xref: /linux/drivers/gpu/drm/msm/disp/dpu1/dpu_encoder.c (revision d53b8e36925256097a08d7cb749198d85cbf9b2b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2013 Red Hat
4  * Copyright (c) 2014-2018, 2020-2021 The Linux Foundation. All rights reserved.
5  * Copyright (c) 2022-2023 Qualcomm Innovation Center, Inc. All rights reserved.
6  *
7  * Author: Rob Clark <robdclark@gmail.com>
8  */
9 
10 #define pr_fmt(fmt)	"[drm:%s:%d] " fmt, __func__, __LINE__
11 #include <linux/debugfs.h>
12 #include <linux/kthread.h>
13 #include <linux/seq_file.h>
14 
15 #include <drm/drm_atomic.h>
16 #include <drm/drm_crtc.h>
17 #include <drm/drm_file.h>
18 #include <drm/drm_probe_helper.h>
19 #include <drm/drm_framebuffer.h>
20 
21 #include "msm_drv.h"
22 #include "dpu_kms.h"
23 #include "dpu_hwio.h"
24 #include "dpu_hw_catalog.h"
25 #include "dpu_hw_intf.h"
26 #include "dpu_hw_ctl.h"
27 #include "dpu_hw_dspp.h"
28 #include "dpu_hw_dsc.h"
29 #include "dpu_hw_merge3d.h"
30 #include "dpu_hw_cdm.h"
31 #include "dpu_formats.h"
32 #include "dpu_encoder_phys.h"
33 #include "dpu_crtc.h"
34 #include "dpu_trace.h"
35 #include "dpu_core_irq.h"
36 #include "disp/msm_disp_snapshot.h"
37 
38 #define DPU_DEBUG_ENC(e, fmt, ...) DRM_DEBUG_ATOMIC("enc%d " fmt,\
39 		(e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
40 
41 #define DPU_ERROR_ENC(e, fmt, ...) DPU_ERROR("enc%d " fmt,\
42 		(e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
43 
44 #define DPU_ERROR_ENC_RATELIMITED(e, fmt, ...) DPU_ERROR_RATELIMITED("enc%d " fmt,\
45 		(e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
46 
47 /*
48  * Two to anticipate panels that can do cmd/vid dynamic switching
49  * plan is to create all possible physical encoder types, and switch between
50  * them at runtime
51  */
52 #define NUM_PHYS_ENCODER_TYPES 2
53 
54 #define MAX_PHYS_ENCODERS_PER_VIRTUAL \
55 	(MAX_H_TILES_PER_DISPLAY * NUM_PHYS_ENCODER_TYPES)
56 
57 #define MAX_CHANNELS_PER_ENC 2
58 
59 #define IDLE_SHORT_TIMEOUT	1
60 
61 #define MAX_HDISPLAY_SPLIT 1080
62 
63 /* timeout in frames waiting for frame done */
64 #define DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES 5
65 
66 /**
67  * enum dpu_enc_rc_events - events for resource control state machine
68  * @DPU_ENC_RC_EVENT_KICKOFF:
69  *	This event happens at NORMAL priority.
70  *	Event that signals the start of the transfer. When this event is
71  *	received, enable MDP/DSI core clocks. Regardless of the previous
72  *	state, the resource should be in ON state at the end of this event.
73  * @DPU_ENC_RC_EVENT_FRAME_DONE:
74  *	This event happens at INTERRUPT level.
75  *	Event signals the end of the data transfer after the PP FRAME_DONE
76  *	event. At the end of this event, a delayed work is scheduled to go to
77  *	IDLE_PC state after IDLE_TIMEOUT time.
78  * @DPU_ENC_RC_EVENT_PRE_STOP:
79  *	This event happens at NORMAL priority.
80  *	This event, when received during the ON state, leave the RC STATE
81  *	in the PRE_OFF state. It should be followed by the STOP event as
82  *	part of encoder disable.
83  *	If received during IDLE or OFF states, it will do nothing.
84  * @DPU_ENC_RC_EVENT_STOP:
85  *	This event happens at NORMAL priority.
86  *	When this event is received, disable all the MDP/DSI core clocks, and
87  *	disable IRQs. It should be called from the PRE_OFF or IDLE states.
88  *	IDLE is expected when IDLE_PC has run, and PRE_OFF did nothing.
89  *	PRE_OFF is expected when PRE_STOP was executed during the ON state.
90  *	Resource state should be in OFF at the end of the event.
91  * @DPU_ENC_RC_EVENT_ENTER_IDLE:
92  *	This event happens at NORMAL priority from a work item.
93  *	Event signals that there were no frame updates for IDLE_TIMEOUT time.
94  *	This would disable MDP/DSI core clocks and change the resource state
95  *	to IDLE.
96  */
97 enum dpu_enc_rc_events {
98 	DPU_ENC_RC_EVENT_KICKOFF = 1,
99 	DPU_ENC_RC_EVENT_FRAME_DONE,
100 	DPU_ENC_RC_EVENT_PRE_STOP,
101 	DPU_ENC_RC_EVENT_STOP,
102 	DPU_ENC_RC_EVENT_ENTER_IDLE
103 };
104 
105 /*
106  * enum dpu_enc_rc_states - states that the resource control maintains
107  * @DPU_ENC_RC_STATE_OFF: Resource is in OFF state
108  * @DPU_ENC_RC_STATE_PRE_OFF: Resource is transitioning to OFF state
109  * @DPU_ENC_RC_STATE_ON: Resource is in ON state
110  * @DPU_ENC_RC_STATE_MODESET: Resource is in modeset state
111  * @DPU_ENC_RC_STATE_IDLE: Resource is in IDLE state
112  */
113 enum dpu_enc_rc_states {
114 	DPU_ENC_RC_STATE_OFF,
115 	DPU_ENC_RC_STATE_PRE_OFF,
116 	DPU_ENC_RC_STATE_ON,
117 	DPU_ENC_RC_STATE_IDLE
118 };
119 
120 /**
121  * struct dpu_encoder_virt - virtual encoder. Container of one or more physical
122  *	encoders. Virtual encoder manages one "logical" display. Physical
123  *	encoders manage one intf block, tied to a specific panel/sub-panel.
124  *	Virtual encoder defers as much as possible to the physical encoders.
125  *	Virtual encoder registers itself with the DRM Framework as the encoder.
126  * @base:		drm_encoder base class for registration with DRM
127  * @enc_spinlock:	Virtual-Encoder-Wide Spin Lock for IRQ purposes
128  * @enabled:		True if the encoder is active, protected by enc_lock
129  * @commit_done_timedout: True if there has been a timeout on commit after
130  *			enabling the encoder.
131  * @num_phys_encs:	Actual number of physical encoders contained.
132  * @phys_encs:		Container of physical encoders managed.
133  * @cur_master:		Pointer to the current master in this mode. Optimization
134  *			Only valid after enable. Cleared as disable.
135  * @cur_slave:		As above but for the slave encoder.
136  * @hw_pp:		Handle to the pingpong blocks used for the display. No.
137  *			pingpong blocks can be different than num_phys_encs.
138  * @hw_dsc:		Handle to the DSC blocks used for the display.
139  * @dsc_mask:		Bitmask of used DSC blocks.
140  * @intfs_swapped:	Whether or not the phys_enc interfaces have been swapped
141  *			for partial update right-only cases, such as pingpong
142  *			split where virtual pingpong does not generate IRQs
143  * @crtc:		Pointer to the currently assigned crtc. Normally you
144  *			would use crtc->state->encoder_mask to determine the
145  *			link between encoder/crtc. However in this case we need
146  *			to track crtc in the disable() hook which is called
147  *			_after_ encoder_mask is cleared.
148  * @connector:		If a mode is set, cached pointer to the active connector
149  * @enc_lock:			Lock around physical encoder
150  *				create/destroy/enable/disable
151  * @frame_busy_mask:		Bitmask tracking which phys_enc we are still
152  *				busy processing current command.
153  *				Bit0 = phys_encs[0] etc.
154  * @frame_done_timeout_ms:	frame done timeout in ms
155  * @frame_done_timeout_cnt:	atomic counter tracking the number of frame
156  * 				done timeouts
157  * @frame_done_timer:		watchdog timer for frame done event
158  * @disp_info:			local copy of msm_display_info struct
159  * @idle_pc_supported:		indicate if idle power collaps is supported
160  * @rc_lock:			resource control mutex lock to protect
161  *				virt encoder over various state changes
162  * @rc_state:			resource controller state
163  * @delayed_off_work:		delayed worker to schedule disabling of
164  *				clks and resources after IDLE_TIMEOUT time.
165  * @topology:                   topology of the display
166  * @idle_timeout:		idle timeout duration in milliseconds
167  * @wide_bus_en:		wide bus is enabled on this interface
168  * @dsc:			drm_dsc_config pointer, for DSC-enabled encoders
169  */
170 struct dpu_encoder_virt {
171 	struct drm_encoder base;
172 	spinlock_t enc_spinlock;
173 
174 	bool enabled;
175 	bool commit_done_timedout;
176 
177 	unsigned int num_phys_encs;
178 	struct dpu_encoder_phys *phys_encs[MAX_PHYS_ENCODERS_PER_VIRTUAL];
179 	struct dpu_encoder_phys *cur_master;
180 	struct dpu_encoder_phys *cur_slave;
181 	struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC];
182 	struct dpu_hw_dsc *hw_dsc[MAX_CHANNELS_PER_ENC];
183 
184 	unsigned int dsc_mask;
185 
186 	bool intfs_swapped;
187 
188 	struct drm_crtc *crtc;
189 	struct drm_connector *connector;
190 
191 	struct mutex enc_lock;
192 	DECLARE_BITMAP(frame_busy_mask, MAX_PHYS_ENCODERS_PER_VIRTUAL);
193 
194 	atomic_t frame_done_timeout_ms;
195 	atomic_t frame_done_timeout_cnt;
196 	struct timer_list frame_done_timer;
197 
198 	struct msm_display_info disp_info;
199 
200 	bool idle_pc_supported;
201 	struct mutex rc_lock;
202 	enum dpu_enc_rc_states rc_state;
203 	struct delayed_work delayed_off_work;
204 	struct msm_display_topology topology;
205 
206 	u32 idle_timeout;
207 
208 	bool wide_bus_en;
209 
210 	/* DSC configuration */
211 	struct drm_dsc_config *dsc;
212 };
213 
214 #define to_dpu_encoder_virt(x) container_of(x, struct dpu_encoder_virt, base)
215 
216 static u32 dither_matrix[DITHER_MATRIX_SZ] = {
217 	15, 7, 13, 5, 3, 11, 1, 9, 12, 4, 14, 6, 0, 8, 2, 10
218 };
219 
220 u32 dpu_encoder_get_drm_fmt(struct dpu_encoder_phys *phys_enc)
221 {
222 	struct drm_encoder *drm_enc;
223 	struct dpu_encoder_virt *dpu_enc;
224 	struct drm_display_info *info;
225 	struct drm_display_mode *mode;
226 
227 	drm_enc = phys_enc->parent;
228 	dpu_enc = to_dpu_encoder_virt(drm_enc);
229 	info = &dpu_enc->connector->display_info;
230 	mode = &phys_enc->cached_mode;
231 
232 	if (drm_mode_is_420_only(info, mode))
233 		return DRM_FORMAT_YUV420;
234 
235 	return DRM_FORMAT_RGB888;
236 }
237 
238 bool dpu_encoder_needs_periph_flush(struct dpu_encoder_phys *phys_enc)
239 {
240 	struct drm_encoder *drm_enc;
241 	struct dpu_encoder_virt *dpu_enc;
242 	struct msm_display_info *disp_info;
243 	struct msm_drm_private *priv;
244 	struct drm_display_mode *mode;
245 
246 	drm_enc = phys_enc->parent;
247 	dpu_enc = to_dpu_encoder_virt(drm_enc);
248 	disp_info = &dpu_enc->disp_info;
249 	priv = drm_enc->dev->dev_private;
250 	mode = &phys_enc->cached_mode;
251 
252 	return phys_enc->hw_intf->cap->type == INTF_DP &&
253 	       msm_dp_needs_periph_flush(priv->dp[disp_info->h_tile_instance[0]], mode);
254 }
255 
256 bool dpu_encoder_is_widebus_enabled(const struct drm_encoder *drm_enc)
257 {
258 	const struct dpu_encoder_virt *dpu_enc;
259 	struct msm_drm_private *priv = drm_enc->dev->dev_private;
260 	const struct msm_display_info *disp_info;
261 	int index;
262 
263 	dpu_enc = to_dpu_encoder_virt(drm_enc);
264 	disp_info = &dpu_enc->disp_info;
265 	index = disp_info->h_tile_instance[0];
266 
267 	if (disp_info->intf_type == INTF_DP)
268 		return msm_dp_wide_bus_available(priv->dp[index]);
269 	else if (disp_info->intf_type == INTF_DSI)
270 		return msm_dsi_wide_bus_enabled(priv->dsi[index]);
271 
272 	return false;
273 }
274 
275 bool dpu_encoder_is_dsc_enabled(const struct drm_encoder *drm_enc)
276 {
277 	const struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
278 
279 	return dpu_enc->dsc ? true : false;
280 }
281 
282 int dpu_encoder_get_crc_values_cnt(const struct drm_encoder *drm_enc)
283 {
284 	struct dpu_encoder_virt *dpu_enc;
285 	int i, num_intf = 0;
286 
287 	dpu_enc = to_dpu_encoder_virt(drm_enc);
288 
289 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
290 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
291 
292 		if (phys->hw_intf && phys->hw_intf->ops.setup_misr
293 				&& phys->hw_intf->ops.collect_misr)
294 			num_intf++;
295 	}
296 
297 	return num_intf;
298 }
299 
300 void dpu_encoder_setup_misr(const struct drm_encoder *drm_enc)
301 {
302 	struct dpu_encoder_virt *dpu_enc;
303 
304 	int i;
305 
306 	dpu_enc = to_dpu_encoder_virt(drm_enc);
307 
308 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
309 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
310 
311 		if (!phys->hw_intf || !phys->hw_intf->ops.setup_misr)
312 			continue;
313 
314 		phys->hw_intf->ops.setup_misr(phys->hw_intf);
315 	}
316 }
317 
318 int dpu_encoder_get_crc(const struct drm_encoder *drm_enc, u32 *crcs, int pos)
319 {
320 	struct dpu_encoder_virt *dpu_enc;
321 
322 	int i, rc = 0, entries_added = 0;
323 
324 	if (!drm_enc->crtc) {
325 		DRM_ERROR("no crtc found for encoder %d\n", drm_enc->index);
326 		return -EINVAL;
327 	}
328 
329 	dpu_enc = to_dpu_encoder_virt(drm_enc);
330 
331 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
332 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
333 
334 		if (!phys->hw_intf || !phys->hw_intf->ops.collect_misr)
335 			continue;
336 
337 		rc = phys->hw_intf->ops.collect_misr(phys->hw_intf, &crcs[pos + entries_added]);
338 		if (rc)
339 			return rc;
340 		entries_added++;
341 	}
342 
343 	return entries_added;
344 }
345 
346 static void _dpu_encoder_setup_dither(struct dpu_hw_pingpong *hw_pp, unsigned bpc)
347 {
348 	struct dpu_hw_dither_cfg dither_cfg = { 0 };
349 
350 	if (!hw_pp->ops.setup_dither)
351 		return;
352 
353 	switch (bpc) {
354 	case 6:
355 		dither_cfg.c0_bitdepth = 6;
356 		dither_cfg.c1_bitdepth = 6;
357 		dither_cfg.c2_bitdepth = 6;
358 		dither_cfg.c3_bitdepth = 6;
359 		dither_cfg.temporal_en = 0;
360 		break;
361 	default:
362 		hw_pp->ops.setup_dither(hw_pp, NULL);
363 		return;
364 	}
365 
366 	memcpy(&dither_cfg.matrix, dither_matrix,
367 			sizeof(u32) * DITHER_MATRIX_SZ);
368 
369 	hw_pp->ops.setup_dither(hw_pp, &dither_cfg);
370 }
371 
372 static char *dpu_encoder_helper_get_intf_type(enum dpu_intf_mode intf_mode)
373 {
374 	switch (intf_mode) {
375 	case INTF_MODE_VIDEO:
376 		return "INTF_MODE_VIDEO";
377 	case INTF_MODE_CMD:
378 		return "INTF_MODE_CMD";
379 	case INTF_MODE_WB_BLOCK:
380 		return "INTF_MODE_WB_BLOCK";
381 	case INTF_MODE_WB_LINE:
382 		return "INTF_MODE_WB_LINE";
383 	default:
384 		return "INTF_MODE_UNKNOWN";
385 	}
386 }
387 
388 void dpu_encoder_helper_report_irq_timeout(struct dpu_encoder_phys *phys_enc,
389 		enum dpu_intr_idx intr_idx)
390 {
391 	DRM_ERROR("irq timeout id=%u, intf_mode=%s intf=%d wb=%d, pp=%d, intr=%d\n",
392 			DRMID(phys_enc->parent),
393 			dpu_encoder_helper_get_intf_type(phys_enc->intf_mode),
394 			phys_enc->hw_intf ? phys_enc->hw_intf->idx - INTF_0 : -1,
395 			phys_enc->hw_wb ? phys_enc->hw_wb->idx - WB_0 : -1,
396 			phys_enc->hw_pp->idx - PINGPONG_0, intr_idx);
397 
398 	dpu_encoder_frame_done_callback(phys_enc->parent, phys_enc,
399 				DPU_ENCODER_FRAME_EVENT_ERROR);
400 }
401 
402 static int dpu_encoder_helper_wait_event_timeout(int32_t drm_id,
403 		u32 irq_idx, struct dpu_encoder_wait_info *info);
404 
405 int dpu_encoder_helper_wait_for_irq(struct dpu_encoder_phys *phys_enc,
406 		unsigned int irq_idx,
407 		void (*func)(void *arg),
408 		struct dpu_encoder_wait_info *wait_info)
409 {
410 	u32 irq_status;
411 	int ret;
412 
413 	if (!wait_info) {
414 		DPU_ERROR("invalid params\n");
415 		return -EINVAL;
416 	}
417 	/* note: do master / slave checking outside */
418 
419 	/* return EWOULDBLOCK since we know the wait isn't necessary */
420 	if (phys_enc->enable_state == DPU_ENC_DISABLED) {
421 		DRM_ERROR("encoder is disabled id=%u, callback=%ps, IRQ=[%d, %d]\n",
422 			  DRMID(phys_enc->parent), func,
423 			  DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx));
424 		return -EWOULDBLOCK;
425 	}
426 
427 	if (irq_idx == 0) {
428 		DRM_DEBUG_KMS("skip irq wait id=%u, callback=%ps\n",
429 			      DRMID(phys_enc->parent), func);
430 		return 0;
431 	}
432 
433 	DRM_DEBUG_KMS("id=%u, callback=%ps, IRQ=[%d, %d], pp=%d, pending_cnt=%d\n",
434 		      DRMID(phys_enc->parent), func,
435 		      DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx), phys_enc->hw_pp->idx - PINGPONG_0,
436 		      atomic_read(wait_info->atomic_cnt));
437 
438 	ret = dpu_encoder_helper_wait_event_timeout(
439 			DRMID(phys_enc->parent),
440 			irq_idx,
441 			wait_info);
442 
443 	if (ret <= 0) {
444 		irq_status = dpu_core_irq_read(phys_enc->dpu_kms, irq_idx);
445 		if (irq_status) {
446 			unsigned long flags;
447 
448 			DRM_DEBUG_KMS("IRQ=[%d, %d] not triggered id=%u, callback=%ps, pp=%d, atomic_cnt=%d\n",
449 				      DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx),
450 				      DRMID(phys_enc->parent), func,
451 				      phys_enc->hw_pp->idx - PINGPONG_0,
452 				      atomic_read(wait_info->atomic_cnt));
453 			local_irq_save(flags);
454 			func(phys_enc);
455 			local_irq_restore(flags);
456 			ret = 0;
457 		} else {
458 			ret = -ETIMEDOUT;
459 			DRM_DEBUG_KMS("IRQ=[%d, %d] timeout id=%u, callback=%ps, pp=%d, atomic_cnt=%d\n",
460 				      DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx),
461 				      DRMID(phys_enc->parent), func,
462 				      phys_enc->hw_pp->idx - PINGPONG_0,
463 				      atomic_read(wait_info->atomic_cnt));
464 		}
465 	} else {
466 		ret = 0;
467 		trace_dpu_enc_irq_wait_success(DRMID(phys_enc->parent),
468 			func, DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx),
469 			phys_enc->hw_pp->idx - PINGPONG_0,
470 			atomic_read(wait_info->atomic_cnt));
471 	}
472 
473 	return ret;
474 }
475 
476 int dpu_encoder_get_vsync_count(struct drm_encoder *drm_enc)
477 {
478 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
479 	struct dpu_encoder_phys *phys = dpu_enc ? dpu_enc->cur_master : NULL;
480 	return phys ? atomic_read(&phys->vsync_cnt) : 0;
481 }
482 
483 int dpu_encoder_get_linecount(struct drm_encoder *drm_enc)
484 {
485 	struct dpu_encoder_virt *dpu_enc;
486 	struct dpu_encoder_phys *phys;
487 	int linecount = 0;
488 
489 	dpu_enc = to_dpu_encoder_virt(drm_enc);
490 	phys = dpu_enc ? dpu_enc->cur_master : NULL;
491 
492 	if (phys && phys->ops.get_line_count)
493 		linecount = phys->ops.get_line_count(phys);
494 
495 	return linecount;
496 }
497 
498 void dpu_encoder_helper_split_config(
499 		struct dpu_encoder_phys *phys_enc,
500 		enum dpu_intf interface)
501 {
502 	struct dpu_encoder_virt *dpu_enc;
503 	struct split_pipe_cfg cfg = { 0 };
504 	struct dpu_hw_mdp *hw_mdptop;
505 	struct msm_display_info *disp_info;
506 
507 	if (!phys_enc->hw_mdptop || !phys_enc->parent) {
508 		DPU_ERROR("invalid arg(s), encoder %d\n", phys_enc != NULL);
509 		return;
510 	}
511 
512 	dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
513 	hw_mdptop = phys_enc->hw_mdptop;
514 	disp_info = &dpu_enc->disp_info;
515 
516 	if (disp_info->intf_type != INTF_DSI)
517 		return;
518 
519 	/**
520 	 * disable split modes since encoder will be operating in as the only
521 	 * encoder, either for the entire use case in the case of, for example,
522 	 * single DSI, or for this frame in the case of left/right only partial
523 	 * update.
524 	 */
525 	if (phys_enc->split_role == ENC_ROLE_SOLO) {
526 		if (hw_mdptop->ops.setup_split_pipe)
527 			hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg);
528 		return;
529 	}
530 
531 	cfg.en = true;
532 	cfg.mode = phys_enc->intf_mode;
533 	cfg.intf = interface;
534 
535 	if (cfg.en && phys_enc->ops.needs_single_flush &&
536 			phys_enc->ops.needs_single_flush(phys_enc))
537 		cfg.split_flush_en = true;
538 
539 	if (phys_enc->split_role == ENC_ROLE_MASTER) {
540 		DPU_DEBUG_ENC(dpu_enc, "enable %d\n", cfg.en);
541 
542 		if (hw_mdptop->ops.setup_split_pipe)
543 			hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg);
544 	}
545 }
546 
547 bool dpu_encoder_use_dsc_merge(struct drm_encoder *drm_enc)
548 {
549 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
550 	int i, intf_count = 0, num_dsc = 0;
551 
552 	for (i = 0; i < MAX_PHYS_ENCODERS_PER_VIRTUAL; i++)
553 		if (dpu_enc->phys_encs[i])
554 			intf_count++;
555 
556 	/* See dpu_encoder_get_topology, we only support 2:2:1 topology */
557 	if (dpu_enc->dsc)
558 		num_dsc = 2;
559 
560 	return (num_dsc > 0) && (num_dsc > intf_count);
561 }
562 
563 struct drm_dsc_config *dpu_encoder_get_dsc_config(struct drm_encoder *drm_enc)
564 {
565 	struct msm_drm_private *priv = drm_enc->dev->dev_private;
566 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
567 	int index = dpu_enc->disp_info.h_tile_instance[0];
568 
569 	if (dpu_enc->disp_info.intf_type == INTF_DSI)
570 		return msm_dsi_get_dsc_config(priv->dsi[index]);
571 
572 	return NULL;
573 }
574 
575 static struct msm_display_topology dpu_encoder_get_topology(
576 			struct dpu_encoder_virt *dpu_enc,
577 			struct dpu_kms *dpu_kms,
578 			struct drm_display_mode *mode,
579 			struct drm_crtc_state *crtc_state,
580 			struct drm_dsc_config *dsc)
581 {
582 	struct msm_display_topology topology = {0};
583 	int i, intf_count = 0;
584 
585 	for (i = 0; i < MAX_PHYS_ENCODERS_PER_VIRTUAL; i++)
586 		if (dpu_enc->phys_encs[i])
587 			intf_count++;
588 
589 	/* Datapath topology selection
590 	 *
591 	 * Dual display
592 	 * 2 LM, 2 INTF ( Split display using 2 interfaces)
593 	 *
594 	 * Single display
595 	 * 1 LM, 1 INTF
596 	 * 2 LM, 1 INTF (stream merge to support high resolution interfaces)
597 	 *
598 	 * Add dspps to the reservation requirements if ctm is requested
599 	 */
600 	if (intf_count == 2)
601 		topology.num_lm = 2;
602 	else if (!dpu_kms->catalog->caps->has_3d_merge)
603 		topology.num_lm = 1;
604 	else
605 		topology.num_lm = (mode->hdisplay > MAX_HDISPLAY_SPLIT) ? 2 : 1;
606 
607 	if (crtc_state->ctm)
608 		topology.num_dspp = topology.num_lm;
609 
610 	topology.num_intf = intf_count;
611 
612 	if (dsc) {
613 		/*
614 		 * In case of Display Stream Compression (DSC), we would use
615 		 * 2 DSC encoders, 2 layer mixers and 1 interface
616 		 * this is power optimal and can drive up to (including) 4k
617 		 * screens
618 		 */
619 		topology.num_dsc = 2;
620 		topology.num_lm = 2;
621 		topology.num_intf = 1;
622 	}
623 
624 	return topology;
625 }
626 
627 static int dpu_encoder_virt_atomic_check(
628 		struct drm_encoder *drm_enc,
629 		struct drm_crtc_state *crtc_state,
630 		struct drm_connector_state *conn_state)
631 {
632 	struct dpu_encoder_virt *dpu_enc;
633 	struct msm_drm_private *priv;
634 	struct dpu_kms *dpu_kms;
635 	struct drm_display_mode *adj_mode;
636 	struct msm_display_topology topology;
637 	struct msm_display_info *disp_info;
638 	struct dpu_global_state *global_state;
639 	struct drm_framebuffer *fb;
640 	struct drm_dsc_config *dsc;
641 	int ret = 0;
642 
643 	if (!drm_enc || !crtc_state || !conn_state) {
644 		DPU_ERROR("invalid arg(s), drm_enc %d, crtc/conn state %d/%d\n",
645 				drm_enc != NULL, crtc_state != NULL, conn_state != NULL);
646 		return -EINVAL;
647 	}
648 
649 	dpu_enc = to_dpu_encoder_virt(drm_enc);
650 	DPU_DEBUG_ENC(dpu_enc, "\n");
651 
652 	priv = drm_enc->dev->dev_private;
653 	disp_info = &dpu_enc->disp_info;
654 	dpu_kms = to_dpu_kms(priv->kms);
655 	adj_mode = &crtc_state->adjusted_mode;
656 	global_state = dpu_kms_get_global_state(crtc_state->state);
657 	if (IS_ERR(global_state))
658 		return PTR_ERR(global_state);
659 
660 	trace_dpu_enc_atomic_check(DRMID(drm_enc));
661 
662 	dsc = dpu_encoder_get_dsc_config(drm_enc);
663 
664 	topology = dpu_encoder_get_topology(dpu_enc, dpu_kms, adj_mode, crtc_state, dsc);
665 
666 	/*
667 	 * Use CDM only for writeback or DP at the moment as other interfaces cannot handle it.
668 	 * If writeback itself cannot handle cdm for some reason it will fail in its atomic_check()
669 	 * earlier.
670 	 */
671 	if (disp_info->intf_type == INTF_WB && conn_state->writeback_job) {
672 		fb = conn_state->writeback_job->fb;
673 
674 		if (fb && MSM_FORMAT_IS_YUV(msm_framebuffer_format(fb)))
675 			topology.needs_cdm = true;
676 	} else if (disp_info->intf_type == INTF_DP) {
677 		if (msm_dp_is_yuv_420_enabled(priv->dp[disp_info->h_tile_instance[0]], adj_mode))
678 			topology.needs_cdm = true;
679 	}
680 
681 	if (topology.needs_cdm && !dpu_enc->cur_master->hw_cdm)
682 		crtc_state->mode_changed = true;
683 	else if (!topology.needs_cdm && dpu_enc->cur_master->hw_cdm)
684 		crtc_state->mode_changed = true;
685 	/*
686 	 * Release and Allocate resources on every modeset
687 	 * Dont allocate when active is false.
688 	 */
689 	if (drm_atomic_crtc_needs_modeset(crtc_state)) {
690 		dpu_rm_release(global_state, drm_enc);
691 
692 		if (!crtc_state->active_changed || crtc_state->enable)
693 			ret = dpu_rm_reserve(&dpu_kms->rm, global_state,
694 					drm_enc, crtc_state, topology);
695 	}
696 
697 	trace_dpu_enc_atomic_check_flags(DRMID(drm_enc), adj_mode->flags);
698 
699 	return ret;
700 }
701 
702 static void _dpu_encoder_update_vsync_source(struct dpu_encoder_virt *dpu_enc,
703 			struct msm_display_info *disp_info)
704 {
705 	struct dpu_vsync_source_cfg vsync_cfg = { 0 };
706 	struct msm_drm_private *priv;
707 	struct dpu_kms *dpu_kms;
708 	struct dpu_hw_mdp *hw_mdptop;
709 	struct drm_encoder *drm_enc;
710 	struct dpu_encoder_phys *phys_enc;
711 	int i;
712 
713 	if (!dpu_enc || !disp_info) {
714 		DPU_ERROR("invalid param dpu_enc:%d or disp_info:%d\n",
715 					dpu_enc != NULL, disp_info != NULL);
716 		return;
717 	} else if (dpu_enc->num_phys_encs > ARRAY_SIZE(dpu_enc->hw_pp)) {
718 		DPU_ERROR("invalid num phys enc %d/%d\n",
719 				dpu_enc->num_phys_encs,
720 				(int) ARRAY_SIZE(dpu_enc->hw_pp));
721 		return;
722 	}
723 
724 	drm_enc = &dpu_enc->base;
725 	/* this pointers are checked in virt_enable_helper */
726 	priv = drm_enc->dev->dev_private;
727 
728 	dpu_kms = to_dpu_kms(priv->kms);
729 	hw_mdptop = dpu_kms->hw_mdp;
730 	if (!hw_mdptop) {
731 		DPU_ERROR("invalid mdptop\n");
732 		return;
733 	}
734 
735 	if (hw_mdptop->ops.setup_vsync_source) {
736 		for (i = 0; i < dpu_enc->num_phys_encs; i++)
737 			vsync_cfg.ppnumber[i] = dpu_enc->hw_pp[i]->idx;
738 
739 		vsync_cfg.pp_count = dpu_enc->num_phys_encs;
740 		vsync_cfg.frame_rate = drm_mode_vrefresh(&dpu_enc->base.crtc->state->adjusted_mode);
741 
742 		vsync_cfg.vsync_source = disp_info->vsync_source;
743 
744 		hw_mdptop->ops.setup_vsync_source(hw_mdptop, &vsync_cfg);
745 
746 		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
747 			phys_enc = dpu_enc->phys_encs[i];
748 
749 			if (phys_enc->has_intf_te && phys_enc->hw_intf->ops.vsync_sel)
750 				phys_enc->hw_intf->ops.vsync_sel(phys_enc->hw_intf,
751 						vsync_cfg.vsync_source);
752 		}
753 	}
754 }
755 
756 static void _dpu_encoder_irq_enable(struct drm_encoder *drm_enc)
757 {
758 	struct dpu_encoder_virt *dpu_enc;
759 	int i;
760 
761 	if (!drm_enc) {
762 		DPU_ERROR("invalid encoder\n");
763 		return;
764 	}
765 
766 	dpu_enc = to_dpu_encoder_virt(drm_enc);
767 
768 	DPU_DEBUG_ENC(dpu_enc, "\n");
769 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
770 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
771 
772 		phys->ops.irq_enable(phys);
773 	}
774 }
775 
776 static void _dpu_encoder_irq_disable(struct drm_encoder *drm_enc)
777 {
778 	struct dpu_encoder_virt *dpu_enc;
779 	int i;
780 
781 	if (!drm_enc) {
782 		DPU_ERROR("invalid encoder\n");
783 		return;
784 	}
785 
786 	dpu_enc = to_dpu_encoder_virt(drm_enc);
787 
788 	DPU_DEBUG_ENC(dpu_enc, "\n");
789 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
790 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
791 
792 		phys->ops.irq_disable(phys);
793 	}
794 }
795 
796 static void _dpu_encoder_resource_enable(struct drm_encoder *drm_enc)
797 {
798 	struct msm_drm_private *priv;
799 	struct dpu_kms *dpu_kms;
800 	struct dpu_encoder_virt *dpu_enc;
801 
802 	dpu_enc = to_dpu_encoder_virt(drm_enc);
803 	priv = drm_enc->dev->dev_private;
804 	dpu_kms = to_dpu_kms(priv->kms);
805 
806 	trace_dpu_enc_rc_enable(DRMID(drm_enc));
807 
808 	if (!dpu_enc->cur_master) {
809 		DPU_ERROR("encoder master not set\n");
810 		return;
811 	}
812 
813 	/* enable DPU core clks */
814 	pm_runtime_get_sync(&dpu_kms->pdev->dev);
815 
816 	/* enable all the irq */
817 	_dpu_encoder_irq_enable(drm_enc);
818 }
819 
820 static void _dpu_encoder_resource_disable(struct drm_encoder *drm_enc)
821 {
822 	struct msm_drm_private *priv;
823 	struct dpu_kms *dpu_kms;
824 	struct dpu_encoder_virt *dpu_enc;
825 
826 	dpu_enc = to_dpu_encoder_virt(drm_enc);
827 	priv = drm_enc->dev->dev_private;
828 	dpu_kms = to_dpu_kms(priv->kms);
829 
830 	trace_dpu_enc_rc_disable(DRMID(drm_enc));
831 
832 	if (!dpu_enc->cur_master) {
833 		DPU_ERROR("encoder master not set\n");
834 		return;
835 	}
836 
837 	/* disable all the irq */
838 	_dpu_encoder_irq_disable(drm_enc);
839 
840 	/* disable DPU core clks */
841 	pm_runtime_put_sync(&dpu_kms->pdev->dev);
842 }
843 
844 static int dpu_encoder_resource_control(struct drm_encoder *drm_enc,
845 		u32 sw_event)
846 {
847 	struct dpu_encoder_virt *dpu_enc;
848 	struct msm_drm_private *priv;
849 	bool is_vid_mode = false;
850 
851 	if (!drm_enc || !drm_enc->dev || !drm_enc->crtc) {
852 		DPU_ERROR("invalid parameters\n");
853 		return -EINVAL;
854 	}
855 	dpu_enc = to_dpu_encoder_virt(drm_enc);
856 	priv = drm_enc->dev->dev_private;
857 	is_vid_mode = !dpu_enc->disp_info.is_cmd_mode;
858 
859 	/*
860 	 * when idle_pc is not supported, process only KICKOFF, STOP and MODESET
861 	 * events and return early for other events (ie wb display).
862 	 */
863 	if (!dpu_enc->idle_pc_supported &&
864 			(sw_event != DPU_ENC_RC_EVENT_KICKOFF &&
865 			sw_event != DPU_ENC_RC_EVENT_STOP &&
866 			sw_event != DPU_ENC_RC_EVENT_PRE_STOP))
867 		return 0;
868 
869 	trace_dpu_enc_rc(DRMID(drm_enc), sw_event, dpu_enc->idle_pc_supported,
870 			 dpu_enc->rc_state, "begin");
871 
872 	switch (sw_event) {
873 	case DPU_ENC_RC_EVENT_KICKOFF:
874 		/* cancel delayed off work, if any */
875 		if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work))
876 			DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n",
877 					sw_event);
878 
879 		mutex_lock(&dpu_enc->rc_lock);
880 
881 		/* return if the resource control is already in ON state */
882 		if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) {
883 			DRM_DEBUG_ATOMIC("id;%u, sw_event:%d, rc in ON state\n",
884 				      DRMID(drm_enc), sw_event);
885 			mutex_unlock(&dpu_enc->rc_lock);
886 			return 0;
887 		} else if (dpu_enc->rc_state != DPU_ENC_RC_STATE_OFF &&
888 				dpu_enc->rc_state != DPU_ENC_RC_STATE_IDLE) {
889 			DRM_DEBUG_ATOMIC("id;%u, sw_event:%d, rc in state %d\n",
890 				      DRMID(drm_enc), sw_event,
891 				      dpu_enc->rc_state);
892 			mutex_unlock(&dpu_enc->rc_lock);
893 			return -EINVAL;
894 		}
895 
896 		if (is_vid_mode && dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE)
897 			_dpu_encoder_irq_enable(drm_enc);
898 		else
899 			_dpu_encoder_resource_enable(drm_enc);
900 
901 		dpu_enc->rc_state = DPU_ENC_RC_STATE_ON;
902 
903 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
904 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
905 				 "kickoff");
906 
907 		mutex_unlock(&dpu_enc->rc_lock);
908 		break;
909 
910 	case DPU_ENC_RC_EVENT_FRAME_DONE:
911 		/*
912 		 * mutex lock is not used as this event happens at interrupt
913 		 * context. And locking is not required as, the other events
914 		 * like KICKOFF and STOP does a wait-for-idle before executing
915 		 * the resource_control
916 		 */
917 		if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) {
918 			DRM_DEBUG_KMS("id:%d, sw_event:%d,rc:%d-unexpected\n",
919 				      DRMID(drm_enc), sw_event,
920 				      dpu_enc->rc_state);
921 			return -EINVAL;
922 		}
923 
924 		/*
925 		 * schedule off work item only when there are no
926 		 * frames pending
927 		 */
928 		if (dpu_crtc_frame_pending(drm_enc->crtc) > 1) {
929 			DRM_DEBUG_KMS("id:%d skip schedule work\n",
930 				      DRMID(drm_enc));
931 			return 0;
932 		}
933 
934 		queue_delayed_work(priv->wq, &dpu_enc->delayed_off_work,
935 				   msecs_to_jiffies(dpu_enc->idle_timeout));
936 
937 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
938 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
939 				 "frame done");
940 		break;
941 
942 	case DPU_ENC_RC_EVENT_PRE_STOP:
943 		/* cancel delayed off work, if any */
944 		if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work))
945 			DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n",
946 					sw_event);
947 
948 		mutex_lock(&dpu_enc->rc_lock);
949 
950 		if (is_vid_mode &&
951 			  dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) {
952 			_dpu_encoder_irq_enable(drm_enc);
953 		}
954 		/* skip if is already OFF or IDLE, resources are off already */
955 		else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF ||
956 				dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) {
957 			DRM_DEBUG_KMS("id:%u, sw_event:%d, rc in %d state\n",
958 				      DRMID(drm_enc), sw_event,
959 				      dpu_enc->rc_state);
960 			mutex_unlock(&dpu_enc->rc_lock);
961 			return 0;
962 		}
963 
964 		dpu_enc->rc_state = DPU_ENC_RC_STATE_PRE_OFF;
965 
966 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
967 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
968 				 "pre stop");
969 
970 		mutex_unlock(&dpu_enc->rc_lock);
971 		break;
972 
973 	case DPU_ENC_RC_EVENT_STOP:
974 		mutex_lock(&dpu_enc->rc_lock);
975 
976 		/* return if the resource control is already in OFF state */
977 		if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF) {
978 			DRM_DEBUG_KMS("id: %u, sw_event:%d, rc in OFF state\n",
979 				      DRMID(drm_enc), sw_event);
980 			mutex_unlock(&dpu_enc->rc_lock);
981 			return 0;
982 		} else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) {
983 			DRM_ERROR("id: %u, sw_event:%d, rc in state %d\n",
984 				  DRMID(drm_enc), sw_event, dpu_enc->rc_state);
985 			mutex_unlock(&dpu_enc->rc_lock);
986 			return -EINVAL;
987 		}
988 
989 		/**
990 		 * expect to arrive here only if in either idle state or pre-off
991 		 * and in IDLE state the resources are already disabled
992 		 */
993 		if (dpu_enc->rc_state == DPU_ENC_RC_STATE_PRE_OFF)
994 			_dpu_encoder_resource_disable(drm_enc);
995 
996 		dpu_enc->rc_state = DPU_ENC_RC_STATE_OFF;
997 
998 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
999 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
1000 				 "stop");
1001 
1002 		mutex_unlock(&dpu_enc->rc_lock);
1003 		break;
1004 
1005 	case DPU_ENC_RC_EVENT_ENTER_IDLE:
1006 		mutex_lock(&dpu_enc->rc_lock);
1007 
1008 		if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) {
1009 			DRM_ERROR("id: %u, sw_event:%d, rc:%d !ON state\n",
1010 				  DRMID(drm_enc), sw_event, dpu_enc->rc_state);
1011 			mutex_unlock(&dpu_enc->rc_lock);
1012 			return 0;
1013 		}
1014 
1015 		/*
1016 		 * if we are in ON but a frame was just kicked off,
1017 		 * ignore the IDLE event, it's probably a stale timer event
1018 		 */
1019 		if (dpu_enc->frame_busy_mask[0]) {
1020 			DRM_ERROR("id:%u, sw_event:%d, rc:%d frame pending\n",
1021 				  DRMID(drm_enc), sw_event, dpu_enc->rc_state);
1022 			mutex_unlock(&dpu_enc->rc_lock);
1023 			return 0;
1024 		}
1025 
1026 		if (is_vid_mode)
1027 			_dpu_encoder_irq_disable(drm_enc);
1028 		else
1029 			_dpu_encoder_resource_disable(drm_enc);
1030 
1031 		dpu_enc->rc_state = DPU_ENC_RC_STATE_IDLE;
1032 
1033 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
1034 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
1035 				 "idle");
1036 
1037 		mutex_unlock(&dpu_enc->rc_lock);
1038 		break;
1039 
1040 	default:
1041 		DRM_ERROR("id:%u, unexpected sw_event: %d\n", DRMID(drm_enc),
1042 			  sw_event);
1043 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
1044 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
1045 				 "error");
1046 		break;
1047 	}
1048 
1049 	trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
1050 			 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
1051 			 "end");
1052 	return 0;
1053 }
1054 
1055 void dpu_encoder_prepare_wb_job(struct drm_encoder *drm_enc,
1056 		struct drm_writeback_job *job)
1057 {
1058 	struct dpu_encoder_virt *dpu_enc;
1059 	int i;
1060 
1061 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1062 
1063 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1064 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1065 
1066 		if (phys->ops.prepare_wb_job)
1067 			phys->ops.prepare_wb_job(phys, job);
1068 
1069 	}
1070 }
1071 
1072 void dpu_encoder_cleanup_wb_job(struct drm_encoder *drm_enc,
1073 		struct drm_writeback_job *job)
1074 {
1075 	struct dpu_encoder_virt *dpu_enc;
1076 	int i;
1077 
1078 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1079 
1080 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1081 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1082 
1083 		if (phys->ops.cleanup_wb_job)
1084 			phys->ops.cleanup_wb_job(phys, job);
1085 
1086 	}
1087 }
1088 
1089 static void dpu_encoder_virt_atomic_mode_set(struct drm_encoder *drm_enc,
1090 					     struct drm_crtc_state *crtc_state,
1091 					     struct drm_connector_state *conn_state)
1092 {
1093 	struct dpu_encoder_virt *dpu_enc;
1094 	struct msm_drm_private *priv;
1095 	struct dpu_kms *dpu_kms;
1096 	struct dpu_crtc_state *cstate;
1097 	struct dpu_global_state *global_state;
1098 	struct dpu_hw_blk *hw_pp[MAX_CHANNELS_PER_ENC];
1099 	struct dpu_hw_blk *hw_ctl[MAX_CHANNELS_PER_ENC];
1100 	struct dpu_hw_blk *hw_lm[MAX_CHANNELS_PER_ENC];
1101 	struct dpu_hw_blk *hw_dspp[MAX_CHANNELS_PER_ENC] = { NULL };
1102 	struct dpu_hw_blk *hw_dsc[MAX_CHANNELS_PER_ENC];
1103 	int num_lm, num_ctl, num_pp, num_dsc;
1104 	unsigned int dsc_mask = 0;
1105 	int i;
1106 
1107 	if (!drm_enc) {
1108 		DPU_ERROR("invalid encoder\n");
1109 		return;
1110 	}
1111 
1112 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1113 	DPU_DEBUG_ENC(dpu_enc, "\n");
1114 
1115 	priv = drm_enc->dev->dev_private;
1116 	dpu_kms = to_dpu_kms(priv->kms);
1117 
1118 	global_state = dpu_kms_get_existing_global_state(dpu_kms);
1119 	if (IS_ERR_OR_NULL(global_state)) {
1120 		DPU_ERROR("Failed to get global state");
1121 		return;
1122 	}
1123 
1124 	trace_dpu_enc_mode_set(DRMID(drm_enc));
1125 
1126 	/* Query resource that have been reserved in atomic check step. */
1127 	num_pp = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1128 		drm_enc->base.id, DPU_HW_BLK_PINGPONG, hw_pp,
1129 		ARRAY_SIZE(hw_pp));
1130 	num_ctl = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1131 		drm_enc->base.id, DPU_HW_BLK_CTL, hw_ctl, ARRAY_SIZE(hw_ctl));
1132 	num_lm = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1133 		drm_enc->base.id, DPU_HW_BLK_LM, hw_lm, ARRAY_SIZE(hw_lm));
1134 	dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1135 		drm_enc->base.id, DPU_HW_BLK_DSPP, hw_dspp,
1136 		ARRAY_SIZE(hw_dspp));
1137 
1138 	for (i = 0; i < MAX_CHANNELS_PER_ENC; i++)
1139 		dpu_enc->hw_pp[i] = i < num_pp ? to_dpu_hw_pingpong(hw_pp[i])
1140 						: NULL;
1141 
1142 	num_dsc = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1143 						drm_enc->base.id, DPU_HW_BLK_DSC,
1144 						hw_dsc, ARRAY_SIZE(hw_dsc));
1145 	for (i = 0; i < num_dsc; i++) {
1146 		dpu_enc->hw_dsc[i] = to_dpu_hw_dsc(hw_dsc[i]);
1147 		dsc_mask |= BIT(dpu_enc->hw_dsc[i]->idx - DSC_0);
1148 	}
1149 
1150 	dpu_enc->dsc_mask = dsc_mask;
1151 
1152 	if ((dpu_enc->disp_info.intf_type == INTF_WB && conn_state->writeback_job) ||
1153 	    dpu_enc->disp_info.intf_type == INTF_DP) {
1154 		struct dpu_hw_blk *hw_cdm = NULL;
1155 
1156 		dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1157 					      drm_enc->base.id, DPU_HW_BLK_CDM,
1158 					      &hw_cdm, 1);
1159 		dpu_enc->cur_master->hw_cdm = hw_cdm ? to_dpu_hw_cdm(hw_cdm) : NULL;
1160 	}
1161 
1162 	cstate = to_dpu_crtc_state(crtc_state);
1163 
1164 	for (i = 0; i < num_lm; i++) {
1165 		int ctl_idx = (i < num_ctl) ? i : (num_ctl-1);
1166 
1167 		cstate->mixers[i].hw_lm = to_dpu_hw_mixer(hw_lm[i]);
1168 		cstate->mixers[i].lm_ctl = to_dpu_hw_ctl(hw_ctl[ctl_idx]);
1169 		cstate->mixers[i].hw_dspp = to_dpu_hw_dspp(hw_dspp[i]);
1170 	}
1171 
1172 	cstate->num_mixers = num_lm;
1173 
1174 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1175 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1176 
1177 		if (!dpu_enc->hw_pp[i]) {
1178 			DPU_ERROR_ENC(dpu_enc,
1179 				"no pp block assigned at idx: %d\n", i);
1180 			return;
1181 		}
1182 
1183 		if (!hw_ctl[i]) {
1184 			DPU_ERROR_ENC(dpu_enc,
1185 				"no ctl block assigned at idx: %d\n", i);
1186 			return;
1187 		}
1188 
1189 		phys->hw_pp = dpu_enc->hw_pp[i];
1190 		phys->hw_ctl = to_dpu_hw_ctl(hw_ctl[i]);
1191 
1192 		phys->cached_mode = crtc_state->adjusted_mode;
1193 		if (phys->ops.atomic_mode_set)
1194 			phys->ops.atomic_mode_set(phys, crtc_state, conn_state);
1195 	}
1196 }
1197 
1198 static void _dpu_encoder_virt_enable_helper(struct drm_encoder *drm_enc)
1199 {
1200 	struct dpu_encoder_virt *dpu_enc = NULL;
1201 	int i;
1202 
1203 	if (!drm_enc || !drm_enc->dev) {
1204 		DPU_ERROR("invalid parameters\n");
1205 		return;
1206 	}
1207 
1208 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1209 	if (!dpu_enc || !dpu_enc->cur_master) {
1210 		DPU_ERROR("invalid dpu encoder/master\n");
1211 		return;
1212 	}
1213 
1214 
1215 	if (dpu_enc->disp_info.intf_type == INTF_DP &&
1216 		dpu_enc->cur_master->hw_mdptop &&
1217 		dpu_enc->cur_master->hw_mdptop->ops.intf_audio_select)
1218 		dpu_enc->cur_master->hw_mdptop->ops.intf_audio_select(
1219 			dpu_enc->cur_master->hw_mdptop);
1220 
1221 	if (dpu_enc->disp_info.is_cmd_mode)
1222 		_dpu_encoder_update_vsync_source(dpu_enc, &dpu_enc->disp_info);
1223 
1224 	if (dpu_enc->disp_info.intf_type == INTF_DSI &&
1225 			!WARN_ON(dpu_enc->num_phys_encs == 0)) {
1226 		unsigned bpc = dpu_enc->connector->display_info.bpc;
1227 		for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
1228 			if (!dpu_enc->hw_pp[i])
1229 				continue;
1230 			_dpu_encoder_setup_dither(dpu_enc->hw_pp[i], bpc);
1231 		}
1232 	}
1233 }
1234 
1235 void dpu_encoder_virt_runtime_resume(struct drm_encoder *drm_enc)
1236 {
1237 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1238 
1239 	mutex_lock(&dpu_enc->enc_lock);
1240 
1241 	if (!dpu_enc->enabled)
1242 		goto out;
1243 
1244 	if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.restore)
1245 		dpu_enc->cur_slave->ops.restore(dpu_enc->cur_slave);
1246 	if (dpu_enc->cur_master && dpu_enc->cur_master->ops.restore)
1247 		dpu_enc->cur_master->ops.restore(dpu_enc->cur_master);
1248 
1249 	_dpu_encoder_virt_enable_helper(drm_enc);
1250 
1251 out:
1252 	mutex_unlock(&dpu_enc->enc_lock);
1253 }
1254 
1255 static void dpu_encoder_virt_atomic_enable(struct drm_encoder *drm_enc,
1256 					struct drm_atomic_state *state)
1257 {
1258 	struct dpu_encoder_virt *dpu_enc = NULL;
1259 	int ret = 0;
1260 	struct drm_display_mode *cur_mode = NULL;
1261 
1262 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1263 	dpu_enc->dsc = dpu_encoder_get_dsc_config(drm_enc);
1264 
1265 	atomic_set(&dpu_enc->frame_done_timeout_cnt, 0);
1266 
1267 	mutex_lock(&dpu_enc->enc_lock);
1268 
1269 	dpu_enc->commit_done_timedout = false;
1270 
1271 	dpu_enc->connector = drm_atomic_get_new_connector_for_encoder(state, drm_enc);
1272 
1273 	cur_mode = &dpu_enc->base.crtc->state->adjusted_mode;
1274 
1275 	dpu_enc->wide_bus_en = dpu_encoder_is_widebus_enabled(drm_enc);
1276 
1277 	trace_dpu_enc_enable(DRMID(drm_enc), cur_mode->hdisplay,
1278 			     cur_mode->vdisplay);
1279 
1280 	/* always enable slave encoder before master */
1281 	if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.enable)
1282 		dpu_enc->cur_slave->ops.enable(dpu_enc->cur_slave);
1283 
1284 	if (dpu_enc->cur_master && dpu_enc->cur_master->ops.enable)
1285 		dpu_enc->cur_master->ops.enable(dpu_enc->cur_master);
1286 
1287 	ret = dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF);
1288 	if (ret) {
1289 		DPU_ERROR_ENC(dpu_enc, "dpu resource control failed: %d\n",
1290 				ret);
1291 		goto out;
1292 	}
1293 
1294 	_dpu_encoder_virt_enable_helper(drm_enc);
1295 
1296 	dpu_enc->enabled = true;
1297 
1298 out:
1299 	mutex_unlock(&dpu_enc->enc_lock);
1300 }
1301 
1302 static void dpu_encoder_virt_atomic_disable(struct drm_encoder *drm_enc,
1303 					struct drm_atomic_state *state)
1304 {
1305 	struct dpu_encoder_virt *dpu_enc = NULL;
1306 	struct drm_crtc *crtc;
1307 	struct drm_crtc_state *old_state = NULL;
1308 	int i = 0;
1309 
1310 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1311 	DPU_DEBUG_ENC(dpu_enc, "\n");
1312 
1313 	crtc = drm_atomic_get_old_crtc_for_encoder(state, drm_enc);
1314 	if (crtc)
1315 		old_state = drm_atomic_get_old_crtc_state(state, crtc);
1316 
1317 	/*
1318 	 * The encoder is already disabled if self refresh mode was set earlier,
1319 	 * in the old_state for the corresponding crtc.
1320 	 */
1321 	if (old_state && old_state->self_refresh_active)
1322 		return;
1323 
1324 	mutex_lock(&dpu_enc->enc_lock);
1325 	dpu_enc->enabled = false;
1326 
1327 	trace_dpu_enc_disable(DRMID(drm_enc));
1328 
1329 	/* wait for idle */
1330 	dpu_encoder_wait_for_tx_complete(drm_enc);
1331 
1332 	dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_PRE_STOP);
1333 
1334 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1335 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1336 
1337 		if (phys->ops.disable)
1338 			phys->ops.disable(phys);
1339 	}
1340 
1341 
1342 	/* after phys waits for frame-done, should be no more frames pending */
1343 	if (atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) {
1344 		DPU_ERROR("enc%d timeout pending\n", drm_enc->base.id);
1345 		del_timer_sync(&dpu_enc->frame_done_timer);
1346 	}
1347 
1348 	dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_STOP);
1349 
1350 	dpu_enc->connector = NULL;
1351 
1352 	DPU_DEBUG_ENC(dpu_enc, "encoder disabled\n");
1353 
1354 	mutex_unlock(&dpu_enc->enc_lock);
1355 }
1356 
1357 static struct dpu_hw_intf *dpu_encoder_get_intf(const struct dpu_mdss_cfg *catalog,
1358 		struct dpu_rm *dpu_rm,
1359 		enum dpu_intf_type type, u32 controller_id)
1360 {
1361 	int i = 0;
1362 
1363 	if (type == INTF_WB)
1364 		return NULL;
1365 
1366 	for (i = 0; i < catalog->intf_count; i++) {
1367 		if (catalog->intf[i].type == type
1368 		    && catalog->intf[i].controller_id == controller_id) {
1369 			return dpu_rm_get_intf(dpu_rm, catalog->intf[i].id);
1370 		}
1371 	}
1372 
1373 	return NULL;
1374 }
1375 
1376 void dpu_encoder_vblank_callback(struct drm_encoder *drm_enc,
1377 		struct dpu_encoder_phys *phy_enc)
1378 {
1379 	struct dpu_encoder_virt *dpu_enc = NULL;
1380 	unsigned long lock_flags;
1381 
1382 	if (!drm_enc || !phy_enc)
1383 		return;
1384 
1385 	DPU_ATRACE_BEGIN("encoder_vblank_callback");
1386 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1387 
1388 	atomic_inc(&phy_enc->vsync_cnt);
1389 
1390 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1391 	if (dpu_enc->crtc)
1392 		dpu_crtc_vblank_callback(dpu_enc->crtc);
1393 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1394 
1395 	DPU_ATRACE_END("encoder_vblank_callback");
1396 }
1397 
1398 void dpu_encoder_underrun_callback(struct drm_encoder *drm_enc,
1399 		struct dpu_encoder_phys *phy_enc)
1400 {
1401 	if (!phy_enc)
1402 		return;
1403 
1404 	DPU_ATRACE_BEGIN("encoder_underrun_callback");
1405 	atomic_inc(&phy_enc->underrun_cnt);
1406 
1407 	/* trigger dump only on the first underrun */
1408 	if (atomic_read(&phy_enc->underrun_cnt) == 1)
1409 		msm_disp_snapshot_state(drm_enc->dev);
1410 
1411 	trace_dpu_enc_underrun_cb(DRMID(drm_enc),
1412 				  atomic_read(&phy_enc->underrun_cnt));
1413 	DPU_ATRACE_END("encoder_underrun_callback");
1414 }
1415 
1416 void dpu_encoder_assign_crtc(struct drm_encoder *drm_enc, struct drm_crtc *crtc)
1417 {
1418 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1419 	unsigned long lock_flags;
1420 
1421 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1422 	/* crtc should always be cleared before re-assigning */
1423 	WARN_ON(crtc && dpu_enc->crtc);
1424 	dpu_enc->crtc = crtc;
1425 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1426 }
1427 
1428 void dpu_encoder_toggle_vblank_for_crtc(struct drm_encoder *drm_enc,
1429 					struct drm_crtc *crtc, bool enable)
1430 {
1431 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1432 	unsigned long lock_flags;
1433 	int i;
1434 
1435 	trace_dpu_enc_vblank_cb(DRMID(drm_enc), enable);
1436 
1437 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1438 	if (dpu_enc->crtc != crtc) {
1439 		spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1440 		return;
1441 	}
1442 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1443 
1444 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1445 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1446 
1447 		if (phys->ops.control_vblank_irq)
1448 			phys->ops.control_vblank_irq(phys, enable);
1449 	}
1450 }
1451 
1452 void dpu_encoder_frame_done_callback(
1453 		struct drm_encoder *drm_enc,
1454 		struct dpu_encoder_phys *ready_phys, u32 event)
1455 {
1456 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1457 	unsigned int i;
1458 
1459 	if (event & (DPU_ENCODER_FRAME_EVENT_DONE
1460 			| DPU_ENCODER_FRAME_EVENT_ERROR
1461 			| DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)) {
1462 
1463 		if (!dpu_enc->frame_busy_mask[0]) {
1464 			/**
1465 			 * suppress frame_done without waiter,
1466 			 * likely autorefresh
1467 			 */
1468 			trace_dpu_enc_frame_done_cb_not_busy(DRMID(drm_enc), event,
1469 					dpu_encoder_helper_get_intf_type(ready_phys->intf_mode),
1470 					ready_phys->hw_intf ? ready_phys->hw_intf->idx : -1,
1471 					ready_phys->hw_wb ? ready_phys->hw_wb->idx : -1);
1472 			return;
1473 		}
1474 
1475 		/* One of the physical encoders has become idle */
1476 		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1477 			if (dpu_enc->phys_encs[i] == ready_phys) {
1478 				trace_dpu_enc_frame_done_cb(DRMID(drm_enc), i,
1479 						dpu_enc->frame_busy_mask[0]);
1480 				clear_bit(i, dpu_enc->frame_busy_mask);
1481 			}
1482 		}
1483 
1484 		if (!dpu_enc->frame_busy_mask[0]) {
1485 			atomic_set(&dpu_enc->frame_done_timeout_ms, 0);
1486 			del_timer(&dpu_enc->frame_done_timer);
1487 
1488 			dpu_encoder_resource_control(drm_enc,
1489 					DPU_ENC_RC_EVENT_FRAME_DONE);
1490 
1491 			if (dpu_enc->crtc)
1492 				dpu_crtc_frame_event_cb(dpu_enc->crtc, event);
1493 		}
1494 	} else {
1495 		if (dpu_enc->crtc)
1496 			dpu_crtc_frame_event_cb(dpu_enc->crtc, event);
1497 	}
1498 }
1499 
1500 static void dpu_encoder_off_work(struct work_struct *work)
1501 {
1502 	struct dpu_encoder_virt *dpu_enc = container_of(work,
1503 			struct dpu_encoder_virt, delayed_off_work.work);
1504 
1505 	dpu_encoder_resource_control(&dpu_enc->base,
1506 						DPU_ENC_RC_EVENT_ENTER_IDLE);
1507 
1508 	dpu_encoder_frame_done_callback(&dpu_enc->base, NULL,
1509 				DPU_ENCODER_FRAME_EVENT_IDLE);
1510 }
1511 
1512 /**
1513  * _dpu_encoder_trigger_flush - trigger flush for a physical encoder
1514  * @drm_enc: Pointer to drm encoder structure
1515  * @phys: Pointer to physical encoder structure
1516  * @extra_flush_bits: Additional bit mask to include in flush trigger
1517  */
1518 static void _dpu_encoder_trigger_flush(struct drm_encoder *drm_enc,
1519 		struct dpu_encoder_phys *phys, uint32_t extra_flush_bits)
1520 {
1521 	struct dpu_hw_ctl *ctl;
1522 	int pending_kickoff_cnt;
1523 	u32 ret = UINT_MAX;
1524 
1525 	if (!phys->hw_pp) {
1526 		DPU_ERROR("invalid pingpong hw\n");
1527 		return;
1528 	}
1529 
1530 	ctl = phys->hw_ctl;
1531 	if (!ctl->ops.trigger_flush) {
1532 		DPU_ERROR("missing trigger cb\n");
1533 		return;
1534 	}
1535 
1536 	pending_kickoff_cnt = dpu_encoder_phys_inc_pending(phys);
1537 
1538 	if (extra_flush_bits && ctl->ops.update_pending_flush)
1539 		ctl->ops.update_pending_flush(ctl, extra_flush_bits);
1540 
1541 	ctl->ops.trigger_flush(ctl);
1542 
1543 	if (ctl->ops.get_pending_flush)
1544 		ret = ctl->ops.get_pending_flush(ctl);
1545 
1546 	trace_dpu_enc_trigger_flush(DRMID(drm_enc),
1547 			dpu_encoder_helper_get_intf_type(phys->intf_mode),
1548 			phys->hw_intf ? phys->hw_intf->idx : -1,
1549 			phys->hw_wb ? phys->hw_wb->idx : -1,
1550 			pending_kickoff_cnt, ctl->idx,
1551 			extra_flush_bits, ret);
1552 }
1553 
1554 /**
1555  * _dpu_encoder_trigger_start - trigger start for a physical encoder
1556  * @phys: Pointer to physical encoder structure
1557  */
1558 static void _dpu_encoder_trigger_start(struct dpu_encoder_phys *phys)
1559 {
1560 	if (!phys) {
1561 		DPU_ERROR("invalid argument(s)\n");
1562 		return;
1563 	}
1564 
1565 	if (!phys->hw_pp) {
1566 		DPU_ERROR("invalid pingpong hw\n");
1567 		return;
1568 	}
1569 
1570 	if (phys->ops.trigger_start && phys->enable_state != DPU_ENC_DISABLED)
1571 		phys->ops.trigger_start(phys);
1572 }
1573 
1574 void dpu_encoder_helper_trigger_start(struct dpu_encoder_phys *phys_enc)
1575 {
1576 	struct dpu_hw_ctl *ctl;
1577 
1578 	ctl = phys_enc->hw_ctl;
1579 	if (ctl->ops.trigger_start) {
1580 		ctl->ops.trigger_start(ctl);
1581 		trace_dpu_enc_trigger_start(DRMID(phys_enc->parent), ctl->idx);
1582 	}
1583 }
1584 
1585 static int dpu_encoder_helper_wait_event_timeout(
1586 		int32_t drm_id,
1587 		unsigned int irq_idx,
1588 		struct dpu_encoder_wait_info *info)
1589 {
1590 	int rc = 0;
1591 	s64 expected_time = ktime_to_ms(ktime_get()) + info->timeout_ms;
1592 	s64 jiffies = msecs_to_jiffies(info->timeout_ms);
1593 	s64 time;
1594 
1595 	do {
1596 		rc = wait_event_timeout(*(info->wq),
1597 				atomic_read(info->atomic_cnt) == 0, jiffies);
1598 		time = ktime_to_ms(ktime_get());
1599 
1600 		trace_dpu_enc_wait_event_timeout(drm_id,
1601 						 DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx),
1602 						 rc, time,
1603 						 expected_time,
1604 						 atomic_read(info->atomic_cnt));
1605 	/* If we timed out, counter is valid and time is less, wait again */
1606 	} while (atomic_read(info->atomic_cnt) && (rc == 0) &&
1607 			(time < expected_time));
1608 
1609 	return rc;
1610 }
1611 
1612 static void dpu_encoder_helper_hw_reset(struct dpu_encoder_phys *phys_enc)
1613 {
1614 	struct dpu_encoder_virt *dpu_enc;
1615 	struct dpu_hw_ctl *ctl;
1616 	int rc;
1617 	struct drm_encoder *drm_enc;
1618 
1619 	dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
1620 	ctl = phys_enc->hw_ctl;
1621 	drm_enc = phys_enc->parent;
1622 
1623 	if (!ctl->ops.reset)
1624 		return;
1625 
1626 	DRM_DEBUG_KMS("id:%u ctl %d reset\n", DRMID(drm_enc),
1627 		      ctl->idx);
1628 
1629 	rc = ctl->ops.reset(ctl);
1630 	if (rc) {
1631 		DPU_ERROR_ENC(dpu_enc, "ctl %d reset failure\n",  ctl->idx);
1632 		msm_disp_snapshot_state(drm_enc->dev);
1633 	}
1634 
1635 	phys_enc->enable_state = DPU_ENC_ENABLED;
1636 }
1637 
1638 /**
1639  * _dpu_encoder_kickoff_phys - handle physical encoder kickoff
1640  *	Iterate through the physical encoders and perform consolidated flush
1641  *	and/or control start triggering as needed. This is done in the virtual
1642  *	encoder rather than the individual physical ones in order to handle
1643  *	use cases that require visibility into multiple physical encoders at
1644  *	a time.
1645  * @dpu_enc: Pointer to virtual encoder structure
1646  */
1647 static void _dpu_encoder_kickoff_phys(struct dpu_encoder_virt *dpu_enc)
1648 {
1649 	struct dpu_hw_ctl *ctl;
1650 	uint32_t i, pending_flush;
1651 	unsigned long lock_flags;
1652 
1653 	pending_flush = 0x0;
1654 
1655 	/* update pending counts and trigger kickoff ctl flush atomically */
1656 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1657 
1658 	/* don't perform flush/start operations for slave encoders */
1659 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1660 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1661 
1662 		if (phys->enable_state == DPU_ENC_DISABLED)
1663 			continue;
1664 
1665 		ctl = phys->hw_ctl;
1666 
1667 		/*
1668 		 * This is cleared in frame_done worker, which isn't invoked
1669 		 * for async commits. So don't set this for async, since it'll
1670 		 * roll over to the next commit.
1671 		 */
1672 		if (phys->split_role != ENC_ROLE_SLAVE)
1673 			set_bit(i, dpu_enc->frame_busy_mask);
1674 
1675 		if (!phys->ops.needs_single_flush ||
1676 				!phys->ops.needs_single_flush(phys))
1677 			_dpu_encoder_trigger_flush(&dpu_enc->base, phys, 0x0);
1678 		else if (ctl->ops.get_pending_flush)
1679 			pending_flush |= ctl->ops.get_pending_flush(ctl);
1680 	}
1681 
1682 	/* for split flush, combine pending flush masks and send to master */
1683 	if (pending_flush && dpu_enc->cur_master) {
1684 		_dpu_encoder_trigger_flush(
1685 				&dpu_enc->base,
1686 				dpu_enc->cur_master,
1687 				pending_flush);
1688 	}
1689 
1690 	_dpu_encoder_trigger_start(dpu_enc->cur_master);
1691 
1692 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1693 }
1694 
1695 void dpu_encoder_trigger_kickoff_pending(struct drm_encoder *drm_enc)
1696 {
1697 	struct dpu_encoder_virt *dpu_enc;
1698 	struct dpu_encoder_phys *phys;
1699 	unsigned int i;
1700 	struct dpu_hw_ctl *ctl;
1701 	struct msm_display_info *disp_info;
1702 
1703 	if (!drm_enc) {
1704 		DPU_ERROR("invalid encoder\n");
1705 		return;
1706 	}
1707 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1708 	disp_info = &dpu_enc->disp_info;
1709 
1710 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1711 		phys = dpu_enc->phys_encs[i];
1712 
1713 		ctl = phys->hw_ctl;
1714 		ctl->ops.clear_pending_flush(ctl);
1715 
1716 		/* update only for command mode primary ctl */
1717 		if ((phys == dpu_enc->cur_master) &&
1718 		    disp_info->is_cmd_mode
1719 		    && ctl->ops.trigger_pending)
1720 			ctl->ops.trigger_pending(ctl);
1721 	}
1722 }
1723 
1724 static u32 _dpu_encoder_calculate_linetime(struct dpu_encoder_virt *dpu_enc,
1725 		struct drm_display_mode *mode)
1726 {
1727 	u64 pclk_rate;
1728 	u32 pclk_period;
1729 	u32 line_time;
1730 
1731 	/*
1732 	 * For linetime calculation, only operate on master encoder.
1733 	 */
1734 	if (!dpu_enc->cur_master)
1735 		return 0;
1736 
1737 	if (!dpu_enc->cur_master->ops.get_line_count) {
1738 		DPU_ERROR("get_line_count function not defined\n");
1739 		return 0;
1740 	}
1741 
1742 	pclk_rate = mode->clock; /* pixel clock in kHz */
1743 	if (pclk_rate == 0) {
1744 		DPU_ERROR("pclk is 0, cannot calculate line time\n");
1745 		return 0;
1746 	}
1747 
1748 	pclk_period = DIV_ROUND_UP_ULL(1000000000ull, pclk_rate);
1749 	if (pclk_period == 0) {
1750 		DPU_ERROR("pclk period is 0\n");
1751 		return 0;
1752 	}
1753 
1754 	/*
1755 	 * Line time calculation based on Pixel clock and HTOTAL.
1756 	 * Final unit is in ns.
1757 	 */
1758 	line_time = (pclk_period * mode->htotal) / 1000;
1759 	if (line_time == 0) {
1760 		DPU_ERROR("line time calculation is 0\n");
1761 		return 0;
1762 	}
1763 
1764 	DPU_DEBUG_ENC(dpu_enc,
1765 			"clk_rate=%lldkHz, clk_period=%d, linetime=%dns\n",
1766 			pclk_rate, pclk_period, line_time);
1767 
1768 	return line_time;
1769 }
1770 
1771 int dpu_encoder_vsync_time(struct drm_encoder *drm_enc, ktime_t *wakeup_time)
1772 {
1773 	struct drm_display_mode *mode;
1774 	struct dpu_encoder_virt *dpu_enc;
1775 	u32 cur_line;
1776 	u32 line_time;
1777 	u32 vtotal, time_to_vsync;
1778 	ktime_t cur_time;
1779 
1780 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1781 
1782 	if (!drm_enc->crtc || !drm_enc->crtc->state) {
1783 		DPU_ERROR("crtc/crtc state object is NULL\n");
1784 		return -EINVAL;
1785 	}
1786 	mode = &drm_enc->crtc->state->adjusted_mode;
1787 
1788 	line_time = _dpu_encoder_calculate_linetime(dpu_enc, mode);
1789 	if (!line_time)
1790 		return -EINVAL;
1791 
1792 	cur_line = dpu_enc->cur_master->ops.get_line_count(dpu_enc->cur_master);
1793 
1794 	vtotal = mode->vtotal;
1795 	if (cur_line >= vtotal)
1796 		time_to_vsync = line_time * vtotal;
1797 	else
1798 		time_to_vsync = line_time * (vtotal - cur_line);
1799 
1800 	if (time_to_vsync == 0) {
1801 		DPU_ERROR("time to vsync should not be zero, vtotal=%d\n",
1802 				vtotal);
1803 		return -EINVAL;
1804 	}
1805 
1806 	cur_time = ktime_get();
1807 	*wakeup_time = ktime_add_ns(cur_time, time_to_vsync);
1808 
1809 	DPU_DEBUG_ENC(dpu_enc,
1810 			"cur_line=%u vtotal=%u time_to_vsync=%u, cur_time=%lld, wakeup_time=%lld\n",
1811 			cur_line, vtotal, time_to_vsync,
1812 			ktime_to_ms(cur_time),
1813 			ktime_to_ms(*wakeup_time));
1814 	return 0;
1815 }
1816 
1817 static u32
1818 dpu_encoder_dsc_initial_line_calc(struct drm_dsc_config *dsc,
1819 				  u32 enc_ip_width)
1820 {
1821 	int ssm_delay, total_pixels, soft_slice_per_enc;
1822 
1823 	soft_slice_per_enc = enc_ip_width / dsc->slice_width;
1824 
1825 	/*
1826 	 * minimum number of initial line pixels is a sum of:
1827 	 * 1. sub-stream multiplexer delay (83 groups for 8bpc,
1828 	 *    91 for 10 bpc) * 3
1829 	 * 2. for two soft slice cases, add extra sub-stream multiplexer * 3
1830 	 * 3. the initial xmit delay
1831 	 * 4. total pipeline delay through the "lock step" of encoder (47)
1832 	 * 5. 6 additional pixels as the output of the rate buffer is
1833 	 *    48 bits wide
1834 	 */
1835 	ssm_delay = ((dsc->bits_per_component < 10) ? 84 : 92);
1836 	total_pixels = ssm_delay * 3 + dsc->initial_xmit_delay + 47;
1837 	if (soft_slice_per_enc > 1)
1838 		total_pixels += (ssm_delay * 3);
1839 	return DIV_ROUND_UP(total_pixels, dsc->slice_width);
1840 }
1841 
1842 static void dpu_encoder_dsc_pipe_cfg(struct dpu_hw_ctl *ctl,
1843 				     struct dpu_hw_dsc *hw_dsc,
1844 				     struct dpu_hw_pingpong *hw_pp,
1845 				     struct drm_dsc_config *dsc,
1846 				     u32 common_mode,
1847 				     u32 initial_lines)
1848 {
1849 	if (hw_dsc->ops.dsc_config)
1850 		hw_dsc->ops.dsc_config(hw_dsc, dsc, common_mode, initial_lines);
1851 
1852 	if (hw_dsc->ops.dsc_config_thresh)
1853 		hw_dsc->ops.dsc_config_thresh(hw_dsc, dsc);
1854 
1855 	if (hw_pp->ops.setup_dsc)
1856 		hw_pp->ops.setup_dsc(hw_pp);
1857 
1858 	if (hw_dsc->ops.dsc_bind_pingpong_blk)
1859 		hw_dsc->ops.dsc_bind_pingpong_blk(hw_dsc, hw_pp->idx);
1860 
1861 	if (hw_pp->ops.enable_dsc)
1862 		hw_pp->ops.enable_dsc(hw_pp);
1863 
1864 	if (ctl->ops.update_pending_flush_dsc)
1865 		ctl->ops.update_pending_flush_dsc(ctl, hw_dsc->idx);
1866 }
1867 
1868 static void dpu_encoder_prep_dsc(struct dpu_encoder_virt *dpu_enc,
1869 				 struct drm_dsc_config *dsc)
1870 {
1871 	/* coding only for 2LM, 2enc, 1 dsc config */
1872 	struct dpu_encoder_phys *enc_master = dpu_enc->cur_master;
1873 	struct dpu_hw_ctl *ctl = enc_master->hw_ctl;
1874 	struct dpu_hw_dsc *hw_dsc[MAX_CHANNELS_PER_ENC];
1875 	struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC];
1876 	int this_frame_slices;
1877 	int intf_ip_w, enc_ip_w;
1878 	int dsc_common_mode;
1879 	int pic_width;
1880 	u32 initial_lines;
1881 	int i;
1882 
1883 	for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
1884 		hw_pp[i] = dpu_enc->hw_pp[i];
1885 		hw_dsc[i] = dpu_enc->hw_dsc[i];
1886 
1887 		if (!hw_pp[i] || !hw_dsc[i]) {
1888 			DPU_ERROR_ENC(dpu_enc, "invalid params for DSC\n");
1889 			return;
1890 		}
1891 	}
1892 
1893 	dsc_common_mode = 0;
1894 	pic_width = dsc->pic_width;
1895 
1896 	dsc_common_mode = DSC_MODE_SPLIT_PANEL;
1897 	if (dpu_encoder_use_dsc_merge(enc_master->parent))
1898 		dsc_common_mode |= DSC_MODE_MULTIPLEX;
1899 	if (enc_master->intf_mode == INTF_MODE_VIDEO)
1900 		dsc_common_mode |= DSC_MODE_VIDEO;
1901 
1902 	this_frame_slices = pic_width / dsc->slice_width;
1903 	intf_ip_w = this_frame_slices * dsc->slice_width;
1904 
1905 	/*
1906 	 * dsc merge case: when using 2 encoders for the same stream,
1907 	 * no. of slices need to be same on both the encoders.
1908 	 */
1909 	enc_ip_w = intf_ip_w / 2;
1910 	initial_lines = dpu_encoder_dsc_initial_line_calc(dsc, enc_ip_w);
1911 
1912 	for (i = 0; i < MAX_CHANNELS_PER_ENC; i++)
1913 		dpu_encoder_dsc_pipe_cfg(ctl, hw_dsc[i], hw_pp[i],
1914 					 dsc, dsc_common_mode, initial_lines);
1915 }
1916 
1917 void dpu_encoder_prepare_for_kickoff(struct drm_encoder *drm_enc)
1918 {
1919 	struct dpu_encoder_virt *dpu_enc;
1920 	struct dpu_encoder_phys *phys;
1921 	bool needs_hw_reset = false;
1922 	unsigned int i;
1923 
1924 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1925 
1926 	trace_dpu_enc_prepare_kickoff(DRMID(drm_enc));
1927 
1928 	/* prepare for next kickoff, may include waiting on previous kickoff */
1929 	DPU_ATRACE_BEGIN("enc_prepare_for_kickoff");
1930 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1931 		phys = dpu_enc->phys_encs[i];
1932 		if (phys->ops.prepare_for_kickoff)
1933 			phys->ops.prepare_for_kickoff(phys);
1934 		if (phys->enable_state == DPU_ENC_ERR_NEEDS_HW_RESET)
1935 			needs_hw_reset = true;
1936 	}
1937 	DPU_ATRACE_END("enc_prepare_for_kickoff");
1938 
1939 	dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF);
1940 
1941 	/* if any phys needs reset, reset all phys, in-order */
1942 	if (needs_hw_reset) {
1943 		trace_dpu_enc_prepare_kickoff_reset(DRMID(drm_enc));
1944 		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1945 			dpu_encoder_helper_hw_reset(dpu_enc->phys_encs[i]);
1946 		}
1947 	}
1948 
1949 	if (dpu_enc->dsc)
1950 		dpu_encoder_prep_dsc(dpu_enc, dpu_enc->dsc);
1951 }
1952 
1953 bool dpu_encoder_is_valid_for_commit(struct drm_encoder *drm_enc)
1954 {
1955 	struct dpu_encoder_virt *dpu_enc;
1956 	unsigned int i;
1957 	struct dpu_encoder_phys *phys;
1958 
1959 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1960 
1961 	if (drm_enc->encoder_type == DRM_MODE_ENCODER_VIRTUAL) {
1962 		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1963 			phys = dpu_enc->phys_encs[i];
1964 			if (phys->ops.is_valid_for_commit && !phys->ops.is_valid_for_commit(phys)) {
1965 				DPU_DEBUG("invalid FB not kicking off\n");
1966 				return false;
1967 			}
1968 		}
1969 	}
1970 
1971 	return true;
1972 }
1973 
1974 void dpu_encoder_kickoff(struct drm_encoder *drm_enc)
1975 {
1976 	struct dpu_encoder_virt *dpu_enc;
1977 	struct dpu_encoder_phys *phys;
1978 	unsigned long timeout_ms;
1979 	unsigned int i;
1980 
1981 	DPU_ATRACE_BEGIN("encoder_kickoff");
1982 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1983 
1984 	trace_dpu_enc_kickoff(DRMID(drm_enc));
1985 
1986 	timeout_ms = DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES * 1000 /
1987 			drm_mode_vrefresh(&drm_enc->crtc->state->adjusted_mode);
1988 
1989 	atomic_set(&dpu_enc->frame_done_timeout_ms, timeout_ms);
1990 	mod_timer(&dpu_enc->frame_done_timer,
1991 			jiffies + msecs_to_jiffies(timeout_ms));
1992 
1993 	/* All phys encs are ready to go, trigger the kickoff */
1994 	_dpu_encoder_kickoff_phys(dpu_enc);
1995 
1996 	/* allow phys encs to handle any post-kickoff business */
1997 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1998 		phys = dpu_enc->phys_encs[i];
1999 		if (phys->ops.handle_post_kickoff)
2000 			phys->ops.handle_post_kickoff(phys);
2001 	}
2002 
2003 	DPU_ATRACE_END("encoder_kickoff");
2004 }
2005 
2006 static void dpu_encoder_helper_reset_mixers(struct dpu_encoder_phys *phys_enc)
2007 {
2008 	struct dpu_hw_mixer_cfg mixer;
2009 	int i, num_lm;
2010 	struct dpu_global_state *global_state;
2011 	struct dpu_hw_blk *hw_lm[2];
2012 	struct dpu_hw_mixer *hw_mixer[2];
2013 	struct dpu_hw_ctl *ctl = phys_enc->hw_ctl;
2014 
2015 	memset(&mixer, 0, sizeof(mixer));
2016 
2017 	/* reset all mixers for this encoder */
2018 	if (phys_enc->hw_ctl->ops.clear_all_blendstages)
2019 		phys_enc->hw_ctl->ops.clear_all_blendstages(phys_enc->hw_ctl);
2020 
2021 	global_state = dpu_kms_get_existing_global_state(phys_enc->dpu_kms);
2022 
2023 	num_lm = dpu_rm_get_assigned_resources(&phys_enc->dpu_kms->rm, global_state,
2024 		phys_enc->parent->base.id, DPU_HW_BLK_LM, hw_lm, ARRAY_SIZE(hw_lm));
2025 
2026 	for (i = 0; i < num_lm; i++) {
2027 		hw_mixer[i] = to_dpu_hw_mixer(hw_lm[i]);
2028 		if (phys_enc->hw_ctl->ops.update_pending_flush_mixer)
2029 			phys_enc->hw_ctl->ops.update_pending_flush_mixer(ctl, hw_mixer[i]->idx);
2030 
2031 		/* clear all blendstages */
2032 		if (phys_enc->hw_ctl->ops.setup_blendstage)
2033 			phys_enc->hw_ctl->ops.setup_blendstage(ctl, hw_mixer[i]->idx, NULL);
2034 	}
2035 }
2036 
2037 static void dpu_encoder_dsc_pipe_clr(struct dpu_hw_ctl *ctl,
2038 				     struct dpu_hw_dsc *hw_dsc,
2039 				     struct dpu_hw_pingpong *hw_pp)
2040 {
2041 	if (hw_dsc->ops.dsc_disable)
2042 		hw_dsc->ops.dsc_disable(hw_dsc);
2043 
2044 	if (hw_pp->ops.disable_dsc)
2045 		hw_pp->ops.disable_dsc(hw_pp);
2046 
2047 	if (hw_dsc->ops.dsc_bind_pingpong_blk)
2048 		hw_dsc->ops.dsc_bind_pingpong_blk(hw_dsc, PINGPONG_NONE);
2049 
2050 	if (ctl->ops.update_pending_flush_dsc)
2051 		ctl->ops.update_pending_flush_dsc(ctl, hw_dsc->idx);
2052 }
2053 
2054 static void dpu_encoder_unprep_dsc(struct dpu_encoder_virt *dpu_enc)
2055 {
2056 	/* coding only for 2LM, 2enc, 1 dsc config */
2057 	struct dpu_encoder_phys *enc_master = dpu_enc->cur_master;
2058 	struct dpu_hw_ctl *ctl = enc_master->hw_ctl;
2059 	struct dpu_hw_dsc *hw_dsc[MAX_CHANNELS_PER_ENC];
2060 	struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC];
2061 	int i;
2062 
2063 	for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
2064 		hw_pp[i] = dpu_enc->hw_pp[i];
2065 		hw_dsc[i] = dpu_enc->hw_dsc[i];
2066 
2067 		if (hw_pp[i] && hw_dsc[i])
2068 			dpu_encoder_dsc_pipe_clr(ctl, hw_dsc[i], hw_pp[i]);
2069 	}
2070 }
2071 
2072 void dpu_encoder_helper_phys_cleanup(struct dpu_encoder_phys *phys_enc)
2073 {
2074 	struct dpu_hw_ctl *ctl = phys_enc->hw_ctl;
2075 	struct dpu_hw_intf_cfg intf_cfg = { 0 };
2076 	int i;
2077 	struct dpu_encoder_virt *dpu_enc;
2078 
2079 	dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
2080 
2081 	phys_enc->hw_ctl->ops.reset(ctl);
2082 
2083 	dpu_encoder_helper_reset_mixers(phys_enc);
2084 
2085 	/*
2086 	 * TODO: move the once-only operation like CTL flush/trigger
2087 	 * into dpu_encoder_virt_disable() and all operations which need
2088 	 * to be done per phys encoder into the phys_disable() op.
2089 	 */
2090 	if (phys_enc->hw_wb) {
2091 		/* disable the PP block */
2092 		if (phys_enc->hw_wb->ops.bind_pingpong_blk)
2093 			phys_enc->hw_wb->ops.bind_pingpong_blk(phys_enc->hw_wb, PINGPONG_NONE);
2094 
2095 		/* mark WB flush as pending */
2096 		if (phys_enc->hw_ctl->ops.update_pending_flush_wb)
2097 			phys_enc->hw_ctl->ops.update_pending_flush_wb(ctl, phys_enc->hw_wb->idx);
2098 	} else {
2099 		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2100 			if (dpu_enc->phys_encs[i] && phys_enc->hw_intf->ops.bind_pingpong_blk)
2101 				phys_enc->hw_intf->ops.bind_pingpong_blk(
2102 						dpu_enc->phys_encs[i]->hw_intf,
2103 						PINGPONG_NONE);
2104 
2105 			/* mark INTF flush as pending */
2106 			if (phys_enc->hw_ctl->ops.update_pending_flush_intf)
2107 				phys_enc->hw_ctl->ops.update_pending_flush_intf(phys_enc->hw_ctl,
2108 						dpu_enc->phys_encs[i]->hw_intf->idx);
2109 		}
2110 	}
2111 
2112 	/* reset the merge 3D HW block */
2113 	if (phys_enc->hw_pp && phys_enc->hw_pp->merge_3d) {
2114 		phys_enc->hw_pp->merge_3d->ops.setup_3d_mode(phys_enc->hw_pp->merge_3d,
2115 				BLEND_3D_NONE);
2116 		if (phys_enc->hw_ctl->ops.update_pending_flush_merge_3d)
2117 			phys_enc->hw_ctl->ops.update_pending_flush_merge_3d(ctl,
2118 					phys_enc->hw_pp->merge_3d->idx);
2119 	}
2120 
2121 	if (phys_enc->hw_cdm) {
2122 		if (phys_enc->hw_cdm->ops.bind_pingpong_blk && phys_enc->hw_pp)
2123 			phys_enc->hw_cdm->ops.bind_pingpong_blk(phys_enc->hw_cdm,
2124 								PINGPONG_NONE);
2125 		if (phys_enc->hw_ctl->ops.update_pending_flush_cdm)
2126 			phys_enc->hw_ctl->ops.update_pending_flush_cdm(phys_enc->hw_ctl,
2127 								       phys_enc->hw_cdm->idx);
2128 	}
2129 
2130 	if (dpu_enc->dsc) {
2131 		dpu_encoder_unprep_dsc(dpu_enc);
2132 		dpu_enc->dsc = NULL;
2133 	}
2134 
2135 	intf_cfg.stream_sel = 0; /* Don't care value for video mode */
2136 	intf_cfg.mode_3d = dpu_encoder_helper_get_3d_blend_mode(phys_enc);
2137 	intf_cfg.dsc = dpu_encoder_helper_get_dsc(phys_enc);
2138 
2139 	if (phys_enc->hw_intf)
2140 		intf_cfg.intf = phys_enc->hw_intf->idx;
2141 	if (phys_enc->hw_wb)
2142 		intf_cfg.wb = phys_enc->hw_wb->idx;
2143 
2144 	if (phys_enc->hw_pp && phys_enc->hw_pp->merge_3d)
2145 		intf_cfg.merge_3d = phys_enc->hw_pp->merge_3d->idx;
2146 
2147 	if (ctl->ops.reset_intf_cfg)
2148 		ctl->ops.reset_intf_cfg(ctl, &intf_cfg);
2149 
2150 	ctl->ops.trigger_flush(ctl);
2151 	ctl->ops.trigger_start(ctl);
2152 	ctl->ops.clear_pending_flush(ctl);
2153 }
2154 
2155 void dpu_encoder_helper_phys_setup_cdm(struct dpu_encoder_phys *phys_enc,
2156 				       const struct msm_format *dpu_fmt,
2157 				       u32 output_type)
2158 {
2159 	struct dpu_hw_cdm *hw_cdm;
2160 	struct dpu_hw_cdm_cfg *cdm_cfg;
2161 	struct dpu_hw_pingpong *hw_pp;
2162 	int ret;
2163 
2164 	if (!phys_enc)
2165 		return;
2166 
2167 	cdm_cfg = &phys_enc->cdm_cfg;
2168 	hw_pp = phys_enc->hw_pp;
2169 	hw_cdm = phys_enc->hw_cdm;
2170 
2171 	if (!hw_cdm)
2172 		return;
2173 
2174 	if (!MSM_FORMAT_IS_YUV(dpu_fmt)) {
2175 		DPU_DEBUG("[enc:%d] cdm_disable fmt:%p4cc\n", DRMID(phys_enc->parent),
2176 			  &dpu_fmt->pixel_format);
2177 		if (hw_cdm->ops.bind_pingpong_blk)
2178 			hw_cdm->ops.bind_pingpong_blk(hw_cdm, PINGPONG_NONE);
2179 
2180 		return;
2181 	}
2182 
2183 	memset(cdm_cfg, 0, sizeof(struct dpu_hw_cdm_cfg));
2184 
2185 	cdm_cfg->output_width = phys_enc->cached_mode.hdisplay;
2186 	cdm_cfg->output_height = phys_enc->cached_mode.vdisplay;
2187 	cdm_cfg->output_fmt = dpu_fmt;
2188 	cdm_cfg->output_type = output_type;
2189 	cdm_cfg->output_bit_depth = MSM_FORMAT_IS_DX(dpu_fmt) ?
2190 			CDM_CDWN_OUTPUT_10BIT : CDM_CDWN_OUTPUT_8BIT;
2191 	cdm_cfg->csc_cfg = &dpu_csc10_rgb2yuv_601l;
2192 
2193 	/* enable 10 bit logic */
2194 	switch (cdm_cfg->output_fmt->chroma_sample) {
2195 	case CHROMA_FULL:
2196 		cdm_cfg->h_cdwn_type = CDM_CDWN_DISABLE;
2197 		cdm_cfg->v_cdwn_type = CDM_CDWN_DISABLE;
2198 		break;
2199 	case CHROMA_H2V1:
2200 		cdm_cfg->h_cdwn_type = CDM_CDWN_COSITE;
2201 		cdm_cfg->v_cdwn_type = CDM_CDWN_DISABLE;
2202 		break;
2203 	case CHROMA_420:
2204 		cdm_cfg->h_cdwn_type = CDM_CDWN_COSITE;
2205 		cdm_cfg->v_cdwn_type = CDM_CDWN_OFFSITE;
2206 		break;
2207 	case CHROMA_H1V2:
2208 	default:
2209 		DPU_ERROR("[enc:%d] unsupported chroma sampling type\n",
2210 			  DRMID(phys_enc->parent));
2211 		cdm_cfg->h_cdwn_type = CDM_CDWN_DISABLE;
2212 		cdm_cfg->v_cdwn_type = CDM_CDWN_DISABLE;
2213 		break;
2214 	}
2215 
2216 	DPU_DEBUG("[enc:%d] cdm_enable:%d,%d,%p4cc,%d,%d,%d,%d]\n",
2217 		  DRMID(phys_enc->parent), cdm_cfg->output_width,
2218 		  cdm_cfg->output_height, &cdm_cfg->output_fmt->pixel_format,
2219 		  cdm_cfg->output_type, cdm_cfg->output_bit_depth,
2220 		  cdm_cfg->h_cdwn_type, cdm_cfg->v_cdwn_type);
2221 
2222 	if (hw_cdm->ops.enable) {
2223 		cdm_cfg->pp_id = hw_pp->idx;
2224 		ret = hw_cdm->ops.enable(hw_cdm, cdm_cfg);
2225 		if (ret < 0) {
2226 			DPU_ERROR("[enc:%d] failed to enable CDM; ret:%d\n",
2227 				  DRMID(phys_enc->parent), ret);
2228 			return;
2229 		}
2230 	}
2231 }
2232 
2233 #ifdef CONFIG_DEBUG_FS
2234 static int _dpu_encoder_status_show(struct seq_file *s, void *data)
2235 {
2236 	struct drm_encoder *drm_enc = s->private;
2237 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
2238 	int i;
2239 
2240 	mutex_lock(&dpu_enc->enc_lock);
2241 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2242 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2243 
2244 		seq_printf(s, "intf:%d  wb:%d  vsync:%8d     underrun:%8d    frame_done_cnt:%d",
2245 				phys->hw_intf ? phys->hw_intf->idx - INTF_0 : -1,
2246 				phys->hw_wb ? phys->hw_wb->idx - WB_0 : -1,
2247 				atomic_read(&phys->vsync_cnt),
2248 				atomic_read(&phys->underrun_cnt),
2249 				atomic_read(&dpu_enc->frame_done_timeout_cnt));
2250 
2251 		seq_printf(s, "mode: %s\n", dpu_encoder_helper_get_intf_type(phys->intf_mode));
2252 	}
2253 	mutex_unlock(&dpu_enc->enc_lock);
2254 
2255 	return 0;
2256 }
2257 
2258 DEFINE_SHOW_ATTRIBUTE(_dpu_encoder_status);
2259 
2260 static void dpu_encoder_debugfs_init(struct drm_encoder *drm_enc, struct dentry *root)
2261 {
2262 	/* don't error check these */
2263 	debugfs_create_file("status", 0600,
2264 			    root, drm_enc, &_dpu_encoder_status_fops);
2265 }
2266 #else
2267 #define dpu_encoder_debugfs_init NULL
2268 #endif
2269 
2270 static int dpu_encoder_virt_add_phys_encs(
2271 		struct drm_device *dev,
2272 		struct msm_display_info *disp_info,
2273 		struct dpu_encoder_virt *dpu_enc,
2274 		struct dpu_enc_phys_init_params *params)
2275 {
2276 	struct dpu_encoder_phys *enc = NULL;
2277 
2278 	DPU_DEBUG_ENC(dpu_enc, "\n");
2279 
2280 	/*
2281 	 * We may create up to NUM_PHYS_ENCODER_TYPES physical encoder types
2282 	 * in this function, check up-front.
2283 	 */
2284 	if (dpu_enc->num_phys_encs + NUM_PHYS_ENCODER_TYPES >=
2285 			ARRAY_SIZE(dpu_enc->phys_encs)) {
2286 		DPU_ERROR_ENC(dpu_enc, "too many physical encoders %d\n",
2287 			  dpu_enc->num_phys_encs);
2288 		return -EINVAL;
2289 	}
2290 
2291 
2292 	if (disp_info->intf_type == INTF_WB) {
2293 		enc = dpu_encoder_phys_wb_init(dev, params);
2294 
2295 		if (IS_ERR(enc)) {
2296 			DPU_ERROR_ENC(dpu_enc, "failed to init wb enc: %ld\n",
2297 				PTR_ERR(enc));
2298 			return PTR_ERR(enc);
2299 		}
2300 
2301 		dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
2302 		++dpu_enc->num_phys_encs;
2303 	} else if (disp_info->is_cmd_mode) {
2304 		enc = dpu_encoder_phys_cmd_init(dev, params);
2305 
2306 		if (IS_ERR(enc)) {
2307 			DPU_ERROR_ENC(dpu_enc, "failed to init cmd enc: %ld\n",
2308 				PTR_ERR(enc));
2309 			return PTR_ERR(enc);
2310 		}
2311 
2312 		dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
2313 		++dpu_enc->num_phys_encs;
2314 	} else {
2315 		enc = dpu_encoder_phys_vid_init(dev, params);
2316 
2317 		if (IS_ERR(enc)) {
2318 			DPU_ERROR_ENC(dpu_enc, "failed to init vid enc: %ld\n",
2319 				PTR_ERR(enc));
2320 			return PTR_ERR(enc);
2321 		}
2322 
2323 		dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
2324 		++dpu_enc->num_phys_encs;
2325 	}
2326 
2327 	if (params->split_role == ENC_ROLE_SLAVE)
2328 		dpu_enc->cur_slave = enc;
2329 	else
2330 		dpu_enc->cur_master = enc;
2331 
2332 	return 0;
2333 }
2334 
2335 static int dpu_encoder_setup_display(struct dpu_encoder_virt *dpu_enc,
2336 				 struct dpu_kms *dpu_kms,
2337 				 struct msm_display_info *disp_info)
2338 {
2339 	int ret = 0;
2340 	int i = 0;
2341 	struct dpu_enc_phys_init_params phys_params;
2342 
2343 	if (!dpu_enc) {
2344 		DPU_ERROR("invalid arg(s), enc %d\n", dpu_enc != NULL);
2345 		return -EINVAL;
2346 	}
2347 
2348 	dpu_enc->cur_master = NULL;
2349 
2350 	memset(&phys_params, 0, sizeof(phys_params));
2351 	phys_params.dpu_kms = dpu_kms;
2352 	phys_params.parent = &dpu_enc->base;
2353 	phys_params.enc_spinlock = &dpu_enc->enc_spinlock;
2354 
2355 	WARN_ON(disp_info->num_of_h_tiles < 1);
2356 
2357 	DPU_DEBUG("dsi_info->num_of_h_tiles %d\n", disp_info->num_of_h_tiles);
2358 
2359 	if (disp_info->intf_type != INTF_WB)
2360 		dpu_enc->idle_pc_supported =
2361 				dpu_kms->catalog->caps->has_idle_pc;
2362 
2363 	mutex_lock(&dpu_enc->enc_lock);
2364 	for (i = 0; i < disp_info->num_of_h_tiles && !ret; i++) {
2365 		/*
2366 		 * Left-most tile is at index 0, content is controller id
2367 		 * h_tile_instance_ids[2] = {0, 1}; DSI0 = left, DSI1 = right
2368 		 * h_tile_instance_ids[2] = {1, 0}; DSI1 = left, DSI0 = right
2369 		 */
2370 		u32 controller_id = disp_info->h_tile_instance[i];
2371 
2372 		if (disp_info->num_of_h_tiles > 1) {
2373 			if (i == 0)
2374 				phys_params.split_role = ENC_ROLE_MASTER;
2375 			else
2376 				phys_params.split_role = ENC_ROLE_SLAVE;
2377 		} else {
2378 			phys_params.split_role = ENC_ROLE_SOLO;
2379 		}
2380 
2381 		DPU_DEBUG("h_tile_instance %d = %d, split_role %d\n",
2382 				i, controller_id, phys_params.split_role);
2383 
2384 		phys_params.hw_intf = dpu_encoder_get_intf(dpu_kms->catalog, &dpu_kms->rm,
2385 							   disp_info->intf_type,
2386 							   controller_id);
2387 
2388 		if (disp_info->intf_type == INTF_WB && controller_id < WB_MAX)
2389 			phys_params.hw_wb = dpu_rm_get_wb(&dpu_kms->rm, controller_id);
2390 
2391 		if (!phys_params.hw_intf && !phys_params.hw_wb) {
2392 			DPU_ERROR_ENC(dpu_enc, "no intf or wb block assigned at idx: %d\n", i);
2393 			ret = -EINVAL;
2394 			break;
2395 		}
2396 
2397 		if (phys_params.hw_intf && phys_params.hw_wb) {
2398 			DPU_ERROR_ENC(dpu_enc,
2399 					"invalid phys both intf and wb block at idx: %d\n", i);
2400 			ret = -EINVAL;
2401 			break;
2402 		}
2403 
2404 		ret = dpu_encoder_virt_add_phys_encs(dpu_kms->dev, disp_info,
2405 				dpu_enc, &phys_params);
2406 		if (ret) {
2407 			DPU_ERROR_ENC(dpu_enc, "failed to add phys encs\n");
2408 			break;
2409 		}
2410 	}
2411 
2412 	mutex_unlock(&dpu_enc->enc_lock);
2413 
2414 	return ret;
2415 }
2416 
2417 static void dpu_encoder_frame_done_timeout(struct timer_list *t)
2418 {
2419 	struct dpu_encoder_virt *dpu_enc = from_timer(dpu_enc, t,
2420 			frame_done_timer);
2421 	struct drm_encoder *drm_enc = &dpu_enc->base;
2422 	u32 event;
2423 
2424 	if (!drm_enc->dev) {
2425 		DPU_ERROR("invalid parameters\n");
2426 		return;
2427 	}
2428 
2429 	if (!dpu_enc->frame_busy_mask[0] || !dpu_enc->crtc) {
2430 		DRM_DEBUG_KMS("id:%u invalid timeout frame_busy_mask=%lu\n",
2431 			      DRMID(drm_enc), dpu_enc->frame_busy_mask[0]);
2432 		return;
2433 	} else if (!atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) {
2434 		DRM_DEBUG_KMS("id:%u invalid timeout\n", DRMID(drm_enc));
2435 		return;
2436 	}
2437 
2438 	DPU_ERROR_ENC_RATELIMITED(dpu_enc, "frame done timeout\n");
2439 
2440 	if (atomic_inc_return(&dpu_enc->frame_done_timeout_cnt) == 1)
2441 		msm_disp_snapshot_state(drm_enc->dev);
2442 
2443 	event = DPU_ENCODER_FRAME_EVENT_ERROR;
2444 	trace_dpu_enc_frame_done_timeout(DRMID(drm_enc), event);
2445 	dpu_crtc_frame_event_cb(dpu_enc->crtc, event);
2446 }
2447 
2448 static const struct drm_encoder_helper_funcs dpu_encoder_helper_funcs = {
2449 	.atomic_mode_set = dpu_encoder_virt_atomic_mode_set,
2450 	.atomic_disable = dpu_encoder_virt_atomic_disable,
2451 	.atomic_enable = dpu_encoder_virt_atomic_enable,
2452 	.atomic_check = dpu_encoder_virt_atomic_check,
2453 };
2454 
2455 static const struct drm_encoder_funcs dpu_encoder_funcs = {
2456 	.debugfs_init = dpu_encoder_debugfs_init,
2457 };
2458 
2459 struct drm_encoder *dpu_encoder_init(struct drm_device *dev,
2460 		int drm_enc_mode,
2461 		struct msm_display_info *disp_info)
2462 {
2463 	struct msm_drm_private *priv = dev->dev_private;
2464 	struct dpu_kms *dpu_kms = to_dpu_kms(priv->kms);
2465 	struct dpu_encoder_virt *dpu_enc;
2466 	int ret;
2467 
2468 	dpu_enc = drmm_encoder_alloc(dev, struct dpu_encoder_virt, base,
2469 				     &dpu_encoder_funcs, drm_enc_mode, NULL);
2470 	if (IS_ERR(dpu_enc))
2471 		return ERR_CAST(dpu_enc);
2472 
2473 	drm_encoder_helper_add(&dpu_enc->base, &dpu_encoder_helper_funcs);
2474 
2475 	spin_lock_init(&dpu_enc->enc_spinlock);
2476 	dpu_enc->enabled = false;
2477 	mutex_init(&dpu_enc->enc_lock);
2478 	mutex_init(&dpu_enc->rc_lock);
2479 
2480 	ret = dpu_encoder_setup_display(dpu_enc, dpu_kms, disp_info);
2481 	if (ret) {
2482 		DPU_ERROR("failed to setup encoder\n");
2483 		return ERR_PTR(-ENOMEM);
2484 	}
2485 
2486 	atomic_set(&dpu_enc->frame_done_timeout_ms, 0);
2487 	atomic_set(&dpu_enc->frame_done_timeout_cnt, 0);
2488 	timer_setup(&dpu_enc->frame_done_timer,
2489 			dpu_encoder_frame_done_timeout, 0);
2490 
2491 	INIT_DELAYED_WORK(&dpu_enc->delayed_off_work,
2492 			dpu_encoder_off_work);
2493 	dpu_enc->idle_timeout = IDLE_TIMEOUT;
2494 
2495 	memcpy(&dpu_enc->disp_info, disp_info, sizeof(*disp_info));
2496 
2497 	DPU_DEBUG_ENC(dpu_enc, "created\n");
2498 
2499 	return &dpu_enc->base;
2500 }
2501 
2502 /**
2503  * dpu_encoder_wait_for_commit_done() - Wait for encoder to flush pending state
2504  * @drm_enc:	encoder pointer
2505  *
2506  * Wait for hardware to have flushed the current pending changes to hardware at
2507  * a vblank or CTL_START. Physical encoders will map this differently depending
2508  * on the type: vid mode -> vsync_irq, cmd mode -> CTL_START.
2509  *
2510  * Return: 0 on success, -EWOULDBLOCK if already signaled, error otherwise
2511  */
2512 int dpu_encoder_wait_for_commit_done(struct drm_encoder *drm_enc)
2513 {
2514 	struct dpu_encoder_virt *dpu_enc = NULL;
2515 	int i, ret = 0;
2516 
2517 	if (!drm_enc) {
2518 		DPU_ERROR("invalid encoder\n");
2519 		return -EINVAL;
2520 	}
2521 	dpu_enc = to_dpu_encoder_virt(drm_enc);
2522 	DPU_DEBUG_ENC(dpu_enc, "\n");
2523 
2524 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2525 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2526 
2527 		if (phys->ops.wait_for_commit_done) {
2528 			DPU_ATRACE_BEGIN("wait_for_commit_done");
2529 			ret = phys->ops.wait_for_commit_done(phys);
2530 			DPU_ATRACE_END("wait_for_commit_done");
2531 			if (ret == -ETIMEDOUT && !dpu_enc->commit_done_timedout) {
2532 				dpu_enc->commit_done_timedout = true;
2533 				msm_disp_snapshot_state(drm_enc->dev);
2534 			}
2535 			if (ret)
2536 				return ret;
2537 		}
2538 	}
2539 
2540 	return ret;
2541 }
2542 
2543 /**
2544  * dpu_encoder_wait_for_tx_complete() - Wait for encoder to transfer pixels to panel
2545  * @drm_enc:	encoder pointer
2546  *
2547  * Wait for the hardware to transfer all the pixels to the panel. Physical
2548  * encoders will map this differently depending on the type: vid mode -> vsync_irq,
2549  * cmd mode -> pp_done.
2550  *
2551  * Return: 0 on success, -EWOULDBLOCK if already signaled, error otherwise
2552  */
2553 int dpu_encoder_wait_for_tx_complete(struct drm_encoder *drm_enc)
2554 {
2555 	struct dpu_encoder_virt *dpu_enc = NULL;
2556 	int i, ret = 0;
2557 
2558 	if (!drm_enc) {
2559 		DPU_ERROR("invalid encoder\n");
2560 		return -EINVAL;
2561 	}
2562 	dpu_enc = to_dpu_encoder_virt(drm_enc);
2563 	DPU_DEBUG_ENC(dpu_enc, "\n");
2564 
2565 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2566 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2567 
2568 		if (phys->ops.wait_for_tx_complete) {
2569 			DPU_ATRACE_BEGIN("wait_for_tx_complete");
2570 			ret = phys->ops.wait_for_tx_complete(phys);
2571 			DPU_ATRACE_END("wait_for_tx_complete");
2572 			if (ret)
2573 				return ret;
2574 		}
2575 	}
2576 
2577 	return ret;
2578 }
2579 
2580 enum dpu_intf_mode dpu_encoder_get_intf_mode(struct drm_encoder *encoder)
2581 {
2582 	struct dpu_encoder_virt *dpu_enc = NULL;
2583 
2584 	if (!encoder) {
2585 		DPU_ERROR("invalid encoder\n");
2586 		return INTF_MODE_NONE;
2587 	}
2588 	dpu_enc = to_dpu_encoder_virt(encoder);
2589 
2590 	if (dpu_enc->cur_master)
2591 		return dpu_enc->cur_master->intf_mode;
2592 
2593 	if (dpu_enc->num_phys_encs)
2594 		return dpu_enc->phys_encs[0]->intf_mode;
2595 
2596 	return INTF_MODE_NONE;
2597 }
2598 
2599 unsigned int dpu_encoder_helper_get_dsc(struct dpu_encoder_phys *phys_enc)
2600 {
2601 	struct drm_encoder *encoder = phys_enc->parent;
2602 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(encoder);
2603 
2604 	return dpu_enc->dsc_mask;
2605 }
2606 
2607 void dpu_encoder_phys_init(struct dpu_encoder_phys *phys_enc,
2608 			  struct dpu_enc_phys_init_params *p)
2609 {
2610 	phys_enc->hw_mdptop = p->dpu_kms->hw_mdp;
2611 	phys_enc->hw_intf = p->hw_intf;
2612 	phys_enc->hw_wb = p->hw_wb;
2613 	phys_enc->parent = p->parent;
2614 	phys_enc->dpu_kms = p->dpu_kms;
2615 	phys_enc->split_role = p->split_role;
2616 	phys_enc->enc_spinlock = p->enc_spinlock;
2617 	phys_enc->enable_state = DPU_ENC_DISABLED;
2618 
2619 	atomic_set(&phys_enc->pending_kickoff_cnt, 0);
2620 	atomic_set(&phys_enc->pending_ctlstart_cnt, 0);
2621 
2622 	atomic_set(&phys_enc->vsync_cnt, 0);
2623 	atomic_set(&phys_enc->underrun_cnt, 0);
2624 
2625 	init_waitqueue_head(&phys_enc->pending_kickoff_wq);
2626 }
2627