP/DSI core clocks. Regardless of the previous 72 * state, the resource should be in ON state at the end of this event. 73 * @DPU_ENC_RC_EVENT_FRAME_DONE: 74 * This event happens at INTERRUPT level. 75 * Event signals the end of the data transfer after the PP FRAME_DONE 76 * event. At the end of this event, a delayed work is scheduled to go to 77 * IDLE_PC state after IDLE_TIMEOUT time. 78 * @DPU_ENC_RC_EVENT_PRE_STOP: 79 * This event happens at NORMAL priority. 80 * This event, when received during the ON state, leave the RC STATE 81 * in the PRE_OFF state. It should be followed by the STOP event as 82 * part of encoder disable. 83 * If received during IDLE or OFF states, it will do nothing. 84 * @DPU_ENC_RC_EVENT_STOP: 85 * This event happens at NORMAL priority. 86 * When this event is received, disable all the MDP/DSI core clocks, and 87 * disable IRQs. It should be called from the PRE_OFF or IDLE states. 88 * IDLE is expected when IDLE_PC has run, and PRE_OFF did nothing. 89 * PRE_OFF is expected when PRE_STOP was executed during the ON state. 90 * Resource state should be in OFF at the end of the event. 91 * @DPU_ENC_RC_EVENT_ENTER_IDLE: 92 * This event happens at NORMAL priority from a work item. 93 * Event signals that there were no frame updates for IDLE_TIMEOUT time. 94 * This would disable MDP/DSI core clocks and change the resource state 95 * to IDLE. 96 */ 97 enum dpu_enc_rc_events { 98 DPU_ENC_RC_EVENT_KICKOFF = 1, 99 DPU_ENC_RC_EVENT_FRAME_DONE, 100 DPU_ENC_RC_EVENT_PRE_STOP, 101 DPU_ENC_RC_EVENT_STOP, 102 DPU_ENC_RC_EVENT_ENTER_IDLE 103 }; 104 105 /* 106 * enum dpu_enc_rc_states - states that the resource control maintains 107 * @DPU_ENC_RC_STATE_OFF: Resource is in OFF state 108 * @DPU_ENC_RC_STATE_PRE_OFF: Resource is transitioning to OFF state 109 * @DPU_ENC_RC_STATE_ON: Resource is in ON state 110 * @DPU_ENC_RC_STATE_MODESET: Resource is in modeset state 111 * @DPU_ENC_RC_STATE_IDLE: Resource is in IDLE state 112 */ 113 enum dpu_enc_rc_states { 114 DPU_ENC_RC_STATE_OFF, 115 DPU_ENC_RC_STATE_PRE_OFF, 116 DPU_ENC_RC_STATE_ON, 117 DPU_ENC_RC_STATE_IDLE 118 }; 119 120 /** 121 * struct dpu_encoder_virt - virtual encoder. Container of one or more physical 122 * encoders. Virtual encoder manages one "logical" display. Physical 123 * encoders manage one intf block, tied to a specific panel/sub-panel. 124 * Virtual encoder defers as much as possible to the physical encoders. 125 * Virtual encoder registers itself with the DRM Framework as the encoder. 126 * @base: drm_encoder base class for registration with DRM 127 * @enc_spinlock: Virtual-Encoder-Wide Spin Lock for IRQ purposes 128 * @enabled: True if the encoder is active, protected by enc_lock 129 * @commit_done_timedout: True if there has been a timeout on commit after 130 * enabling the encoder. 131 * @num_phys_encs: Actual number of physical encoders contained. 132 * @phys_encs: Container of physical encoders managed. 133 * @cur_master: Pointer to the current master in this mode. Optimization 134 * Only valid after enable. Cleared as disable. 135 * @cur_slave: As above but for the slave encoder. 136 * @hw_pp: Handle to the pingpong blocks used for the display. No. 137 * pingpong blocks can be different than num_phys_encs. 138 * @hw_dsc: Handle to the DSC blocks used for the display. 139 * @dsc_mask: Bitmask of used DSC blocks. 140 * @intfs_swapped: Whether or not the phys_enc interfaces have been swapped 141 * for partial update right-only cases, such as pingpong 142 * split where virtual pingpong does not generate IRQs 143 * @crtc: Pointer to the currently assigned crtc. Normally you 144 * would use crtc->state->encoder_mask to determine the 145 * link between encoder/crtc. However in this case we need 146 * to track crtc in the disable() hook which is called 147 * _after_ encoder_mask is cleared. 148 * @connector: If a mode is set, cached pointer to the active connector 149 * @enc_lock: Lock around physical encoder 150 * create/destroy/enable/disable 151 * @frame_busy_mask: Bitmask tracking which phys_enc we are still 152 * busy processing current command. 153 * Bit0 = phys_encs[0] etc. 154 * @crtc_frame_event_cb: callback handler for frame event 155 * @crtc_frame_event_cb_data: callback handler private data 156 * @frame_done_timeout_ms: frame done timeout in ms 157 * @frame_done_timeout_cnt: atomic counter tracking the number of frame 158 * done timeouts 159 * @frame_done_timer: watchdog timer for frame done event 160 * @disp_info: local copy of msm_display_info struct 161 * @idle_pc_supported: indicate if idle power collaps is supported 162 * @rc_lock: resource control mutex lock to protect 163 * virt encoder over various state changes 164 * @rc_state: resource controller state 165 * @delayed_off_work: delayed worker to schedule disabling of 166 * clks and resources after IDLE_TIMEOUT time. 167 * @topology: topology of the display 168 * @idle_timeout: idle timeout duration in milliseconds 169 * @wide_bus_en: wide bus is enabled on this interface 170 * @dsc: drm_dsc_config pointer, for DSC-enabled encoders 171 */ 172 struct dpu_encoder_virt { 173 struct drm_encoder base; 174 spinlock_t enc_spinlock; 175 176 bool enabled; 177 bool commit_done_timedout; 178 179 unsigned int num_phys_encs; 180 struct dpu_encoder_phys *phys_encs[MAX_PHYS_ENCODERS_PER_VIRTUAL]; 181 struct dpu_encoder_phys *cur_master; 182 struct dpu_encoder_phys *cur_slave; 183 struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC]; 184 struct dpu_hw_dsc *hw_dsc[MAX_CHANNELS_PER_ENC]; 185 186 unsigned int dsc_mask; 187 188 bool intfs_swapped; 189 190 struct drm_crtc *crtc; 191 struct drm_connector *connector; 192 193 struct mutex enc_lock; 194 DECLARE_BITMAP(frame_busy_mask, MAX_PHYS_ENCODERS_PER_VIRTUAL); 195 void (*crtc_frame_event_cb)(void *, u32 event); 196 void *crtc_frame_event_cb_data; 197 198 atomic_t frame_done_timeout_ms; 199 atomic_t frame_done_timeout_cnt; 200 struct timer_list frame_done_timer; 201 202 struct msm_display_info disp_info; 203 204 bool idle_pc_supported; 205 struct mutex rc_lock; 206 enum dpu_enc_rc_states rc_state; 207 struct delayed_work delayed_off_work; 208 struct msm_display_topology topology; 209 210 u32 idle_timeout; 211 212 bool wide_bus_en; 213 214 /* DSC configuration */ 215 struct drm_dsc_config *dsc; 216 }; 217 218 #define to_dpu_encoder_virt(x) container_of(x, struct dpu_encoder_virt, base) 219 220 static u32 dither_matrix[DITHER_MATRIX_SZ] = { 221 15, 7, 13, 5, 3, 11, 1, 9, 12, 4, 14, 6, 0, 8, 2, 10 222 }; 223 224 u32 dpu_encoder_get_drm_fmt(struct dpu_encoder_phys *phys_enc) 225 { 226 struct drm_encoder *drm_enc; 227 struct dpu_encoder_virt *dpu_enc; 228 struct drm_display_info *info; 229 struct drm_display_mode *mode; 230 231 drm_enc = phys_enc->parent; 232 dpu_enc = to_dpu_encoder_virt(drm_enc); 233 info = &dpu_enc->connector->display_info; 234 mode = &phys_enc->cached_mode; 235 236 if (drm_mode_is_420_only(info, mode)) 237 return DRM_FORMAT_YUV420; 238 239 return DRM_FORMAT_RGB888; 240 } 241 242 bool dpu_encoder_needs_periph_flush(struct dpu_encoder_phys *phys_enc) 243 { 244 struct drm_encoder *drm_enc; 245 struct dpu_encoder_virt *dpu_enc; 246 struct msm_display_info *disp_info; 247 struct msm_drm_private *priv; 248 struct drm_display_mode *mode; 249 250 drm_enc = phys_enc->parent; 251 dpu_enc = to_dpu_encoder_virt(drm_enc); 252 disp_info = &dpu_enc->disp_info; 253 priv = drm_enc->dev->dev_private; 254 mode = &phys_enc->cached_mode; 255 256 return phys_enc->hw_intf->cap->type == INTF_DP && 257 msm_dp_needs_periph_flush(priv->dp[disp_info->h_tile_instance[0]], mode); 258 } 259 260 bool dpu_encoder_is_widebus_enabled(const struct drm_encoder *drm_enc) 261 { 262 const struct dpu_encoder_virt *dpu_enc; 263 struct msm_drm_private *priv = drm_enc->dev->dev_private; 264 const struct msm_display_info *disp_info; 265 int index; 266 267 dpu_enc = to_dpu_encoder_virt(drm_enc); 268 disp_info = &dpu_enc->disp_info; 269 index = disp_info->h_tile_instance[0]; 270 271 if (disp_info->intf_type == INTF_DP) 272 return msm_dp_wide_bus_available(priv->dp[index]); 273 else if (disp_info->intf_type == INTF_DSI) 274 return msm_dsi_wide_bus_enabled(priv->dsi[index]); 275 276 return false; 277 } 278 279 bool dpu_encoder_is_dsc_enabled(const struct drm_encoder *drm_enc) 280 { 281 const struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); 282 283 return dpu_enc->dsc ? true : false; 284 } 285 286 int dpu_encoder_get_crc_values_cnt(const struct drm_encoder *drm_enc) 287 { 288 struct dpu_encoder_virt *dpu_enc; 289 int i, num_intf = 0; 290 291 dpu_enc = to_dpu_encoder_virt(drm_enc); 292 293 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 294 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 295 296 if (phys->hw_intf && phys->hw_intf->ops.setup_misr 297 && phys->hw_intf->ops.collect_misr) 298 num_intf++; 299 } 300 301 return num_intf; 302 } 303 304 void dpu_encoder_setup_misr(const struct drm_encoder *drm_enc) 305 { 306 struct dpu_encoder_virt *dpu_enc; 307 308 int i; 309 310 dpu_enc = to_dpu_encoder_virt(drm_enc); 311 312 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 313 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 314 315 if (!phys->hw_intf || !phys->hw_intf->ops.setup_misr) 316 continue; 317 318 phys->hw_intf->ops.setup_misr(phys->hw_intf); 319 } 320 } 321 322 int dpu_encoder_get_crc(const struct drm_encoder *drm_enc, u32 *crcs, int pos) 323 { 324 struct dpu_encoder_virt *dpu_enc; 325 326 int i, rc = 0, entries_added = 0; 327 328 if (!drm_enc->crtc) { 329 DRM_ERROR("no crtc found for encoder %d\n", drm_enc->index); 330 return -EINVAL; 331 } 332 333 dpu_enc = to_dpu_encoder_virt(drm_enc); 334 335 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 336 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 337 338 if (!phys->hw_intf || !phys->hw_intf->ops.collect_misr) 339 continue; 340 341 rc = phys->hw_intf->ops.collect_misr(phys->hw_intf, &crcs[pos + entries_added]); 342 if (rc) 343 return rc; 344 entries_added++; 345 } 346 347 return entries_added; 348 } 349 350 static void _dpu_encoder_setup_dither(struct dpu_hw_pingpong *hw_pp, unsigned bpc) 351 { 352 struct dpu_hw_dither_cfg dither_cfg = { 0 }; 353 354 if (!hw_pp->ops.setup_dither) 355 return; 356 357 switch (bpc) { 358 case 6: 359 dither_cfg.c0_bitdepth = 6; 360 dither_cfg.c1_bitdepth = 6; 361 dither_cfg.c2_bitdepth = 6; 362 dither_cfg.c3_bitdepth = 6; 363 dither_cfg.temporal_en = 0; 364 break; 365 default: 366 hw_pp->ops.setup_dither(hw_pp, NULL); 367 return; 368 } 369 370 memcpy(&dither_cfg.matrix, dither_matrix, 371 sizeof(u32) * DITHER_MATRIX_SZ); 372 373 hw_pp->ops.setup_dither(hw_pp, &dither_cfg); 374 } 375 376 static char *dpu_encoder_helper_get_intf_type(enum dpu_intf_mode intf_mode) 377 { 378 switch (intf_mode) { 379 case INTF_MODE_VIDEO: 380 return "INTF_MODE_VIDEO"; 381 case INTF_MODE_CMD: 382 return "INTF_MODE_CMD"; 383 case INTF_MODE_WB_BLOCK: 384 return "INTF_MODE_WB_BLOCK"; 385 case INTF_MODE_WB_LINE: 386 return "INTF_MODE_WB_LINE"; 387 default: 388 return "INTF_MODE_UNKNOWN"; 389 } 390 } 391 392 void dpu_encoder_helper_report_irq_timeout(struct dpu_encoder_phys *phys_enc, 393 enum dpu_intr_idx intr_idx) 394 { 395 DRM_ERROR("irq timeout id=%u, intf_mode=%s intf=%d wb=%d, pp=%d, intr=%d\n", 396 DRMID(phys_enc->parent), 397 dpu_encoder_helper_get_intf_type(phys_enc->intf_mode), 398 phys_enc->hw_intf ? phys_enc->hw_intf->idx - INTF_0 : -1, 399 phys_enc->hw_wb ? phys_enc->hw_wb->idx - WB_0 : -1, 400 phys_enc->hw_pp->idx - PINGPONG_0, intr_idx); 401 402 dpu_encoder_frame_done_callback(phys_enc->parent, phys_enc, 403 DPU_ENCODER_FRAME_EVENT_ERROR); 404 } 405 406 static int dpu_encoder_helper_wait_event_timeout(int32_t drm_id, 407 u32 irq_idx, struct dpu_encoder_wait_info *info); 408 409 int dpu_encoder_helper_wait_for_irq(struct dpu_encoder_phys *phys_enc, 410 unsigned int irq_idx, 411 void (*func)(void *arg), 412 struct dpu_encoder_wait_info *wait_info) 413 { 414 u32 irq_status; 415 int ret; 416 417 if (!wait_info) { 418 DPU_ERROR("invalid params\n"); 419 return -EINVAL; 420 } 421 /* note: do master / slave checking outside */ 422 423 /* return EWOULDBLOCK since we know the wait isn't necessary */ 424 if (phys_enc->enable_state == DPU_ENC_DISABLED) { 425 DRM_ERROR("encoder is disabled id=%u, callback=%ps, IRQ=[%d, %d]\n", 426 DRMID(phys_enc->parent), func, 427 DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx)); 428 return -EWOULDBLOCK; 429 } 430 431 if (irq_idx < 0) { 432 DRM_DEBUG_KMS("skip irq wait id=%u, callback=%ps\n", 433 DRMID(phys_enc->parent), func); 434 return 0; 435 } 436 437 DRM_DEBUG_KMS("id=%u, callback=%ps, IRQ=[%d, %d], pp=%d, pending_cnt=%d\n", 438 DRMID(phys_enc->parent), func, 439 DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx), phys_enc->hw_pp->idx - PINGPONG_0, 440 atomic_read(wait_info->atomic_cnt)); 441 442 ret = dpu_encoder_helper_wait_event_timeout( 443 DRMID(phys_enc->parent), 444 irq_idx, 445 wait_info); 446 447 if (ret <= 0) { 448 irq_status = dpu_core_irq_read(phys_enc->dpu_kms, irq_idx); 449 if (irq_status) { 450 unsigned long flags; 451 452 DRM_DEBUG_KMS("IRQ=[%d, %d] not triggered id=%u, callback=%ps, pp=%d, atomic_cnt=%d\n", 453 DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx), 454 DRMID(phys_enc->parent), func, 455 phys_enc->hw_pp->idx - PINGPONG_0, 456 atomic_read(wait_info->atomic_cnt)); 457 local_irq_save(flags); 458 func(phys_enc); 459 local_irq_restore(flags); 460 ret = 0; 461 } else { 462 ret = -ETIMEDOUT; 463 DRM_DEBUG_KMS("IRQ=[%d, %d] timeout id=%u, callback=%ps, pp=%d, atomic_cnt=%d\n", 464 DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx), 465 DRMID(phys_enc->parent), func, 466 phys_enc->hw_pp->idx - PINGPONG_0, 467 atomic_read(wait_info->atomic_cnt)); 468 } 469 } else { 470 ret = 0; 471 trace_dpu_enc_irq_wait_success(DRMID(phys_enc->parent), 472 func, DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx), 473 phys_enc->hw_pp->idx - PINGPONG_0, 474 atomic_read(wait_info->atomic_cnt)); 475 } 476 477 return ret; 478 } 479 480 int dpu_encoder_get_vsync_count(struct drm_encoder *drm_enc) 481 { 482 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); 483 struct dpu_encoder_phys *phys = dpu_enc ? dpu_enc->cur_master : NULL; 484 return phys ? atomic_read(&phys->vsync_cnt) : 0; 485 } 486 487 int dpu_encoder_get_linecount(struct drm_encoder *drm_enc) 488 { 489 struct dpu_encoder_virt *dpu_enc; 490 struct dpu_encoder_phys *phys; 491 int linecount = 0; 492 493 dpu_enc = to_dpu_encoder_virt(drm_enc); 494 phys = dpu_enc ? dpu_enc->cur_master : NULL; 495 496 if (phys && phys->ops.get_line_count) 497 linecount = phys->ops.get_line_count(phys); 498 499 return linecount; 500 } 501 502 void dpu_encoder_helper_split_config( 503 struct dpu_encoder_phys *phys_enc, 504 enum dpu_intf interface) 505 { 506 struct dpu_encoder_virt *dpu_enc; 507 struct split_pipe_cfg cfg = { 0 }; 508 struct dpu_hw_mdp *hw_mdptop; 509 struct msm_display_info *disp_info; 510 511 if (!phys_enc->hw_mdptop || !phys_enc->parent) { 512 DPU_ERROR("invalid arg(s), encoder %d\n", phys_enc != NULL); 513 return; 514 } 515 516 dpu_enc = to_dpu_encoder_virt(phys_enc->parent); 517 hw_mdptop = phys_enc->hw_mdptop; 518 disp_info = &dpu_enc->disp_info; 519 520 if (disp_info->intf_type != INTF_DSI) 521 return; 522 523 /** 524 * disable split modes since encoder will be operating in as the only 525 * encoder, either for the entire use case in the case of, for example, 526 * single DSI, or for this frame in the case of left/right only partial 527 * update. 528 */ 529 if (phys_enc->split_role == ENC_ROLE_SOLO) { 530 if (hw_mdptop->ops.setup_split_pipe) 531 hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg); 532 return; 533 } 534 535 cfg.en = true; 536 cfg.mode = phys_enc->intf_mode; 537 cfg.intf = interface; 538 539 if (cfg.en && phys_enc->ops.needs_single_flush && 540 phys_enc->ops.needs_single_flush(phys_enc)) 541 cfg.split_flush_en = true; 542 543 if (phys_enc->split_role == ENC_ROLE_MASTER) { 544 DPU_DEBUG_ENC(dpu_enc, "enable %d\n", cfg.en); 545 546 if (hw_mdptop->ops.setup_split_pipe) 547 hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg); 548 } 549 } 550 551 bool dpu_encoder_use_dsc_merge(struct drm_encoder *drm_enc) 552 { 553 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); 554 int i, intf_count = 0, num_dsc = 0; 555 556 for (i = 0; i < MAX_PHYS_ENCODERS_PER_VIRTUAL; i++) 557 if (dpu_enc->phys_encs[i]) 558 intf_count++; 559 560 /* See dpu_encoder_get_topology, we only support 2:2:1 topology */ 561 if (dpu_enc->dsc) 562 num_dsc = 2; 563 564 return (num_dsc > 0) && (num_dsc > intf_count); 565 } 566 567 static struct drm_dsc_config *dpu_encoder_get_dsc_config(struct drm_encoder *drm_enc) 568 { 569 struct msm_drm_private *priv = drm_enc->dev->dev_private; 570 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); 571 int index = dpu_enc->disp_info.h_tile_instance[0]; 572 573 if (dpu_enc->disp_info.intf_type == INTF_DSI) 574 return msm_dsi_get_dsc_config(priv->dsi[index]); 575 576 return NULL; 577 } 578 579 static struct msm_display_topology dpu_encoder_get_topology( 580 struct dpu_encoder_virt *dpu_enc, 581 struct dpu_kms *dpu_kms, 582 struct drm_display_mode *mode, 583 struct drm_crtc_state *crtc_state, 584 struct drm_dsc_config *dsc) 585 { 586 struct msm_display_topology topology = {0}; 587 int i, intf_count = 0; 588 589 for (i = 0; i < MAX_PHYS_ENCODERS_PER_VIRTUAL; i++) 590 if (dpu_enc->phys_encs[i]) 591 intf_count++; 592 593 /* Datapath topology selection 594 * 595 * Dual display 596 * 2 LM, 2 INTF ( Split display using 2 interfaces) 597 * 598 * Single display 599 * 1 LM, 1 INTF 600 * 2 LM, 1 INTF (stream merge to support high resolution interfaces) 601 * 602 * Add dspps to the reservation requirements if ctm is requested 603 */ 604 if (intf_count == 2) 605 topology.num_lm = 2; 606 else if (!dpu_kms->catalog->caps->has_3d_merge) 607 topology.num_lm = 1; 608 else 609 topology.num_lm = (mode->hdisplay > MAX_HDISPLAY_SPLIT) ? 2 : 1; 610 611 if (crtc_state->ctm) 612 topology.num_dspp = topology.num_lm; 613 614 topology.num_intf = intf_count; 615 616 if (dsc) { 617 /* 618 * In case of Display Stream Compression (DSC), we would use 619 * 2 DSC encoders, 2 layer mixers and 1 interface 620 * this is power optimal and can drive up to (including) 4k 621 * screens 622 */ 623 topology.num_dsc = 2; 624 topology.num_lm = 2; 625 topology.num_intf = 1; 626 } 627 628 return topology; 629 } 630 631 static int dpu_encoder_virt_atomic_check( 632 struct drm_encoder *drm_enc, 633 struct drm_crtc_state *crtc_state, 634 struct drm_connector_state *conn_state) 635 { 636 struct dpu_encoder_virt *dpu_enc; 637 struct msm_drm_private *priv; 638 struct dpu_kms *dpu_kms; 639 struct drm_display_mode *adj_mode; 640 struct msm_display_topology topology; 641 struct msm_display_info *disp_info; 642 struct dpu_global_state *global_state; 643 struct drm_framebuffer *fb; 644 struct drm_dsc_config *dsc; 645 int ret = 0; 646 647 if (!drm_enc || !crtc_state || !conn_state) { 648 DPU_ERROR("invalid arg(s), drm_enc %d, crtc/conn state %d/%d\n", 649 drm_enc != NULL, crtc_state != NULL, conn_state != NULL); 650 return -EINVAL; 651 } 652 653 dpu_enc = to_dpu_encoder_virt(drm_enc); 654 DPU_DEBUG_ENC(dpu_enc, "\n"); 655 656 priv = drm_enc->dev->dev_private; 657 disp_info = &dpu_enc->disp_info; 658 dpu_kms = to_dpu_kms(priv->kms); 659 adj_mode = &crtc_state->adjusted_mode; 660 global_state = dpu_kms_get_global_state(crtc_state->state); 661 if (IS_ERR(global_state)) 662 return PTR_ERR(global_state); 663 664 trace_dpu_enc_atomic_check(DRMID(drm_enc)); 665 666 dsc = dpu_encoder_get_dsc_config(drm_enc); 667 668 topology = dpu_encoder_get_topology(dpu_enc, dpu_kms, adj_mode, crtc_state, dsc); 669 670 /* 671 * Use CDM only for writeback or DP at the moment as other interfaces cannot handle it. 672 * If writeback itself cannot handle cdm for some reason it will fail in its atomic_check() 673 * earlier. 674 */ 675 if (disp_info->intf_type == INTF_WB && conn_state->writeback_job) { 676 fb = conn_state->writeback_job->fb; 677 678 if (fb && DPU_FORMAT_IS_YUV(to_dpu_format(msm_framebuffer_format(fb)))) 679 topology.needs_cdm = true; 680 } else if (disp_info->intf_type == INTF_DP) { 681 if (msm_dp_is_yuv_420_enabled(priv->dp[disp_info->h_tile_instance[0]], adj_mode)) 682 topology.needs_cdm = true; 683 } 684 685 if (topology.needs_cdm && !dpu_enc->cur_master->hw_cdm) 686 crtc_state->mode_changed = true; 687 else if (!topology.needs_cdm && dpu_enc->cur_master->hw_cdm) 688 crtc_state->mode_changed = true; 689 /* 690 * Release and Allocate resources on every modeset 691 * Dont allocate when active is false. 692 */ 693 if (drm_atomic_crtc_needs_modeset(crtc_state)) { 694 dpu_rm_release(global_state, drm_enc); 695 696 if (!crtc_state->active_changed || crtc_state->enable) 697 ret = dpu_rm_reserve(&dpu_kms->rm, global_state, 698 drm_enc, crtc_state, topology); 699 } 700 701 trace_dpu_enc_atomic_check_flags(DRMID(drm_enc), adj_mode->flags); 702 703 return ret; 704 } 705 706 static void _dpu_encoder_update_vsync_source(struct dpu_encoder_virt *dpu_enc, 707 struct msm_display_info *disp_info) 708 { 709 struct dpu_vsync_source_cfg vsync_cfg = { 0 }; 710 struct msm_drm_private *priv; 711 struct dpu_kms *dpu_kms; 712 struct dpu_hw_mdp *hw_mdptop; 713 struct drm_encoder *drm_enc; 714 struct dpu_encoder_phys *phys_enc; 715 int i; 716 717 if (!dpu_enc || !disp_info) { 718 DPU_ERROR("invalid param dpu_enc:%d or disp_info:%d\n", 719 dpu_enc != NULL, disp_info != NULL); 720 return; 721 } else if (dpu_enc->num_phys_encs > ARRAY_SIZE(dpu_enc->hw_pp)) { 722 DPU_ERROR("invalid num phys enc %d/%d\n", 723 dpu_enc->num_phys_encs, 724 (int) ARRAY_SIZE(dpu_enc->hw_pp)); 725 return; 726 } 727 728 drm_enc = &dpu_enc->base; 729 /* this pointers are checked in virt_enable_helper */ 730 priv = drm_enc->dev->dev_private; 731 732 dpu_kms = to_dpu_kms(priv->kms); 733 hw_mdptop = dpu_kms->hw_mdp; 734 if (!hw_mdptop) { 735 DPU_ERROR("invalid mdptop\n"); 736 return; 737 } 738 739 if (hw_mdptop->ops.setup_vsync_source && 740 disp_info->is_cmd_mode) { 741 for (i = 0; i < dpu_enc->num_phys_encs; i++) 742 vsync_cfg.ppnumber[i] = dpu_enc->hw_pp[i]->idx; 743 744 vsync_cfg.pp_count = dpu_enc->num_phys_encs; 745 vsync_cfg.frame_rate = drm_mode_vrefresh(&dpu_enc->base.crtc->state->adjusted_mode); 746 747 if (disp_info->is_te_using_watchdog_timer) 748 vsync_cfg.vsync_source = DPU_VSYNC_SOURCE_WD_TIMER_0; 749 else 750 vsync_cfg.vsync_source = DPU_VSYNC0_SOURCE_GPIO; 751 752 hw_mdptop->ops.setup_vsync_source(hw_mdptop, &vsync_cfg); 753 754 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 755 phys_enc = dpu_enc->phys_encs[i]; 756 757 if (phys_enc->has_intf_te && phys_enc->hw_intf->ops.vsync_sel) 758 phys_enc->hw_intf->ops.vsync_sel(phys_enc->hw_intf, 759 vsync_cfg.vsync_source); 760 } 761 } 762 } 763 764 static void _dpu_encoder_irq_enable(struct drm_encoder *drm_enc) 765 { 766 struct dpu_encoder_virt *dpu_enc; 767 int i; 768 769 if (!drm_enc) { 770 DPU_ERROR("invalid encoder\n"); 771 return; 772 } 773 774 dpu_enc = to_dpu_encoder_virt(drm_enc); 775 776 DPU_DEBUG_ENC(dpu_enc, "\n"); 777 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 778 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 779 780 phys->ops.irq_enable(phys); 781 } 782 } 783 784 static void _dpu_encoder_irq_disable(struct drm_encoder *drm_enc) 785 { 786 struct dpu_encoder_virt *dpu_enc; 787 int i; 788 789 if (!drm_enc) { 790 DPU_ERROR("invalid encoder\n"); 791 return; 792 } 793 794 dpu_enc = to_dpu_encoder_virt(drm_enc); 795 796 DPU_DEBUG_ENC(dpu_enc, "\n"); 797 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 798 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 799 800 phys->ops.irq_disable(phys); 801 } 802 } 803 804 static void _dpu_encoder_resource_enable(struct drm_encoder *drm_enc) 805 { 806 struct msm_drm_private *priv; 807 struct dpu_kms *dpu_kms; 808 struct dpu_encoder_virt *dpu_enc; 809 810 dpu_enc = to_dpu_encoder_virt(drm_enc); 811 priv = drm_enc->dev->dev_private; 812 dpu_kms = to_dpu_kms(priv->kms); 813 814 trace_dpu_enc_rc_enable(DRMID(drm_enc)); 815 816 if (!dpu_enc->cur_master) { 817 DPU_ERROR("encoder master not set\n"); 818 return; 819 } 820 821 /* enable DPU core clks */ 822 pm_runtime_get_sync(&dpu_kms->pdev->dev); 823 824 /* enable all the irq */ 825 _dpu_encoder_irq_enable(drm_enc); 826 } 827 828 static void _dpu_encoder_resource_disable(struct drm_encoder *drm_enc) 829 { 830 struct msm_drm_private *priv; 831 struct dpu_kms *dpu_kms; 832 struct dpu_encoder_virt *dpu_enc; 833 834 dpu_enc = to_dpu_encoder_virt(drm_enc); 835 priv = drm_enc->dev->dev_private; 836 dpu_kms = to_dpu_kms(priv->kms); 837 838 trace_dpu_enc_rc_disable(DRMID(drm_enc)); 839 840 if (!dpu_enc->cur_master) { 841 DPU_ERROR("encoder master not set\n"); 842 return; 843 } 844 845 /* disable all the irq */ 846 _dpu_encoder_irq_disable(drm_enc); 847 848 /* disable DPU core clks */ 849 pm_runtime_put_sync(&dpu_kms->pdev->dev); 850 } 851 852 static int dpu_encoder_resource_control(struct drm_encoder *drm_enc, 853 u32 sw_event) 854 { 855 struct dpu_encoder_virt *dpu_enc; 856 struct msm_drm_private *priv; 857 bool is_vid_mode = false; 858 859 if (!drm_enc || !drm_enc->dev || !drm_enc->crtc) { 860 DPU_ERROR("invalid parameters\n"); 861 return -EINVAL; 862 } 863 dpu_enc = to_dpu_encoder_virt(drm_enc); 864 priv = drm_enc->dev->dev_private; 865 is_vid_mode = !dpu_enc->disp_info.is_cmd_mode; 866 867 /* 868 * when idle_pc is not supported, process only KICKOFF, STOP and MODESET 869 * events and return early for other events (ie wb display). 870 */ 871 if (!dpu_enc->idle_pc_supported && 872 (sw_event != DPU_ENC_RC_EVENT_KICKOFF && 873 sw_event != DPU_ENC_RC_EVENT_STOP && 874 sw_event != DPU_ENC_RC_EVENT_PRE_STOP)) 875 return 0; 876 877 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, dpu_enc->idle_pc_supported, 878 dpu_enc->rc_state, "begin"); 879 880 switch (sw_event) { 881 case DPU_ENC_RC_EVENT_KICKOFF: 882 /* cancel delayed off work, if any */ 883 if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work)) 884 DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n", 885 sw_event); 886 887 mutex_lock(&dpu_enc->rc_lock); 888 889 /* return if the resource control is already in ON state */ 890 if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) { 891 DRM_DEBUG_ATOMIC("id;%u, sw_event:%d, rc in ON state\n", 892 DRMID(drm_enc), sw_event); 893 mutex_unlock(&dpu_enc->rc_lock); 894 return 0; 895 } else if (dpu_enc->rc_state != DPU_ENC_RC_STATE_OFF && 896 dpu_enc->rc_state != DPU_ENC_RC_STATE_IDLE) { 897 DRM_DEBUG_ATOMIC("id;%u, sw_event:%d, rc in state %d\n", 898 DRMID(drm_enc), sw_event, 899 dpu_enc->rc_state); 900 mutex_unlock(&dpu_enc->rc_lock); 901 return -EINVAL; 902 } 903 904 if (is_vid_mode && dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) 905 _dpu_encoder_irq_enable(drm_enc); 906 else 907 _dpu_encoder_resource_enable(drm_enc); 908 909 dpu_enc->rc_state = DPU_ENC_RC_STATE_ON; 910 911 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, 912 dpu_enc->idle_pc_supported, dpu_enc->rc_state, 913 "kickoff"); 914 915 mutex_unlock(&dpu_enc->rc_lock); 916 break; 917 918 case DPU_ENC_RC_EVENT_FRAME_DONE: 919 /* 920 * mutex lock is not used as this event happens at interrupt 921 * context. And locking is not required as, the other events 922 * like KICKOFF and STOP does a wait-for-idle before executing 923 * the resource_control 924 */ 925 if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) { 926 DRM_DEBUG_KMS("id:%d, sw_event:%d,rc:%d-unexpected\n", 927 DRMID(drm_enc), sw_event, 928 dpu_enc->rc_state); 929 return -EINVAL; 930 } 931 932 /* 933 * schedule off work item only when there are no 934 * frames pending 935 */ 936 if (dpu_crtc_frame_pending(drm_enc->crtc) > 1) { 937 DRM_DEBUG_KMS("id:%d skip schedule work\n", 938 DRMID(drm_enc)); 939 return 0; 940 } 941 942 queue_delayed_work(priv->wq, &dpu_enc->delayed_off_work, 943 msecs_to_jiffies(dpu_enc->idle_timeout)); 944 945 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, 946 dpu_enc->idle_pc_supported, dpu_enc->rc_state, 947 "frame done"); 948 break; 949 950 case DPU_ENC_RC_EVENT_PRE_STOP: 951 /* cancel delayed off work, if any */ 952 if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work)) 953 DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n", 954 sw_event); 955 956 mutex_lock(&dpu_enc->rc_lock); 957 958 if (is_vid_mode && 959 dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) { 960 _dpu_encoder_irq_enable(drm_enc); 961 } 962 /* skip if is already OFF or IDLE, resources are off already */ 963 else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF || 964 dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) { 965 DRM_DEBUG_KMS("id:%u, sw_event:%d, rc in %d state\n", 966 DRMID(drm_enc), sw_event, 967 dpu_enc->rc_state); 968 mutex_unlock(&dpu_enc->rc_lock); 969 return 0; 970 } 971 972 dpu_enc->rc_state = DPU_ENC_RC_STATE_PRE_OFF; 973 974 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, 975 dpu_enc->idle_pc_supported, dpu_enc->rc_state, 976 "pre stop"); 977 978 mutex_unlock(&dpu_enc->rc_lock); 979 break; 980 981 case DPU_ENC_RC_EVENT_STOP: 982 mutex_lock(&dpu_enc->rc_lock); 983 984 /* return if the resource control is already in OFF state */ 985 if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF) { 986 DRM_DEBUG_KMS("id: %u, sw_event:%d, rc in OFF state\n", 987 DRMID(drm_enc), sw_event); 988 mutex_unlock(&dpu_enc->rc_lock); 989 return 0; 990 } else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) { 991 DRM_ERROR("id: %u, sw_event:%d, rc in state %d\n", 992 DRMID(drm_enc), sw_event, dpu_enc->rc_state); 993 mutex_unlock(&dpu_enc->rc_lock); 994 return -EINVAL; 995 } 996 997 /** 998 * expect to arrive here only if in either idle state or pre-off 999 * and in IDLE state the resources are already disabled 1000 */ 1001 if (dpu_enc->rc_state == DPU_ENC_RC_STATE_PRE_OFF) 1002 _dpu_encoder_resource_disable(drm_enc); 1003 1004 dpu_enc->rc_state = DPU_ENC_RC_STATE_OFF; 1005 1006 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, 1007 dpu_enc->idle_pc_supported, dpu_enc->rc_state, 1008 "stop"); 1009 1010 mutex_unlock(&dpu_enc->rc_lock); 1011 break; 1012 1013 case DPU_ENC_RC_EVENT_ENTER_IDLE: 1014 mutex_lock(&dpu_enc->rc_lock); 1015 1016 if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) { 1017 DRM_ERROR("id: %u, sw_event:%d, rc:%d !ON state\n", 1018 DRMID(drm_enc), sw_event, dpu_enc->rc_state); 1019 mutex_unlock(&dpu_enc->rc_lock); 1020 return 0; 1021 } 1022 1023 /* 1024 * if we are in ON but a frame was just kicked off, 1025 * ignore the IDLE event, it's probably a stale timer event 1026 */ 1027 if (dpu_enc->frame_busy_mask[0]) { 1028 DRM_ERROR("id:%u, sw_event:%d, rc:%d frame pending\n", 1029 DRMID(drm_enc), sw_event, dpu_enc->rc_state); 1030 mutex_unlock(&dpu_enc->rc_lock); 1031 return 0; 1032 } 1033 1034 if (is_vid_mode) 1035 _dpu_encoder_irq_disable(drm_enc); 1036 else 1037 _dpu_encoder_resource_disable(drm_enc); 1038 1039 dpu_enc->rc_state = DPU_ENC_RC_STATE_IDLE; 1040 1041 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, 1042 dpu_enc->idle_pc_supported, dpu_enc->rc_state, 1043 "idle"); 1044 1045 mutex_unlock(&dpu_enc->rc_lock); 1046 break; 1047 1048 default: 1049 DRM_ERROR("id:%u, unexpected sw_event: %d\n", DRMID(drm_enc), 1050 sw_event); 1051 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, 1052 dpu_enc->idle_pc_supported, dpu_enc->rc_state, 1053 "error"); 1054 break; 1055 } 1056 1057 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, 1058 dpu_enc->idle_pc_supported, dpu_enc->rc_state, 1059 "end"); 1060 return 0; 1061 } 1062 1063 void dpu_encoder_prepare_wb_job(struct drm_encoder *drm_enc, 1064 struct drm_writeback_job *job) 1065 { 1066 struct dpu_encoder_virt *dpu_enc; 1067 int i; 1068 1069 dpu_enc = to_dpu_encoder_virt(drm_enc); 1070 1071 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1072 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 1073 1074 if (phys->ops.prepare_wb_job) 1075 phys->ops.prepare_wb_job(phys, job); 1076 1077 } 1078 } 1079 1080 void dpu_encoder_cleanup_wb_job(struct drm_encoder *drm_enc, 1081 struct drm_writeback_job *job) 1082 { 1083 struct dpu_encoder_virt *dpu_enc; 1084 int i; 1085 1086 dpu_enc = to_dpu_encoder_virt(drm_enc); 1087 1088 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1089 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 1090 1091 if (phys->ops.cleanup_wb_job) 1092 phys->ops.cleanup_wb_job(phys, job); 1093 1094 } 1095 } 1096 1097 static void dpu_encoder_virt_atomic_mode_set(struct drm_encoder *drm_enc, 1098 struct drm_crtc_state *crtc_state, 1099 struct drm_connector_state *conn_state) 1100 { 1101 struct dpu_encoder_virt *dpu_enc; 1102 struct msm_drm_private *priv; 1103 struct dpu_kms *dpu_kms; 1104 struct dpu_crtc_state *cstate; 1105 struct dpu_global_state *global_state; 1106 struct dpu_hw_blk *hw_pp[MAX_CHANNELS_PER_ENC]; 1107 struct dpu_hw_blk *hw_ctl[MAX_CHANNELS_PER_ENC]; 1108 struct dpu_hw_blk *hw_lm[MAX_CHANNELS_PER_ENC]; 1109 struct dpu_hw_blk *hw_dspp[MAX_CHANNELS_PER_ENC] = { NULL }; 1110 struct dpu_hw_blk *hw_dsc[MAX_CHANNELS_PER_ENC]; 1111 int num_lm, num_ctl, num_pp, num_dsc; 1112 unsigned int dsc_mask = 0; 1113 int i; 1114 1115 if (!drm_enc) { 1116 DPU_ERROR("invalid encoder\n"); 1117 return; 1118 } 1119 1120 dpu_enc = to_dpu_encoder_virt(drm_enc); 1121 DPU_DEBUG_ENC(dpu_enc, "\n"); 1122 1123 priv = drm_enc->dev->dev_private; 1124 dpu_kms = to_dpu_kms(priv->kms); 1125 1126 global_state = dpu_kms_get_existing_global_state(dpu_kms); 1127 if (IS_ERR_OR_NULL(global_state)) { 1128 DPU_ERROR("Failed to get global state"); 1129 return; 1130 } 1131 1132 trace_dpu_enc_mode_set(DRMID(drm_enc)); 1133 1134 /* Query resource that have been reserved in atomic check step. */ 1135 num_pp = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state, 1136 drm_enc->base.id, DPU_HW_BLK_PINGPONG, hw_pp, 1137 ARRAY_SIZE(hw_pp)); 1138 num_ctl = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state, 1139 drm_enc->base.id, DPU_HW_BLK_CTL, hw_ctl, ARRAY_SIZE(hw_ctl)); 1140 num_lm = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state, 1141 drm_enc->base.id, DPU_HW_BLK_LM, hw_lm, ARRAY_SIZE(hw_lm)); 1142 dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state, 1143 drm_enc->base.id, DPU_HW_BLK_DSPP, hw_dspp, 1144 ARRAY_SIZE(hw_dspp)); 1145 1146 for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) 1147 dpu_enc->hw_pp[i] = i < num_pp ? to_dpu_hw_pingpong(hw_pp[i]) 1148 : NULL; 1149 1150 num_dsc = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state, 1151 drm_enc->base.id, DPU_HW_BLK_DSC, 1152 hw_dsc, ARRAY_SIZE(hw_dsc)); 1153 for (i = 0; i < num_dsc; i++) { 1154 dpu_enc->hw_dsc[i] = to_dpu_hw_dsc(hw_dsc[i]); 1155 dsc_mask |= BIT(dpu_enc->hw_dsc[i]->idx - DSC_0); 1156 } 1157 1158 dpu_enc->dsc_mask = dsc_mask; 1159 1160 if ((dpu_enc->disp_info.intf_type == INTF_WB && conn_state->writeback_job) || 1161 dpu_enc->disp_info.intf_type == INTF_DP) { 1162 struct dpu_hw_blk *hw_cdm = NULL; 1163 1164 dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state, 1165 drm_enc->base.id, DPU_HW_BLK_CDM, 1166 &hw_cdm, 1); 1167 dpu_enc->cur_master->hw_cdm = hw_cdm ? to_dpu_hw_cdm(hw_cdm) : NULL; 1168 } 1169 1170 cstate = to_dpu_crtc_state(crtc_state); 1171 1172 for (i = 0; i < num_lm; i++) { 1173 int ctl_idx = (i < num_ctl) ? i : (num_ctl-1); 1174 1175 cstate->mixers[i].hw_lm = to_dpu_hw_mixer(hw_lm[i]); 1176 cstate->mixers[i].lm_ctl = to_dpu_hw_ctl(hw_ctl[ctl_idx]); 1177 cstate->mixers[i].hw_dspp = to_dpu_hw_dspp(hw_dspp[i]); 1178 } 1179 1180 cstate->num_mixers = num_lm; 1181 1182 dpu_enc->connector = conn_state->connector; 1183 1184 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1185 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 1186 1187 if (!dpu_enc->hw_pp[i]) { 1188 DPU_ERROR_ENC(dpu_enc, 1189 "no pp block assigned at idx: %d\n", i); 1190 return; 1191 } 1192 1193 if (!hw_ctl[i]) { 1194 DPU_ERROR_ENC(dpu_enc, 1195 "no ctl block assigned at idx: %d\n", i); 1196 return; 1197 } 1198 1199 phys->hw_pp = dpu_enc->hw_pp[i]; 1200 phys->hw_ctl = to_dpu_hw_ctl(hw_ctl[i]); 1201 1202 phys->cached_mode = crtc_state->adjusted_mode; 1203 } 1204 } 1205 1206 static void _dpu_encoder_virt_enable_helper(struct drm_encoder *drm_enc) 1207 { 1208 struct dpu_encoder_virt *dpu_enc = NULL; 1209 int i; 1210 1211 if (!drm_enc || !drm_enc->dev) { 1212 DPU_ERROR("invalid parameters\n"); 1213 return; 1214 } 1215 1216 dpu_enc = to_dpu_encoder_virt(drm_enc); 1217 if (!dpu_enc || !dpu_enc->cur_master) { 1218 DPU_ERROR("invalid dpu encoder/master\n"); 1219 return; 1220 } 1221 1222 1223 if (dpu_enc->disp_info.intf_type == INTF_DP && 1224 dpu_enc->cur_master->hw_mdptop && 1225 dpu_enc->cur_master->hw_mdptop->ops.intf_audio_select) 1226 dpu_enc->cur_master->hw_mdptop->ops.intf_audio_select( 1227 dpu_enc->cur_master->hw_mdptop); 1228 1229 _dpu_encoder_update_vsync_source(dpu_enc, &dpu_enc->disp_info); 1230 1231 if (dpu_enc->disp_info.intf_type == INTF_DSI && 1232 !WARN_ON(dpu_enc->num_phys_encs == 0)) { 1233 unsigned bpc = dpu_enc->connector->display_info.bpc; 1234 for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) { 1235 if (!dpu_enc->hw_pp[i]) 1236 continue; 1237 _dpu_encoder_setup_dither(dpu_enc->hw_pp[i], bpc); 1238 } 1239 } 1240 } 1241 1242 void dpu_encoder_virt_runtime_resume(struct drm_encoder *drm_enc) 1243 { 1244 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); 1245 1246 mutex_lock(&dpu_enc->enc_lock); 1247 1248 if (!dpu_enc->enabled) 1249 goto out; 1250 1251 if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.restore) 1252 dpu_enc->cur_slave->ops.restore(dpu_enc->cur_slave); 1253 if (dpu_enc->cur_master && dpu_enc->cur_master->ops.restore) 1254 dpu_enc->cur_master->ops.restore(dpu_enc->cur_master); 1255 1256 _dpu_encoder_virt_enable_helper(drm_enc); 1257 1258 out: 1259 mutex_unlock(&dpu_enc->enc_lock); 1260 } 1261 1262 static void dpu_encoder_virt_atomic_enable(struct drm_encoder *drm_enc, 1263 struct drm_atomic_state *state) 1264 { 1265 struct dpu_encoder_virt *dpu_enc = NULL; 1266 int ret = 0; 1267 struct drm_display_mode *cur_mode = NULL; 1268 1269 dpu_enc = to_dpu_encoder_virt(drm_enc); 1270 dpu_enc->dsc = dpu_encoder_get_dsc_config(drm_enc); 1271 1272 atomic_set(&dpu_enc->frame_done_timeout_cnt, 0); 1273 1274 mutex_lock(&dpu_enc->enc_lock); 1275 1276 dpu_enc->commit_done_timedout = false; 1277 1278 cur_mode = &dpu_enc->base.crtc->state->adjusted_mode; 1279 1280 dpu_enc->wide_bus_en = dpu_encoder_is_widebus_enabled(drm_enc); 1281 1282 trace_dpu_enc_enable(DRMID(drm_enc), cur_mode->hdisplay, 1283 cur_mode->vdisplay); 1284 1285 /* always enable slave encoder before master */ 1286 if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.enable) 1287 dpu_enc->cur_slave->ops.enable(dpu_enc->cur_slave); 1288 1289 if (dpu_enc->cur_master && dpu_enc->cur_master->ops.enable) 1290 dpu_enc->cur_master->ops.enable(dpu_enc->cur_master); 1291 1292 ret = dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF); 1293 if (ret) { 1294 DPU_ERROR_ENC(dpu_enc, "dpu resource control failed: %d\n", 1295 ret); 1296 goto out; 1297 } 1298 1299 _dpu_encoder_virt_enable_helper(drm_enc); 1300 1301 dpu_enc->enabled = true; 1302 1303 out: 1304 mutex_unlock(&dpu_enc->enc_lock); 1305 } 1306 1307 static void dpu_encoder_virt_atomic_disable(struct drm_encoder *drm_enc, 1308 struct drm_atomic_state *state) 1309 { 1310 struct dpu_encoder_virt *dpu_enc = NULL; 1311 struct drm_crtc *crtc; 1312 struct drm_crtc_state *old_state = NULL; 1313 int i = 0; 1314 1315 dpu_enc = to_dpu_encoder_virt(drm_enc); 1316 DPU_DEBUG_ENC(dpu_enc, "\n"); 1317 1318 crtc = drm_atomic_get_old_crtc_for_encoder(state, drm_enc); 1319 if (crtc) 1320 old_state = drm_atomic_get_old_crtc_state(state, crtc); 1321 1322 /* 1323 * The encoder is already disabled if self refresh mode was set earlier, 1324 * in the old_state for the corresponding crtc. 1325 */ 1326 if (old_state && old_state->self_refresh_active) 1327 return; 1328 1329 mutex_lock(&dpu_enc->enc_lock); 1330 dpu_enc->enabled = false; 1331 1332 trace_dpu_enc_disable(DRMID(drm_enc)); 1333 1334 /* wait for idle */ 1335 dpu_encoder_wait_for_tx_complete(drm_enc); 1336 1337 dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_PRE_STOP); 1338 1339 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1340 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 1341 1342 if (phys->ops.disable) 1343 phys->ops.disable(phys); 1344 } 1345 1346 1347 /* after phys waits for frame-done, should be no more frames pending */ 1348 if (atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) { 1349 DPU_ERROR("enc%d timeout pending\n", drm_enc->base.id); 1350 del_timer_sync(&dpu_enc->frame_done_timer); 1351 } 1352 1353 dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_STOP); 1354 1355 dpu_enc->connector = NULL; 1356 1357 DPU_DEBUG_ENC(dpu_enc, "encoder disabled\n"); 1358 1359 mutex_unlock(&dpu_enc->enc_lock); 1360 } 1361 1362 static struct dpu_hw_intf *dpu_encoder_get_intf(const struct dpu_mdss_cfg *catalog, 1363 struct dpu_rm *dpu_rm, 1364 enum dpu_intf_type type, u32 controller_id) 1365 { 1366 int i = 0; 1367 1368 if (type == INTF_WB) 1369 return NULL; 1370 1371 for (i = 0; i < catalog->intf_count; i++) { 1372 if (catalog->intf[i].type == type 1373 && catalog->intf[i].controller_id == controller_id) { 1374 return dpu_rm_get_intf(dpu_rm, catalog->intf[i].id); 1375 } 1376 } 1377 1378 return NULL; 1379 } 1380 1381 void dpu_encoder_vblank_callback(struct drm_encoder *drm_enc, 1382 struct dpu_encoder_phys *phy_enc) 1383 { 1384 struct dpu_encoder_virt *dpu_enc = NULL; 1385 unsigned long lock_flags; 1386 1387 if (!drm_enc || !phy_enc) 1388 return; 1389 1390 DPU_ATRACE_BEGIN("encoder_vblank_callback"); 1391 dpu_enc = to_dpu_encoder_virt(drm_enc); 1392 1393 atomic_inc(&phy_enc->vsync_cnt); 1394 1395 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags); 1396 if (dpu_enc->crtc) 1397 dpu_crtc_vblank_callback(dpu_enc->crtc); 1398 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags); 1399 1400 DPU_ATRACE_END("encoder_vblank_callback"); 1401 } 1402 1403 void dpu_encoder_underrun_callback(struct drm_encoder *drm_enc, 1404 struct dpu_encoder_phys *phy_enc) 1405 { 1406 if (!phy_enc) 1407 return; 1408 1409 DPU_ATRACE_BEGIN("encoder_underrun_callback"); 1410 atomic_inc(&phy_enc->underrun_cnt); 1411 1412 /* trigger dump only on the first underrun */ 1413 if (atomic_read(&phy_enc->underrun_cnt) == 1) 1414 msm_disp_snapshot_state(drm_enc->dev); 1415 1416 trace_dpu_enc_underrun_cb(DRMID(drm_enc), 1417 atomic_read(&phy_enc->underrun_cnt)); 1418 DPU_ATRACE_END("encoder_underrun_callback"); 1419 } 1420 1421 void dpu_encoder_assign_crtc(struct drm_encoder *drm_enc, struct drm_crtc *crtc) 1422 { 1423 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); 1424 unsigned long lock_flags; 1425 1426 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags); 1427 /* crtc should always be cleared before re-assigning */ 1428 WARN_ON(crtc && dpu_enc->crtc); 1429 dpu_enc->crtc = crtc; 1430 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags); 1431 } 1432 1433 void dpu_encoder_toggle_vblank_for_crtc(struct drm_encoder *drm_enc, 1434 struct drm_crtc *crtc, bool enable) 1435 { 1436 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); 1437 unsigned long lock_flags; 1438 int i; 1439 1440 trace_dpu_enc_vblank_cb(DRMID(drm_enc), enable); 1441 1442 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags); 1443 if (dpu_enc->crtc != crtc) { 1444 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags); 1445 return; 1446 } 1447 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags); 1448 1449 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1450 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 1451 1452 if (phys->ops.control_vblank_irq) 1453 phys->ops.control_vblank_irq(phys, enable); 1454 } 1455 } 1456 1457 void dpu_encoder_register_frame_event_callback(struct drm_encoder *drm_enc, 1458 void (*frame_event_cb)(void *, u32 event), 1459 void *frame_event_cb_data) 1460 { 1461 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); 1462 unsigned long lock_flags; 1463 bool enable; 1464 1465 enable = frame_event_cb ? true : false; 1466 1467 if (!drm_enc) { 1468 DPU_ERROR("invalid encoder\n"); 1469 return; 1470 } 1471 trace_dpu_enc_frame_event_cb(DRMID(drm_enc), enable); 1472 1473 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags); 1474 dpu_enc->crtc_frame_event_cb = frame_event_cb; 1475 dpu_enc->crtc_frame_event_cb_data = frame_event_cb_data; 1476 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags); 1477 } 1478 1479 void dpu_encoder_frame_done_callback( 1480 struct drm_encoder *drm_enc, 1481 struct dpu_encoder_phys *ready_phys, u32 event) 1482 { 1483 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); 1484 unsigned int i; 1485 1486 if (event & (DPU_ENCODER_FRAME_EVENT_DONE 1487 | DPU_ENCODER_FRAME_EVENT_ERROR 1488 | DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)) { 1489 1490 if (!dpu_enc->frame_busy_mask[0]) { 1491 /** 1492 * suppress frame_done without waiter, 1493 * likely autorefresh 1494 */ 1495 trace_dpu_enc_frame_done_cb_not_busy(DRMID(drm_enc), event, 1496 dpu_encoder_helper_get_intf_type(ready_phys->intf_mode), 1497 ready_phys->hw_intf ? ready_phys->hw_intf->idx : -1, 1498 ready_phys->hw_wb ? ready_phys->hw_wb->idx : -1); 1499 return; 1500 } 1501 1502 /* One of the physical encoders has become idle */ 1503 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1504 if (dpu_enc->phys_encs[i] == ready_phys) { 1505 trace_dpu_enc_frame_done_cb(DRMID(drm_enc), i, 1506 dpu_enc->frame_busy_mask[0]); 1507 clear_bit(i, dpu_enc->frame_busy_mask); 1508 } 1509 } 1510 1511 if (!dpu_enc->frame_busy_mask[0]) { 1512 atomic_set(&dpu_enc->frame_done_timeout_ms, 0); 1513 del_timer(&dpu_enc->frame_done_timer); 1514 1515 dpu_encoder_resource_control(drm_enc, 1516 DPU_ENC_RC_EVENT_FRAME_DONE); 1517 1518 if (dpu_enc->crtc_frame_event_cb) 1519 dpu_enc->crtc_frame_event_cb( 1520 dpu_enc->crtc_frame_event_cb_data, 1521 event); 1522 } 1523 } else { 1524 if (dpu_enc->crtc_frame_event_cb) 1525 dpu_enc->crtc_frame_event_cb( 1526 dpu_enc->crtc_frame_event_cb_data, event); 1527 } 1528 } 1529 1530 static void dpu_encoder_off_work(struct work_struct *work) 1531 { 1532 struct dpu_encoder_virt *dpu_enc = container_of(work, 1533 struct dpu_encoder_virt, delayed_off_work.work); 1534 1535 dpu_encoder_resource_control(&dpu_enc->base, 1536 DPU_ENC_RC_EVENT_ENTER_IDLE); 1537 1538 dpu_encoder_frame_done_callback(&dpu_enc->base, NULL, 1539 DPU_ENCODER_FRAME_EVENT_IDLE); 1540 } 1541 1542 /** 1543 * _dpu_encoder_trigger_flush - trigger flush for a physical encoder 1544 * @drm_enc: Pointer to drm encoder structure 1545 * @phys: Pointer to physical encoder structure 1546 * @extra_flush_bits: Additional bit mask to include in flush trigger 1547 */ 1548 static void _dpu_encoder_trigger_flush(struct drm_encoder *drm_enc, 1549 struct dpu_encoder_phys *phys, uint32_t extra_flush_bits) 1550 { 1551 struct dpu_hw_ctl *ctl; 1552 int pending_kickoff_cnt; 1553 u32 ret = UINT_MAX; 1554 1555 if (!phys->hw_pp) { 1556 DPU_ERROR("invalid pingpong hw\n"); 1557 return; 1558 } 1559 1560 ctl = phys->hw_ctl; 1561 if (!ctl->ops.trigger_flush) { 1562 DPU_ERROR("missing trigger cb\n"); 1563 return; 1564 } 1565 1566 pending_kickoff_cnt = dpu_encoder_phys_inc_pending(phys); 1567 1568 if (extra_flush_bits && ctl->ops.update_pending_flush) 1569 ctl->ops.update_pending_flush(ctl, extra_flush_bits); 1570 1571 ctl->ops.trigger_flush(ctl); 1572 1573 if (ctl->ops.get_pending_flush) 1574 ret = ctl->ops.get_pending_flush(ctl); 1575 1576 trace_dpu_enc_trigger_flush(DRMID(drm_enc), 1577 dpu_encoder_helper_get_intf_type(phys->intf_mode), 1578 phys->hw_intf ? phys->hw_intf->idx : -1, 1579 phys->hw_wb ? phys->hw_wb->idx : -1, 1580 pending_kickoff_cnt, ctl->idx, 1581 extra_flush_bits, ret); 1582 } 1583 1584 /** 1585 * _dpu_encoder_trigger_start - trigger start for a physical encoder 1586 * @phys: Pointer to physical encoder structure 1587 */ 1588 static void _dpu_encoder_trigger_start(struct dpu_encoder_phys *phys) 1589 { 1590 if (!phys) { 1591 DPU_ERROR("invalid argument(s)\n"); 1592 return; 1593 } 1594 1595 if (!phys->hw_pp) { 1596 DPU_ERROR("invalid pingpong hw\n"); 1597 return; 1598 } 1599 1600 if (phys->ops.trigger_start && phys->enable_state != DPU_ENC_DISABLED) 1601 phys->ops.trigger_start(phys); 1602 } 1603 1604 void dpu_encoder_helper_trigger_start(struct dpu_encoder_phys *phys_enc) 1605 { 1606 struct dpu_hw_ctl *ctl; 1607 1608 ctl = phys_enc->hw_ctl; 1609 if (ctl->ops.trigger_start) { 1610 ctl->ops.trigger_start(ctl); 1611 trace_dpu_enc_trigger_start(DRMID(phys_enc->parent), ctl->idx); 1612 } 1613 } 1614 1615 static int dpu_encoder_helper_wait_event_timeout( 1616 int32_t drm_id, 1617 unsigned int irq_idx, 1618 struct dpu_encoder_wait_info *info) 1619 { 1620 int rc = 0; 1621 s64 expected_time = ktime_to_ms(ktime_get()) + info->timeout_ms; 1622 s64 jiffies = msecs_to_jiffies(info->timeout_ms); 1623 s64 time; 1624 1625 do { 1626 rc = wait_event_timeout(*(info->wq), 1627 atomic_read(info->atomic_cnt) == 0, jiffies); 1628 time = ktime_to_ms(ktime_get()); 1629 1630 trace_dpu_enc_wait_event_timeout(drm_id, 1631 DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx), 1632 rc, time, 1633 expected_time, 1634 atomic_read(info->atomic_cnt)); 1635 /* If we timed out, counter is valid and time is less, wait again */ 1636 } while (atomic_read(info->atomic_cnt) && (rc == 0) && 1637 (time < expected_time)); 1638 1639 return rc; 1640 } 1641 1642 static void dpu_encoder_helper_hw_reset(struct dpu_encoder_phys *phys_enc) 1643 { 1644 struct dpu_encoder_virt *dpu_enc; 1645 struct dpu_hw_ctl *ctl; 1646 int rc; 1647 struct drm_encoder *drm_enc; 1648 1649 dpu_enc = to_dpu_encoder_virt(phys_enc->parent); 1650 ctl = phys_enc->hw_ctl; 1651 drm_enc = phys_enc->parent; 1652 1653 if (!ctl->ops.reset) 1654 return; 1655 1656 DRM_DEBUG_KMS("id:%u ctl %d reset\n", DRMID(drm_enc), 1657 ctl->idx); 1658 1659 rc = ctl->ops.reset(ctl); 1660 if (rc) { 1661 DPU_ERROR_ENC(dpu_enc, "ctl %d reset failure\n", ctl->idx); 1662 msm_disp_snapshot_state(drm_enc->dev); 1663 } 1664 1665 phys_enc->enable_state = DPU_ENC_ENABLED; 1666 } 1667 1668 /** 1669 * _dpu_encoder_kickoff_phys - handle physical encoder kickoff 1670 * Iterate through the physical encoders and perform consolidated flush 1671 * and/or control start triggering as needed. This is done in the virtual 1672 * encoder rather than the individual physical ones in order to handle 1673 * use cases that require visibility into multiple physical encoders at 1674 * a time. 1675 * @dpu_enc: Pointer to virtual encoder structure 1676 */ 1677 static void _dpu_encoder_kickoff_phys(struct dpu_encoder_virt *dpu_enc) 1678 { 1679 struct dpu_hw_ctl *ctl; 1680 uint32_t i, pending_flush; 1681 unsigned long lock_flags; 1682 1683 pending_flush = 0x0; 1684 1685 /* update pending counts and trigger kickoff ctl flush atomically */ 1686 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags); 1687 1688 /* don't perform flush/start operations for slave encoders */ 1689 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1690 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 1691 1692 if (phys->enable_state == DPU_ENC_DISABLED) 1693 continue; 1694 1695 ctl = phys->hw_ctl; 1696 1697 /* 1698 * This is cleared in frame_done worker, which isn't invoked 1699 * for async commits. So don't set this for async, since it'll 1700 * roll over to the next commit. 1701 */ 1702 if (phys->split_role != ENC_ROLE_SLAVE) 1703 set_bit(i, dpu_enc->frame_busy_mask); 1704 1705 if (!phys->ops.needs_single_flush || 1706 !phys->ops.needs_single_flush(phys)) 1707 _dpu_encoder_trigger_flush(&dpu_enc->base, phys, 0x0); 1708 else if (ctl->ops.get_pending_flush) 1709 pending_flush |= ctl->ops.get_pending_flush(ctl); 1710 } 1711 1712 /* for split flush, combine pending flush masks and send to master */ 1713 if (pending_flush && dpu_enc->cur_master) { 1714 _dpu_encoder_trigger_flush( 1715 &dpu_enc->base, 1716 dpu_enc->cur_master, 1717 pending_flush); 1718 } 1719 1720 _dpu_encoder_trigger_start(dpu_enc->cur_master); 1721 1722 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags); 1723 } 1724 1725 void dpu_encoder_trigger_kickoff_pending(struct drm_encoder *drm_enc) 1726 { 1727 struct dpu_encoder_virt *dpu_enc; 1728 struct dpu_encoder_phys *phys; 1729 unsigned int i; 1730 struct dpu_hw_ctl *ctl; 1731 struct msm_display_info *disp_info; 1732 1733 if (!drm_enc) { 1734 DPU_ERROR("invalid encoder\n"); 1735 return; 1736 } 1737 dpu_enc = to_dpu_encoder_virt(drm_enc); 1738 disp_info = &dpu_enc->disp_info; 1739 1740 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1741 phys = dpu_enc->phys_encs[i]; 1742 1743 ctl = phys->hw_ctl; 1744 if (ctl->ops.clear_pending_flush) 1745 ctl->ops.clear_pending_flush(ctl); 1746 1747 /* update only for command mode primary ctl */ 1748 if ((phys == dpu_enc->cur_master) && 1749 disp_info->is_cmd_mode 1750 && ctl->ops.trigger_pending) 1751 ctl->ops.trigger_pending(ctl); 1752 } 1753 } 1754 1755 static u32 _dpu_encoder_calculate_linetime(struct dpu_encoder_virt *dpu_enc, 1756 struct drm_display_mode *mode) 1757 { 1758 u64 pclk_rate; 1759 u32 pclk_period; 1760 u32 line_time; 1761 1762 /* 1763 * For linetime calculation, only operate on master encoder. 1764 */ 1765 if (!dpu_enc->cur_master) 1766 return 0; 1767 1768 if (!dpu_enc->cur_master->ops.get_line_count) { 1769 DPU_ERROR("get_line_count function not defined\n"); 1770 return 0; 1771 } 1772 1773 pclk_rate = mode->clock; /* pixel clock in kHz */ 1774 if (pclk_rate == 0) { 1775 DPU_ERROR("pclk is 0, cannot calculate line time\n"); 1776 return 0; 1777 } 1778 1779 pclk_period = DIV_ROUND_UP_ULL(1000000000ull, pclk_rate); 1780 if (pclk_period == 0) { 1781 DPU_ERROR("pclk period is 0\n"); 1782 return 0; 1783 } 1784 1785 /* 1786 * Line time calculation based on Pixel clock and HTOTAL. 1787 * Final unit is in ns. 1788 */ 1789 line_time = (pclk_period * mode->htotal) / 1000; 1790 if (line_time == 0) { 1791 DPU_ERROR("line time calculation is 0\n"); 1792 return 0; 1793 } 1794 1795 DPU_DEBUG_ENC(dpu_enc, 1796 "clk_rate=%lldkHz, clk_period=%d, linetime=%dns\n", 1797 pclk_rate, pclk_period, line_time); 1798 1799 return line_time; 1800 } 1801 1802 int dpu_encoder_vsync_time(struct drm_encoder *drm_enc, ktime_t *wakeup_time) 1803 { 1804 struct drm_display_mode *mode; 1805 struct dpu_encoder_virt *dpu_enc; 1806 u32 cur_line; 1807 u32 line_time; 1808 u32 vtotal, time_to_vsync; 1809 ktime_t cur_time; 1810 1811 dpu_enc = to_dpu_encoder_virt(drm_enc); 1812 1813 if (!drm_enc->crtc || !drm_enc->crtc->state) { 1814 DPU_ERROR("crtc/crtc state object is NULL\n"); 1815 return -EINVAL; 1816 } 1817 mode = &drm_enc->crtc->state->adjusted_mode; 1818 1819 line_time = _dpu_encoder_calculate_linetime(dpu_enc, mode); 1820 if (!line_time) 1821 return -EINVAL; 1822 1823 cur_line = dpu_enc->cur_master->ops.get_line_count(dpu_enc->cur_master); 1824 1825 vtotal = mode->vtotal; 1826 if (cur_line >= vtotal) 1827 time_to_vsync = line_time * vtotal; 1828 else 1829 time_to_vsync = line_time * (vtotal - cur_line); 1830 1831 if (time_to_vsync == 0) { 1832 DPU_ERROR("time to vsync should not be zero, vtotal=%d\n", 1833 vtotal); 1834 return -EINVAL; 1835 } 1836 1837 cur_time = ktime_get(); 1838 *wakeup_time = ktime_add_ns(cur_time, time_to_vsync); 1839 1840 DPU_DEBUG_ENC(dpu_enc, 1841 "cur_line=%u vtotal=%u time_to_vsync=%u, cur_time=%lld, wakeup_time=%lld\n", 1842 cur_line, vtotal, time_to_vsync, 1843 ktime_to_ms(cur_time), 1844 ktime_to_ms(*wakeup_time)); 1845 return 0; 1846 } 1847 1848 static u32 1849 dpu_encoder_dsc_initial_line_calc(struct drm_dsc_config *dsc, 1850 u32 enc_ip_width) 1851 { 1852 int ssm_delay, total_pixels, soft_slice_per_enc; 1853 1854 soft_slice_per_enc = enc_ip_width / dsc->slice_width; 1855 1856 /* 1857 * minimum number of initial line pixels is a sum of: 1858 * 1. sub-stream multiplexer delay (83 groups for 8bpc, 1859 * 91 for 10 bpc) * 3 1860 * 2. for two soft slice cases, add extra sub-stream multiplexer * 3 1861 * 3. the initial xmit delay 1862 * 4. total pipeline delay through the "lock step" of encoder (47) 1863 * 5. 6 additional pixels as the output of the rate buffer is 1864 * 48 bits wide 1865 */ 1866 ssm_delay = ((dsc->bits_per_component < 10) ? 84 : 92); 1867 total_pixels = ssm_delay * 3 + dsc->initial_xmit_delay + 47; 1868 if (soft_slice_per_enc > 1) 1869 total_pixels += (ssm_delay * 3); 1870 return DIV_ROUND_UP(total_pixels, dsc->slice_width); 1871 } 1872 1873 static void dpu_encoder_dsc_pipe_cfg(struct dpu_hw_ctl *ctl, 1874 struct dpu_hw_dsc *hw_dsc, 1875 struct dpu_hw_pingpong *hw_pp, 1876 struct drm_dsc_config *dsc, 1877 u32 common_mode, 1878 u32 initial_lines) 1879 { 1880 if (hw_dsc->ops.dsc_config) 1881 hw_dsc->ops.dsc_config(hw_dsc, dsc, common_mode, initial_lines); 1882 1883 if (hw_dsc->ops.dsc_config_thresh) 1884 hw_dsc->ops.dsc_config_thresh(hw_dsc, dsc); 1885 1886 if (hw_pp->ops.setup_dsc) 1887 hw_pp->ops.setup_dsc(hw_pp); 1888 1889 if (hw_dsc->ops.dsc_bind_pingpong_blk) 1890 hw_dsc->ops.dsc_bind_pingpong_blk(hw_dsc, hw_pp->idx); 1891 1892 if (hw_pp->ops.enable_dsc) 1893 hw_pp->ops.enable_dsc(hw_pp); 1894 1895 if (ctl->ops.update_pending_flush_dsc) 1896 ctl->ops.update_pending_flush_dsc(ctl, hw_dsc->idx); 1897 } 1898 1899 static void dpu_encoder_prep_dsc(struct dpu_encoder_virt *dpu_enc, 1900 struct drm_dsc_config *dsc) 1901 { 1902 /* coding only for 2LM, 2enc, 1 dsc config */ 1903 struct dpu_encoder_phys *enc_master = dpu_enc->cur_master; 1904 struct dpu_hw_ctl *ctl = enc_master->hw_ctl; 1905 struct dpu_hw_dsc *hw_dsc[MAX_CHANNELS_PER_ENC]; 1906 struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC]; 1907 int this_frame_slices; 1908 int intf_ip_w, enc_ip_w; 1909 int dsc_common_mode; 1910 int pic_width; 1911 u32 initial_lines; 1912 int i; 1913 1914 for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) { 1915 hw_pp[i] = dpu_enc->hw_pp[i]; 1916 hw_dsc[i] = dpu_enc->hw_dsc[i]; 1917 1918 if (!hw_pp[i] || !hw_dsc[i]) { 1919 DPU_ERROR_ENC(dpu_enc, "invalid params for DSC\n"); 1920 return; 1921 } 1922 } 1923 1924 dsc_common_mode = 0; 1925 pic_width = dsc->pic_width; 1926 1927 dsc_common_mode = DSC_MODE_SPLIT_PANEL; 1928 if (dpu_encoder_use_dsc_merge(enc_master->parent)) 1929 dsc_common_mode |= DSC_MODE_MULTIPLEX; 1930 if (enc_master->intf_mode == INTF_MODE_VIDEO) 1931 dsc_common_mode |= DSC_MODE_VIDEO; 1932 1933 this_frame_slices = pic_width / dsc->slice_width; 1934 intf_ip_w = this_frame_slices * dsc->slice_width; 1935 1936 /* 1937 * dsc merge case: when using 2 encoders for the same stream, 1938 * no. of slices need to be same on both the encoders. 1939 */ 1940 enc_ip_w = intf_ip_w / 2; 1941 initial_lines = dpu_encoder_dsc_initial_line_calc(dsc, enc_ip_w); 1942 1943 for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) 1944 dpu_encoder_dsc_pipe_cfg(ctl, hw_dsc[i], hw_pp[i], 1945 dsc, dsc_common_mode, initial_lines); 1946 } 1947 1948 void dpu_encoder_prepare_for_kickoff(struct drm_encoder *drm_enc) 1949 { 1950 struct dpu_encoder_virt *dpu_enc; 1951 struct dpu_encoder_phys *phys; 1952 bool needs_hw_reset = false; 1953 unsigned int i; 1954 1955 dpu_enc = to_dpu_encoder_virt(drm_enc); 1956 1957 trace_dpu_enc_prepare_kickoff(DRMID(drm_enc)); 1958 1959 /* prepare for next kickoff, may include waiting on previous kickoff */ 1960 DPU_ATRACE_BEGIN("enc_prepare_for_kickoff"); 1961 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1962 phys = dpu_enc->phys_encs[i]; 1963 if (phys->ops.prepare_for_kickoff) 1964 phys->ops.prepare_for_kickoff(phys); 1965 if (phys->enable_state == DPU_ENC_ERR_NEEDS_HW_RESET) 1966 needs_hw_reset = true; 1967 } 1968 DPU_ATRACE_END("enc_prepare_for_kickoff"); 1969 1970 dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF); 1971 1972 /* if any phys needs reset, reset all phys, in-order */ 1973 if (needs_hw_reset) { 1974 trace_dpu_enc_prepare_kickoff_reset(DRMID(drm_enc)); 1975 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1976 dpu_encoder_helper_hw_reset(dpu_enc->phys_encs[i]); 1977 } 1978 } 1979 1980 if (dpu_enc->dsc) 1981 dpu_encoder_prep_dsc(dpu_enc, dpu_enc->dsc); 1982 } 1983 1984 bool dpu_encoder_is_valid_for_commit(struct drm_encoder *drm_enc) 1985 { 1986 struct dpu_encoder_virt *dpu_enc; 1987 unsigned int i; 1988 struct dpu_encoder_phys *phys; 1989 1990 dpu_enc = to_dpu_encoder_virt(drm_enc); 1991 1992 if (drm_enc->encoder_type == DRM_MODE_ENCODER_VIRTUAL) { 1993 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1994 phys = dpu_enc->phys_encs[i]; 1995 if (phys->ops.is_valid_for_commit && !phys->ops.is_valid_for_commit(phys)) { 1996 DPU_DEBUG("invalid FB not kicking off\n"); 1997 return false; 1998 } 1999 } 2000 } 2001 2002 return true; 2003 } 2004 2005 void dpu_encoder_kickoff(struct drm_encoder *drm_enc) 2006 { 2007 struct dpu_encoder_virt *dpu_enc; 2008 struct dpu_encoder_phys *phys; 2009 unsigned long timeout_ms; 2010 unsigned int i; 2011 2012 DPU_ATRACE_BEGIN("encoder_kickoff"); 2013 dpu_enc = to_dpu_encoder_virt(drm_enc); 2014 2015 trace_dpu_enc_kickoff(DRMID(drm_enc)); 2016 2017 timeout_ms = DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES * 1000 / 2018 drm_mode_vrefresh(&drm_enc->crtc->state->adjusted_mode); 2019 2020 atomic_set(&dpu_enc->frame_done_timeout_ms, timeout_ms); 2021 mod_timer(&dpu_enc->frame_done_timer, 2022 jiffies + msecs_to_jiffies(timeout_ms)); 2023 2024 /* All phys encs are ready to go, trigger the kickoff */ 2025 _dpu_encoder_kickoff_phys(dpu_enc); 2026 2027 /* allow phys encs to handle any post-kickoff business */ 2028 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 2029 phys = dpu_enc->phys_encs[i]; 2030 if (phys->ops.handle_post_kickoff) 2031 phys->ops.handle_post_kickoff(phys); 2032 } 2033 2034 DPU_ATRACE_END("encoder_kickoff"); 2035 } 2036 2037 static void dpu_encoder_helper_reset_mixers(struct dpu_encoder_phys *phys_enc) 2038 { 2039 struct dpu_hw_mixer_cfg mixer; 2040 int i, num_lm; 2041 struct dpu_global_state *global_state; 2042 struct dpu_hw_blk *hw_lm[2]; 2043 struct dpu_hw_mixer *hw_mixer[2]; 2044 struct dpu_hw_ctl *ctl = phys_enc->hw_ctl; 2045 2046 memset(&mixer, 0, sizeof(mixer)); 2047 2048 /* reset all mixers for this encoder */ 2049 if (phys_enc->hw_ctl->ops.clear_all_blendstages) 2050 phys_enc->hw_ctl->ops.clear_all_blendstages(phys_enc->hw_ctl); 2051 2052 global_state = dpu_kms_get_existing_global_state(phys_enc->dpu_kms); 2053 2054 num_lm = dpu_rm_get_assigned_resources(&phys_enc->dpu_kms->rm, global_state, 2055 phys_enc->parent->base.id, DPU_HW_BLK_LM, hw_lm, ARRAY_SIZE(hw_lm)); 2056 2057 for (i = 0; i < num_lm; i++) { 2058 hw_mixer[i] = to_dpu_hw_mixer(hw_lm[i]); 2059 if (phys_enc->hw_ctl->ops.update_pending_flush_mixer) 2060 phys_enc->hw_ctl->ops.update_pending_flush_mixer(ctl, hw_mixer[i]->idx); 2061 2062 /* clear all blendstages */ 2063 if (phys_enc->hw_ctl->ops.setup_blendstage) 2064 phys_enc->hw_ctl->ops.setup_blendstage(ctl, hw_mixer[i]->idx, NULL); 2065 } 2066 } 2067 2068 static void dpu_encoder_dsc_pipe_clr(struct dpu_hw_ctl *ctl, 2069 struct dpu_hw_dsc *hw_dsc, 2070 struct dpu_hw_pingpong *hw_pp) 2071 { 2072 if (hw_dsc->ops.dsc_disable) 2073 hw_dsc->ops.dsc_disable(hw_dsc); 2074 2075 if (hw_pp->ops.disable_dsc) 2076 hw_pp->ops.disable_dsc(hw_pp); 2077 2078 if (hw_dsc->ops.dsc_bind_pingpong_blk) 2079 hw_dsc->ops.dsc_bind_pingpong_blk(hw_dsc, PINGPONG_NONE); 2080 2081 if (ctl->ops.update_pending_flush_dsc) 2082 ctl->ops.update_pending_flush_dsc(ctl, hw_dsc->idx); 2083 } 2084 2085 static void dpu_encoder_unprep_dsc(struct dpu_encoder_virt *dpu_enc) 2086 { 2087 /* coding only for 2LM, 2enc, 1 dsc config */ 2088 struct dpu_encoder_phys *enc_master = dpu_enc->cur_master; 2089 struct dpu_hw_ctl *ctl = enc_master->hw_ctl; 2090 struct dpu_hw_dsc *hw_dsc[MAX_CHANNELS_PER_ENC]; 2091 struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC]; 2092 int i; 2093 2094 for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) { 2095 hw_pp[i] = dpu_enc->hw_pp[i]; 2096 hw_dsc[i] = dpu_enc->hw_dsc[i]; 2097 2098 if (hw_pp[i] && hw_dsc[i]) 2099 dpu_encoder_dsc_pipe_clr(ctl, hw_dsc[i], hw_pp[i]); 2100 } 2101 } 2102 2103 void dpu_encoder_helper_phys_cleanup(struct dpu_encoder_phys *phys_enc) 2104 { 2105 struct dpu_hw_ctl *ctl = phys_enc->hw_ctl; 2106 struct dpu_hw_intf_cfg intf_cfg = { 0 }; 2107 int i; 2108 struct dpu_encoder_virt *dpu_enc; 2109 2110 dpu_enc = to_dpu_encoder_virt(phys_enc->parent); 2111 2112 phys_enc->hw_ctl->ops.reset(ctl); 2113 2114 dpu_encoder_helper_reset_mixers(phys_enc); 2115 2116 /* 2117 * TODO: move the once-only operation like CTL flush/trigger 2118 * into dpu_encoder_virt_disable() and all operations which need 2119 * to be done per phys encoder into the phys_disable() op. 2120 */ 2121 if (phys_enc->hw_wb) { 2122 /* disable the PP block */ 2123 if (phys_enc->hw_wb->ops.bind_pingpong_blk) 2124 phys_enc->hw_wb->ops.bind_pingpong_blk(phys_enc->hw_wb, PINGPONG_NONE); 2125 2126 /* mark WB flush as pending */ 2127 if (phys_enc->hw_ctl->ops.update_pending_flush_wb) 2128 phys_enc->hw_ctl->ops.update_pending_flush_wb(ctl, phys_enc->hw_wb->idx); 2129 } else { 2130 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 2131 if (dpu_enc->phys_encs[i] && phys_enc->hw_intf->ops.bind_pingpong_blk) 2132 phys_enc->hw_intf->ops.bind_pingpong_blk( 2133 dpu_enc->phys_encs[i]->hw_intf, 2134 PINGPONG_NONE); 2135 2136 /* mark INTF flush as pending */ 2137 if (phys_enc->hw_ctl->ops.update_pending_flush_intf) 2138 phys_enc->hw_ctl->ops.update_pending_flush_intf(phys_enc->hw_ctl, 2139 dpu_enc->phys_encs[i]->hw_intf->idx); 2140 } 2141 } 2142 2143 /* reset the merge 3D HW block */ 2144 if (phys_enc->hw_pp && phys_enc->hw_pp->merge_3d) { 2145 phys_enc->hw_pp->merge_3d->ops.setup_3d_mode(phys_enc->hw_pp->merge_3d, 2146 BLEND_3D_NONE); 2147 if (phys_enc->hw_ctl->ops.update_pending_flush_merge_3d) 2148 phys_enc->hw_ctl->ops.update_pending_flush_merge_3d(ctl, 2149 phys_enc->hw_pp->merge_3d->idx); 2150 } 2151 2152 if (phys_enc->hw_cdm) { 2153 if (phys_enc->hw_cdm->ops.bind_pingpong_blk && phys_enc->hw_pp) 2154 phys_enc->hw_cdm->ops.bind_pingpong_blk(phys_enc->hw_cdm, 2155 PINGPONG_NONE); 2156 if (phys_enc->hw_ctl->ops.update_pending_flush_cdm) 2157 phys_enc->hw_ctl->ops.update_pending_flush_cdm(phys_enc->hw_ctl, 2158 phys_enc->hw_cdm->idx); 2159 } 2160 2161 if (dpu_enc->dsc) { 2162 dpu_encoder_unprep_dsc(dpu_enc); 2163 dpu_enc->dsc = NULL; 2164 } 2165 2166 intf_cfg.stream_sel = 0; /* Don't care value for video mode */ 2167 intf_cfg.mode_3d = dpu_encoder_helper_get_3d_blend_mode(phys_enc); 2168 intf_cfg.dsc = dpu_encoder_helper_get_dsc(phys_enc); 2169 2170 if (phys_enc->hw_intf) 2171 intf_cfg.intf = phys_enc->hw_intf->idx; 2172 if (phys_enc->hw_wb) 2173 intf_cfg.wb = phys_enc->hw_wb->idx; 2174 2175 if (phys_enc->hw_pp && phys_enc->hw_pp->merge_3d) 2176 intf_cfg.merge_3d = phys_enc->hw_pp->merge_3d->idx; 2177 2178 if (ctl->ops.reset_intf_cfg) 2179 ctl->ops.reset_intf_cfg(ctl, &intf_cfg); 2180 2181 ctl->ops.trigger_flush(ctl); 2182 ctl->ops.trigger_start(ctl); 2183 ctl->ops.clear_pending_flush(ctl); 2184 } 2185 2186 void dpu_encoder_helper_phys_setup_cdm(struct dpu_encoder_phys *phys_enc, 2187 const struct dpu_format *dpu_fmt, 2188 u32 output_type) 2189 { 2190 struct dpu_hw_cdm *hw_cdm; 2191 struct dpu_hw_cdm_cfg *cdm_cfg; 2192 struct dpu_hw_pingpong *hw_pp; 2193 int ret; 2194 2195 if (!phys_enc) 2196 return; 2197 2198 cdm_cfg = &phys_enc->cdm_cfg; 2199 hw_pp = phys_enc->hw_pp; 2200 hw_cdm = phys_enc->hw_cdm; 2201 2202 if (!hw_cdm) 2203 return; 2204 2205 if (!DPU_FORMAT_IS_YUV(dpu_fmt)) { 2206 DPU_DEBUG("[enc:%d] cdm_disable fmt:%x\n", DRMID(phys_enc->parent), 2207 dpu_fmt->base.pixel_format); 2208 if (hw_cdm->ops.bind_pingpong_blk) 2209 hw_cdm->ops.bind_pingpong_blk(hw_cdm, PINGPONG_NONE); 2210 2211 return; 2212 } 2213 2214 memset(cdm_cfg, 0, sizeof(struct dpu_hw_cdm_cfg)); 2215 2216 cdm_cfg->output_width = phys_enc->cached_mode.hdisplay; 2217 cdm_cfg->output_height = phys_enc->cached_mode.vdisplay; 2218 cdm_cfg->output_fmt = dpu_fmt; 2219 cdm_cfg->output_type = output_type; 2220 cdm_cfg->output_bit_depth = DPU_FORMAT_IS_DX(dpu_fmt) ? 2221 CDM_CDWN_OUTPUT_10BIT : CDM_CDWN_OUTPUT_8BIT; 2222 cdm_cfg->csc_cfg = &dpu_csc10_rgb2yuv_601l; 2223 2224 /* enable 10 bit logic */ 2225 switch (cdm_cfg->output_fmt->chroma_sample) { 2226 case DPU_CHROMA_RGB: 2227 cdm_cfg->h_cdwn_type = CDM_CDWN_DISABLE; 2228 cdm_cfg->v_cdwn_type = CDM_CDWN_DISABLE; 2229 break; 2230 case DPU_CHROMA_H2V1: 2231 cdm_cfg->h_cdwn_type = CDM_CDWN_COSITE; 2232 cdm_cfg->v_cdwn_type = CDM_CDWN_DISABLE; 2233 break; 2234 case DPU_CHROMA_420: 2235 cdm_cfg->h_cdwn_type = CDM_CDWN_COSITE; 2236 cdm_cfg->v_cdwn_type = CDM_CDWN_OFFSITE; 2237 break; 2238 case DPU_CHROMA_H1V2: 2239 default: 2240 DPU_ERROR("[enc:%d] unsupported chroma sampling type\n", 2241 DRMID(phys_enc->parent)); 2242 cdm_cfg->h_cdwn_type = CDM_CDWN_DISABLE; 2243 cdm_cfg->v_cdwn_type = CDM_CDWN_DISABLE; 2244 break; 2245 } 2246 2247 DPU_DEBUG("[enc:%d] cdm_enable:%d,%d,%X,%d,%d,%d,%d]\n", 2248 DRMID(phys_enc->parent), cdm_cfg->output_width, 2249 cdm_cfg->output_height, cdm_cfg->output_fmt->base.pixel_format, 2250 cdm_cfg->output_type, cdm_cfg->output_bit_depth, 2251 cdm_cfg->h_cdwn_type, cdm_cfg->v_cdwn_type); 2252 2253 if (hw_cdm->ops.enable) { 2254 cdm_cfg->pp_id = hw_pp->idx; 2255 ret = hw_cdm->ops.enable(hw_cdm, cdm_cfg); 2256 if (ret < 0) { 2257 DPU_ERROR("[enc:%d] failed to enable CDM; ret:%d\n", 2258 DRMID(phys_enc->parent), ret); 2259 return; 2260 } 2261 } 2262 } 2263 2264 #ifdef CONFIG_DEBUG_FS 2265 static int _dpu_encoder_status_show(struct seq_file *s, void *data) 2266 { 2267 struct drm_encoder *drm_enc = s->private; 2268 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); 2269 int i; 2270 2271 mutex_lock(&dpu_enc->enc_lock); 2272 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 2273 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 2274 2275 seq_printf(s, "intf:%d wb:%d vsync:%8d underrun:%8d frame_done_cnt:%d", 2276 phys->hw_intf ? phys->hw_intf->idx - INTF_0 : -1, 2277 phys->hw_wb ? phys->hw_wb->idx - WB_0 : -1, 2278 atomic_read(&phys->vsync_cnt), 2279 atomic_read(&phys->underrun_cnt), 2280 atomic_read(&dpu_enc->frame_done_timeout_cnt)); 2281 2282 seq_printf(s, "mode: %s\n", dpu_encoder_helper_get_intf_type(phys->intf_mode)); 2283 } 2284 mutex_unlock(&dpu_enc->enc_lock); 2285 2286 return 0; 2287 } 2288 2289 DEFINE_SHOW_ATTRIBUTE(_dpu_encoder_status); 2290 2291 static void dpu_encoder_debugfs_init(struct drm_encoder *drm_enc, struct dentry *root) 2292 { 2293 /* don't error check these */ 2294 debugfs_create_file("status", 0600, 2295 root, drm_enc, &_dpu_encoder_status_fops); 2296 } 2297 #else 2298 #define dpu_encoder_debugfs_init NULL 2299 #endif 2300 2301 static int dpu_encoder_virt_add_phys_encs( 2302 struct drm_device *dev, 2303 struct msm_display_info *disp_info, 2304 struct dpu_encoder_virt *dpu_enc, 2305 struct dpu_enc_phys_init_params *params) 2306 { 2307 struct dpu_encoder_phys *enc = NULL; 2308 2309 DPU_DEBUG_ENC(dpu_enc, "\n"); 2310 2311 /* 2312 * We may create up to NUM_PHYS_ENCODER_TYPES physical encoder types 2313 * in this function, check up-front. 2314 */ 2315 if (dpu_enc->num_phys_encs + NUM_PHYS_ENCODER_TYPES >= 2316 ARRAY_SIZE(dpu_enc->phys_encs)) { 2317 DPU_ERROR_ENC(dpu_enc, "too many physical encoders %d\n", 2318 dpu_enc->num_phys_encs); 2319 return -EINVAL; 2320 } 2321 2322 2323 if (disp_info->intf_type == INTF_WB) { 2324 enc = dpu_encoder_phys_wb_init(dev, params); 2325 2326 if (IS_ERR(enc)) { 2327 DPU_ERROR_ENC(dpu_enc, "failed to init wb enc: %ld\n", 2328 PTR_ERR(enc)); 2329 return PTR_ERR(enc); 2330 } 2331 2332 dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc; 2333 ++dpu_enc->num_phys_encs; 2334 } else if (disp_info->is_cmd_mode) { 2335 enc = dpu_encoder_phys_cmd_init(dev, params); 2336 2337 if (IS_ERR(enc)) { 2338 DPU_ERROR_ENC(dpu_enc, "failed to init cmd enc: %ld\n", 2339 PTR_ERR(enc)); 2340 return PTR_ERR(enc); 2341 } 2342 2343 dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc; 2344 ++dpu_enc->num_phys_encs; 2345 } else { 2346 enc = dpu_encoder_phys_vid_init(dev, params); 2347 2348 if (IS_ERR(enc)) { 2349 DPU_ERROR_ENC(dpu_enc, "failed to init vid enc: %ld\n", 2350 PTR_ERR(enc)); 2351 return PTR_ERR(enc); 2352 } 2353 2354 dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc; 2355 ++dpu_enc->num_phys_encs; 2356 } 2357 2358 if (params->split_role == ENC_ROLE_SLAVE) 2359 dpu_enc->cur_slave = enc; 2360 else 2361 dpu_enc->cur_master = enc; 2362 2363 return 0; 2364 } 2365 2366 static int dpu_encoder_setup_display(struct dpu_encoder_virt *dpu_enc, 2367 struct dpu_kms *dpu_kms, 2368 struct msm_display_info *disp_info) 2369 { 2370 int ret = 0; 2371 int i = 0; 2372 struct dpu_enc_phys_init_params phys_params; 2373 2374 if (!dpu_enc) { 2375 DPU_ERROR("invalid arg(s), enc %d\n", dpu_enc != NULL); 2376 return -EINVAL; 2377 } 2378 2379 dpu_enc->cur_master = NULL; 2380 2381 memset(&phys_params, 0, sizeof(phys_params)); 2382 phys_params.dpu_kms = dpu_kms; 2383 phys_params.parent = &dpu_enc->base; 2384 phys_params.enc_spinlock = &dpu_enc->enc_spinlock; 2385 2386 WARN_ON(disp_info->num_of_h_tiles < 1); 2387 2388 DPU_DEBUG("dsi_info->num_of_h_tiles %d\n", disp_info->num_of_h_tiles); 2389 2390 if (disp_info->intf_type != INTF_WB) 2391 dpu_enc->idle_pc_supported = 2392 dpu_kms->catalog->caps->has_idle_pc; 2393 2394 mutex_lock(&dpu_enc->enc_lock); 2395 for (i = 0; i < disp_info->num_of_h_tiles && !ret; i++) { 2396 /* 2397 * Left-most tile is at index 0, content is controller id 2398 * h_tile_instance_ids[2] = {0, 1}; DSI0 = left, DSI1 = right 2399 * h_tile_instance_ids[2] = {1, 0}; DSI1 = left, DSI0 = right 2400 */ 2401 u32 controller_id = disp_info->h_tile_instance[i]; 2402 2403 if (disp_info->num_of_h_tiles > 1) { 2404 if (i == 0) 2405 phys_params.split_role = ENC_ROLE_MASTER; 2406 else 2407 phys_params.split_role = ENC_ROLE_SLAVE; 2408 } else { 2409 phys_params.split_role = ENC_ROLE_SOLO; 2410 } 2411 2412 DPU_DEBUG("h_tile_instance %d = %d, split_role %d\n", 2413 i, controller_id, phys_params.split_role); 2414 2415 phys_params.hw_intf = dpu_encoder_get_intf(dpu_kms->catalog, &dpu_kms->rm, 2416 disp_info->intf_type, 2417 controller_id); 2418 2419 if (disp_info->intf_type == INTF_WB && controller_id < WB_MAX) 2420 phys_params.hw_wb = dpu_rm_get_wb(&dpu_kms->rm, controller_id); 2421 2422 if (!phys_params.hw_intf && !phys_params.hw_wb) { 2423 DPU_ERROR_ENC(dpu_enc, "no intf or wb block assigned at idx: %d\n", i); 2424 ret = -EINVAL; 2425 break; 2426 } 2427 2428 if (phys_params.hw_intf && phys_params.hw_wb) { 2429 DPU_ERROR_ENC(dpu_enc, 2430 "invalid phys both intf and wb block at idx: %d\n", i); 2431 ret = -EINVAL; 2432 break; 2433 } 2434 2435 ret = dpu_encoder_virt_add_phys_encs(dpu_kms->dev, disp_info, 2436 dpu_enc, &phys_params); 2437 if (ret) { 2438 DPU_ERROR_ENC(dpu_enc, "failed to add phys encs\n"); 2439 break; 2440 } 2441 } 2442 2443 mutex_unlock(&dpu_enc->enc_lock); 2444 2445 return ret; 2446 } 2447 2448 static void dpu_encoder_frame_done_timeout(struct timer_list *t) 2449 { 2450 struct dpu_encoder_virt *dpu_enc = from_timer(dpu_enc, t, 2451 frame_done_timer); 2452 struct drm_encoder *drm_enc = &dpu_enc->base; 2453 u32 event; 2454 2455 if (!drm_enc->dev) { 2456 DPU_ERROR("invalid parameters\n"); 2457 return; 2458 } 2459 2460 if (!dpu_enc->frame_busy_mask[0] || !dpu_enc->crtc_frame_event_cb) { 2461 DRM_DEBUG_KMS("id:%u invalid timeout frame_busy_mask=%lu\n", 2462 DRMID(drm_enc), dpu_enc->frame_busy_mask[0]); 2463 return; 2464 } else if (!atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) { 2465 DRM_DEBUG_KMS("id:%u invalid timeout\n", DRMID(drm_enc)); 2466 return; 2467 } 2468 2469 DPU_ERROR_ENC_RATELIMITED(dpu_enc, "frame done timeout\n"); 2470 2471 if (atomic_inc_return(&dpu_enc->frame_done_timeout_cnt) == 1) 2472 msm_disp_snapshot_state(drm_enc->dev); 2473 2474 event = DPU_ENCODER_FRAME_EVENT_ERROR; 2475 trace_dpu_enc_frame_done_timeout(DRMID(drm_enc), event); 2476 dpu_enc->crtc_frame_event_cb(dpu_enc->crtc_frame_event_cb_data, event); 2477 } 2478 2479 static const struct drm_encoder_helper_funcs dpu_encoder_helper_funcs = { 2480 .atomic_mode_set = dpu_encoder_virt_atomic_mode_set, 2481 .atomic_disable = dpu_encoder_virt_atomic_disable, 2482 .atomic_enable = dpu_encoder_virt_atomic_enable, 2483 .atomic_check = dpu_encoder_virt_atomic_check, 2484 }; 2485 2486 static const struct drm_encoder_funcs dpu_encoder_funcs = { 2487 .debugfs_init = dpu_encoder_debugfs_init, 2488 }; 2489 2490 struct drm_encoder *dpu_encoder_init(struct drm_device *dev, 2491 int drm_enc_mode, 2492 struct msm_display_info *disp_info) 2493 { 2494 struct msm_drm_private *priv = dev->dev_private; 2495 struct dpu_kms *dpu_kms = to_dpu_kms(priv->kms); 2496 struct dpu_encoder_virt *dpu_enc; 2497 int ret; 2498 2499 dpu_enc = drmm_encoder_alloc(dev, struct dpu_encoder_virt, base, 2500 &dpu_encoder_funcs, drm_enc_mode, NULL); 2501 if (IS_ERR(dpu_enc)) 2502 return ERR_CAST(dpu_enc); 2503 2504 drm_encoder_helper_add(&dpu_enc->base, &dpu_encoder_helper_funcs); 2505 2506 spin_lock_init(&dpu_enc->enc_spinlock); 2507 dpu_enc->enabled = false; 2508 mutex_init(&dpu_enc->enc_lock); 2509 mutex_init(&dpu_enc->rc_lock); 2510 2511 ret = dpu_encoder_setup_display(dpu_enc, dpu_kms, disp_info); 2512 if (ret) { 2513 DPU_ERROR("failed to setup encoder\n"); 2514 return ERR_PTR(-ENOMEM); 2515 } 2516 2517 atomic_set(&dpu_enc->frame_done_timeout_ms, 0); 2518 atomic_set(&dpu_enc->frame_done_timeout_cnt, 0); 2519 timer_setup(&dpu_enc->frame_done_timer, 2520 dpu_encoder_frame_done_timeout, 0); 2521 2522 INIT_DELAYED_WORK(&dpu_enc->delayed_off_work, 2523 dpu_encoder_off_work); 2524 dpu_enc->idle_timeout = IDLE_TIMEOUT; 2525 2526 memcpy(&dpu_enc->disp_info, disp_info, sizeof(*disp_info)); 2527 2528 DPU_DEBUG_ENC(dpu_enc, "created\n"); 2529 2530 return &dpu_enc->base; 2531 } 2532 2533 /** 2534 * dpu_encoder_wait_for_commit_done() - Wait for encoder to flush pending state 2535 * @drm_enc: encoder pointer 2536 * 2537 * Wait for hardware to have flushed the current pending changes to hardware at 2538 * a vblank or CTL_START. Physical encoders will map this differently depending 2539 * on the type: vid mode -> vsync_irq, cmd mode -> CTL_START. 2540 * 2541 * Return: 0 on success, -EWOULDBLOCK if already signaled, error otherwise 2542 */ 2543 int dpu_encoder_wait_for_commit_done(struct drm_encoder *drm_enc) 2544 { 2545 struct dpu_encoder_virt *dpu_enc = NULL; 2546 int i, ret = 0; 2547 2548 if (!drm_enc) { 2549 DPU_ERROR("invalid encoder\n"); 2550 return -EINVAL; 2551 } 2552 dpu_enc = to_dpu_encoder_virt(drm_enc); 2553 DPU_DEBUG_ENC(dpu_enc, "\n"); 2554 2555 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 2556 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 2557 2558 if (phys->ops.wait_for_commit_done) { 2559 DPU_ATRACE_BEGIN("wait_for_commit_done"); 2560 ret = phys->ops.wait_for_commit_done(phys); 2561 DPU_ATRACE_END("wait_for_commit_done"); 2562 if (ret == -ETIMEDOUT && !dpu_enc->commit_done_timedout) { 2563 dpu_enc->commit_done_timedout = true; 2564 msm_disp_snapshot_state(drm_enc->dev); 2565 } 2566 if (ret) 2567 return ret; 2568 } 2569 } 2570 2571 return ret; 2572 } 2573 2574 /** 2575 * dpu_encoder_wait_for_tx_complete() - Wait for encoder to transfer pixels to panel 2576 * @drm_enc: encoder pointer 2577 * 2578 * Wait for the hardware to transfer all the pixels to the panel. Physical 2579 * encoders will map this differently depending on the type: vid mode -> vsync_irq, 2580 * cmd mode -> pp_done. 2581 * 2582 * Return: 0 on success, -EWOULDBLOCK if already signaled, error otherwise 2583 */ 2584 int dpu_encoder_wait_for_tx_complete(struct drm_encoder *drm_enc) 2585 { 2586 struct dpu_encoder_virt *dpu_enc = NULL; 2587 int i, ret = 0; 2588 2589 if (!drm_enc) { 2590 DPU_ERROR("invalid encoder\n"); 2591 return -EINVAL; 2592 } 2593 dpu_enc = to_dpu_encoder_virt(drm_enc); 2594 DPU_DEBUG_ENC(dpu_enc, "\n"); 2595 2596 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 2597 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 2598 2599 if (phys->ops.wait_for_tx_complete) { 2600 DPU_ATRACE_BEGIN("wait_for_tx_complete"); 2601 ret = phys->ops.wait_for_tx_complete(phys); 2602 DPU_ATRACE_END("wait_for_tx_complete"); 2603 if (ret) 2604 return ret; 2605 } 2606 } 2607 2608 return ret; 2609 } 2610 2611 enum dpu_intf_mode dpu_encoder_get_intf_mode(struct drm_encoder *encoder) 2612 { 2613 struct dpu_encoder_virt *dpu_enc = NULL; 2614 2615 if (!encoder) { 2616 DPU_ERROR("invalid encoder\n"); 2617 return INTF_MODE_NONE; 2618 } 2619 dpu_enc = to_dpu_encoder_virt(encoder); 2620 2621 if (dpu_enc->cur_master) 2622 return dpu_enc->cur_master->intf_mode; 2623 2624 if (dpu_enc->num_phys_encs) 2625 return dpu_enc->phys_encs[0]->intf_mode; 2626 2627 return INTF_MODE_NONE; 2628 } 2629 2630 unsigned int dpu_encoder_helper_get_dsc(struct dpu_encoder_phys *phys_enc) 2631 { 2632 struct drm_encoder *encoder = phys_enc->parent; 2633 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(encoder); 2634 2635 return dpu_enc->dsc_mask; 2636 } 2637 2638 void dpu_encoder_phys_init(struct dpu_encoder_phys *phys_enc, 2639 struct dpu_enc_phys_init_params *p) 2640 { 2641 phys_enc->hw_mdptop = p->dpu_kms->hw_mdp; 2642 phys_enc->hw_intf = p->hw_intf; 2643 phys_enc->hw_wb = p->hw_wb; 2644 phys_enc->parent = p->parent; 2645 phys_enc->dpu_kms = p->dpu_kms; 2646 phys_enc->split_role = p->split_role; 2647 phys_enc->enc_spinlock = p->enc_spinlock; 2648 phys_enc->enable_state = DPU_ENC_DISABLED; 2649 2650 atomic_set(&phys_enc->pending_kickoff_cnt, 0); 2651 atomic_set(&phys_enc->pending_ctlstart_cnt, 0); 2652 2653 atomic_set(&phys_enc->vsync_cnt, 0); 2654 atomic_set(&phys_enc->underrun_cnt, 0); 2655 2656 init_waitqueue_head(&phys_enc->pending_kickoff_wq); 2657 } 2658