xref: /linux/drivers/gpu/drm/msm/disp/dpu1/dpu_encoder.c (revision d8310914848223de7ec04d55bd15f013f0dad803)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2013 Red Hat
4  * Copyright (c) 2014-2018, 2020-2021 The Linux Foundation. All rights reserved.
5  * Copyright (c) 2022-2023 Qualcomm Innovation Center, Inc. All rights reserved.
6  *
7  * Author: Rob Clark <robdclark@gmail.com>
8  */
9 
10 #define pr_fmt(fmt)	"[drm:%s:%d] " fmt, __func__, __LINE__
11 #include <linux/debugfs.h>
12 #include <linux/kthread.h>
13 #include <linux/seq_file.h>
14 
15 #include <drm/drm_atomic.h>
16 #include <drm/drm_crtc.h>
17 #include <drm/drm_file.h>
18 #include <drm/drm_probe_helper.h>
19 #include <drm/drm_framebuffer.h>
20 
21 #include "msm_drv.h"
22 #include "dpu_kms.h"
23 #include "dpu_hwio.h"
24 #include "dpu_hw_catalog.h"
25 #include "dpu_hw_intf.h"
26 #include "dpu_hw_ctl.h"
27 #include "dpu_hw_dspp.h"
28 #include "dpu_hw_dsc.h"
29 #include "dpu_hw_merge3d.h"
30 #include "dpu_hw_cdm.h"
31 #include "dpu_formats.h"
32 #include "dpu_encoder_phys.h"
33 #include "dpu_crtc.h"
34 #include "dpu_trace.h"
35 #include "dpu_core_irq.h"
36 #include "disp/msm_disp_snapshot.h"
37 
38 #define DPU_DEBUG_ENC(e, fmt, ...) DRM_DEBUG_ATOMIC("enc%d " fmt,\
39 		(e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
40 
41 #define DPU_ERROR_ENC(e, fmt, ...) DPU_ERROR("enc%d " fmt,\
42 		(e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
43 
44 #define DPU_ERROR_ENC_RATELIMITED(e, fmt, ...) DPU_ERROR_RATELIMITED("enc%d " fmt,\
45 		(e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
46 
47 /*
48  * Two to anticipate panels that can do cmd/vid dynamic switching
49  * plan is to create all possible physical encoder types, and switch between
50  * them at runtime
51  */
52 #define NUM_PHYS_ENCODER_TYPES 2
53 
54 #define MAX_PHYS_ENCODERS_PER_VIRTUAL \
55 	(MAX_H_TILES_PER_DISPLAY * NUM_PHYS_ENCODER_TYPES)
56 
57 #define MAX_CHANNELS_PER_ENC 2
58 
59 #define IDLE_SHORT_TIMEOUT	1
60 
61 #define MAX_HDISPLAY_SPLIT 1080
62 
63 /* timeout in frames waiting for frame done */
64 #define DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES 5
65 
66 /**
67  * enum dpu_enc_rc_events - events for resource control state machine
68  * @DPU_ENC_RC_EVENT_KICKOFF:
69  *	This event happens at NORMAL priority.
70  *	Event that signals the start of the transfer. When this event is
71  *	received, enable MDP/DSI core clocks. Regardless of the previous
72  *	state, the resource should be in ON state at the end of this event.
73  * @DPU_ENC_RC_EVENT_FRAME_DONE:
74  *	This event happens at INTERRUPT level.
75  *	Event signals the end of the data transfer after the PP FRAME_DONE
76  *	event. At the end of this event, a delayed work is scheduled to go to
77  *	IDLE_PC state after IDLE_TIMEOUT time.
78  * @DPU_ENC_RC_EVENT_PRE_STOP:
79  *	This event happens at NORMAL priority.
80  *	This event, when received during the ON state, leave the RC STATE
81  *	in the PRE_OFF state. It should be followed by the STOP event as
82  *	part of encoder disable.
83  *	If received during IDLE or OFF states, it will do nothing.
84  * @DPU_ENC_RC_EVENT_STOP:
85  *	This event happens at NORMAL priority.
86  *	When this event is received, disable all the MDP/DSI core clocks, and
87  *	disable IRQs. It should be called from the PRE_OFF or IDLE states.
88  *	IDLE is expected when IDLE_PC has run, and PRE_OFF did nothing.
89  *	PRE_OFF is expected when PRE_STOP was executed during the ON state.
90  *	Resource state should be in OFF at the end of the event.
91  * @DPU_ENC_RC_EVENT_ENTER_IDLE:
92  *	This event happens at NORMAL priority from a work item.
93  *	Event signals that there were no frame updates for IDLE_TIMEOUT time.
94  *	This would disable MDP/DSI core clocks and change the resource state
95  *	to IDLE.
96  */
97 enum dpu_enc_rc_events {
98 	DPU_ENC_RC_EVENT_KICKOFF = 1,
99 	DPU_ENC_RC_EVENT_FRAME_DONE,
100 	DPU_ENC_RC_EVENT_PRE_STOP,
101 	DPU_ENC_RC_EVENT_STOP,
102 	DPU_ENC_RC_EVENT_ENTER_IDLE
103 };
104 
105 /*
106  * enum dpu_enc_rc_states - states that the resource control maintains
107  * @DPU_ENC_RC_STATE_OFF: Resource is in OFF state
108  * @DPU_ENC_RC_STATE_PRE_OFF: Resource is transitioning to OFF state
109  * @DPU_ENC_RC_STATE_ON: Resource is in ON state
110  * @DPU_ENC_RC_STATE_MODESET: Resource is in modeset state
111  * @DPU_ENC_RC_STATE_IDLE: Resource is in IDLE state
112  */
113 enum dpu_enc_rc_states {
114 	DPU_ENC_RC_STATE_OFF,
115 	DPU_ENC_RC_STATE_PRE_OFF,
116 	DPU_ENC_RC_STATE_ON,
117 	DPU_ENC_RC_STATE_IDLE
118 };
119 
120 /**
121  * struct dpu_encoder_virt - virtual encoder. Container of one or more physical
122  *	encoders. Virtual encoder manages one "logical" display. Physical
123  *	encoders manage one intf block, tied to a specific panel/sub-panel.
124  *	Virtual encoder defers as much as possible to the physical encoders.
125  *	Virtual encoder registers itself with the DRM Framework as the encoder.
126  * @base:		drm_encoder base class for registration with DRM
127  * @enc_spinlock:	Virtual-Encoder-Wide Spin Lock for IRQ purposes
128  * @enabled:		True if the encoder is active, protected by enc_lock
129  * @num_phys_encs:	Actual number of physical encoders contained.
130  * @phys_encs:		Container of physical encoders managed.
131  * @cur_master:		Pointer to the current master in this mode. Optimization
132  *			Only valid after enable. Cleared as disable.
133  * @cur_slave:		As above but for the slave encoder.
134  * @hw_pp:		Handle to the pingpong blocks used for the display. No.
135  *			pingpong blocks can be different than num_phys_encs.
136  * @hw_dsc:		Handle to the DSC blocks used for the display.
137  * @dsc_mask:		Bitmask of used DSC blocks.
138  * @intfs_swapped:	Whether or not the phys_enc interfaces have been swapped
139  *			for partial update right-only cases, such as pingpong
140  *			split where virtual pingpong does not generate IRQs
141  * @crtc:		Pointer to the currently assigned crtc. Normally you
142  *			would use crtc->state->encoder_mask to determine the
143  *			link between encoder/crtc. However in this case we need
144  *			to track crtc in the disable() hook which is called
145  *			_after_ encoder_mask is cleared.
146  * @connector:		If a mode is set, cached pointer to the active connector
147  * @enc_lock:			Lock around physical encoder
148  *				create/destroy/enable/disable
149  * @frame_busy_mask:		Bitmask tracking which phys_enc we are still
150  *				busy processing current command.
151  *				Bit0 = phys_encs[0] etc.
152  * @crtc_frame_event_cb:	callback handler for frame event
153  * @crtc_frame_event_cb_data:	callback handler private data
154  * @frame_done_timeout_ms:	frame done timeout in ms
155  * @frame_done_timeout_cnt:	atomic counter tracking the number of frame
156  * 				done timeouts
157  * @frame_done_timer:		watchdog timer for frame done event
158  * @disp_info:			local copy of msm_display_info struct
159  * @idle_pc_supported:		indicate if idle power collaps is supported
160  * @rc_lock:			resource control mutex lock to protect
161  *				virt encoder over various state changes
162  * @rc_state:			resource controller state
163  * @delayed_off_work:		delayed worker to schedule disabling of
164  *				clks and resources after IDLE_TIMEOUT time.
165  * @topology:                   topology of the display
166  * @idle_timeout:		idle timeout duration in milliseconds
167  * @wide_bus_en:		wide bus is enabled on this interface
168  * @dsc:			drm_dsc_config pointer, for DSC-enabled encoders
169  */
170 struct dpu_encoder_virt {
171 	struct drm_encoder base;
172 	spinlock_t enc_spinlock;
173 
174 	bool enabled;
175 
176 	unsigned int num_phys_encs;
177 	struct dpu_encoder_phys *phys_encs[MAX_PHYS_ENCODERS_PER_VIRTUAL];
178 	struct dpu_encoder_phys *cur_master;
179 	struct dpu_encoder_phys *cur_slave;
180 	struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC];
181 	struct dpu_hw_dsc *hw_dsc[MAX_CHANNELS_PER_ENC];
182 
183 	unsigned int dsc_mask;
184 
185 	bool intfs_swapped;
186 
187 	struct drm_crtc *crtc;
188 	struct drm_connector *connector;
189 
190 	struct mutex enc_lock;
191 	DECLARE_BITMAP(frame_busy_mask, MAX_PHYS_ENCODERS_PER_VIRTUAL);
192 	void (*crtc_frame_event_cb)(void *, u32 event);
193 	void *crtc_frame_event_cb_data;
194 
195 	atomic_t frame_done_timeout_ms;
196 	atomic_t frame_done_timeout_cnt;
197 	struct timer_list frame_done_timer;
198 
199 	struct msm_display_info disp_info;
200 
201 	bool idle_pc_supported;
202 	struct mutex rc_lock;
203 	enum dpu_enc_rc_states rc_state;
204 	struct delayed_work delayed_off_work;
205 	struct msm_display_topology topology;
206 
207 	u32 idle_timeout;
208 
209 	bool wide_bus_en;
210 
211 	/* DSC configuration */
212 	struct drm_dsc_config *dsc;
213 };
214 
215 #define to_dpu_encoder_virt(x) container_of(x, struct dpu_encoder_virt, base)
216 
217 static u32 dither_matrix[DITHER_MATRIX_SZ] = {
218 	15, 7, 13, 5, 3, 11, 1, 9, 12, 4, 14, 6, 0, 8, 2, 10
219 };
220 
221 
222 bool dpu_encoder_is_widebus_enabled(const struct drm_encoder *drm_enc)
223 {
224 	const struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
225 
226 	return dpu_enc->wide_bus_en;
227 }
228 
229 int dpu_encoder_get_crc_values_cnt(const struct drm_encoder *drm_enc)
230 {
231 	struct dpu_encoder_virt *dpu_enc;
232 	int i, num_intf = 0;
233 
234 	dpu_enc = to_dpu_encoder_virt(drm_enc);
235 
236 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
237 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
238 
239 		if (phys->hw_intf && phys->hw_intf->ops.setup_misr
240 				&& phys->hw_intf->ops.collect_misr)
241 			num_intf++;
242 	}
243 
244 	return num_intf;
245 }
246 
247 void dpu_encoder_setup_misr(const struct drm_encoder *drm_enc)
248 {
249 	struct dpu_encoder_virt *dpu_enc;
250 
251 	int i;
252 
253 	dpu_enc = to_dpu_encoder_virt(drm_enc);
254 
255 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
256 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
257 
258 		if (!phys->hw_intf || !phys->hw_intf->ops.setup_misr)
259 			continue;
260 
261 		phys->hw_intf->ops.setup_misr(phys->hw_intf);
262 	}
263 }
264 
265 int dpu_encoder_get_crc(const struct drm_encoder *drm_enc, u32 *crcs, int pos)
266 {
267 	struct dpu_encoder_virt *dpu_enc;
268 
269 	int i, rc = 0, entries_added = 0;
270 
271 	if (!drm_enc->crtc) {
272 		DRM_ERROR("no crtc found for encoder %d\n", drm_enc->index);
273 		return -EINVAL;
274 	}
275 
276 	dpu_enc = to_dpu_encoder_virt(drm_enc);
277 
278 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
279 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
280 
281 		if (!phys->hw_intf || !phys->hw_intf->ops.collect_misr)
282 			continue;
283 
284 		rc = phys->hw_intf->ops.collect_misr(phys->hw_intf, &crcs[pos + entries_added]);
285 		if (rc)
286 			return rc;
287 		entries_added++;
288 	}
289 
290 	return entries_added;
291 }
292 
293 static void _dpu_encoder_setup_dither(struct dpu_hw_pingpong *hw_pp, unsigned bpc)
294 {
295 	struct dpu_hw_dither_cfg dither_cfg = { 0 };
296 
297 	if (!hw_pp->ops.setup_dither)
298 		return;
299 
300 	switch (bpc) {
301 	case 6:
302 		dither_cfg.c0_bitdepth = 6;
303 		dither_cfg.c1_bitdepth = 6;
304 		dither_cfg.c2_bitdepth = 6;
305 		dither_cfg.c3_bitdepth = 6;
306 		dither_cfg.temporal_en = 0;
307 		break;
308 	default:
309 		hw_pp->ops.setup_dither(hw_pp, NULL);
310 		return;
311 	}
312 
313 	memcpy(&dither_cfg.matrix, dither_matrix,
314 			sizeof(u32) * DITHER_MATRIX_SZ);
315 
316 	hw_pp->ops.setup_dither(hw_pp, &dither_cfg);
317 }
318 
319 static char *dpu_encoder_helper_get_intf_type(enum dpu_intf_mode intf_mode)
320 {
321 	switch (intf_mode) {
322 	case INTF_MODE_VIDEO:
323 		return "INTF_MODE_VIDEO";
324 	case INTF_MODE_CMD:
325 		return "INTF_MODE_CMD";
326 	case INTF_MODE_WB_BLOCK:
327 		return "INTF_MODE_WB_BLOCK";
328 	case INTF_MODE_WB_LINE:
329 		return "INTF_MODE_WB_LINE";
330 	default:
331 		return "INTF_MODE_UNKNOWN";
332 	}
333 }
334 
335 void dpu_encoder_helper_report_irq_timeout(struct dpu_encoder_phys *phys_enc,
336 		enum dpu_intr_idx intr_idx)
337 {
338 	DRM_ERROR("irq timeout id=%u, intf_mode=%s intf=%d wb=%d, pp=%d, intr=%d\n",
339 			DRMID(phys_enc->parent),
340 			dpu_encoder_helper_get_intf_type(phys_enc->intf_mode),
341 			phys_enc->hw_intf ? phys_enc->hw_intf->idx - INTF_0 : -1,
342 			phys_enc->hw_wb ? phys_enc->hw_wb->idx - WB_0 : -1,
343 			phys_enc->hw_pp->idx - PINGPONG_0, intr_idx);
344 
345 	dpu_encoder_frame_done_callback(phys_enc->parent, phys_enc,
346 				DPU_ENCODER_FRAME_EVENT_ERROR);
347 }
348 
349 static int dpu_encoder_helper_wait_event_timeout(int32_t drm_id,
350 		u32 irq_idx, struct dpu_encoder_wait_info *info);
351 
352 int dpu_encoder_helper_wait_for_irq(struct dpu_encoder_phys *phys_enc,
353 		unsigned int irq_idx,
354 		void (*func)(void *arg),
355 		struct dpu_encoder_wait_info *wait_info)
356 {
357 	u32 irq_status;
358 	int ret;
359 
360 	if (!wait_info) {
361 		DPU_ERROR("invalid params\n");
362 		return -EINVAL;
363 	}
364 	/* note: do master / slave checking outside */
365 
366 	/* return EWOULDBLOCK since we know the wait isn't necessary */
367 	if (phys_enc->enable_state == DPU_ENC_DISABLED) {
368 		DRM_ERROR("encoder is disabled id=%u, callback=%ps, IRQ=[%d, %d]\n",
369 			  DRMID(phys_enc->parent), func,
370 			  DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx));
371 		return -EWOULDBLOCK;
372 	}
373 
374 	if (irq_idx < 0) {
375 		DRM_DEBUG_KMS("skip irq wait id=%u, callback=%ps\n",
376 			      DRMID(phys_enc->parent), func);
377 		return 0;
378 	}
379 
380 	DRM_DEBUG_KMS("id=%u, callback=%ps, IRQ=[%d, %d], pp=%d, pending_cnt=%d\n",
381 		      DRMID(phys_enc->parent), func,
382 		      DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx), phys_enc->hw_pp->idx - PINGPONG_0,
383 		      atomic_read(wait_info->atomic_cnt));
384 
385 	ret = dpu_encoder_helper_wait_event_timeout(
386 			DRMID(phys_enc->parent),
387 			irq_idx,
388 			wait_info);
389 
390 	if (ret <= 0) {
391 		irq_status = dpu_core_irq_read(phys_enc->dpu_kms, irq_idx);
392 		if (irq_status) {
393 			unsigned long flags;
394 
395 			DRM_DEBUG_KMS("IRQ=[%d, %d] not triggered id=%u, callback=%ps, pp=%d, atomic_cnt=%d\n",
396 				      DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx),
397 				      DRMID(phys_enc->parent), func,
398 				      phys_enc->hw_pp->idx - PINGPONG_0,
399 				      atomic_read(wait_info->atomic_cnt));
400 			local_irq_save(flags);
401 			func(phys_enc);
402 			local_irq_restore(flags);
403 			ret = 0;
404 		} else {
405 			ret = -ETIMEDOUT;
406 			DRM_DEBUG_KMS("IRQ=[%d, %d] timeout id=%u, callback=%ps, pp=%d, atomic_cnt=%d\n",
407 				      DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx),
408 				      DRMID(phys_enc->parent), func,
409 				      phys_enc->hw_pp->idx - PINGPONG_0,
410 				      atomic_read(wait_info->atomic_cnt));
411 		}
412 	} else {
413 		ret = 0;
414 		trace_dpu_enc_irq_wait_success(DRMID(phys_enc->parent),
415 			func, DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx),
416 			phys_enc->hw_pp->idx - PINGPONG_0,
417 			atomic_read(wait_info->atomic_cnt));
418 	}
419 
420 	return ret;
421 }
422 
423 int dpu_encoder_get_vsync_count(struct drm_encoder *drm_enc)
424 {
425 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
426 	struct dpu_encoder_phys *phys = dpu_enc ? dpu_enc->cur_master : NULL;
427 	return phys ? atomic_read(&phys->vsync_cnt) : 0;
428 }
429 
430 int dpu_encoder_get_linecount(struct drm_encoder *drm_enc)
431 {
432 	struct dpu_encoder_virt *dpu_enc;
433 	struct dpu_encoder_phys *phys;
434 	int linecount = 0;
435 
436 	dpu_enc = to_dpu_encoder_virt(drm_enc);
437 	phys = dpu_enc ? dpu_enc->cur_master : NULL;
438 
439 	if (phys && phys->ops.get_line_count)
440 		linecount = phys->ops.get_line_count(phys);
441 
442 	return linecount;
443 }
444 
445 void dpu_encoder_helper_split_config(
446 		struct dpu_encoder_phys *phys_enc,
447 		enum dpu_intf interface)
448 {
449 	struct dpu_encoder_virt *dpu_enc;
450 	struct split_pipe_cfg cfg = { 0 };
451 	struct dpu_hw_mdp *hw_mdptop;
452 	struct msm_display_info *disp_info;
453 
454 	if (!phys_enc->hw_mdptop || !phys_enc->parent) {
455 		DPU_ERROR("invalid arg(s), encoder %d\n", phys_enc != NULL);
456 		return;
457 	}
458 
459 	dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
460 	hw_mdptop = phys_enc->hw_mdptop;
461 	disp_info = &dpu_enc->disp_info;
462 
463 	if (disp_info->intf_type != INTF_DSI)
464 		return;
465 
466 	/**
467 	 * disable split modes since encoder will be operating in as the only
468 	 * encoder, either for the entire use case in the case of, for example,
469 	 * single DSI, or for this frame in the case of left/right only partial
470 	 * update.
471 	 */
472 	if (phys_enc->split_role == ENC_ROLE_SOLO) {
473 		if (hw_mdptop->ops.setup_split_pipe)
474 			hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg);
475 		return;
476 	}
477 
478 	cfg.en = true;
479 	cfg.mode = phys_enc->intf_mode;
480 	cfg.intf = interface;
481 
482 	if (cfg.en && phys_enc->ops.needs_single_flush &&
483 			phys_enc->ops.needs_single_flush(phys_enc))
484 		cfg.split_flush_en = true;
485 
486 	if (phys_enc->split_role == ENC_ROLE_MASTER) {
487 		DPU_DEBUG_ENC(dpu_enc, "enable %d\n", cfg.en);
488 
489 		if (hw_mdptop->ops.setup_split_pipe)
490 			hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg);
491 	}
492 }
493 
494 bool dpu_encoder_use_dsc_merge(struct drm_encoder *drm_enc)
495 {
496 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
497 	int i, intf_count = 0, num_dsc = 0;
498 
499 	for (i = 0; i < MAX_PHYS_ENCODERS_PER_VIRTUAL; i++)
500 		if (dpu_enc->phys_encs[i])
501 			intf_count++;
502 
503 	/* See dpu_encoder_get_topology, we only support 2:2:1 topology */
504 	if (dpu_enc->dsc)
505 		num_dsc = 2;
506 
507 	return (num_dsc > 0) && (num_dsc > intf_count);
508 }
509 
510 static struct drm_dsc_config *dpu_encoder_get_dsc_config(struct drm_encoder *drm_enc)
511 {
512 	struct msm_drm_private *priv = drm_enc->dev->dev_private;
513 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
514 	int index = dpu_enc->disp_info.h_tile_instance[0];
515 
516 	if (dpu_enc->disp_info.intf_type == INTF_DSI)
517 		return msm_dsi_get_dsc_config(priv->dsi[index]);
518 
519 	return NULL;
520 }
521 
522 static struct msm_display_topology dpu_encoder_get_topology(
523 			struct dpu_encoder_virt *dpu_enc,
524 			struct dpu_kms *dpu_kms,
525 			struct drm_display_mode *mode,
526 			struct drm_crtc_state *crtc_state,
527 			struct drm_dsc_config *dsc)
528 {
529 	struct msm_display_topology topology = {0};
530 	int i, intf_count = 0;
531 
532 	for (i = 0; i < MAX_PHYS_ENCODERS_PER_VIRTUAL; i++)
533 		if (dpu_enc->phys_encs[i])
534 			intf_count++;
535 
536 	/* Datapath topology selection
537 	 *
538 	 * Dual display
539 	 * 2 LM, 2 INTF ( Split display using 2 interfaces)
540 	 *
541 	 * Single display
542 	 * 1 LM, 1 INTF
543 	 * 2 LM, 1 INTF (stream merge to support high resolution interfaces)
544 	 *
545 	 * Add dspps to the reservation requirements if ctm is requested
546 	 */
547 	if (intf_count == 2)
548 		topology.num_lm = 2;
549 	else if (!dpu_kms->catalog->caps->has_3d_merge)
550 		topology.num_lm = 1;
551 	else
552 		topology.num_lm = (mode->hdisplay > MAX_HDISPLAY_SPLIT) ? 2 : 1;
553 
554 	if (crtc_state->ctm)
555 		topology.num_dspp = topology.num_lm;
556 
557 	topology.num_intf = intf_count;
558 
559 	if (dsc) {
560 		/*
561 		 * In case of Display Stream Compression (DSC), we would use
562 		 * 2 DSC encoders, 2 layer mixers and 1 interface
563 		 * this is power optimal and can drive up to (including) 4k
564 		 * screens
565 		 */
566 		topology.num_dsc = 2;
567 		topology.num_lm = 2;
568 		topology.num_intf = 1;
569 	}
570 
571 	return topology;
572 }
573 
574 static int dpu_encoder_virt_atomic_check(
575 		struct drm_encoder *drm_enc,
576 		struct drm_crtc_state *crtc_state,
577 		struct drm_connector_state *conn_state)
578 {
579 	struct dpu_encoder_virt *dpu_enc;
580 	struct msm_drm_private *priv;
581 	struct dpu_kms *dpu_kms;
582 	struct drm_display_mode *adj_mode;
583 	struct msm_display_topology topology;
584 	struct dpu_global_state *global_state;
585 	struct drm_framebuffer *fb;
586 	struct drm_dsc_config *dsc;
587 	int i = 0;
588 	int ret = 0;
589 
590 	if (!drm_enc || !crtc_state || !conn_state) {
591 		DPU_ERROR("invalid arg(s), drm_enc %d, crtc/conn state %d/%d\n",
592 				drm_enc != NULL, crtc_state != NULL, conn_state != NULL);
593 		return -EINVAL;
594 	}
595 
596 	dpu_enc = to_dpu_encoder_virt(drm_enc);
597 	DPU_DEBUG_ENC(dpu_enc, "\n");
598 
599 	priv = drm_enc->dev->dev_private;
600 	dpu_kms = to_dpu_kms(priv->kms);
601 	adj_mode = &crtc_state->adjusted_mode;
602 	global_state = dpu_kms_get_global_state(crtc_state->state);
603 	if (IS_ERR(global_state))
604 		return PTR_ERR(global_state);
605 
606 	trace_dpu_enc_atomic_check(DRMID(drm_enc));
607 
608 	/* perform atomic check on the first physical encoder (master) */
609 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
610 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
611 
612 		if (phys->ops.atomic_check)
613 			ret = phys->ops.atomic_check(phys, crtc_state,
614 					conn_state);
615 		if (ret) {
616 			DPU_ERROR_ENC(dpu_enc,
617 					"mode unsupported, phys idx %d\n", i);
618 			return ret;
619 		}
620 	}
621 
622 	dsc = dpu_encoder_get_dsc_config(drm_enc);
623 
624 	topology = dpu_encoder_get_topology(dpu_enc, dpu_kms, adj_mode, crtc_state, dsc);
625 
626 	/*
627 	 * Use CDM only for writeback at the moment as other interfaces cannot handle it.
628 	 * if writeback itself cannot handle cdm for some reason it will fail in its atomic_check()
629 	 * earlier.
630 	 */
631 	if (dpu_enc->disp_info.intf_type == INTF_WB && conn_state->writeback_job) {
632 		fb = conn_state->writeback_job->fb;
633 
634 		if (fb && DPU_FORMAT_IS_YUV(to_dpu_format(msm_framebuffer_format(fb))))
635 			topology.needs_cdm = true;
636 		if (topology.needs_cdm && !dpu_enc->cur_master->hw_cdm)
637 			crtc_state->mode_changed = true;
638 		else if (!topology.needs_cdm && dpu_enc->cur_master->hw_cdm)
639 			crtc_state->mode_changed = true;
640 	}
641 
642 	/*
643 	 * Release and Allocate resources on every modeset
644 	 * Dont allocate when active is false.
645 	 */
646 	if (drm_atomic_crtc_needs_modeset(crtc_state)) {
647 		dpu_rm_release(global_state, drm_enc);
648 
649 		if (!crtc_state->active_changed || crtc_state->enable)
650 			ret = dpu_rm_reserve(&dpu_kms->rm, global_state,
651 					drm_enc, crtc_state, topology);
652 	}
653 
654 	trace_dpu_enc_atomic_check_flags(DRMID(drm_enc), adj_mode->flags);
655 
656 	return ret;
657 }
658 
659 static void _dpu_encoder_update_vsync_source(struct dpu_encoder_virt *dpu_enc,
660 			struct msm_display_info *disp_info)
661 {
662 	struct dpu_vsync_source_cfg vsync_cfg = { 0 };
663 	struct msm_drm_private *priv;
664 	struct dpu_kms *dpu_kms;
665 	struct dpu_hw_mdp *hw_mdptop;
666 	struct drm_encoder *drm_enc;
667 	struct dpu_encoder_phys *phys_enc;
668 	int i;
669 
670 	if (!dpu_enc || !disp_info) {
671 		DPU_ERROR("invalid param dpu_enc:%d or disp_info:%d\n",
672 					dpu_enc != NULL, disp_info != NULL);
673 		return;
674 	} else if (dpu_enc->num_phys_encs > ARRAY_SIZE(dpu_enc->hw_pp)) {
675 		DPU_ERROR("invalid num phys enc %d/%d\n",
676 				dpu_enc->num_phys_encs,
677 				(int) ARRAY_SIZE(dpu_enc->hw_pp));
678 		return;
679 	}
680 
681 	drm_enc = &dpu_enc->base;
682 	/* this pointers are checked in virt_enable_helper */
683 	priv = drm_enc->dev->dev_private;
684 
685 	dpu_kms = to_dpu_kms(priv->kms);
686 	hw_mdptop = dpu_kms->hw_mdp;
687 	if (!hw_mdptop) {
688 		DPU_ERROR("invalid mdptop\n");
689 		return;
690 	}
691 
692 	if (hw_mdptop->ops.setup_vsync_source &&
693 			disp_info->is_cmd_mode) {
694 		for (i = 0; i < dpu_enc->num_phys_encs; i++)
695 			vsync_cfg.ppnumber[i] = dpu_enc->hw_pp[i]->idx;
696 
697 		vsync_cfg.pp_count = dpu_enc->num_phys_encs;
698 		vsync_cfg.frame_rate = drm_mode_vrefresh(&dpu_enc->base.crtc->state->adjusted_mode);
699 
700 		if (disp_info->is_te_using_watchdog_timer)
701 			vsync_cfg.vsync_source = DPU_VSYNC_SOURCE_WD_TIMER_0;
702 		else
703 			vsync_cfg.vsync_source = DPU_VSYNC0_SOURCE_GPIO;
704 
705 		hw_mdptop->ops.setup_vsync_source(hw_mdptop, &vsync_cfg);
706 
707 		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
708 			phys_enc = dpu_enc->phys_encs[i];
709 
710 			if (phys_enc->has_intf_te && phys_enc->hw_intf->ops.vsync_sel)
711 				phys_enc->hw_intf->ops.vsync_sel(phys_enc->hw_intf,
712 						vsync_cfg.vsync_source);
713 		}
714 	}
715 }
716 
717 static void _dpu_encoder_irq_control(struct drm_encoder *drm_enc, bool enable)
718 {
719 	struct dpu_encoder_virt *dpu_enc;
720 	int i;
721 
722 	if (!drm_enc) {
723 		DPU_ERROR("invalid encoder\n");
724 		return;
725 	}
726 
727 	dpu_enc = to_dpu_encoder_virt(drm_enc);
728 
729 	DPU_DEBUG_ENC(dpu_enc, "enable:%d\n", enable);
730 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
731 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
732 
733 		if (phys->ops.irq_control)
734 			phys->ops.irq_control(phys, enable);
735 	}
736 
737 }
738 
739 static void _dpu_encoder_resource_control_helper(struct drm_encoder *drm_enc,
740 		bool enable)
741 {
742 	struct msm_drm_private *priv;
743 	struct dpu_kms *dpu_kms;
744 	struct dpu_encoder_virt *dpu_enc;
745 
746 	dpu_enc = to_dpu_encoder_virt(drm_enc);
747 	priv = drm_enc->dev->dev_private;
748 	dpu_kms = to_dpu_kms(priv->kms);
749 
750 	trace_dpu_enc_rc_helper(DRMID(drm_enc), enable);
751 
752 	if (!dpu_enc->cur_master) {
753 		DPU_ERROR("encoder master not set\n");
754 		return;
755 	}
756 
757 	if (enable) {
758 		/* enable DPU core clks */
759 		pm_runtime_get_sync(&dpu_kms->pdev->dev);
760 
761 		/* enable all the irq */
762 		_dpu_encoder_irq_control(drm_enc, true);
763 
764 	} else {
765 		/* disable all the irq */
766 		_dpu_encoder_irq_control(drm_enc, false);
767 
768 		/* disable DPU core clks */
769 		pm_runtime_put_sync(&dpu_kms->pdev->dev);
770 	}
771 
772 }
773 
774 static int dpu_encoder_resource_control(struct drm_encoder *drm_enc,
775 		u32 sw_event)
776 {
777 	struct dpu_encoder_virt *dpu_enc;
778 	struct msm_drm_private *priv;
779 	bool is_vid_mode = false;
780 
781 	if (!drm_enc || !drm_enc->dev || !drm_enc->crtc) {
782 		DPU_ERROR("invalid parameters\n");
783 		return -EINVAL;
784 	}
785 	dpu_enc = to_dpu_encoder_virt(drm_enc);
786 	priv = drm_enc->dev->dev_private;
787 	is_vid_mode = !dpu_enc->disp_info.is_cmd_mode;
788 
789 	/*
790 	 * when idle_pc is not supported, process only KICKOFF, STOP and MODESET
791 	 * events and return early for other events (ie wb display).
792 	 */
793 	if (!dpu_enc->idle_pc_supported &&
794 			(sw_event != DPU_ENC_RC_EVENT_KICKOFF &&
795 			sw_event != DPU_ENC_RC_EVENT_STOP &&
796 			sw_event != DPU_ENC_RC_EVENT_PRE_STOP))
797 		return 0;
798 
799 	trace_dpu_enc_rc(DRMID(drm_enc), sw_event, dpu_enc->idle_pc_supported,
800 			 dpu_enc->rc_state, "begin");
801 
802 	switch (sw_event) {
803 	case DPU_ENC_RC_EVENT_KICKOFF:
804 		/* cancel delayed off work, if any */
805 		if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work))
806 			DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n",
807 					sw_event);
808 
809 		mutex_lock(&dpu_enc->rc_lock);
810 
811 		/* return if the resource control is already in ON state */
812 		if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) {
813 			DRM_DEBUG_ATOMIC("id;%u, sw_event:%d, rc in ON state\n",
814 				      DRMID(drm_enc), sw_event);
815 			mutex_unlock(&dpu_enc->rc_lock);
816 			return 0;
817 		} else if (dpu_enc->rc_state != DPU_ENC_RC_STATE_OFF &&
818 				dpu_enc->rc_state != DPU_ENC_RC_STATE_IDLE) {
819 			DRM_DEBUG_ATOMIC("id;%u, sw_event:%d, rc in state %d\n",
820 				      DRMID(drm_enc), sw_event,
821 				      dpu_enc->rc_state);
822 			mutex_unlock(&dpu_enc->rc_lock);
823 			return -EINVAL;
824 		}
825 
826 		if (is_vid_mode && dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE)
827 			_dpu_encoder_irq_control(drm_enc, true);
828 		else
829 			_dpu_encoder_resource_control_helper(drm_enc, true);
830 
831 		dpu_enc->rc_state = DPU_ENC_RC_STATE_ON;
832 
833 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
834 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
835 				 "kickoff");
836 
837 		mutex_unlock(&dpu_enc->rc_lock);
838 		break;
839 
840 	case DPU_ENC_RC_EVENT_FRAME_DONE:
841 		/*
842 		 * mutex lock is not used as this event happens at interrupt
843 		 * context. And locking is not required as, the other events
844 		 * like KICKOFF and STOP does a wait-for-idle before executing
845 		 * the resource_control
846 		 */
847 		if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) {
848 			DRM_DEBUG_KMS("id:%d, sw_event:%d,rc:%d-unexpected\n",
849 				      DRMID(drm_enc), sw_event,
850 				      dpu_enc->rc_state);
851 			return -EINVAL;
852 		}
853 
854 		/*
855 		 * schedule off work item only when there are no
856 		 * frames pending
857 		 */
858 		if (dpu_crtc_frame_pending(drm_enc->crtc) > 1) {
859 			DRM_DEBUG_KMS("id:%d skip schedule work\n",
860 				      DRMID(drm_enc));
861 			return 0;
862 		}
863 
864 		queue_delayed_work(priv->wq, &dpu_enc->delayed_off_work,
865 				   msecs_to_jiffies(dpu_enc->idle_timeout));
866 
867 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
868 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
869 				 "frame done");
870 		break;
871 
872 	case DPU_ENC_RC_EVENT_PRE_STOP:
873 		/* cancel delayed off work, if any */
874 		if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work))
875 			DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n",
876 					sw_event);
877 
878 		mutex_lock(&dpu_enc->rc_lock);
879 
880 		if (is_vid_mode &&
881 			  dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) {
882 			_dpu_encoder_irq_control(drm_enc, true);
883 		}
884 		/* skip if is already OFF or IDLE, resources are off already */
885 		else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF ||
886 				dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) {
887 			DRM_DEBUG_KMS("id:%u, sw_event:%d, rc in %d state\n",
888 				      DRMID(drm_enc), sw_event,
889 				      dpu_enc->rc_state);
890 			mutex_unlock(&dpu_enc->rc_lock);
891 			return 0;
892 		}
893 
894 		dpu_enc->rc_state = DPU_ENC_RC_STATE_PRE_OFF;
895 
896 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
897 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
898 				 "pre stop");
899 
900 		mutex_unlock(&dpu_enc->rc_lock);
901 		break;
902 
903 	case DPU_ENC_RC_EVENT_STOP:
904 		mutex_lock(&dpu_enc->rc_lock);
905 
906 		/* return if the resource control is already in OFF state */
907 		if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF) {
908 			DRM_DEBUG_KMS("id: %u, sw_event:%d, rc in OFF state\n",
909 				      DRMID(drm_enc), sw_event);
910 			mutex_unlock(&dpu_enc->rc_lock);
911 			return 0;
912 		} else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) {
913 			DRM_ERROR("id: %u, sw_event:%d, rc in state %d\n",
914 				  DRMID(drm_enc), sw_event, dpu_enc->rc_state);
915 			mutex_unlock(&dpu_enc->rc_lock);
916 			return -EINVAL;
917 		}
918 
919 		/**
920 		 * expect to arrive here only if in either idle state or pre-off
921 		 * and in IDLE state the resources are already disabled
922 		 */
923 		if (dpu_enc->rc_state == DPU_ENC_RC_STATE_PRE_OFF)
924 			_dpu_encoder_resource_control_helper(drm_enc, false);
925 
926 		dpu_enc->rc_state = DPU_ENC_RC_STATE_OFF;
927 
928 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
929 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
930 				 "stop");
931 
932 		mutex_unlock(&dpu_enc->rc_lock);
933 		break;
934 
935 	case DPU_ENC_RC_EVENT_ENTER_IDLE:
936 		mutex_lock(&dpu_enc->rc_lock);
937 
938 		if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) {
939 			DRM_ERROR("id: %u, sw_event:%d, rc:%d !ON state\n",
940 				  DRMID(drm_enc), sw_event, dpu_enc->rc_state);
941 			mutex_unlock(&dpu_enc->rc_lock);
942 			return 0;
943 		}
944 
945 		/*
946 		 * if we are in ON but a frame was just kicked off,
947 		 * ignore the IDLE event, it's probably a stale timer event
948 		 */
949 		if (dpu_enc->frame_busy_mask[0]) {
950 			DRM_ERROR("id:%u, sw_event:%d, rc:%d frame pending\n",
951 				  DRMID(drm_enc), sw_event, dpu_enc->rc_state);
952 			mutex_unlock(&dpu_enc->rc_lock);
953 			return 0;
954 		}
955 
956 		if (is_vid_mode)
957 			_dpu_encoder_irq_control(drm_enc, false);
958 		else
959 			_dpu_encoder_resource_control_helper(drm_enc, false);
960 
961 		dpu_enc->rc_state = DPU_ENC_RC_STATE_IDLE;
962 
963 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
964 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
965 				 "idle");
966 
967 		mutex_unlock(&dpu_enc->rc_lock);
968 		break;
969 
970 	default:
971 		DRM_ERROR("id:%u, unexpected sw_event: %d\n", DRMID(drm_enc),
972 			  sw_event);
973 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
974 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
975 				 "error");
976 		break;
977 	}
978 
979 	trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
980 			 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
981 			 "end");
982 	return 0;
983 }
984 
985 void dpu_encoder_prepare_wb_job(struct drm_encoder *drm_enc,
986 		struct drm_writeback_job *job)
987 {
988 	struct dpu_encoder_virt *dpu_enc;
989 	int i;
990 
991 	dpu_enc = to_dpu_encoder_virt(drm_enc);
992 
993 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
994 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
995 
996 		if (phys->ops.prepare_wb_job)
997 			phys->ops.prepare_wb_job(phys, job);
998 
999 	}
1000 }
1001 
1002 void dpu_encoder_cleanup_wb_job(struct drm_encoder *drm_enc,
1003 		struct drm_writeback_job *job)
1004 {
1005 	struct dpu_encoder_virt *dpu_enc;
1006 	int i;
1007 
1008 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1009 
1010 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1011 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1012 
1013 		if (phys->ops.cleanup_wb_job)
1014 			phys->ops.cleanup_wb_job(phys, job);
1015 
1016 	}
1017 }
1018 
1019 static void dpu_encoder_virt_atomic_mode_set(struct drm_encoder *drm_enc,
1020 					     struct drm_crtc_state *crtc_state,
1021 					     struct drm_connector_state *conn_state)
1022 {
1023 	struct dpu_encoder_virt *dpu_enc;
1024 	struct msm_drm_private *priv;
1025 	struct dpu_kms *dpu_kms;
1026 	struct dpu_crtc_state *cstate;
1027 	struct dpu_global_state *global_state;
1028 	struct dpu_hw_blk *hw_pp[MAX_CHANNELS_PER_ENC];
1029 	struct dpu_hw_blk *hw_ctl[MAX_CHANNELS_PER_ENC];
1030 	struct dpu_hw_blk *hw_lm[MAX_CHANNELS_PER_ENC];
1031 	struct dpu_hw_blk *hw_dspp[MAX_CHANNELS_PER_ENC] = { NULL };
1032 	struct dpu_hw_blk *hw_dsc[MAX_CHANNELS_PER_ENC];
1033 	int num_lm, num_ctl, num_pp, num_dsc;
1034 	unsigned int dsc_mask = 0;
1035 	int i;
1036 
1037 	if (!drm_enc) {
1038 		DPU_ERROR("invalid encoder\n");
1039 		return;
1040 	}
1041 
1042 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1043 	DPU_DEBUG_ENC(dpu_enc, "\n");
1044 
1045 	priv = drm_enc->dev->dev_private;
1046 	dpu_kms = to_dpu_kms(priv->kms);
1047 
1048 	global_state = dpu_kms_get_existing_global_state(dpu_kms);
1049 	if (IS_ERR_OR_NULL(global_state)) {
1050 		DPU_ERROR("Failed to get global state");
1051 		return;
1052 	}
1053 
1054 	trace_dpu_enc_mode_set(DRMID(drm_enc));
1055 
1056 	/* Query resource that have been reserved in atomic check step. */
1057 	num_pp = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1058 		drm_enc->base.id, DPU_HW_BLK_PINGPONG, hw_pp,
1059 		ARRAY_SIZE(hw_pp));
1060 	num_ctl = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1061 		drm_enc->base.id, DPU_HW_BLK_CTL, hw_ctl, ARRAY_SIZE(hw_ctl));
1062 	num_lm = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1063 		drm_enc->base.id, DPU_HW_BLK_LM, hw_lm, ARRAY_SIZE(hw_lm));
1064 	dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1065 		drm_enc->base.id, DPU_HW_BLK_DSPP, hw_dspp,
1066 		ARRAY_SIZE(hw_dspp));
1067 
1068 	for (i = 0; i < MAX_CHANNELS_PER_ENC; i++)
1069 		dpu_enc->hw_pp[i] = i < num_pp ? to_dpu_hw_pingpong(hw_pp[i])
1070 						: NULL;
1071 
1072 	num_dsc = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1073 						drm_enc->base.id, DPU_HW_BLK_DSC,
1074 						hw_dsc, ARRAY_SIZE(hw_dsc));
1075 	for (i = 0; i < num_dsc; i++) {
1076 		dpu_enc->hw_dsc[i] = to_dpu_hw_dsc(hw_dsc[i]);
1077 		dsc_mask |= BIT(dpu_enc->hw_dsc[i]->idx - DSC_0);
1078 	}
1079 
1080 	dpu_enc->dsc_mask = dsc_mask;
1081 
1082 	if (dpu_enc->disp_info.intf_type == INTF_WB && conn_state->writeback_job) {
1083 		struct dpu_hw_blk *hw_cdm = NULL;
1084 
1085 		dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1086 					      drm_enc->base.id, DPU_HW_BLK_CDM,
1087 					      &hw_cdm, 1);
1088 		dpu_enc->cur_master->hw_cdm = hw_cdm ? to_dpu_hw_cdm(hw_cdm) : NULL;
1089 	}
1090 
1091 	cstate = to_dpu_crtc_state(crtc_state);
1092 
1093 	for (i = 0; i < num_lm; i++) {
1094 		int ctl_idx = (i < num_ctl) ? i : (num_ctl-1);
1095 
1096 		cstate->mixers[i].hw_lm = to_dpu_hw_mixer(hw_lm[i]);
1097 		cstate->mixers[i].lm_ctl = to_dpu_hw_ctl(hw_ctl[ctl_idx]);
1098 		cstate->mixers[i].hw_dspp = to_dpu_hw_dspp(hw_dspp[i]);
1099 	}
1100 
1101 	cstate->num_mixers = num_lm;
1102 
1103 	dpu_enc->connector = conn_state->connector;
1104 
1105 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1106 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1107 
1108 		if (!dpu_enc->hw_pp[i]) {
1109 			DPU_ERROR_ENC(dpu_enc,
1110 				"no pp block assigned at idx: %d\n", i);
1111 			return;
1112 		}
1113 
1114 		if (!hw_ctl[i]) {
1115 			DPU_ERROR_ENC(dpu_enc,
1116 				"no ctl block assigned at idx: %d\n", i);
1117 			return;
1118 		}
1119 
1120 		phys->hw_pp = dpu_enc->hw_pp[i];
1121 		phys->hw_ctl = to_dpu_hw_ctl(hw_ctl[i]);
1122 
1123 		phys->cached_mode = crtc_state->adjusted_mode;
1124 		if (phys->ops.atomic_mode_set)
1125 			phys->ops.atomic_mode_set(phys, crtc_state, conn_state);
1126 	}
1127 }
1128 
1129 static void _dpu_encoder_virt_enable_helper(struct drm_encoder *drm_enc)
1130 {
1131 	struct dpu_encoder_virt *dpu_enc = NULL;
1132 	int i;
1133 
1134 	if (!drm_enc || !drm_enc->dev) {
1135 		DPU_ERROR("invalid parameters\n");
1136 		return;
1137 	}
1138 
1139 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1140 	if (!dpu_enc || !dpu_enc->cur_master) {
1141 		DPU_ERROR("invalid dpu encoder/master\n");
1142 		return;
1143 	}
1144 
1145 
1146 	if (dpu_enc->disp_info.intf_type == INTF_DP &&
1147 		dpu_enc->cur_master->hw_mdptop &&
1148 		dpu_enc->cur_master->hw_mdptop->ops.intf_audio_select)
1149 		dpu_enc->cur_master->hw_mdptop->ops.intf_audio_select(
1150 			dpu_enc->cur_master->hw_mdptop);
1151 
1152 	_dpu_encoder_update_vsync_source(dpu_enc, &dpu_enc->disp_info);
1153 
1154 	if (dpu_enc->disp_info.intf_type == INTF_DSI &&
1155 			!WARN_ON(dpu_enc->num_phys_encs == 0)) {
1156 		unsigned bpc = dpu_enc->connector->display_info.bpc;
1157 		for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
1158 			if (!dpu_enc->hw_pp[i])
1159 				continue;
1160 			_dpu_encoder_setup_dither(dpu_enc->hw_pp[i], bpc);
1161 		}
1162 	}
1163 }
1164 
1165 void dpu_encoder_virt_runtime_resume(struct drm_encoder *drm_enc)
1166 {
1167 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1168 
1169 	mutex_lock(&dpu_enc->enc_lock);
1170 
1171 	if (!dpu_enc->enabled)
1172 		goto out;
1173 
1174 	if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.restore)
1175 		dpu_enc->cur_slave->ops.restore(dpu_enc->cur_slave);
1176 	if (dpu_enc->cur_master && dpu_enc->cur_master->ops.restore)
1177 		dpu_enc->cur_master->ops.restore(dpu_enc->cur_master);
1178 
1179 	_dpu_encoder_virt_enable_helper(drm_enc);
1180 
1181 out:
1182 	mutex_unlock(&dpu_enc->enc_lock);
1183 }
1184 
1185 static void dpu_encoder_virt_atomic_enable(struct drm_encoder *drm_enc,
1186 					struct drm_atomic_state *state)
1187 {
1188 	struct dpu_encoder_virt *dpu_enc = NULL;
1189 	int ret = 0;
1190 	struct drm_display_mode *cur_mode = NULL;
1191 	struct msm_drm_private *priv = drm_enc->dev->dev_private;
1192 	struct msm_display_info *disp_info;
1193 	int index;
1194 
1195 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1196 	disp_info = &dpu_enc->disp_info;
1197 	index = disp_info->h_tile_instance[0];
1198 
1199 	dpu_enc->dsc = dpu_encoder_get_dsc_config(drm_enc);
1200 
1201 	atomic_set(&dpu_enc->frame_done_timeout_cnt, 0);
1202 
1203 	if (disp_info->intf_type == INTF_DP)
1204 		dpu_enc->wide_bus_en = msm_dp_wide_bus_available(priv->dp[index]);
1205 	else if (disp_info->intf_type == INTF_DSI)
1206 		dpu_enc->wide_bus_en = msm_dsi_wide_bus_enabled(priv->dsi[index]);
1207 
1208 	mutex_lock(&dpu_enc->enc_lock);
1209 	cur_mode = &dpu_enc->base.crtc->state->adjusted_mode;
1210 
1211 	trace_dpu_enc_enable(DRMID(drm_enc), cur_mode->hdisplay,
1212 			     cur_mode->vdisplay);
1213 
1214 	/* always enable slave encoder before master */
1215 	if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.enable)
1216 		dpu_enc->cur_slave->ops.enable(dpu_enc->cur_slave);
1217 
1218 	if (dpu_enc->cur_master && dpu_enc->cur_master->ops.enable)
1219 		dpu_enc->cur_master->ops.enable(dpu_enc->cur_master);
1220 
1221 	ret = dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF);
1222 	if (ret) {
1223 		DPU_ERROR_ENC(dpu_enc, "dpu resource control failed: %d\n",
1224 				ret);
1225 		goto out;
1226 	}
1227 
1228 	_dpu_encoder_virt_enable_helper(drm_enc);
1229 
1230 	dpu_enc->enabled = true;
1231 
1232 out:
1233 	mutex_unlock(&dpu_enc->enc_lock);
1234 }
1235 
1236 static void dpu_encoder_virt_atomic_disable(struct drm_encoder *drm_enc,
1237 					struct drm_atomic_state *state)
1238 {
1239 	struct dpu_encoder_virt *dpu_enc = NULL;
1240 	struct drm_crtc *crtc;
1241 	struct drm_crtc_state *old_state = NULL;
1242 	int i = 0;
1243 
1244 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1245 	DPU_DEBUG_ENC(dpu_enc, "\n");
1246 
1247 	crtc = drm_atomic_get_old_crtc_for_encoder(state, drm_enc);
1248 	if (crtc)
1249 		old_state = drm_atomic_get_old_crtc_state(state, crtc);
1250 
1251 	/*
1252 	 * The encoder is already disabled if self refresh mode was set earlier,
1253 	 * in the old_state for the corresponding crtc.
1254 	 */
1255 	if (old_state && old_state->self_refresh_active)
1256 		return;
1257 
1258 	mutex_lock(&dpu_enc->enc_lock);
1259 	dpu_enc->enabled = false;
1260 
1261 	trace_dpu_enc_disable(DRMID(drm_enc));
1262 
1263 	/* wait for idle */
1264 	dpu_encoder_wait_for_event(drm_enc, MSM_ENC_TX_COMPLETE);
1265 
1266 	dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_PRE_STOP);
1267 
1268 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1269 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1270 
1271 		if (phys->ops.disable)
1272 			phys->ops.disable(phys);
1273 	}
1274 
1275 
1276 	/* after phys waits for frame-done, should be no more frames pending */
1277 	if (atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) {
1278 		DPU_ERROR("enc%d timeout pending\n", drm_enc->base.id);
1279 		del_timer_sync(&dpu_enc->frame_done_timer);
1280 	}
1281 
1282 	dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_STOP);
1283 
1284 	dpu_enc->connector = NULL;
1285 
1286 	DPU_DEBUG_ENC(dpu_enc, "encoder disabled\n");
1287 
1288 	mutex_unlock(&dpu_enc->enc_lock);
1289 }
1290 
1291 static struct dpu_hw_intf *dpu_encoder_get_intf(const struct dpu_mdss_cfg *catalog,
1292 		struct dpu_rm *dpu_rm,
1293 		enum dpu_intf_type type, u32 controller_id)
1294 {
1295 	int i = 0;
1296 
1297 	if (type == INTF_WB)
1298 		return NULL;
1299 
1300 	for (i = 0; i < catalog->intf_count; i++) {
1301 		if (catalog->intf[i].type == type
1302 		    && catalog->intf[i].controller_id == controller_id) {
1303 			return dpu_rm_get_intf(dpu_rm, catalog->intf[i].id);
1304 		}
1305 	}
1306 
1307 	return NULL;
1308 }
1309 
1310 void dpu_encoder_vblank_callback(struct drm_encoder *drm_enc,
1311 		struct dpu_encoder_phys *phy_enc)
1312 {
1313 	struct dpu_encoder_virt *dpu_enc = NULL;
1314 	unsigned long lock_flags;
1315 
1316 	if (!drm_enc || !phy_enc)
1317 		return;
1318 
1319 	DPU_ATRACE_BEGIN("encoder_vblank_callback");
1320 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1321 
1322 	atomic_inc(&phy_enc->vsync_cnt);
1323 
1324 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1325 	if (dpu_enc->crtc)
1326 		dpu_crtc_vblank_callback(dpu_enc->crtc);
1327 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1328 
1329 	DPU_ATRACE_END("encoder_vblank_callback");
1330 }
1331 
1332 void dpu_encoder_underrun_callback(struct drm_encoder *drm_enc,
1333 		struct dpu_encoder_phys *phy_enc)
1334 {
1335 	if (!phy_enc)
1336 		return;
1337 
1338 	DPU_ATRACE_BEGIN("encoder_underrun_callback");
1339 	atomic_inc(&phy_enc->underrun_cnt);
1340 
1341 	/* trigger dump only on the first underrun */
1342 	if (atomic_read(&phy_enc->underrun_cnt) == 1)
1343 		msm_disp_snapshot_state(drm_enc->dev);
1344 
1345 	trace_dpu_enc_underrun_cb(DRMID(drm_enc),
1346 				  atomic_read(&phy_enc->underrun_cnt));
1347 	DPU_ATRACE_END("encoder_underrun_callback");
1348 }
1349 
1350 void dpu_encoder_assign_crtc(struct drm_encoder *drm_enc, struct drm_crtc *crtc)
1351 {
1352 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1353 	unsigned long lock_flags;
1354 
1355 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1356 	/* crtc should always be cleared before re-assigning */
1357 	WARN_ON(crtc && dpu_enc->crtc);
1358 	dpu_enc->crtc = crtc;
1359 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1360 }
1361 
1362 void dpu_encoder_toggle_vblank_for_crtc(struct drm_encoder *drm_enc,
1363 					struct drm_crtc *crtc, bool enable)
1364 {
1365 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1366 	unsigned long lock_flags;
1367 	int i;
1368 
1369 	trace_dpu_enc_vblank_cb(DRMID(drm_enc), enable);
1370 
1371 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1372 	if (dpu_enc->crtc != crtc) {
1373 		spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1374 		return;
1375 	}
1376 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1377 
1378 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1379 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1380 
1381 		if (phys->ops.control_vblank_irq)
1382 			phys->ops.control_vblank_irq(phys, enable);
1383 	}
1384 }
1385 
1386 void dpu_encoder_register_frame_event_callback(struct drm_encoder *drm_enc,
1387 		void (*frame_event_cb)(void *, u32 event),
1388 		void *frame_event_cb_data)
1389 {
1390 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1391 	unsigned long lock_flags;
1392 	bool enable;
1393 
1394 	enable = frame_event_cb ? true : false;
1395 
1396 	if (!drm_enc) {
1397 		DPU_ERROR("invalid encoder\n");
1398 		return;
1399 	}
1400 	trace_dpu_enc_frame_event_cb(DRMID(drm_enc), enable);
1401 
1402 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1403 	dpu_enc->crtc_frame_event_cb = frame_event_cb;
1404 	dpu_enc->crtc_frame_event_cb_data = frame_event_cb_data;
1405 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1406 }
1407 
1408 void dpu_encoder_frame_done_callback(
1409 		struct drm_encoder *drm_enc,
1410 		struct dpu_encoder_phys *ready_phys, u32 event)
1411 {
1412 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1413 	unsigned int i;
1414 
1415 	if (event & (DPU_ENCODER_FRAME_EVENT_DONE
1416 			| DPU_ENCODER_FRAME_EVENT_ERROR
1417 			| DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)) {
1418 
1419 		if (!dpu_enc->frame_busy_mask[0]) {
1420 			/**
1421 			 * suppress frame_done without waiter,
1422 			 * likely autorefresh
1423 			 */
1424 			trace_dpu_enc_frame_done_cb_not_busy(DRMID(drm_enc), event,
1425 					dpu_encoder_helper_get_intf_type(ready_phys->intf_mode),
1426 					ready_phys->hw_intf ? ready_phys->hw_intf->idx : -1,
1427 					ready_phys->hw_wb ? ready_phys->hw_wb->idx : -1);
1428 			return;
1429 		}
1430 
1431 		/* One of the physical encoders has become idle */
1432 		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1433 			if (dpu_enc->phys_encs[i] == ready_phys) {
1434 				trace_dpu_enc_frame_done_cb(DRMID(drm_enc), i,
1435 						dpu_enc->frame_busy_mask[0]);
1436 				clear_bit(i, dpu_enc->frame_busy_mask);
1437 			}
1438 		}
1439 
1440 		if (!dpu_enc->frame_busy_mask[0]) {
1441 			atomic_set(&dpu_enc->frame_done_timeout_ms, 0);
1442 			del_timer(&dpu_enc->frame_done_timer);
1443 
1444 			dpu_encoder_resource_control(drm_enc,
1445 					DPU_ENC_RC_EVENT_FRAME_DONE);
1446 
1447 			if (dpu_enc->crtc_frame_event_cb)
1448 				dpu_enc->crtc_frame_event_cb(
1449 					dpu_enc->crtc_frame_event_cb_data,
1450 					event);
1451 		}
1452 	} else {
1453 		if (dpu_enc->crtc_frame_event_cb)
1454 			dpu_enc->crtc_frame_event_cb(
1455 				dpu_enc->crtc_frame_event_cb_data, event);
1456 	}
1457 }
1458 
1459 static void dpu_encoder_off_work(struct work_struct *work)
1460 {
1461 	struct dpu_encoder_virt *dpu_enc = container_of(work,
1462 			struct dpu_encoder_virt, delayed_off_work.work);
1463 
1464 	dpu_encoder_resource_control(&dpu_enc->base,
1465 						DPU_ENC_RC_EVENT_ENTER_IDLE);
1466 
1467 	dpu_encoder_frame_done_callback(&dpu_enc->base, NULL,
1468 				DPU_ENCODER_FRAME_EVENT_IDLE);
1469 }
1470 
1471 /**
1472  * _dpu_encoder_trigger_flush - trigger flush for a physical encoder
1473  * @drm_enc: Pointer to drm encoder structure
1474  * @phys: Pointer to physical encoder structure
1475  * @extra_flush_bits: Additional bit mask to include in flush trigger
1476  */
1477 static void _dpu_encoder_trigger_flush(struct drm_encoder *drm_enc,
1478 		struct dpu_encoder_phys *phys, uint32_t extra_flush_bits)
1479 {
1480 	struct dpu_hw_ctl *ctl;
1481 	int pending_kickoff_cnt;
1482 	u32 ret = UINT_MAX;
1483 
1484 	if (!phys->hw_pp) {
1485 		DPU_ERROR("invalid pingpong hw\n");
1486 		return;
1487 	}
1488 
1489 	ctl = phys->hw_ctl;
1490 	if (!ctl->ops.trigger_flush) {
1491 		DPU_ERROR("missing trigger cb\n");
1492 		return;
1493 	}
1494 
1495 	pending_kickoff_cnt = dpu_encoder_phys_inc_pending(phys);
1496 
1497 	if (extra_flush_bits && ctl->ops.update_pending_flush)
1498 		ctl->ops.update_pending_flush(ctl, extra_flush_bits);
1499 
1500 	ctl->ops.trigger_flush(ctl);
1501 
1502 	if (ctl->ops.get_pending_flush)
1503 		ret = ctl->ops.get_pending_flush(ctl);
1504 
1505 	trace_dpu_enc_trigger_flush(DRMID(drm_enc),
1506 			dpu_encoder_helper_get_intf_type(phys->intf_mode),
1507 			phys->hw_intf ? phys->hw_intf->idx : -1,
1508 			phys->hw_wb ? phys->hw_wb->idx : -1,
1509 			pending_kickoff_cnt, ctl->idx,
1510 			extra_flush_bits, ret);
1511 }
1512 
1513 /**
1514  * _dpu_encoder_trigger_start - trigger start for a physical encoder
1515  * @phys: Pointer to physical encoder structure
1516  */
1517 static void _dpu_encoder_trigger_start(struct dpu_encoder_phys *phys)
1518 {
1519 	if (!phys) {
1520 		DPU_ERROR("invalid argument(s)\n");
1521 		return;
1522 	}
1523 
1524 	if (!phys->hw_pp) {
1525 		DPU_ERROR("invalid pingpong hw\n");
1526 		return;
1527 	}
1528 
1529 	if (phys->ops.trigger_start && phys->enable_state != DPU_ENC_DISABLED)
1530 		phys->ops.trigger_start(phys);
1531 }
1532 
1533 void dpu_encoder_helper_trigger_start(struct dpu_encoder_phys *phys_enc)
1534 {
1535 	struct dpu_hw_ctl *ctl;
1536 
1537 	ctl = phys_enc->hw_ctl;
1538 	if (ctl->ops.trigger_start) {
1539 		ctl->ops.trigger_start(ctl);
1540 		trace_dpu_enc_trigger_start(DRMID(phys_enc->parent), ctl->idx);
1541 	}
1542 }
1543 
1544 static int dpu_encoder_helper_wait_event_timeout(
1545 		int32_t drm_id,
1546 		unsigned int irq_idx,
1547 		struct dpu_encoder_wait_info *info)
1548 {
1549 	int rc = 0;
1550 	s64 expected_time = ktime_to_ms(ktime_get()) + info->timeout_ms;
1551 	s64 jiffies = msecs_to_jiffies(info->timeout_ms);
1552 	s64 time;
1553 
1554 	do {
1555 		rc = wait_event_timeout(*(info->wq),
1556 				atomic_read(info->atomic_cnt) == 0, jiffies);
1557 		time = ktime_to_ms(ktime_get());
1558 
1559 		trace_dpu_enc_wait_event_timeout(drm_id,
1560 						 DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx),
1561 						 rc, time,
1562 						 expected_time,
1563 						 atomic_read(info->atomic_cnt));
1564 	/* If we timed out, counter is valid and time is less, wait again */
1565 	} while (atomic_read(info->atomic_cnt) && (rc == 0) &&
1566 			(time < expected_time));
1567 
1568 	return rc;
1569 }
1570 
1571 static void dpu_encoder_helper_hw_reset(struct dpu_encoder_phys *phys_enc)
1572 {
1573 	struct dpu_encoder_virt *dpu_enc;
1574 	struct dpu_hw_ctl *ctl;
1575 	int rc;
1576 	struct drm_encoder *drm_enc;
1577 
1578 	dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
1579 	ctl = phys_enc->hw_ctl;
1580 	drm_enc = phys_enc->parent;
1581 
1582 	if (!ctl->ops.reset)
1583 		return;
1584 
1585 	DRM_DEBUG_KMS("id:%u ctl %d reset\n", DRMID(drm_enc),
1586 		      ctl->idx);
1587 
1588 	rc = ctl->ops.reset(ctl);
1589 	if (rc) {
1590 		DPU_ERROR_ENC(dpu_enc, "ctl %d reset failure\n",  ctl->idx);
1591 		msm_disp_snapshot_state(drm_enc->dev);
1592 	}
1593 
1594 	phys_enc->enable_state = DPU_ENC_ENABLED;
1595 }
1596 
1597 /**
1598  * _dpu_encoder_kickoff_phys - handle physical encoder kickoff
1599  *	Iterate through the physical encoders and perform consolidated flush
1600  *	and/or control start triggering as needed. This is done in the virtual
1601  *	encoder rather than the individual physical ones in order to handle
1602  *	use cases that require visibility into multiple physical encoders at
1603  *	a time.
1604  * @dpu_enc: Pointer to virtual encoder structure
1605  */
1606 static void _dpu_encoder_kickoff_phys(struct dpu_encoder_virt *dpu_enc)
1607 {
1608 	struct dpu_hw_ctl *ctl;
1609 	uint32_t i, pending_flush;
1610 	unsigned long lock_flags;
1611 
1612 	pending_flush = 0x0;
1613 
1614 	/* update pending counts and trigger kickoff ctl flush atomically */
1615 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1616 
1617 	/* don't perform flush/start operations for slave encoders */
1618 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1619 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1620 
1621 		if (phys->enable_state == DPU_ENC_DISABLED)
1622 			continue;
1623 
1624 		ctl = phys->hw_ctl;
1625 
1626 		/*
1627 		 * This is cleared in frame_done worker, which isn't invoked
1628 		 * for async commits. So don't set this for async, since it'll
1629 		 * roll over to the next commit.
1630 		 */
1631 		if (phys->split_role != ENC_ROLE_SLAVE)
1632 			set_bit(i, dpu_enc->frame_busy_mask);
1633 
1634 		if (!phys->ops.needs_single_flush ||
1635 				!phys->ops.needs_single_flush(phys))
1636 			_dpu_encoder_trigger_flush(&dpu_enc->base, phys, 0x0);
1637 		else if (ctl->ops.get_pending_flush)
1638 			pending_flush |= ctl->ops.get_pending_flush(ctl);
1639 	}
1640 
1641 	/* for split flush, combine pending flush masks and send to master */
1642 	if (pending_flush && dpu_enc->cur_master) {
1643 		_dpu_encoder_trigger_flush(
1644 				&dpu_enc->base,
1645 				dpu_enc->cur_master,
1646 				pending_flush);
1647 	}
1648 
1649 	_dpu_encoder_trigger_start(dpu_enc->cur_master);
1650 
1651 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1652 }
1653 
1654 void dpu_encoder_trigger_kickoff_pending(struct drm_encoder *drm_enc)
1655 {
1656 	struct dpu_encoder_virt *dpu_enc;
1657 	struct dpu_encoder_phys *phys;
1658 	unsigned int i;
1659 	struct dpu_hw_ctl *ctl;
1660 	struct msm_display_info *disp_info;
1661 
1662 	if (!drm_enc) {
1663 		DPU_ERROR("invalid encoder\n");
1664 		return;
1665 	}
1666 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1667 	disp_info = &dpu_enc->disp_info;
1668 
1669 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1670 		phys = dpu_enc->phys_encs[i];
1671 
1672 		ctl = phys->hw_ctl;
1673 		if (ctl->ops.clear_pending_flush)
1674 			ctl->ops.clear_pending_flush(ctl);
1675 
1676 		/* update only for command mode primary ctl */
1677 		if ((phys == dpu_enc->cur_master) &&
1678 		    disp_info->is_cmd_mode
1679 		    && ctl->ops.trigger_pending)
1680 			ctl->ops.trigger_pending(ctl);
1681 	}
1682 }
1683 
1684 static u32 _dpu_encoder_calculate_linetime(struct dpu_encoder_virt *dpu_enc,
1685 		struct drm_display_mode *mode)
1686 {
1687 	u64 pclk_rate;
1688 	u32 pclk_period;
1689 	u32 line_time;
1690 
1691 	/*
1692 	 * For linetime calculation, only operate on master encoder.
1693 	 */
1694 	if (!dpu_enc->cur_master)
1695 		return 0;
1696 
1697 	if (!dpu_enc->cur_master->ops.get_line_count) {
1698 		DPU_ERROR("get_line_count function not defined\n");
1699 		return 0;
1700 	}
1701 
1702 	pclk_rate = mode->clock; /* pixel clock in kHz */
1703 	if (pclk_rate == 0) {
1704 		DPU_ERROR("pclk is 0, cannot calculate line time\n");
1705 		return 0;
1706 	}
1707 
1708 	pclk_period = DIV_ROUND_UP_ULL(1000000000ull, pclk_rate);
1709 	if (pclk_period == 0) {
1710 		DPU_ERROR("pclk period is 0\n");
1711 		return 0;
1712 	}
1713 
1714 	/*
1715 	 * Line time calculation based on Pixel clock and HTOTAL.
1716 	 * Final unit is in ns.
1717 	 */
1718 	line_time = (pclk_period * mode->htotal) / 1000;
1719 	if (line_time == 0) {
1720 		DPU_ERROR("line time calculation is 0\n");
1721 		return 0;
1722 	}
1723 
1724 	DPU_DEBUG_ENC(dpu_enc,
1725 			"clk_rate=%lldkHz, clk_period=%d, linetime=%dns\n",
1726 			pclk_rate, pclk_period, line_time);
1727 
1728 	return line_time;
1729 }
1730 
1731 int dpu_encoder_vsync_time(struct drm_encoder *drm_enc, ktime_t *wakeup_time)
1732 {
1733 	struct drm_display_mode *mode;
1734 	struct dpu_encoder_virt *dpu_enc;
1735 	u32 cur_line;
1736 	u32 line_time;
1737 	u32 vtotal, time_to_vsync;
1738 	ktime_t cur_time;
1739 
1740 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1741 
1742 	if (!drm_enc->crtc || !drm_enc->crtc->state) {
1743 		DPU_ERROR("crtc/crtc state object is NULL\n");
1744 		return -EINVAL;
1745 	}
1746 	mode = &drm_enc->crtc->state->adjusted_mode;
1747 
1748 	line_time = _dpu_encoder_calculate_linetime(dpu_enc, mode);
1749 	if (!line_time)
1750 		return -EINVAL;
1751 
1752 	cur_line = dpu_enc->cur_master->ops.get_line_count(dpu_enc->cur_master);
1753 
1754 	vtotal = mode->vtotal;
1755 	if (cur_line >= vtotal)
1756 		time_to_vsync = line_time * vtotal;
1757 	else
1758 		time_to_vsync = line_time * (vtotal - cur_line);
1759 
1760 	if (time_to_vsync == 0) {
1761 		DPU_ERROR("time to vsync should not be zero, vtotal=%d\n",
1762 				vtotal);
1763 		return -EINVAL;
1764 	}
1765 
1766 	cur_time = ktime_get();
1767 	*wakeup_time = ktime_add_ns(cur_time, time_to_vsync);
1768 
1769 	DPU_DEBUG_ENC(dpu_enc,
1770 			"cur_line=%u vtotal=%u time_to_vsync=%u, cur_time=%lld, wakeup_time=%lld\n",
1771 			cur_line, vtotal, time_to_vsync,
1772 			ktime_to_ms(cur_time),
1773 			ktime_to_ms(*wakeup_time));
1774 	return 0;
1775 }
1776 
1777 static u32
1778 dpu_encoder_dsc_initial_line_calc(struct drm_dsc_config *dsc,
1779 				  u32 enc_ip_width)
1780 {
1781 	int ssm_delay, total_pixels, soft_slice_per_enc;
1782 
1783 	soft_slice_per_enc = enc_ip_width / dsc->slice_width;
1784 
1785 	/*
1786 	 * minimum number of initial line pixels is a sum of:
1787 	 * 1. sub-stream multiplexer delay (83 groups for 8bpc,
1788 	 *    91 for 10 bpc) * 3
1789 	 * 2. for two soft slice cases, add extra sub-stream multiplexer * 3
1790 	 * 3. the initial xmit delay
1791 	 * 4. total pipeline delay through the "lock step" of encoder (47)
1792 	 * 5. 6 additional pixels as the output of the rate buffer is
1793 	 *    48 bits wide
1794 	 */
1795 	ssm_delay = ((dsc->bits_per_component < 10) ? 84 : 92);
1796 	total_pixels = ssm_delay * 3 + dsc->initial_xmit_delay + 47;
1797 	if (soft_slice_per_enc > 1)
1798 		total_pixels += (ssm_delay * 3);
1799 	return DIV_ROUND_UP(total_pixels, dsc->slice_width);
1800 }
1801 
1802 static void dpu_encoder_dsc_pipe_cfg(struct dpu_hw_ctl *ctl,
1803 				     struct dpu_hw_dsc *hw_dsc,
1804 				     struct dpu_hw_pingpong *hw_pp,
1805 				     struct drm_dsc_config *dsc,
1806 				     u32 common_mode,
1807 				     u32 initial_lines)
1808 {
1809 	if (hw_dsc->ops.dsc_config)
1810 		hw_dsc->ops.dsc_config(hw_dsc, dsc, common_mode, initial_lines);
1811 
1812 	if (hw_dsc->ops.dsc_config_thresh)
1813 		hw_dsc->ops.dsc_config_thresh(hw_dsc, dsc);
1814 
1815 	if (hw_pp->ops.setup_dsc)
1816 		hw_pp->ops.setup_dsc(hw_pp);
1817 
1818 	if (hw_dsc->ops.dsc_bind_pingpong_blk)
1819 		hw_dsc->ops.dsc_bind_pingpong_blk(hw_dsc, hw_pp->idx);
1820 
1821 	if (hw_pp->ops.enable_dsc)
1822 		hw_pp->ops.enable_dsc(hw_pp);
1823 
1824 	if (ctl->ops.update_pending_flush_dsc)
1825 		ctl->ops.update_pending_flush_dsc(ctl, hw_dsc->idx);
1826 }
1827 
1828 static void dpu_encoder_prep_dsc(struct dpu_encoder_virt *dpu_enc,
1829 				 struct drm_dsc_config *dsc)
1830 {
1831 	/* coding only for 2LM, 2enc, 1 dsc config */
1832 	struct dpu_encoder_phys *enc_master = dpu_enc->cur_master;
1833 	struct dpu_hw_ctl *ctl = enc_master->hw_ctl;
1834 	struct dpu_hw_dsc *hw_dsc[MAX_CHANNELS_PER_ENC];
1835 	struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC];
1836 	int this_frame_slices;
1837 	int intf_ip_w, enc_ip_w;
1838 	int dsc_common_mode;
1839 	int pic_width;
1840 	u32 initial_lines;
1841 	int i;
1842 
1843 	for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
1844 		hw_pp[i] = dpu_enc->hw_pp[i];
1845 		hw_dsc[i] = dpu_enc->hw_dsc[i];
1846 
1847 		if (!hw_pp[i] || !hw_dsc[i]) {
1848 			DPU_ERROR_ENC(dpu_enc, "invalid params for DSC\n");
1849 			return;
1850 		}
1851 	}
1852 
1853 	dsc_common_mode = 0;
1854 	pic_width = dsc->pic_width;
1855 
1856 	dsc_common_mode = DSC_MODE_MULTIPLEX | DSC_MODE_SPLIT_PANEL;
1857 	if (enc_master->intf_mode == INTF_MODE_VIDEO)
1858 		dsc_common_mode |= DSC_MODE_VIDEO;
1859 
1860 	this_frame_slices = pic_width / dsc->slice_width;
1861 	intf_ip_w = this_frame_slices * dsc->slice_width;
1862 
1863 	/*
1864 	 * dsc merge case: when using 2 encoders for the same stream,
1865 	 * no. of slices need to be same on both the encoders.
1866 	 */
1867 	enc_ip_w = intf_ip_w / 2;
1868 	initial_lines = dpu_encoder_dsc_initial_line_calc(dsc, enc_ip_w);
1869 
1870 	for (i = 0; i < MAX_CHANNELS_PER_ENC; i++)
1871 		dpu_encoder_dsc_pipe_cfg(ctl, hw_dsc[i], hw_pp[i],
1872 					 dsc, dsc_common_mode, initial_lines);
1873 }
1874 
1875 void dpu_encoder_prepare_for_kickoff(struct drm_encoder *drm_enc)
1876 {
1877 	struct dpu_encoder_virt *dpu_enc;
1878 	struct dpu_encoder_phys *phys;
1879 	bool needs_hw_reset = false;
1880 	unsigned int i;
1881 
1882 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1883 
1884 	trace_dpu_enc_prepare_kickoff(DRMID(drm_enc));
1885 
1886 	/* prepare for next kickoff, may include waiting on previous kickoff */
1887 	DPU_ATRACE_BEGIN("enc_prepare_for_kickoff");
1888 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1889 		phys = dpu_enc->phys_encs[i];
1890 		if (phys->ops.prepare_for_kickoff)
1891 			phys->ops.prepare_for_kickoff(phys);
1892 		if (phys->enable_state == DPU_ENC_ERR_NEEDS_HW_RESET)
1893 			needs_hw_reset = true;
1894 	}
1895 	DPU_ATRACE_END("enc_prepare_for_kickoff");
1896 
1897 	dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF);
1898 
1899 	/* if any phys needs reset, reset all phys, in-order */
1900 	if (needs_hw_reset) {
1901 		trace_dpu_enc_prepare_kickoff_reset(DRMID(drm_enc));
1902 		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1903 			dpu_encoder_helper_hw_reset(dpu_enc->phys_encs[i]);
1904 		}
1905 	}
1906 
1907 	if (dpu_enc->dsc)
1908 		dpu_encoder_prep_dsc(dpu_enc, dpu_enc->dsc);
1909 }
1910 
1911 bool dpu_encoder_is_valid_for_commit(struct drm_encoder *drm_enc)
1912 {
1913 	struct dpu_encoder_virt *dpu_enc;
1914 	unsigned int i;
1915 	struct dpu_encoder_phys *phys;
1916 
1917 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1918 
1919 	if (drm_enc->encoder_type == DRM_MODE_ENCODER_VIRTUAL) {
1920 		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1921 			phys = dpu_enc->phys_encs[i];
1922 			if (phys->ops.is_valid_for_commit && !phys->ops.is_valid_for_commit(phys)) {
1923 				DPU_DEBUG("invalid FB not kicking off\n");
1924 				return false;
1925 			}
1926 		}
1927 	}
1928 
1929 	return true;
1930 }
1931 
1932 void dpu_encoder_kickoff(struct drm_encoder *drm_enc)
1933 {
1934 	struct dpu_encoder_virt *dpu_enc;
1935 	struct dpu_encoder_phys *phys;
1936 	unsigned long timeout_ms;
1937 	unsigned int i;
1938 
1939 	DPU_ATRACE_BEGIN("encoder_kickoff");
1940 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1941 
1942 	trace_dpu_enc_kickoff(DRMID(drm_enc));
1943 
1944 	timeout_ms = DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES * 1000 /
1945 			drm_mode_vrefresh(&drm_enc->crtc->state->adjusted_mode);
1946 
1947 	atomic_set(&dpu_enc->frame_done_timeout_ms, timeout_ms);
1948 	mod_timer(&dpu_enc->frame_done_timer,
1949 			jiffies + msecs_to_jiffies(timeout_ms));
1950 
1951 	/* All phys encs are ready to go, trigger the kickoff */
1952 	_dpu_encoder_kickoff_phys(dpu_enc);
1953 
1954 	/* allow phys encs to handle any post-kickoff business */
1955 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1956 		phys = dpu_enc->phys_encs[i];
1957 		if (phys->ops.handle_post_kickoff)
1958 			phys->ops.handle_post_kickoff(phys);
1959 	}
1960 
1961 	DPU_ATRACE_END("encoder_kickoff");
1962 }
1963 
1964 static void dpu_encoder_helper_reset_mixers(struct dpu_encoder_phys *phys_enc)
1965 {
1966 	struct dpu_hw_mixer_cfg mixer;
1967 	int i, num_lm;
1968 	struct dpu_global_state *global_state;
1969 	struct dpu_hw_blk *hw_lm[2];
1970 	struct dpu_hw_mixer *hw_mixer[2];
1971 	struct dpu_hw_ctl *ctl = phys_enc->hw_ctl;
1972 
1973 	memset(&mixer, 0, sizeof(mixer));
1974 
1975 	/* reset all mixers for this encoder */
1976 	if (phys_enc->hw_ctl->ops.clear_all_blendstages)
1977 		phys_enc->hw_ctl->ops.clear_all_blendstages(phys_enc->hw_ctl);
1978 
1979 	global_state = dpu_kms_get_existing_global_state(phys_enc->dpu_kms);
1980 
1981 	num_lm = dpu_rm_get_assigned_resources(&phys_enc->dpu_kms->rm, global_state,
1982 		phys_enc->parent->base.id, DPU_HW_BLK_LM, hw_lm, ARRAY_SIZE(hw_lm));
1983 
1984 	for (i = 0; i < num_lm; i++) {
1985 		hw_mixer[i] = to_dpu_hw_mixer(hw_lm[i]);
1986 		if (phys_enc->hw_ctl->ops.update_pending_flush_mixer)
1987 			phys_enc->hw_ctl->ops.update_pending_flush_mixer(ctl, hw_mixer[i]->idx);
1988 
1989 		/* clear all blendstages */
1990 		if (phys_enc->hw_ctl->ops.setup_blendstage)
1991 			phys_enc->hw_ctl->ops.setup_blendstage(ctl, hw_mixer[i]->idx, NULL);
1992 	}
1993 }
1994 
1995 static void dpu_encoder_dsc_pipe_clr(struct dpu_hw_ctl *ctl,
1996 				     struct dpu_hw_dsc *hw_dsc,
1997 				     struct dpu_hw_pingpong *hw_pp)
1998 {
1999 	if (hw_dsc->ops.dsc_disable)
2000 		hw_dsc->ops.dsc_disable(hw_dsc);
2001 
2002 	if (hw_pp->ops.disable_dsc)
2003 		hw_pp->ops.disable_dsc(hw_pp);
2004 
2005 	if (hw_dsc->ops.dsc_bind_pingpong_blk)
2006 		hw_dsc->ops.dsc_bind_pingpong_blk(hw_dsc, PINGPONG_NONE);
2007 
2008 	if (ctl->ops.update_pending_flush_dsc)
2009 		ctl->ops.update_pending_flush_dsc(ctl, hw_dsc->idx);
2010 }
2011 
2012 static void dpu_encoder_unprep_dsc(struct dpu_encoder_virt *dpu_enc)
2013 {
2014 	/* coding only for 2LM, 2enc, 1 dsc config */
2015 	struct dpu_encoder_phys *enc_master = dpu_enc->cur_master;
2016 	struct dpu_hw_ctl *ctl = enc_master->hw_ctl;
2017 	struct dpu_hw_dsc *hw_dsc[MAX_CHANNELS_PER_ENC];
2018 	struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC];
2019 	int i;
2020 
2021 	for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
2022 		hw_pp[i] = dpu_enc->hw_pp[i];
2023 		hw_dsc[i] = dpu_enc->hw_dsc[i];
2024 
2025 		if (hw_pp[i] && hw_dsc[i])
2026 			dpu_encoder_dsc_pipe_clr(ctl, hw_dsc[i], hw_pp[i]);
2027 	}
2028 }
2029 
2030 void dpu_encoder_helper_phys_cleanup(struct dpu_encoder_phys *phys_enc)
2031 {
2032 	struct dpu_hw_ctl *ctl = phys_enc->hw_ctl;
2033 	struct dpu_hw_intf_cfg intf_cfg = { 0 };
2034 	int i;
2035 	struct dpu_encoder_virt *dpu_enc;
2036 
2037 	dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
2038 
2039 	phys_enc->hw_ctl->ops.reset(ctl);
2040 
2041 	dpu_encoder_helper_reset_mixers(phys_enc);
2042 
2043 	/*
2044 	 * TODO: move the once-only operation like CTL flush/trigger
2045 	 * into dpu_encoder_virt_disable() and all operations which need
2046 	 * to be done per phys encoder into the phys_disable() op.
2047 	 */
2048 	if (phys_enc->hw_wb) {
2049 		/* disable the PP block */
2050 		if (phys_enc->hw_wb->ops.bind_pingpong_blk)
2051 			phys_enc->hw_wb->ops.bind_pingpong_blk(phys_enc->hw_wb, PINGPONG_NONE);
2052 
2053 		/* mark WB flush as pending */
2054 		if (phys_enc->hw_ctl->ops.update_pending_flush_wb)
2055 			phys_enc->hw_ctl->ops.update_pending_flush_wb(ctl, phys_enc->hw_wb->idx);
2056 	} else {
2057 		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2058 			if (dpu_enc->phys_encs[i] && phys_enc->hw_intf->ops.bind_pingpong_blk)
2059 				phys_enc->hw_intf->ops.bind_pingpong_blk(
2060 						dpu_enc->phys_encs[i]->hw_intf,
2061 						PINGPONG_NONE);
2062 
2063 			/* mark INTF flush as pending */
2064 			if (phys_enc->hw_ctl->ops.update_pending_flush_intf)
2065 				phys_enc->hw_ctl->ops.update_pending_flush_intf(phys_enc->hw_ctl,
2066 						dpu_enc->phys_encs[i]->hw_intf->idx);
2067 		}
2068 	}
2069 
2070 	/* reset the merge 3D HW block */
2071 	if (phys_enc->hw_pp && phys_enc->hw_pp->merge_3d) {
2072 		phys_enc->hw_pp->merge_3d->ops.setup_3d_mode(phys_enc->hw_pp->merge_3d,
2073 				BLEND_3D_NONE);
2074 		if (phys_enc->hw_ctl->ops.update_pending_flush_merge_3d)
2075 			phys_enc->hw_ctl->ops.update_pending_flush_merge_3d(ctl,
2076 					phys_enc->hw_pp->merge_3d->idx);
2077 	}
2078 
2079 	if (phys_enc->hw_cdm) {
2080 		if (phys_enc->hw_cdm->ops.bind_pingpong_blk && phys_enc->hw_pp)
2081 			phys_enc->hw_cdm->ops.bind_pingpong_blk(phys_enc->hw_cdm,
2082 								PINGPONG_NONE);
2083 		if (phys_enc->hw_ctl->ops.update_pending_flush_cdm)
2084 			phys_enc->hw_ctl->ops.update_pending_flush_cdm(phys_enc->hw_ctl,
2085 								       phys_enc->hw_cdm->idx);
2086 	}
2087 
2088 	if (dpu_enc->dsc) {
2089 		dpu_encoder_unprep_dsc(dpu_enc);
2090 		dpu_enc->dsc = NULL;
2091 	}
2092 
2093 	intf_cfg.stream_sel = 0; /* Don't care value for video mode */
2094 	intf_cfg.mode_3d = dpu_encoder_helper_get_3d_blend_mode(phys_enc);
2095 	intf_cfg.dsc = dpu_encoder_helper_get_dsc(phys_enc);
2096 
2097 	if (phys_enc->hw_intf)
2098 		intf_cfg.intf = phys_enc->hw_intf->idx;
2099 	if (phys_enc->hw_wb)
2100 		intf_cfg.wb = phys_enc->hw_wb->idx;
2101 
2102 	if (phys_enc->hw_pp && phys_enc->hw_pp->merge_3d)
2103 		intf_cfg.merge_3d = phys_enc->hw_pp->merge_3d->idx;
2104 
2105 	if (ctl->ops.reset_intf_cfg)
2106 		ctl->ops.reset_intf_cfg(ctl, &intf_cfg);
2107 
2108 	ctl->ops.trigger_flush(ctl);
2109 	ctl->ops.trigger_start(ctl);
2110 	ctl->ops.clear_pending_flush(ctl);
2111 }
2112 
2113 #ifdef CONFIG_DEBUG_FS
2114 static int _dpu_encoder_status_show(struct seq_file *s, void *data)
2115 {
2116 	struct drm_encoder *drm_enc = s->private;
2117 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
2118 	int i;
2119 
2120 	mutex_lock(&dpu_enc->enc_lock);
2121 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2122 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2123 
2124 		seq_printf(s, "intf:%d  wb:%d  vsync:%8d     underrun:%8d    frame_done_cnt:%d",
2125 				phys->hw_intf ? phys->hw_intf->idx - INTF_0 : -1,
2126 				phys->hw_wb ? phys->hw_wb->idx - WB_0 : -1,
2127 				atomic_read(&phys->vsync_cnt),
2128 				atomic_read(&phys->underrun_cnt),
2129 				atomic_read(&dpu_enc->frame_done_timeout_cnt));
2130 
2131 		seq_printf(s, "mode: %s\n", dpu_encoder_helper_get_intf_type(phys->intf_mode));
2132 	}
2133 	mutex_unlock(&dpu_enc->enc_lock);
2134 
2135 	return 0;
2136 }
2137 
2138 DEFINE_SHOW_ATTRIBUTE(_dpu_encoder_status);
2139 
2140 static void dpu_encoder_debugfs_init(struct drm_encoder *drm_enc, struct dentry *root)
2141 {
2142 	/* don't error check these */
2143 	debugfs_create_file("status", 0600,
2144 			    root, drm_enc, &_dpu_encoder_status_fops);
2145 }
2146 #else
2147 #define dpu_encoder_debugfs_init NULL
2148 #endif
2149 
2150 static int dpu_encoder_virt_add_phys_encs(
2151 		struct drm_device *dev,
2152 		struct msm_display_info *disp_info,
2153 		struct dpu_encoder_virt *dpu_enc,
2154 		struct dpu_enc_phys_init_params *params)
2155 {
2156 	struct dpu_encoder_phys *enc = NULL;
2157 
2158 	DPU_DEBUG_ENC(dpu_enc, "\n");
2159 
2160 	/*
2161 	 * We may create up to NUM_PHYS_ENCODER_TYPES physical encoder types
2162 	 * in this function, check up-front.
2163 	 */
2164 	if (dpu_enc->num_phys_encs + NUM_PHYS_ENCODER_TYPES >=
2165 			ARRAY_SIZE(dpu_enc->phys_encs)) {
2166 		DPU_ERROR_ENC(dpu_enc, "too many physical encoders %d\n",
2167 			  dpu_enc->num_phys_encs);
2168 		return -EINVAL;
2169 	}
2170 
2171 
2172 	if (disp_info->intf_type == INTF_WB) {
2173 		enc = dpu_encoder_phys_wb_init(dev, params);
2174 
2175 		if (IS_ERR(enc)) {
2176 			DPU_ERROR_ENC(dpu_enc, "failed to init wb enc: %ld\n",
2177 				PTR_ERR(enc));
2178 			return PTR_ERR(enc);
2179 		}
2180 
2181 		dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
2182 		++dpu_enc->num_phys_encs;
2183 	} else if (disp_info->is_cmd_mode) {
2184 		enc = dpu_encoder_phys_cmd_init(dev, params);
2185 
2186 		if (IS_ERR(enc)) {
2187 			DPU_ERROR_ENC(dpu_enc, "failed to init cmd enc: %ld\n",
2188 				PTR_ERR(enc));
2189 			return PTR_ERR(enc);
2190 		}
2191 
2192 		dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
2193 		++dpu_enc->num_phys_encs;
2194 	} else {
2195 		enc = dpu_encoder_phys_vid_init(dev, params);
2196 
2197 		if (IS_ERR(enc)) {
2198 			DPU_ERROR_ENC(dpu_enc, "failed to init vid enc: %ld\n",
2199 				PTR_ERR(enc));
2200 			return PTR_ERR(enc);
2201 		}
2202 
2203 		dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
2204 		++dpu_enc->num_phys_encs;
2205 	}
2206 
2207 	if (params->split_role == ENC_ROLE_SLAVE)
2208 		dpu_enc->cur_slave = enc;
2209 	else
2210 		dpu_enc->cur_master = enc;
2211 
2212 	return 0;
2213 }
2214 
2215 static int dpu_encoder_setup_display(struct dpu_encoder_virt *dpu_enc,
2216 				 struct dpu_kms *dpu_kms,
2217 				 struct msm_display_info *disp_info)
2218 {
2219 	int ret = 0;
2220 	int i = 0;
2221 	struct dpu_enc_phys_init_params phys_params;
2222 
2223 	if (!dpu_enc) {
2224 		DPU_ERROR("invalid arg(s), enc %d\n", dpu_enc != NULL);
2225 		return -EINVAL;
2226 	}
2227 
2228 	dpu_enc->cur_master = NULL;
2229 
2230 	memset(&phys_params, 0, sizeof(phys_params));
2231 	phys_params.dpu_kms = dpu_kms;
2232 	phys_params.parent = &dpu_enc->base;
2233 	phys_params.enc_spinlock = &dpu_enc->enc_spinlock;
2234 
2235 	WARN_ON(disp_info->num_of_h_tiles < 1);
2236 
2237 	DPU_DEBUG("dsi_info->num_of_h_tiles %d\n", disp_info->num_of_h_tiles);
2238 
2239 	if (disp_info->intf_type != INTF_WB)
2240 		dpu_enc->idle_pc_supported =
2241 				dpu_kms->catalog->caps->has_idle_pc;
2242 
2243 	mutex_lock(&dpu_enc->enc_lock);
2244 	for (i = 0; i < disp_info->num_of_h_tiles && !ret; i++) {
2245 		/*
2246 		 * Left-most tile is at index 0, content is controller id
2247 		 * h_tile_instance_ids[2] = {0, 1}; DSI0 = left, DSI1 = right
2248 		 * h_tile_instance_ids[2] = {1, 0}; DSI1 = left, DSI0 = right
2249 		 */
2250 		u32 controller_id = disp_info->h_tile_instance[i];
2251 
2252 		if (disp_info->num_of_h_tiles > 1) {
2253 			if (i == 0)
2254 				phys_params.split_role = ENC_ROLE_MASTER;
2255 			else
2256 				phys_params.split_role = ENC_ROLE_SLAVE;
2257 		} else {
2258 			phys_params.split_role = ENC_ROLE_SOLO;
2259 		}
2260 
2261 		DPU_DEBUG("h_tile_instance %d = %d, split_role %d\n",
2262 				i, controller_id, phys_params.split_role);
2263 
2264 		phys_params.hw_intf = dpu_encoder_get_intf(dpu_kms->catalog, &dpu_kms->rm,
2265 							   disp_info->intf_type,
2266 							   controller_id);
2267 
2268 		if (disp_info->intf_type == INTF_WB && controller_id < WB_MAX)
2269 			phys_params.hw_wb = dpu_rm_get_wb(&dpu_kms->rm, controller_id);
2270 
2271 		if (!phys_params.hw_intf && !phys_params.hw_wb) {
2272 			DPU_ERROR_ENC(dpu_enc, "no intf or wb block assigned at idx: %d\n", i);
2273 			ret = -EINVAL;
2274 			break;
2275 		}
2276 
2277 		if (phys_params.hw_intf && phys_params.hw_wb) {
2278 			DPU_ERROR_ENC(dpu_enc,
2279 					"invalid phys both intf and wb block at idx: %d\n", i);
2280 			ret = -EINVAL;
2281 			break;
2282 		}
2283 
2284 		ret = dpu_encoder_virt_add_phys_encs(dpu_kms->dev, disp_info,
2285 				dpu_enc, &phys_params);
2286 		if (ret) {
2287 			DPU_ERROR_ENC(dpu_enc, "failed to add phys encs\n");
2288 			break;
2289 		}
2290 	}
2291 
2292 	mutex_unlock(&dpu_enc->enc_lock);
2293 
2294 	return ret;
2295 }
2296 
2297 static void dpu_encoder_frame_done_timeout(struct timer_list *t)
2298 {
2299 	struct dpu_encoder_virt *dpu_enc = from_timer(dpu_enc, t,
2300 			frame_done_timer);
2301 	struct drm_encoder *drm_enc = &dpu_enc->base;
2302 	u32 event;
2303 
2304 	if (!drm_enc->dev) {
2305 		DPU_ERROR("invalid parameters\n");
2306 		return;
2307 	}
2308 
2309 	if (!dpu_enc->frame_busy_mask[0] || !dpu_enc->crtc_frame_event_cb) {
2310 		DRM_DEBUG_KMS("id:%u invalid timeout frame_busy_mask=%lu\n",
2311 			      DRMID(drm_enc), dpu_enc->frame_busy_mask[0]);
2312 		return;
2313 	} else if (!atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) {
2314 		DRM_DEBUG_KMS("id:%u invalid timeout\n", DRMID(drm_enc));
2315 		return;
2316 	}
2317 
2318 	DPU_ERROR_ENC_RATELIMITED(dpu_enc, "frame done timeout\n");
2319 
2320 	if (atomic_inc_return(&dpu_enc->frame_done_timeout_cnt) == 1)
2321 		msm_disp_snapshot_state(drm_enc->dev);
2322 
2323 	event = DPU_ENCODER_FRAME_EVENT_ERROR;
2324 	trace_dpu_enc_frame_done_timeout(DRMID(drm_enc), event);
2325 	dpu_enc->crtc_frame_event_cb(dpu_enc->crtc_frame_event_cb_data, event);
2326 }
2327 
2328 static const struct drm_encoder_helper_funcs dpu_encoder_helper_funcs = {
2329 	.atomic_mode_set = dpu_encoder_virt_atomic_mode_set,
2330 	.atomic_disable = dpu_encoder_virt_atomic_disable,
2331 	.atomic_enable = dpu_encoder_virt_atomic_enable,
2332 	.atomic_check = dpu_encoder_virt_atomic_check,
2333 };
2334 
2335 static const struct drm_encoder_funcs dpu_encoder_funcs = {
2336 	.debugfs_init = dpu_encoder_debugfs_init,
2337 };
2338 
2339 struct drm_encoder *dpu_encoder_init(struct drm_device *dev,
2340 		int drm_enc_mode,
2341 		struct msm_display_info *disp_info)
2342 {
2343 	struct msm_drm_private *priv = dev->dev_private;
2344 	struct dpu_kms *dpu_kms = to_dpu_kms(priv->kms);
2345 	struct dpu_encoder_virt *dpu_enc;
2346 	int ret;
2347 
2348 	dpu_enc = drmm_encoder_alloc(dev, struct dpu_encoder_virt, base,
2349 				     &dpu_encoder_funcs, drm_enc_mode, NULL);
2350 	if (IS_ERR(dpu_enc))
2351 		return ERR_CAST(dpu_enc);
2352 
2353 	drm_encoder_helper_add(&dpu_enc->base, &dpu_encoder_helper_funcs);
2354 
2355 	spin_lock_init(&dpu_enc->enc_spinlock);
2356 	dpu_enc->enabled = false;
2357 	mutex_init(&dpu_enc->enc_lock);
2358 	mutex_init(&dpu_enc->rc_lock);
2359 
2360 	ret = dpu_encoder_setup_display(dpu_enc, dpu_kms, disp_info);
2361 	if (ret) {
2362 		DPU_ERROR("failed to setup encoder\n");
2363 		return ERR_PTR(-ENOMEM);
2364 	}
2365 
2366 	atomic_set(&dpu_enc->frame_done_timeout_ms, 0);
2367 	atomic_set(&dpu_enc->frame_done_timeout_cnt, 0);
2368 	timer_setup(&dpu_enc->frame_done_timer,
2369 			dpu_encoder_frame_done_timeout, 0);
2370 
2371 	INIT_DELAYED_WORK(&dpu_enc->delayed_off_work,
2372 			dpu_encoder_off_work);
2373 	dpu_enc->idle_timeout = IDLE_TIMEOUT;
2374 
2375 	memcpy(&dpu_enc->disp_info, disp_info, sizeof(*disp_info));
2376 
2377 	DPU_DEBUG_ENC(dpu_enc, "created\n");
2378 
2379 	return &dpu_enc->base;
2380 }
2381 
2382 int dpu_encoder_wait_for_event(struct drm_encoder *drm_enc,
2383 	enum msm_event_wait event)
2384 {
2385 	int (*fn_wait)(struct dpu_encoder_phys *phys_enc) = NULL;
2386 	struct dpu_encoder_virt *dpu_enc = NULL;
2387 	int i, ret = 0;
2388 
2389 	if (!drm_enc) {
2390 		DPU_ERROR("invalid encoder\n");
2391 		return -EINVAL;
2392 	}
2393 	dpu_enc = to_dpu_encoder_virt(drm_enc);
2394 	DPU_DEBUG_ENC(dpu_enc, "\n");
2395 
2396 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2397 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2398 
2399 		switch (event) {
2400 		case MSM_ENC_COMMIT_DONE:
2401 			fn_wait = phys->ops.wait_for_commit_done;
2402 			break;
2403 		case MSM_ENC_TX_COMPLETE:
2404 			fn_wait = phys->ops.wait_for_tx_complete;
2405 			break;
2406 		default:
2407 			DPU_ERROR_ENC(dpu_enc, "unknown wait event %d\n",
2408 					event);
2409 			return -EINVAL;
2410 		}
2411 
2412 		if (fn_wait) {
2413 			DPU_ATRACE_BEGIN("wait_for_completion_event");
2414 			ret = fn_wait(phys);
2415 			DPU_ATRACE_END("wait_for_completion_event");
2416 			if (ret)
2417 				return ret;
2418 		}
2419 	}
2420 
2421 	return ret;
2422 }
2423 
2424 enum dpu_intf_mode dpu_encoder_get_intf_mode(struct drm_encoder *encoder)
2425 {
2426 	struct dpu_encoder_virt *dpu_enc = NULL;
2427 
2428 	if (!encoder) {
2429 		DPU_ERROR("invalid encoder\n");
2430 		return INTF_MODE_NONE;
2431 	}
2432 	dpu_enc = to_dpu_encoder_virt(encoder);
2433 
2434 	if (dpu_enc->cur_master)
2435 		return dpu_enc->cur_master->intf_mode;
2436 
2437 	if (dpu_enc->num_phys_encs)
2438 		return dpu_enc->phys_encs[0]->intf_mode;
2439 
2440 	return INTF_MODE_NONE;
2441 }
2442 
2443 unsigned int dpu_encoder_helper_get_dsc(struct dpu_encoder_phys *phys_enc)
2444 {
2445 	struct drm_encoder *encoder = phys_enc->parent;
2446 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(encoder);
2447 
2448 	return dpu_enc->dsc_mask;
2449 }
2450 
2451 void dpu_encoder_phys_init(struct dpu_encoder_phys *phys_enc,
2452 			  struct dpu_enc_phys_init_params *p)
2453 {
2454 	phys_enc->hw_mdptop = p->dpu_kms->hw_mdp;
2455 	phys_enc->hw_intf = p->hw_intf;
2456 	phys_enc->hw_wb = p->hw_wb;
2457 	phys_enc->parent = p->parent;
2458 	phys_enc->dpu_kms = p->dpu_kms;
2459 	phys_enc->split_role = p->split_role;
2460 	phys_enc->enc_spinlock = p->enc_spinlock;
2461 	phys_enc->enable_state = DPU_ENC_DISABLED;
2462 
2463 	atomic_set(&phys_enc->pending_kickoff_cnt, 0);
2464 	atomic_set(&phys_enc->pending_ctlstart_cnt, 0);
2465 
2466 	atomic_set(&phys_enc->vsync_cnt, 0);
2467 	atomic_set(&phys_enc->underrun_cnt, 0);
2468 
2469 	init_waitqueue_head(&phys_enc->pending_kickoff_wq);
2470 }
2471