xref: /linux/drivers/gpu/drm/msm/disp/dpu1/dpu_encoder.c (revision c01044cc819160323f3ca4acd44fca487c4432e6)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2014-2018, The Linux Foundation. All rights reserved.
4  * Copyright (C) 2013 Red Hat
5  * Author: Rob Clark <robdclark@gmail.com>
6  */
7 
8 #define pr_fmt(fmt)	"[drm:%s:%d] " fmt, __func__, __LINE__
9 #include <linux/debugfs.h>
10 #include <linux/kthread.h>
11 #include <linux/seq_file.h>
12 
13 #include <drm/drm_crtc.h>
14 #include <drm/drm_file.h>
15 #include <drm/drm_probe_helper.h>
16 
17 #include "msm_drv.h"
18 #include "dpu_kms.h"
19 #include "dpu_hwio.h"
20 #include "dpu_hw_catalog.h"
21 #include "dpu_hw_intf.h"
22 #include "dpu_hw_ctl.h"
23 #include "dpu_hw_dspp.h"
24 #include "dpu_formats.h"
25 #include "dpu_encoder_phys.h"
26 #include "dpu_crtc.h"
27 #include "dpu_trace.h"
28 #include "dpu_core_irq.h"
29 
30 #define DPU_DEBUG_ENC(e, fmt, ...) DPU_DEBUG("enc%d " fmt,\
31 		(e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
32 
33 #define DPU_ERROR_ENC(e, fmt, ...) DPU_ERROR("enc%d " fmt,\
34 		(e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
35 
36 #define DPU_DEBUG_PHYS(p, fmt, ...) DPU_DEBUG("enc%d intf%d pp%d " fmt,\
37 		(p) ? (p)->parent->base.id : -1, \
38 		(p) ? (p)->intf_idx - INTF_0 : -1, \
39 		(p) ? ((p)->hw_pp ? (p)->hw_pp->idx - PINGPONG_0 : -1) : -1, \
40 		##__VA_ARGS__)
41 
42 #define DPU_ERROR_PHYS(p, fmt, ...) DPU_ERROR("enc%d intf%d pp%d " fmt,\
43 		(p) ? (p)->parent->base.id : -1, \
44 		(p) ? (p)->intf_idx - INTF_0 : -1, \
45 		(p) ? ((p)->hw_pp ? (p)->hw_pp->idx - PINGPONG_0 : -1) : -1, \
46 		##__VA_ARGS__)
47 
48 /*
49  * Two to anticipate panels that can do cmd/vid dynamic switching
50  * plan is to create all possible physical encoder types, and switch between
51  * them at runtime
52  */
53 #define NUM_PHYS_ENCODER_TYPES 2
54 
55 #define MAX_PHYS_ENCODERS_PER_VIRTUAL \
56 	(MAX_H_TILES_PER_DISPLAY * NUM_PHYS_ENCODER_TYPES)
57 
58 #define MAX_CHANNELS_PER_ENC 2
59 
60 #define IDLE_SHORT_TIMEOUT	1
61 
62 #define MAX_HDISPLAY_SPLIT 1080
63 
64 /* timeout in frames waiting for frame done */
65 #define DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES 5
66 
67 /**
68  * enum dpu_enc_rc_events - events for resource control state machine
69  * @DPU_ENC_RC_EVENT_KICKOFF:
70  *	This event happens at NORMAL priority.
71  *	Event that signals the start of the transfer. When this event is
72  *	received, enable MDP/DSI core clocks. Regardless of the previous
73  *	state, the resource should be in ON state at the end of this event.
74  * @DPU_ENC_RC_EVENT_FRAME_DONE:
75  *	This event happens at INTERRUPT level.
76  *	Event signals the end of the data transfer after the PP FRAME_DONE
77  *	event. At the end of this event, a delayed work is scheduled to go to
78  *	IDLE_PC state after IDLE_TIMEOUT time.
79  * @DPU_ENC_RC_EVENT_PRE_STOP:
80  *	This event happens at NORMAL priority.
81  *	This event, when received during the ON state, leave the RC STATE
82  *	in the PRE_OFF state. It should be followed by the STOP event as
83  *	part of encoder disable.
84  *	If received during IDLE or OFF states, it will do nothing.
85  * @DPU_ENC_RC_EVENT_STOP:
86  *	This event happens at NORMAL priority.
87  *	When this event is received, disable all the MDP/DSI core clocks, and
88  *	disable IRQs. It should be called from the PRE_OFF or IDLE states.
89  *	IDLE is expected when IDLE_PC has run, and PRE_OFF did nothing.
90  *	PRE_OFF is expected when PRE_STOP was executed during the ON state.
91  *	Resource state should be in OFF at the end of the event.
92  * @DPU_ENC_RC_EVENT_ENTER_IDLE:
93  *	This event happens at NORMAL priority from a work item.
94  *	Event signals that there were no frame updates for IDLE_TIMEOUT time.
95  *	This would disable MDP/DSI core clocks and change the resource state
96  *	to IDLE.
97  */
98 enum dpu_enc_rc_events {
99 	DPU_ENC_RC_EVENT_KICKOFF = 1,
100 	DPU_ENC_RC_EVENT_FRAME_DONE,
101 	DPU_ENC_RC_EVENT_PRE_STOP,
102 	DPU_ENC_RC_EVENT_STOP,
103 	DPU_ENC_RC_EVENT_ENTER_IDLE
104 };
105 
106 /*
107  * enum dpu_enc_rc_states - states that the resource control maintains
108  * @DPU_ENC_RC_STATE_OFF: Resource is in OFF state
109  * @DPU_ENC_RC_STATE_PRE_OFF: Resource is transitioning to OFF state
110  * @DPU_ENC_RC_STATE_ON: Resource is in ON state
111  * @DPU_ENC_RC_STATE_MODESET: Resource is in modeset state
112  * @DPU_ENC_RC_STATE_IDLE: Resource is in IDLE state
113  */
114 enum dpu_enc_rc_states {
115 	DPU_ENC_RC_STATE_OFF,
116 	DPU_ENC_RC_STATE_PRE_OFF,
117 	DPU_ENC_RC_STATE_ON,
118 	DPU_ENC_RC_STATE_IDLE
119 };
120 
121 /**
122  * struct dpu_encoder_virt - virtual encoder. Container of one or more physical
123  *	encoders. Virtual encoder manages one "logical" display. Physical
124  *	encoders manage one intf block, tied to a specific panel/sub-panel.
125  *	Virtual encoder defers as much as possible to the physical encoders.
126  *	Virtual encoder registers itself with the DRM Framework as the encoder.
127  * @base:		drm_encoder base class for registration with DRM
128  * @enc_spinlock:	Virtual-Encoder-Wide Spin Lock for IRQ purposes
129  * @bus_scaling_client:	Client handle to the bus scaling interface
130  * @enabled:		True if the encoder is active, protected by enc_lock
131  * @num_phys_encs:	Actual number of physical encoders contained.
132  * @phys_encs:		Container of physical encoders managed.
133  * @cur_master:		Pointer to the current master in this mode. Optimization
134  *			Only valid after enable. Cleared as disable.
135  * @hw_pp		Handle to the pingpong blocks used for the display. No.
136  *			pingpong blocks can be different than num_phys_encs.
137  * @intfs_swapped	Whether or not the phys_enc interfaces have been swapped
138  *			for partial update right-only cases, such as pingpong
139  *			split where virtual pingpong does not generate IRQs
140  * @crtc:		Pointer to the currently assigned crtc. Normally you
141  *			would use crtc->state->encoder_mask to determine the
142  *			link between encoder/crtc. However in this case we need
143  *			to track crtc in the disable() hook which is called
144  *			_after_ encoder_mask is cleared.
145  * @crtc_kickoff_cb:		Callback into CRTC that will flush & start
146  *				all CTL paths
147  * @crtc_kickoff_cb_data:	Opaque user data given to crtc_kickoff_cb
148  * @debugfs_root:		Debug file system root file node
149  * @enc_lock:			Lock around physical encoder
150  *				create/destroy/enable/disable
151  * @frame_busy_mask:		Bitmask tracking which phys_enc we are still
152  *				busy processing current command.
153  *				Bit0 = phys_encs[0] etc.
154  * @crtc_frame_event_cb:	callback handler for frame event
155  * @crtc_frame_event_cb_data:	callback handler private data
156  * @frame_done_timeout_ms:	frame done timeout in ms
157  * @frame_done_timer:		watchdog timer for frame done event
158  * @vsync_event_timer:		vsync timer
159  * @disp_info:			local copy of msm_display_info struct
160  * @idle_pc_supported:		indicate if idle power collaps is supported
161  * @rc_lock:			resource control mutex lock to protect
162  *				virt encoder over various state changes
163  * @rc_state:			resource controller state
164  * @delayed_off_work:		delayed worker to schedule disabling of
165  *				clks and resources after IDLE_TIMEOUT time.
166  * @vsync_event_work:		worker to handle vsync event for autorefresh
167  * @topology:                   topology of the display
168  * @idle_timeout:		idle timeout duration in milliseconds
169  */
170 struct dpu_encoder_virt {
171 	struct drm_encoder base;
172 	spinlock_t enc_spinlock;
173 	uint32_t bus_scaling_client;
174 
175 	bool enabled;
176 
177 	unsigned int num_phys_encs;
178 	struct dpu_encoder_phys *phys_encs[MAX_PHYS_ENCODERS_PER_VIRTUAL];
179 	struct dpu_encoder_phys *cur_master;
180 	struct dpu_encoder_phys *cur_slave;
181 	struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC];
182 
183 	bool intfs_swapped;
184 
185 	struct drm_crtc *crtc;
186 
187 	struct dentry *debugfs_root;
188 	struct mutex enc_lock;
189 	DECLARE_BITMAP(frame_busy_mask, MAX_PHYS_ENCODERS_PER_VIRTUAL);
190 	void (*crtc_frame_event_cb)(void *, u32 event);
191 	void *crtc_frame_event_cb_data;
192 
193 	atomic_t frame_done_timeout_ms;
194 	struct timer_list frame_done_timer;
195 	struct timer_list vsync_event_timer;
196 
197 	struct msm_display_info disp_info;
198 
199 	bool idle_pc_supported;
200 	struct mutex rc_lock;
201 	enum dpu_enc_rc_states rc_state;
202 	struct delayed_work delayed_off_work;
203 	struct kthread_work vsync_event_work;
204 	struct msm_display_topology topology;
205 
206 	u32 idle_timeout;
207 };
208 
209 #define to_dpu_encoder_virt(x) container_of(x, struct dpu_encoder_virt, base)
210 
211 static u32 dither_matrix[DITHER_MATRIX_SZ] = {
212 	15, 7, 13, 5, 3, 11, 1, 9, 12, 4, 14, 6, 0, 8, 2, 10
213 };
214 
215 static void _dpu_encoder_setup_dither(struct dpu_hw_pingpong *hw_pp, unsigned bpc)
216 {
217 	struct dpu_hw_dither_cfg dither_cfg = { 0 };
218 
219 	if (!hw_pp->ops.setup_dither)
220 		return;
221 
222 	switch (bpc) {
223 	case 6:
224 		dither_cfg.c0_bitdepth = 6;
225 		dither_cfg.c1_bitdepth = 6;
226 		dither_cfg.c2_bitdepth = 6;
227 		dither_cfg.c3_bitdepth = 6;
228 		dither_cfg.temporal_en = 0;
229 		break;
230 	default:
231 		hw_pp->ops.setup_dither(hw_pp, NULL);
232 		return;
233 	}
234 
235 	memcpy(&dither_cfg.matrix, dither_matrix,
236 			sizeof(u32) * DITHER_MATRIX_SZ);
237 
238 	hw_pp->ops.setup_dither(hw_pp, &dither_cfg);
239 }
240 
241 void dpu_encoder_helper_report_irq_timeout(struct dpu_encoder_phys *phys_enc,
242 		enum dpu_intr_idx intr_idx)
243 {
244 	DRM_ERROR("irq timeout id=%u, intf=%d, pp=%d, intr=%d\n",
245 		  DRMID(phys_enc->parent), phys_enc->intf_idx - INTF_0,
246 		  phys_enc->hw_pp->idx - PINGPONG_0, intr_idx);
247 
248 	if (phys_enc->parent_ops->handle_frame_done)
249 		phys_enc->parent_ops->handle_frame_done(
250 				phys_enc->parent, phys_enc,
251 				DPU_ENCODER_FRAME_EVENT_ERROR);
252 }
253 
254 static int dpu_encoder_helper_wait_event_timeout(int32_t drm_id,
255 		int32_t hw_id, struct dpu_encoder_wait_info *info);
256 
257 int dpu_encoder_helper_wait_for_irq(struct dpu_encoder_phys *phys_enc,
258 		enum dpu_intr_idx intr_idx,
259 		struct dpu_encoder_wait_info *wait_info)
260 {
261 	struct dpu_encoder_irq *irq;
262 	u32 irq_status;
263 	int ret;
264 
265 	if (!wait_info || intr_idx >= INTR_IDX_MAX) {
266 		DPU_ERROR("invalid params\n");
267 		return -EINVAL;
268 	}
269 	irq = &phys_enc->irq[intr_idx];
270 
271 	/* note: do master / slave checking outside */
272 
273 	/* return EWOULDBLOCK since we know the wait isn't necessary */
274 	if (phys_enc->enable_state == DPU_ENC_DISABLED) {
275 		DRM_ERROR("encoder is disabled id=%u, intr=%d, hw=%d, irq=%d",
276 			  DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
277 			  irq->irq_idx);
278 		return -EWOULDBLOCK;
279 	}
280 
281 	if (irq->irq_idx < 0) {
282 		DRM_DEBUG_KMS("skip irq wait id=%u, intr=%d, hw=%d, irq=%s",
283 			      DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
284 			      irq->name);
285 		return 0;
286 	}
287 
288 	DRM_DEBUG_KMS("id=%u, intr=%d, hw=%d, irq=%d, pp=%d, pending_cnt=%d",
289 		      DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
290 		      irq->irq_idx, phys_enc->hw_pp->idx - PINGPONG_0,
291 		      atomic_read(wait_info->atomic_cnt));
292 
293 	ret = dpu_encoder_helper_wait_event_timeout(
294 			DRMID(phys_enc->parent),
295 			irq->hw_idx,
296 			wait_info);
297 
298 	if (ret <= 0) {
299 		irq_status = dpu_core_irq_read(phys_enc->dpu_kms,
300 				irq->irq_idx, true);
301 		if (irq_status) {
302 			unsigned long flags;
303 
304 			DRM_DEBUG_KMS("irq not triggered id=%u, intr=%d, "
305 				      "hw=%d, irq=%d, pp=%d, atomic_cnt=%d",
306 				      DRMID(phys_enc->parent), intr_idx,
307 				      irq->hw_idx, irq->irq_idx,
308 				      phys_enc->hw_pp->idx - PINGPONG_0,
309 				      atomic_read(wait_info->atomic_cnt));
310 			local_irq_save(flags);
311 			irq->cb.func(phys_enc, irq->irq_idx);
312 			local_irq_restore(flags);
313 			ret = 0;
314 		} else {
315 			ret = -ETIMEDOUT;
316 			DRM_DEBUG_KMS("irq timeout id=%u, intr=%d, "
317 				      "hw=%d, irq=%d, pp=%d, atomic_cnt=%d",
318 				      DRMID(phys_enc->parent), intr_idx,
319 				      irq->hw_idx, irq->irq_idx,
320 				      phys_enc->hw_pp->idx - PINGPONG_0,
321 				      atomic_read(wait_info->atomic_cnt));
322 		}
323 	} else {
324 		ret = 0;
325 		trace_dpu_enc_irq_wait_success(DRMID(phys_enc->parent),
326 			intr_idx, irq->hw_idx, irq->irq_idx,
327 			phys_enc->hw_pp->idx - PINGPONG_0,
328 			atomic_read(wait_info->atomic_cnt));
329 	}
330 
331 	return ret;
332 }
333 
334 int dpu_encoder_helper_register_irq(struct dpu_encoder_phys *phys_enc,
335 		enum dpu_intr_idx intr_idx)
336 {
337 	struct dpu_encoder_irq *irq;
338 	int ret = 0;
339 
340 	if (intr_idx >= INTR_IDX_MAX) {
341 		DPU_ERROR("invalid params\n");
342 		return -EINVAL;
343 	}
344 	irq = &phys_enc->irq[intr_idx];
345 
346 	if (irq->irq_idx >= 0) {
347 		DPU_DEBUG_PHYS(phys_enc,
348 				"skipping already registered irq %s type %d\n",
349 				irq->name, irq->intr_type);
350 		return 0;
351 	}
352 
353 	irq->irq_idx = dpu_core_irq_idx_lookup(phys_enc->dpu_kms,
354 			irq->intr_type, irq->hw_idx);
355 	if (irq->irq_idx < 0) {
356 		DPU_ERROR_PHYS(phys_enc,
357 			"failed to lookup IRQ index for %s type:%d\n",
358 			irq->name, irq->intr_type);
359 		return -EINVAL;
360 	}
361 
362 	ret = dpu_core_irq_register_callback(phys_enc->dpu_kms, irq->irq_idx,
363 			&irq->cb);
364 	if (ret) {
365 		DPU_ERROR_PHYS(phys_enc,
366 			"failed to register IRQ callback for %s\n",
367 			irq->name);
368 		irq->irq_idx = -EINVAL;
369 		return ret;
370 	}
371 
372 	ret = dpu_core_irq_enable(phys_enc->dpu_kms, &irq->irq_idx, 1);
373 	if (ret) {
374 		DRM_ERROR("enable failed id=%u, intr=%d, hw=%d, irq=%d",
375 			  DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
376 			  irq->irq_idx);
377 		dpu_core_irq_unregister_callback(phys_enc->dpu_kms,
378 				irq->irq_idx, &irq->cb);
379 		irq->irq_idx = -EINVAL;
380 		return ret;
381 	}
382 
383 	trace_dpu_enc_irq_register_success(DRMID(phys_enc->parent), intr_idx,
384 				irq->hw_idx, irq->irq_idx);
385 
386 	return ret;
387 }
388 
389 int dpu_encoder_helper_unregister_irq(struct dpu_encoder_phys *phys_enc,
390 		enum dpu_intr_idx intr_idx)
391 {
392 	struct dpu_encoder_irq *irq;
393 	int ret;
394 
395 	irq = &phys_enc->irq[intr_idx];
396 
397 	/* silently skip irqs that weren't registered */
398 	if (irq->irq_idx < 0) {
399 		DRM_ERROR("duplicate unregister id=%u, intr=%d, hw=%d, irq=%d",
400 			  DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
401 			  irq->irq_idx);
402 		return 0;
403 	}
404 
405 	ret = dpu_core_irq_disable(phys_enc->dpu_kms, &irq->irq_idx, 1);
406 	if (ret) {
407 		DRM_ERROR("disable failed id=%u, intr=%d, hw=%d, irq=%d ret=%d",
408 			  DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
409 			  irq->irq_idx, ret);
410 	}
411 
412 	ret = dpu_core_irq_unregister_callback(phys_enc->dpu_kms, irq->irq_idx,
413 			&irq->cb);
414 	if (ret) {
415 		DRM_ERROR("unreg cb fail id=%u, intr=%d, hw=%d, irq=%d ret=%d",
416 			  DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
417 			  irq->irq_idx, ret);
418 	}
419 
420 	trace_dpu_enc_irq_unregister_success(DRMID(phys_enc->parent), intr_idx,
421 					     irq->hw_idx, irq->irq_idx);
422 
423 	irq->irq_idx = -EINVAL;
424 
425 	return 0;
426 }
427 
428 void dpu_encoder_get_hw_resources(struct drm_encoder *drm_enc,
429 				  struct dpu_encoder_hw_resources *hw_res)
430 {
431 	struct dpu_encoder_virt *dpu_enc = NULL;
432 	int i = 0;
433 
434 	dpu_enc = to_dpu_encoder_virt(drm_enc);
435 	DPU_DEBUG_ENC(dpu_enc, "\n");
436 
437 	/* Query resources used by phys encs, expected to be without overlap */
438 	memset(hw_res, 0, sizeof(*hw_res));
439 
440 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
441 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
442 
443 		if (phys->ops.get_hw_resources)
444 			phys->ops.get_hw_resources(phys, hw_res);
445 	}
446 }
447 
448 static void dpu_encoder_destroy(struct drm_encoder *drm_enc)
449 {
450 	struct dpu_encoder_virt *dpu_enc = NULL;
451 	int i = 0;
452 
453 	if (!drm_enc) {
454 		DPU_ERROR("invalid encoder\n");
455 		return;
456 	}
457 
458 	dpu_enc = to_dpu_encoder_virt(drm_enc);
459 	DPU_DEBUG_ENC(dpu_enc, "\n");
460 
461 	mutex_lock(&dpu_enc->enc_lock);
462 
463 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
464 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
465 
466 		if (phys->ops.destroy) {
467 			phys->ops.destroy(phys);
468 			--dpu_enc->num_phys_encs;
469 			dpu_enc->phys_encs[i] = NULL;
470 		}
471 	}
472 
473 	if (dpu_enc->num_phys_encs)
474 		DPU_ERROR_ENC(dpu_enc, "expected 0 num_phys_encs not %d\n",
475 				dpu_enc->num_phys_encs);
476 	dpu_enc->num_phys_encs = 0;
477 	mutex_unlock(&dpu_enc->enc_lock);
478 
479 	drm_encoder_cleanup(drm_enc);
480 	mutex_destroy(&dpu_enc->enc_lock);
481 }
482 
483 void dpu_encoder_helper_split_config(
484 		struct dpu_encoder_phys *phys_enc,
485 		enum dpu_intf interface)
486 {
487 	struct dpu_encoder_virt *dpu_enc;
488 	struct split_pipe_cfg cfg = { 0 };
489 	struct dpu_hw_mdp *hw_mdptop;
490 	struct msm_display_info *disp_info;
491 
492 	if (!phys_enc->hw_mdptop || !phys_enc->parent) {
493 		DPU_ERROR("invalid arg(s), encoder %d\n", phys_enc != NULL);
494 		return;
495 	}
496 
497 	dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
498 	hw_mdptop = phys_enc->hw_mdptop;
499 	disp_info = &dpu_enc->disp_info;
500 
501 	if (disp_info->intf_type != DRM_MODE_ENCODER_DSI)
502 		return;
503 
504 	/**
505 	 * disable split modes since encoder will be operating in as the only
506 	 * encoder, either for the entire use case in the case of, for example,
507 	 * single DSI, or for this frame in the case of left/right only partial
508 	 * update.
509 	 */
510 	if (phys_enc->split_role == ENC_ROLE_SOLO) {
511 		if (hw_mdptop->ops.setup_split_pipe)
512 			hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg);
513 		return;
514 	}
515 
516 	cfg.en = true;
517 	cfg.mode = phys_enc->intf_mode;
518 	cfg.intf = interface;
519 
520 	if (cfg.en && phys_enc->ops.needs_single_flush &&
521 			phys_enc->ops.needs_single_flush(phys_enc))
522 		cfg.split_flush_en = true;
523 
524 	if (phys_enc->split_role == ENC_ROLE_MASTER) {
525 		DPU_DEBUG_ENC(dpu_enc, "enable %d\n", cfg.en);
526 
527 		if (hw_mdptop->ops.setup_split_pipe)
528 			hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg);
529 	}
530 }
531 
532 static struct msm_display_topology dpu_encoder_get_topology(
533 			struct dpu_encoder_virt *dpu_enc,
534 			struct dpu_kms *dpu_kms,
535 			struct drm_display_mode *mode)
536 {
537 	struct msm_display_topology topology = {0};
538 	int i, intf_count = 0;
539 
540 	for (i = 0; i < MAX_PHYS_ENCODERS_PER_VIRTUAL; i++)
541 		if (dpu_enc->phys_encs[i])
542 			intf_count++;
543 
544 	/* Datapath topology selection
545 	 *
546 	 * Dual display
547 	 * 2 LM, 2 INTF ( Split display using 2 interfaces)
548 	 *
549 	 * Single display
550 	 * 1 LM, 1 INTF
551 	 * 2 LM, 1 INTF (stream merge to support high resolution interfaces)
552 	 *
553 	 * Adding color blocks only to primary interface if available in
554 	 * sufficient number
555 	 */
556 	if (intf_count == 2)
557 		topology.num_lm = 2;
558 	else if (!dpu_kms->catalog->caps->has_3d_merge)
559 		topology.num_lm = 1;
560 	else
561 		topology.num_lm = (mode->hdisplay > MAX_HDISPLAY_SPLIT) ? 2 : 1;
562 
563 	if (dpu_enc->disp_info.intf_type == DRM_MODE_ENCODER_DSI) {
564 		if (dpu_kms->catalog->dspp &&
565 			(dpu_kms->catalog->dspp_count >= topology.num_lm))
566 			topology.num_dspp = topology.num_lm;
567 	}
568 
569 	topology.num_enc = 0;
570 	topology.num_intf = intf_count;
571 
572 	return topology;
573 }
574 static int dpu_encoder_virt_atomic_check(
575 		struct drm_encoder *drm_enc,
576 		struct drm_crtc_state *crtc_state,
577 		struct drm_connector_state *conn_state)
578 {
579 	struct dpu_encoder_virt *dpu_enc;
580 	struct msm_drm_private *priv;
581 	struct dpu_kms *dpu_kms;
582 	const struct drm_display_mode *mode;
583 	struct drm_display_mode *adj_mode;
584 	struct msm_display_topology topology;
585 	struct dpu_global_state *global_state;
586 	int i = 0;
587 	int ret = 0;
588 
589 	if (!drm_enc || !crtc_state || !conn_state) {
590 		DPU_ERROR("invalid arg(s), drm_enc %d, crtc/conn state %d/%d\n",
591 				drm_enc != NULL, crtc_state != NULL, conn_state != NULL);
592 		return -EINVAL;
593 	}
594 
595 	dpu_enc = to_dpu_encoder_virt(drm_enc);
596 	DPU_DEBUG_ENC(dpu_enc, "\n");
597 
598 	priv = drm_enc->dev->dev_private;
599 	dpu_kms = to_dpu_kms(priv->kms);
600 	mode = &crtc_state->mode;
601 	adj_mode = &crtc_state->adjusted_mode;
602 	global_state = dpu_kms_get_global_state(crtc_state->state);
603 	if (IS_ERR(global_state))
604 		return PTR_ERR(global_state);
605 
606 	trace_dpu_enc_atomic_check(DRMID(drm_enc));
607 
608 	/* perform atomic check on the first physical encoder (master) */
609 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
610 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
611 
612 		if (phys->ops.atomic_check)
613 			ret = phys->ops.atomic_check(phys, crtc_state,
614 					conn_state);
615 		else if (phys->ops.mode_fixup)
616 			if (!phys->ops.mode_fixup(phys, mode, adj_mode))
617 				ret = -EINVAL;
618 
619 		if (ret) {
620 			DPU_ERROR_ENC(dpu_enc,
621 					"mode unsupported, phys idx %d\n", i);
622 			break;
623 		}
624 	}
625 
626 	topology = dpu_encoder_get_topology(dpu_enc, dpu_kms, adj_mode);
627 
628 	/* Reserve dynamic resources now. */
629 	if (!ret) {
630 		/*
631 		 * Release and Allocate resources on every modeset
632 		 * Dont allocate when active is false.
633 		 */
634 		if (drm_atomic_crtc_needs_modeset(crtc_state)) {
635 			dpu_rm_release(global_state, drm_enc);
636 
637 			if (!crtc_state->active_changed || crtc_state->active)
638 				ret = dpu_rm_reserve(&dpu_kms->rm, global_state,
639 						drm_enc, crtc_state, topology);
640 		}
641 	}
642 
643 	trace_dpu_enc_atomic_check_flags(DRMID(drm_enc), adj_mode->flags);
644 
645 	return ret;
646 }
647 
648 static void _dpu_encoder_update_vsync_source(struct dpu_encoder_virt *dpu_enc,
649 			struct msm_display_info *disp_info)
650 {
651 	struct dpu_vsync_source_cfg vsync_cfg = { 0 };
652 	struct msm_drm_private *priv;
653 	struct dpu_kms *dpu_kms;
654 	struct dpu_hw_mdp *hw_mdptop;
655 	struct drm_encoder *drm_enc;
656 	int i;
657 
658 	if (!dpu_enc || !disp_info) {
659 		DPU_ERROR("invalid param dpu_enc:%d or disp_info:%d\n",
660 					dpu_enc != NULL, disp_info != NULL);
661 		return;
662 	} else if (dpu_enc->num_phys_encs > ARRAY_SIZE(dpu_enc->hw_pp)) {
663 		DPU_ERROR("invalid num phys enc %d/%d\n",
664 				dpu_enc->num_phys_encs,
665 				(int) ARRAY_SIZE(dpu_enc->hw_pp));
666 		return;
667 	}
668 
669 	drm_enc = &dpu_enc->base;
670 	/* this pointers are checked in virt_enable_helper */
671 	priv = drm_enc->dev->dev_private;
672 
673 	dpu_kms = to_dpu_kms(priv->kms);
674 	hw_mdptop = dpu_kms->hw_mdp;
675 	if (!hw_mdptop) {
676 		DPU_ERROR("invalid mdptop\n");
677 		return;
678 	}
679 
680 	if (hw_mdptop->ops.setup_vsync_source &&
681 			disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE) {
682 		for (i = 0; i < dpu_enc->num_phys_encs; i++)
683 			vsync_cfg.ppnumber[i] = dpu_enc->hw_pp[i]->idx;
684 
685 		vsync_cfg.pp_count = dpu_enc->num_phys_encs;
686 		if (disp_info->is_te_using_watchdog_timer)
687 			vsync_cfg.vsync_source = DPU_VSYNC_SOURCE_WD_TIMER_0;
688 		else
689 			vsync_cfg.vsync_source = DPU_VSYNC0_SOURCE_GPIO;
690 
691 		hw_mdptop->ops.setup_vsync_source(hw_mdptop, &vsync_cfg);
692 	}
693 }
694 
695 static void _dpu_encoder_irq_control(struct drm_encoder *drm_enc, bool enable)
696 {
697 	struct dpu_encoder_virt *dpu_enc;
698 	int i;
699 
700 	if (!drm_enc) {
701 		DPU_ERROR("invalid encoder\n");
702 		return;
703 	}
704 
705 	dpu_enc = to_dpu_encoder_virt(drm_enc);
706 
707 	DPU_DEBUG_ENC(dpu_enc, "enable:%d\n", enable);
708 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
709 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
710 
711 		if (phys->ops.irq_control)
712 			phys->ops.irq_control(phys, enable);
713 	}
714 
715 }
716 
717 static void _dpu_encoder_resource_control_helper(struct drm_encoder *drm_enc,
718 		bool enable)
719 {
720 	struct msm_drm_private *priv;
721 	struct dpu_kms *dpu_kms;
722 	struct dpu_encoder_virt *dpu_enc;
723 
724 	dpu_enc = to_dpu_encoder_virt(drm_enc);
725 	priv = drm_enc->dev->dev_private;
726 	dpu_kms = to_dpu_kms(priv->kms);
727 
728 	trace_dpu_enc_rc_helper(DRMID(drm_enc), enable);
729 
730 	if (!dpu_enc->cur_master) {
731 		DPU_ERROR("encoder master not set\n");
732 		return;
733 	}
734 
735 	if (enable) {
736 		/* enable DPU core clks */
737 		pm_runtime_get_sync(&dpu_kms->pdev->dev);
738 
739 		/* enable all the irq */
740 		_dpu_encoder_irq_control(drm_enc, true);
741 
742 	} else {
743 		/* disable all the irq */
744 		_dpu_encoder_irq_control(drm_enc, false);
745 
746 		/* disable DPU core clks */
747 		pm_runtime_put_sync(&dpu_kms->pdev->dev);
748 	}
749 
750 }
751 
752 static int dpu_encoder_resource_control(struct drm_encoder *drm_enc,
753 		u32 sw_event)
754 {
755 	struct dpu_encoder_virt *dpu_enc;
756 	struct msm_drm_private *priv;
757 	bool is_vid_mode = false;
758 
759 	if (!drm_enc || !drm_enc->dev || !drm_enc->crtc) {
760 		DPU_ERROR("invalid parameters\n");
761 		return -EINVAL;
762 	}
763 	dpu_enc = to_dpu_encoder_virt(drm_enc);
764 	priv = drm_enc->dev->dev_private;
765 	is_vid_mode = dpu_enc->disp_info.capabilities &
766 						MSM_DISPLAY_CAP_VID_MODE;
767 
768 	/*
769 	 * when idle_pc is not supported, process only KICKOFF, STOP and MODESET
770 	 * events and return early for other events (ie wb display).
771 	 */
772 	if (!dpu_enc->idle_pc_supported &&
773 			(sw_event != DPU_ENC_RC_EVENT_KICKOFF &&
774 			sw_event != DPU_ENC_RC_EVENT_STOP &&
775 			sw_event != DPU_ENC_RC_EVENT_PRE_STOP))
776 		return 0;
777 
778 	trace_dpu_enc_rc(DRMID(drm_enc), sw_event, dpu_enc->idle_pc_supported,
779 			 dpu_enc->rc_state, "begin");
780 
781 	switch (sw_event) {
782 	case DPU_ENC_RC_EVENT_KICKOFF:
783 		/* cancel delayed off work, if any */
784 		if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work))
785 			DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n",
786 					sw_event);
787 
788 		mutex_lock(&dpu_enc->rc_lock);
789 
790 		/* return if the resource control is already in ON state */
791 		if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) {
792 			DRM_DEBUG_KMS("id;%u, sw_event:%d, rc in ON state\n",
793 				      DRMID(drm_enc), sw_event);
794 			mutex_unlock(&dpu_enc->rc_lock);
795 			return 0;
796 		} else if (dpu_enc->rc_state != DPU_ENC_RC_STATE_OFF &&
797 				dpu_enc->rc_state != DPU_ENC_RC_STATE_IDLE) {
798 			DRM_DEBUG_KMS("id;%u, sw_event:%d, rc in state %d\n",
799 				      DRMID(drm_enc), sw_event,
800 				      dpu_enc->rc_state);
801 			mutex_unlock(&dpu_enc->rc_lock);
802 			return -EINVAL;
803 		}
804 
805 		if (is_vid_mode && dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE)
806 			_dpu_encoder_irq_control(drm_enc, true);
807 		else
808 			_dpu_encoder_resource_control_helper(drm_enc, true);
809 
810 		dpu_enc->rc_state = DPU_ENC_RC_STATE_ON;
811 
812 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
813 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
814 				 "kickoff");
815 
816 		mutex_unlock(&dpu_enc->rc_lock);
817 		break;
818 
819 	case DPU_ENC_RC_EVENT_FRAME_DONE:
820 		/*
821 		 * mutex lock is not used as this event happens at interrupt
822 		 * context. And locking is not required as, the other events
823 		 * like KICKOFF and STOP does a wait-for-idle before executing
824 		 * the resource_control
825 		 */
826 		if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) {
827 			DRM_DEBUG_KMS("id:%d, sw_event:%d,rc:%d-unexpected\n",
828 				      DRMID(drm_enc), sw_event,
829 				      dpu_enc->rc_state);
830 			return -EINVAL;
831 		}
832 
833 		/*
834 		 * schedule off work item only when there are no
835 		 * frames pending
836 		 */
837 		if (dpu_crtc_frame_pending(drm_enc->crtc) > 1) {
838 			DRM_DEBUG_KMS("id:%d skip schedule work\n",
839 				      DRMID(drm_enc));
840 			return 0;
841 		}
842 
843 		queue_delayed_work(priv->wq, &dpu_enc->delayed_off_work,
844 				   msecs_to_jiffies(dpu_enc->idle_timeout));
845 
846 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
847 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
848 				 "frame done");
849 		break;
850 
851 	case DPU_ENC_RC_EVENT_PRE_STOP:
852 		/* cancel delayed off work, if any */
853 		if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work))
854 			DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n",
855 					sw_event);
856 
857 		mutex_lock(&dpu_enc->rc_lock);
858 
859 		if (is_vid_mode &&
860 			  dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) {
861 			_dpu_encoder_irq_control(drm_enc, true);
862 		}
863 		/* skip if is already OFF or IDLE, resources are off already */
864 		else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF ||
865 				dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) {
866 			DRM_DEBUG_KMS("id:%u, sw_event:%d, rc in %d state\n",
867 				      DRMID(drm_enc), sw_event,
868 				      dpu_enc->rc_state);
869 			mutex_unlock(&dpu_enc->rc_lock);
870 			return 0;
871 		}
872 
873 		dpu_enc->rc_state = DPU_ENC_RC_STATE_PRE_OFF;
874 
875 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
876 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
877 				 "pre stop");
878 
879 		mutex_unlock(&dpu_enc->rc_lock);
880 		break;
881 
882 	case DPU_ENC_RC_EVENT_STOP:
883 		mutex_lock(&dpu_enc->rc_lock);
884 
885 		/* return if the resource control is already in OFF state */
886 		if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF) {
887 			DRM_DEBUG_KMS("id: %u, sw_event:%d, rc in OFF state\n",
888 				      DRMID(drm_enc), sw_event);
889 			mutex_unlock(&dpu_enc->rc_lock);
890 			return 0;
891 		} else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) {
892 			DRM_ERROR("id: %u, sw_event:%d, rc in state %d\n",
893 				  DRMID(drm_enc), sw_event, dpu_enc->rc_state);
894 			mutex_unlock(&dpu_enc->rc_lock);
895 			return -EINVAL;
896 		}
897 
898 		/**
899 		 * expect to arrive here only if in either idle state or pre-off
900 		 * and in IDLE state the resources are already disabled
901 		 */
902 		if (dpu_enc->rc_state == DPU_ENC_RC_STATE_PRE_OFF)
903 			_dpu_encoder_resource_control_helper(drm_enc, false);
904 
905 		dpu_enc->rc_state = DPU_ENC_RC_STATE_OFF;
906 
907 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
908 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
909 				 "stop");
910 
911 		mutex_unlock(&dpu_enc->rc_lock);
912 		break;
913 
914 	case DPU_ENC_RC_EVENT_ENTER_IDLE:
915 		mutex_lock(&dpu_enc->rc_lock);
916 
917 		if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) {
918 			DRM_ERROR("id: %u, sw_event:%d, rc:%d !ON state\n",
919 				  DRMID(drm_enc), sw_event, dpu_enc->rc_state);
920 			mutex_unlock(&dpu_enc->rc_lock);
921 			return 0;
922 		}
923 
924 		/*
925 		 * if we are in ON but a frame was just kicked off,
926 		 * ignore the IDLE event, it's probably a stale timer event
927 		 */
928 		if (dpu_enc->frame_busy_mask[0]) {
929 			DRM_ERROR("id:%u, sw_event:%d, rc:%d frame pending\n",
930 				  DRMID(drm_enc), sw_event, dpu_enc->rc_state);
931 			mutex_unlock(&dpu_enc->rc_lock);
932 			return 0;
933 		}
934 
935 		if (is_vid_mode)
936 			_dpu_encoder_irq_control(drm_enc, false);
937 		else
938 			_dpu_encoder_resource_control_helper(drm_enc, false);
939 
940 		dpu_enc->rc_state = DPU_ENC_RC_STATE_IDLE;
941 
942 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
943 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
944 				 "idle");
945 
946 		mutex_unlock(&dpu_enc->rc_lock);
947 		break;
948 
949 	default:
950 		DRM_ERROR("id:%u, unexpected sw_event: %d\n", DRMID(drm_enc),
951 			  sw_event);
952 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
953 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
954 				 "error");
955 		break;
956 	}
957 
958 	trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
959 			 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
960 			 "end");
961 	return 0;
962 }
963 
964 static void dpu_encoder_virt_mode_set(struct drm_encoder *drm_enc,
965 				      struct drm_display_mode *mode,
966 				      struct drm_display_mode *adj_mode)
967 {
968 	struct dpu_encoder_virt *dpu_enc;
969 	struct msm_drm_private *priv;
970 	struct dpu_kms *dpu_kms;
971 	struct list_head *connector_list;
972 	struct drm_connector *conn = NULL, *conn_iter;
973 	struct drm_crtc *drm_crtc;
974 	struct dpu_crtc_state *cstate;
975 	struct dpu_global_state *global_state;
976 	struct msm_display_topology topology;
977 	struct dpu_hw_blk *hw_pp[MAX_CHANNELS_PER_ENC];
978 	struct dpu_hw_blk *hw_ctl[MAX_CHANNELS_PER_ENC];
979 	struct dpu_hw_blk *hw_lm[MAX_CHANNELS_PER_ENC];
980 	struct dpu_hw_blk *hw_dspp[MAX_CHANNELS_PER_ENC] = { NULL };
981 	int num_lm, num_ctl, num_pp, num_dspp;
982 	int i, j;
983 
984 	if (!drm_enc) {
985 		DPU_ERROR("invalid encoder\n");
986 		return;
987 	}
988 
989 	dpu_enc = to_dpu_encoder_virt(drm_enc);
990 	DPU_DEBUG_ENC(dpu_enc, "\n");
991 
992 	priv = drm_enc->dev->dev_private;
993 	dpu_kms = to_dpu_kms(priv->kms);
994 	connector_list = &dpu_kms->dev->mode_config.connector_list;
995 
996 	global_state = dpu_kms_get_existing_global_state(dpu_kms);
997 	if (IS_ERR_OR_NULL(global_state)) {
998 		DPU_ERROR("Failed to get global state");
999 		return;
1000 	}
1001 
1002 	trace_dpu_enc_mode_set(DRMID(drm_enc));
1003 
1004 	list_for_each_entry(conn_iter, connector_list, head)
1005 		if (conn_iter->encoder == drm_enc)
1006 			conn = conn_iter;
1007 
1008 	if (!conn) {
1009 		DPU_ERROR_ENC(dpu_enc, "failed to find attached connector\n");
1010 		return;
1011 	} else if (!conn->state) {
1012 		DPU_ERROR_ENC(dpu_enc, "invalid connector state\n");
1013 		return;
1014 	}
1015 
1016 	drm_for_each_crtc(drm_crtc, drm_enc->dev)
1017 		if (drm_crtc->state->encoder_mask & drm_encoder_mask(drm_enc))
1018 			break;
1019 
1020 	topology = dpu_encoder_get_topology(dpu_enc, dpu_kms, adj_mode);
1021 
1022 	/* Query resource that have been reserved in atomic check step. */
1023 	num_pp = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1024 		drm_enc->base.id, DPU_HW_BLK_PINGPONG, hw_pp,
1025 		ARRAY_SIZE(hw_pp));
1026 	num_ctl = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1027 		drm_enc->base.id, DPU_HW_BLK_CTL, hw_ctl, ARRAY_SIZE(hw_ctl));
1028 	num_lm = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1029 		drm_enc->base.id, DPU_HW_BLK_LM, hw_lm, ARRAY_SIZE(hw_lm));
1030 	num_dspp = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1031 		drm_enc->base.id, DPU_HW_BLK_DSPP, hw_dspp,
1032 		ARRAY_SIZE(hw_dspp));
1033 
1034 	for (i = 0; i < MAX_CHANNELS_PER_ENC; i++)
1035 		dpu_enc->hw_pp[i] = i < num_pp ? to_dpu_hw_pingpong(hw_pp[i])
1036 						: NULL;
1037 
1038 	cstate = to_dpu_crtc_state(drm_crtc->state);
1039 
1040 	for (i = 0; i < num_lm; i++) {
1041 		int ctl_idx = (i < num_ctl) ? i : (num_ctl-1);
1042 
1043 		cstate->mixers[i].hw_lm = to_dpu_hw_mixer(hw_lm[i]);
1044 		cstate->mixers[i].lm_ctl = to_dpu_hw_ctl(hw_ctl[ctl_idx]);
1045 		cstate->mixers[i].hw_dspp = to_dpu_hw_dspp(hw_dspp[i]);
1046 	}
1047 
1048 	cstate->num_mixers = num_lm;
1049 
1050 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1051 		int num_blk;
1052 		struct dpu_hw_blk *hw_blk[MAX_CHANNELS_PER_ENC];
1053 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1054 
1055 		if (!dpu_enc->hw_pp[i]) {
1056 			DPU_ERROR_ENC(dpu_enc,
1057 				"no pp block assigned at idx: %d\n", i);
1058 			return;
1059 		}
1060 
1061 		if (!hw_ctl[i]) {
1062 			DPU_ERROR_ENC(dpu_enc,
1063 				"no ctl block assigned at idx: %d\n", i);
1064 			return;
1065 		}
1066 
1067 		phys->hw_pp = dpu_enc->hw_pp[i];
1068 		phys->hw_ctl = to_dpu_hw_ctl(hw_ctl[i]);
1069 
1070 		num_blk = dpu_rm_get_assigned_resources(&dpu_kms->rm,
1071 			global_state, drm_enc->base.id, DPU_HW_BLK_INTF,
1072 			hw_blk, ARRAY_SIZE(hw_blk));
1073 		for (j = 0; j < num_blk; j++) {
1074 			struct dpu_hw_intf *hw_intf;
1075 
1076 			hw_intf = to_dpu_hw_intf(hw_blk[i]);
1077 			if (hw_intf->idx == phys->intf_idx)
1078 				phys->hw_intf = hw_intf;
1079 		}
1080 
1081 		if (!phys->hw_intf) {
1082 			DPU_ERROR_ENC(dpu_enc,
1083 				      "no intf block assigned at idx: %d\n", i);
1084 			return;
1085 		}
1086 
1087 		phys->connector = conn->state->connector;
1088 		if (phys->ops.mode_set)
1089 			phys->ops.mode_set(phys, mode, adj_mode);
1090 	}
1091 }
1092 
1093 static void _dpu_encoder_virt_enable_helper(struct drm_encoder *drm_enc)
1094 {
1095 	struct dpu_encoder_virt *dpu_enc = NULL;
1096 	struct msm_drm_private *priv;
1097 	int i;
1098 
1099 	if (!drm_enc || !drm_enc->dev) {
1100 		DPU_ERROR("invalid parameters\n");
1101 		return;
1102 	}
1103 
1104 	priv = drm_enc->dev->dev_private;
1105 
1106 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1107 	if (!dpu_enc || !dpu_enc->cur_master) {
1108 		DPU_ERROR("invalid dpu encoder/master\n");
1109 		return;
1110 	}
1111 
1112 	_dpu_encoder_update_vsync_source(dpu_enc, &dpu_enc->disp_info);
1113 
1114 	if (dpu_enc->disp_info.intf_type == DRM_MODE_ENCODER_DSI &&
1115 			!WARN_ON(dpu_enc->num_phys_encs == 0)) {
1116 		unsigned bpc = dpu_enc->phys_encs[0]->connector->display_info.bpc;
1117 		for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
1118 			if (!dpu_enc->hw_pp[i])
1119 				continue;
1120 			_dpu_encoder_setup_dither(dpu_enc->hw_pp[i], bpc);
1121 		}
1122 	}
1123 }
1124 
1125 void dpu_encoder_virt_runtime_resume(struct drm_encoder *drm_enc)
1126 {
1127 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1128 
1129 	mutex_lock(&dpu_enc->enc_lock);
1130 
1131 	if (!dpu_enc->enabled)
1132 		goto out;
1133 
1134 	if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.restore)
1135 		dpu_enc->cur_slave->ops.restore(dpu_enc->cur_slave);
1136 	if (dpu_enc->cur_master && dpu_enc->cur_master->ops.restore)
1137 		dpu_enc->cur_master->ops.restore(dpu_enc->cur_master);
1138 
1139 	_dpu_encoder_virt_enable_helper(drm_enc);
1140 
1141 out:
1142 	mutex_unlock(&dpu_enc->enc_lock);
1143 }
1144 
1145 static void dpu_encoder_virt_enable(struct drm_encoder *drm_enc)
1146 {
1147 	struct dpu_encoder_virt *dpu_enc = NULL;
1148 	int ret = 0;
1149 	struct drm_display_mode *cur_mode = NULL;
1150 
1151 	if (!drm_enc) {
1152 		DPU_ERROR("invalid encoder\n");
1153 		return;
1154 	}
1155 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1156 
1157 	mutex_lock(&dpu_enc->enc_lock);
1158 	cur_mode = &dpu_enc->base.crtc->state->adjusted_mode;
1159 
1160 	trace_dpu_enc_enable(DRMID(drm_enc), cur_mode->hdisplay,
1161 			     cur_mode->vdisplay);
1162 
1163 	/* always enable slave encoder before master */
1164 	if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.enable)
1165 		dpu_enc->cur_slave->ops.enable(dpu_enc->cur_slave);
1166 
1167 	if (dpu_enc->cur_master && dpu_enc->cur_master->ops.enable)
1168 		dpu_enc->cur_master->ops.enable(dpu_enc->cur_master);
1169 
1170 	ret = dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF);
1171 	if (ret) {
1172 		DPU_ERROR_ENC(dpu_enc, "dpu resource control failed: %d\n",
1173 				ret);
1174 		goto out;
1175 	}
1176 
1177 	_dpu_encoder_virt_enable_helper(drm_enc);
1178 
1179 	dpu_enc->enabled = true;
1180 
1181 out:
1182 	mutex_unlock(&dpu_enc->enc_lock);
1183 }
1184 
1185 static void dpu_encoder_virt_disable(struct drm_encoder *drm_enc)
1186 {
1187 	struct dpu_encoder_virt *dpu_enc = NULL;
1188 	struct msm_drm_private *priv;
1189 	struct dpu_kms *dpu_kms;
1190 	int i = 0;
1191 
1192 	if (!drm_enc) {
1193 		DPU_ERROR("invalid encoder\n");
1194 		return;
1195 	} else if (!drm_enc->dev) {
1196 		DPU_ERROR("invalid dev\n");
1197 		return;
1198 	}
1199 
1200 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1201 	DPU_DEBUG_ENC(dpu_enc, "\n");
1202 
1203 	mutex_lock(&dpu_enc->enc_lock);
1204 	dpu_enc->enabled = false;
1205 
1206 	priv = drm_enc->dev->dev_private;
1207 	dpu_kms = to_dpu_kms(priv->kms);
1208 
1209 	trace_dpu_enc_disable(DRMID(drm_enc));
1210 
1211 	/* wait for idle */
1212 	dpu_encoder_wait_for_event(drm_enc, MSM_ENC_TX_COMPLETE);
1213 
1214 	dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_PRE_STOP);
1215 
1216 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1217 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1218 
1219 		if (phys->ops.disable)
1220 			phys->ops.disable(phys);
1221 	}
1222 
1223 	/* after phys waits for frame-done, should be no more frames pending */
1224 	if (atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) {
1225 		DPU_ERROR("enc%d timeout pending\n", drm_enc->base.id);
1226 		del_timer_sync(&dpu_enc->frame_done_timer);
1227 	}
1228 
1229 	dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_STOP);
1230 
1231 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1232 		dpu_enc->phys_encs[i]->connector = NULL;
1233 	}
1234 
1235 	DPU_DEBUG_ENC(dpu_enc, "encoder disabled\n");
1236 
1237 	mutex_unlock(&dpu_enc->enc_lock);
1238 }
1239 
1240 static enum dpu_intf dpu_encoder_get_intf(struct dpu_mdss_cfg *catalog,
1241 		enum dpu_intf_type type, u32 controller_id)
1242 {
1243 	int i = 0;
1244 
1245 	for (i = 0; i < catalog->intf_count; i++) {
1246 		if (catalog->intf[i].type == type
1247 		    && catalog->intf[i].controller_id == controller_id) {
1248 			return catalog->intf[i].id;
1249 		}
1250 	}
1251 
1252 	return INTF_MAX;
1253 }
1254 
1255 static void dpu_encoder_vblank_callback(struct drm_encoder *drm_enc,
1256 		struct dpu_encoder_phys *phy_enc)
1257 {
1258 	struct dpu_encoder_virt *dpu_enc = NULL;
1259 	unsigned long lock_flags;
1260 
1261 	if (!drm_enc || !phy_enc)
1262 		return;
1263 
1264 	DPU_ATRACE_BEGIN("encoder_vblank_callback");
1265 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1266 
1267 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1268 	if (dpu_enc->crtc)
1269 		dpu_crtc_vblank_callback(dpu_enc->crtc);
1270 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1271 
1272 	atomic_inc(&phy_enc->vsync_cnt);
1273 	DPU_ATRACE_END("encoder_vblank_callback");
1274 }
1275 
1276 static void dpu_encoder_underrun_callback(struct drm_encoder *drm_enc,
1277 		struct dpu_encoder_phys *phy_enc)
1278 {
1279 	if (!phy_enc)
1280 		return;
1281 
1282 	DPU_ATRACE_BEGIN("encoder_underrun_callback");
1283 	atomic_inc(&phy_enc->underrun_cnt);
1284 	trace_dpu_enc_underrun_cb(DRMID(drm_enc),
1285 				  atomic_read(&phy_enc->underrun_cnt));
1286 	DPU_ATRACE_END("encoder_underrun_callback");
1287 }
1288 
1289 void dpu_encoder_assign_crtc(struct drm_encoder *drm_enc, struct drm_crtc *crtc)
1290 {
1291 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1292 	unsigned long lock_flags;
1293 
1294 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1295 	/* crtc should always be cleared before re-assigning */
1296 	WARN_ON(crtc && dpu_enc->crtc);
1297 	dpu_enc->crtc = crtc;
1298 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1299 }
1300 
1301 void dpu_encoder_toggle_vblank_for_crtc(struct drm_encoder *drm_enc,
1302 					struct drm_crtc *crtc, bool enable)
1303 {
1304 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1305 	unsigned long lock_flags;
1306 	int i;
1307 
1308 	trace_dpu_enc_vblank_cb(DRMID(drm_enc), enable);
1309 
1310 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1311 	if (dpu_enc->crtc != crtc) {
1312 		spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1313 		return;
1314 	}
1315 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1316 
1317 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1318 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1319 
1320 		if (phys->ops.control_vblank_irq)
1321 			phys->ops.control_vblank_irq(phys, enable);
1322 	}
1323 }
1324 
1325 void dpu_encoder_register_frame_event_callback(struct drm_encoder *drm_enc,
1326 		void (*frame_event_cb)(void *, u32 event),
1327 		void *frame_event_cb_data)
1328 {
1329 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1330 	unsigned long lock_flags;
1331 	bool enable;
1332 
1333 	enable = frame_event_cb ? true : false;
1334 
1335 	if (!drm_enc) {
1336 		DPU_ERROR("invalid encoder\n");
1337 		return;
1338 	}
1339 	trace_dpu_enc_frame_event_cb(DRMID(drm_enc), enable);
1340 
1341 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1342 	dpu_enc->crtc_frame_event_cb = frame_event_cb;
1343 	dpu_enc->crtc_frame_event_cb_data = frame_event_cb_data;
1344 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1345 }
1346 
1347 static void dpu_encoder_frame_done_callback(
1348 		struct drm_encoder *drm_enc,
1349 		struct dpu_encoder_phys *ready_phys, u32 event)
1350 {
1351 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1352 	unsigned int i;
1353 
1354 	if (event & (DPU_ENCODER_FRAME_EVENT_DONE
1355 			| DPU_ENCODER_FRAME_EVENT_ERROR
1356 			| DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)) {
1357 
1358 		if (!dpu_enc->frame_busy_mask[0]) {
1359 			/**
1360 			 * suppress frame_done without waiter,
1361 			 * likely autorefresh
1362 			 */
1363 			trace_dpu_enc_frame_done_cb_not_busy(DRMID(drm_enc),
1364 					event, ready_phys->intf_idx);
1365 			return;
1366 		}
1367 
1368 		/* One of the physical encoders has become idle */
1369 		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1370 			if (dpu_enc->phys_encs[i] == ready_phys) {
1371 				trace_dpu_enc_frame_done_cb(DRMID(drm_enc), i,
1372 						dpu_enc->frame_busy_mask[0]);
1373 				clear_bit(i, dpu_enc->frame_busy_mask);
1374 			}
1375 		}
1376 
1377 		if (!dpu_enc->frame_busy_mask[0]) {
1378 			atomic_set(&dpu_enc->frame_done_timeout_ms, 0);
1379 			del_timer(&dpu_enc->frame_done_timer);
1380 
1381 			dpu_encoder_resource_control(drm_enc,
1382 					DPU_ENC_RC_EVENT_FRAME_DONE);
1383 
1384 			if (dpu_enc->crtc_frame_event_cb)
1385 				dpu_enc->crtc_frame_event_cb(
1386 					dpu_enc->crtc_frame_event_cb_data,
1387 					event);
1388 		}
1389 	} else {
1390 		if (dpu_enc->crtc_frame_event_cb)
1391 			dpu_enc->crtc_frame_event_cb(
1392 				dpu_enc->crtc_frame_event_cb_data, event);
1393 	}
1394 }
1395 
1396 static void dpu_encoder_off_work(struct work_struct *work)
1397 {
1398 	struct dpu_encoder_virt *dpu_enc = container_of(work,
1399 			struct dpu_encoder_virt, delayed_off_work.work);
1400 
1401 	if (!dpu_enc) {
1402 		DPU_ERROR("invalid dpu encoder\n");
1403 		return;
1404 	}
1405 
1406 	dpu_encoder_resource_control(&dpu_enc->base,
1407 						DPU_ENC_RC_EVENT_ENTER_IDLE);
1408 
1409 	dpu_encoder_frame_done_callback(&dpu_enc->base, NULL,
1410 				DPU_ENCODER_FRAME_EVENT_IDLE);
1411 }
1412 
1413 /**
1414  * _dpu_encoder_trigger_flush - trigger flush for a physical encoder
1415  * drm_enc: Pointer to drm encoder structure
1416  * phys: Pointer to physical encoder structure
1417  * extra_flush_bits: Additional bit mask to include in flush trigger
1418  */
1419 static void _dpu_encoder_trigger_flush(struct drm_encoder *drm_enc,
1420 		struct dpu_encoder_phys *phys, uint32_t extra_flush_bits)
1421 {
1422 	struct dpu_hw_ctl *ctl;
1423 	int pending_kickoff_cnt;
1424 	u32 ret = UINT_MAX;
1425 
1426 	if (!phys->hw_pp) {
1427 		DPU_ERROR("invalid pingpong hw\n");
1428 		return;
1429 	}
1430 
1431 	ctl = phys->hw_ctl;
1432 	if (!ctl->ops.trigger_flush) {
1433 		DPU_ERROR("missing trigger cb\n");
1434 		return;
1435 	}
1436 
1437 	pending_kickoff_cnt = dpu_encoder_phys_inc_pending(phys);
1438 
1439 	if (extra_flush_bits && ctl->ops.update_pending_flush)
1440 		ctl->ops.update_pending_flush(ctl, extra_flush_bits);
1441 
1442 	ctl->ops.trigger_flush(ctl);
1443 
1444 	if (ctl->ops.get_pending_flush)
1445 		ret = ctl->ops.get_pending_flush(ctl);
1446 
1447 	trace_dpu_enc_trigger_flush(DRMID(drm_enc), phys->intf_idx,
1448 				    pending_kickoff_cnt, ctl->idx,
1449 				    extra_flush_bits, ret);
1450 }
1451 
1452 /**
1453  * _dpu_encoder_trigger_start - trigger start for a physical encoder
1454  * phys: Pointer to physical encoder structure
1455  */
1456 static void _dpu_encoder_trigger_start(struct dpu_encoder_phys *phys)
1457 {
1458 	if (!phys) {
1459 		DPU_ERROR("invalid argument(s)\n");
1460 		return;
1461 	}
1462 
1463 	if (!phys->hw_pp) {
1464 		DPU_ERROR("invalid pingpong hw\n");
1465 		return;
1466 	}
1467 
1468 	if (phys->ops.trigger_start && phys->enable_state != DPU_ENC_DISABLED)
1469 		phys->ops.trigger_start(phys);
1470 }
1471 
1472 void dpu_encoder_helper_trigger_start(struct dpu_encoder_phys *phys_enc)
1473 {
1474 	struct dpu_hw_ctl *ctl;
1475 
1476 	ctl = phys_enc->hw_ctl;
1477 	if (ctl->ops.trigger_start) {
1478 		ctl->ops.trigger_start(ctl);
1479 		trace_dpu_enc_trigger_start(DRMID(phys_enc->parent), ctl->idx);
1480 	}
1481 }
1482 
1483 static int dpu_encoder_helper_wait_event_timeout(
1484 		int32_t drm_id,
1485 		int32_t hw_id,
1486 		struct dpu_encoder_wait_info *info)
1487 {
1488 	int rc = 0;
1489 	s64 expected_time = ktime_to_ms(ktime_get()) + info->timeout_ms;
1490 	s64 jiffies = msecs_to_jiffies(info->timeout_ms);
1491 	s64 time;
1492 
1493 	do {
1494 		rc = wait_event_timeout(*(info->wq),
1495 				atomic_read(info->atomic_cnt) == 0, jiffies);
1496 		time = ktime_to_ms(ktime_get());
1497 
1498 		trace_dpu_enc_wait_event_timeout(drm_id, hw_id, rc, time,
1499 						 expected_time,
1500 						 atomic_read(info->atomic_cnt));
1501 	/* If we timed out, counter is valid and time is less, wait again */
1502 	} while (atomic_read(info->atomic_cnt) && (rc == 0) &&
1503 			(time < expected_time));
1504 
1505 	return rc;
1506 }
1507 
1508 static void dpu_encoder_helper_hw_reset(struct dpu_encoder_phys *phys_enc)
1509 {
1510 	struct dpu_encoder_virt *dpu_enc;
1511 	struct dpu_hw_ctl *ctl;
1512 	int rc;
1513 
1514 	dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
1515 	ctl = phys_enc->hw_ctl;
1516 
1517 	if (!ctl->ops.reset)
1518 		return;
1519 
1520 	DRM_DEBUG_KMS("id:%u ctl %d reset\n", DRMID(phys_enc->parent),
1521 		      ctl->idx);
1522 
1523 	rc = ctl->ops.reset(ctl);
1524 	if (rc)
1525 		DPU_ERROR_ENC(dpu_enc, "ctl %d reset failure\n",  ctl->idx);
1526 
1527 	phys_enc->enable_state = DPU_ENC_ENABLED;
1528 }
1529 
1530 /**
1531  * _dpu_encoder_kickoff_phys - handle physical encoder kickoff
1532  *	Iterate through the physical encoders and perform consolidated flush
1533  *	and/or control start triggering as needed. This is done in the virtual
1534  *	encoder rather than the individual physical ones in order to handle
1535  *	use cases that require visibility into multiple physical encoders at
1536  *	a time.
1537  * dpu_enc: Pointer to virtual encoder structure
1538  */
1539 static void _dpu_encoder_kickoff_phys(struct dpu_encoder_virt *dpu_enc)
1540 {
1541 	struct dpu_hw_ctl *ctl;
1542 	uint32_t i, pending_flush;
1543 	unsigned long lock_flags;
1544 
1545 	pending_flush = 0x0;
1546 
1547 	/* update pending counts and trigger kickoff ctl flush atomically */
1548 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1549 
1550 	/* don't perform flush/start operations for slave encoders */
1551 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1552 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1553 
1554 		if (phys->enable_state == DPU_ENC_DISABLED)
1555 			continue;
1556 
1557 		ctl = phys->hw_ctl;
1558 
1559 		/*
1560 		 * This is cleared in frame_done worker, which isn't invoked
1561 		 * for async commits. So don't set this for async, since it'll
1562 		 * roll over to the next commit.
1563 		 */
1564 		if (phys->split_role != ENC_ROLE_SLAVE)
1565 			set_bit(i, dpu_enc->frame_busy_mask);
1566 
1567 		if (!phys->ops.needs_single_flush ||
1568 				!phys->ops.needs_single_flush(phys))
1569 			_dpu_encoder_trigger_flush(&dpu_enc->base, phys, 0x0);
1570 		else if (ctl->ops.get_pending_flush)
1571 			pending_flush |= ctl->ops.get_pending_flush(ctl);
1572 	}
1573 
1574 	/* for split flush, combine pending flush masks and send to master */
1575 	if (pending_flush && dpu_enc->cur_master) {
1576 		_dpu_encoder_trigger_flush(
1577 				&dpu_enc->base,
1578 				dpu_enc->cur_master,
1579 				pending_flush);
1580 	}
1581 
1582 	_dpu_encoder_trigger_start(dpu_enc->cur_master);
1583 
1584 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1585 }
1586 
1587 void dpu_encoder_trigger_kickoff_pending(struct drm_encoder *drm_enc)
1588 {
1589 	struct dpu_encoder_virt *dpu_enc;
1590 	struct dpu_encoder_phys *phys;
1591 	unsigned int i;
1592 	struct dpu_hw_ctl *ctl;
1593 	struct msm_display_info *disp_info;
1594 
1595 	if (!drm_enc) {
1596 		DPU_ERROR("invalid encoder\n");
1597 		return;
1598 	}
1599 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1600 	disp_info = &dpu_enc->disp_info;
1601 
1602 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1603 		phys = dpu_enc->phys_encs[i];
1604 
1605 		ctl = phys->hw_ctl;
1606 		if (ctl->ops.clear_pending_flush)
1607 			ctl->ops.clear_pending_flush(ctl);
1608 
1609 		/* update only for command mode primary ctl */
1610 		if ((phys == dpu_enc->cur_master) &&
1611 		   (disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE)
1612 		    && ctl->ops.trigger_pending)
1613 			ctl->ops.trigger_pending(ctl);
1614 	}
1615 }
1616 
1617 static u32 _dpu_encoder_calculate_linetime(struct dpu_encoder_virt *dpu_enc,
1618 		struct drm_display_mode *mode)
1619 {
1620 	u64 pclk_rate;
1621 	u32 pclk_period;
1622 	u32 line_time;
1623 
1624 	/*
1625 	 * For linetime calculation, only operate on master encoder.
1626 	 */
1627 	if (!dpu_enc->cur_master)
1628 		return 0;
1629 
1630 	if (!dpu_enc->cur_master->ops.get_line_count) {
1631 		DPU_ERROR("get_line_count function not defined\n");
1632 		return 0;
1633 	}
1634 
1635 	pclk_rate = mode->clock; /* pixel clock in kHz */
1636 	if (pclk_rate == 0) {
1637 		DPU_ERROR("pclk is 0, cannot calculate line time\n");
1638 		return 0;
1639 	}
1640 
1641 	pclk_period = DIV_ROUND_UP_ULL(1000000000ull, pclk_rate);
1642 	if (pclk_period == 0) {
1643 		DPU_ERROR("pclk period is 0\n");
1644 		return 0;
1645 	}
1646 
1647 	/*
1648 	 * Line time calculation based on Pixel clock and HTOTAL.
1649 	 * Final unit is in ns.
1650 	 */
1651 	line_time = (pclk_period * mode->htotal) / 1000;
1652 	if (line_time == 0) {
1653 		DPU_ERROR("line time calculation is 0\n");
1654 		return 0;
1655 	}
1656 
1657 	DPU_DEBUG_ENC(dpu_enc,
1658 			"clk_rate=%lldkHz, clk_period=%d, linetime=%dns\n",
1659 			pclk_rate, pclk_period, line_time);
1660 
1661 	return line_time;
1662 }
1663 
1664 int dpu_encoder_vsync_time(struct drm_encoder *drm_enc, ktime_t *wakeup_time)
1665 {
1666 	struct drm_display_mode *mode;
1667 	struct dpu_encoder_virt *dpu_enc;
1668 	u32 cur_line;
1669 	u32 line_time;
1670 	u32 vtotal, time_to_vsync;
1671 	ktime_t cur_time;
1672 
1673 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1674 
1675 	if (!drm_enc->crtc || !drm_enc->crtc->state) {
1676 		DPU_ERROR("crtc/crtc state object is NULL\n");
1677 		return -EINVAL;
1678 	}
1679 	mode = &drm_enc->crtc->state->adjusted_mode;
1680 
1681 	line_time = _dpu_encoder_calculate_linetime(dpu_enc, mode);
1682 	if (!line_time)
1683 		return -EINVAL;
1684 
1685 	cur_line = dpu_enc->cur_master->ops.get_line_count(dpu_enc->cur_master);
1686 
1687 	vtotal = mode->vtotal;
1688 	if (cur_line >= vtotal)
1689 		time_to_vsync = line_time * vtotal;
1690 	else
1691 		time_to_vsync = line_time * (vtotal - cur_line);
1692 
1693 	if (time_to_vsync == 0) {
1694 		DPU_ERROR("time to vsync should not be zero, vtotal=%d\n",
1695 				vtotal);
1696 		return -EINVAL;
1697 	}
1698 
1699 	cur_time = ktime_get();
1700 	*wakeup_time = ktime_add_ns(cur_time, time_to_vsync);
1701 
1702 	DPU_DEBUG_ENC(dpu_enc,
1703 			"cur_line=%u vtotal=%u time_to_vsync=%u, cur_time=%lld, wakeup_time=%lld\n",
1704 			cur_line, vtotal, time_to_vsync,
1705 			ktime_to_ms(cur_time),
1706 			ktime_to_ms(*wakeup_time));
1707 	return 0;
1708 }
1709 
1710 static void dpu_encoder_vsync_event_handler(struct timer_list *t)
1711 {
1712 	struct dpu_encoder_virt *dpu_enc = from_timer(dpu_enc, t,
1713 			vsync_event_timer);
1714 	struct drm_encoder *drm_enc = &dpu_enc->base;
1715 	struct msm_drm_private *priv;
1716 	struct msm_drm_thread *event_thread;
1717 
1718 	if (!drm_enc->dev || !drm_enc->crtc) {
1719 		DPU_ERROR("invalid parameters\n");
1720 		return;
1721 	}
1722 
1723 	priv = drm_enc->dev->dev_private;
1724 
1725 	if (drm_enc->crtc->index >= ARRAY_SIZE(priv->event_thread)) {
1726 		DPU_ERROR("invalid crtc index\n");
1727 		return;
1728 	}
1729 	event_thread = &priv->event_thread[drm_enc->crtc->index];
1730 	if (!event_thread) {
1731 		DPU_ERROR("event_thread not found for crtc:%d\n",
1732 				drm_enc->crtc->index);
1733 		return;
1734 	}
1735 
1736 	del_timer(&dpu_enc->vsync_event_timer);
1737 }
1738 
1739 static void dpu_encoder_vsync_event_work_handler(struct kthread_work *work)
1740 {
1741 	struct dpu_encoder_virt *dpu_enc = container_of(work,
1742 			struct dpu_encoder_virt, vsync_event_work);
1743 	ktime_t wakeup_time;
1744 
1745 	if (!dpu_enc) {
1746 		DPU_ERROR("invalid dpu encoder\n");
1747 		return;
1748 	}
1749 
1750 	if (dpu_encoder_vsync_time(&dpu_enc->base, &wakeup_time))
1751 		return;
1752 
1753 	trace_dpu_enc_vsync_event_work(DRMID(&dpu_enc->base), wakeup_time);
1754 	mod_timer(&dpu_enc->vsync_event_timer,
1755 			nsecs_to_jiffies(ktime_to_ns(wakeup_time)));
1756 }
1757 
1758 void dpu_encoder_prepare_for_kickoff(struct drm_encoder *drm_enc)
1759 {
1760 	struct dpu_encoder_virt *dpu_enc;
1761 	struct dpu_encoder_phys *phys;
1762 	bool needs_hw_reset = false;
1763 	unsigned int i;
1764 
1765 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1766 
1767 	trace_dpu_enc_prepare_kickoff(DRMID(drm_enc));
1768 
1769 	/* prepare for next kickoff, may include waiting on previous kickoff */
1770 	DPU_ATRACE_BEGIN("enc_prepare_for_kickoff");
1771 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1772 		phys = dpu_enc->phys_encs[i];
1773 		if (phys->ops.prepare_for_kickoff)
1774 			phys->ops.prepare_for_kickoff(phys);
1775 		if (phys->enable_state == DPU_ENC_ERR_NEEDS_HW_RESET)
1776 			needs_hw_reset = true;
1777 	}
1778 	DPU_ATRACE_END("enc_prepare_for_kickoff");
1779 
1780 	dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF);
1781 
1782 	/* if any phys needs reset, reset all phys, in-order */
1783 	if (needs_hw_reset) {
1784 		trace_dpu_enc_prepare_kickoff_reset(DRMID(drm_enc));
1785 		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1786 			dpu_encoder_helper_hw_reset(dpu_enc->phys_encs[i]);
1787 		}
1788 	}
1789 }
1790 
1791 void dpu_encoder_kickoff(struct drm_encoder *drm_enc)
1792 {
1793 	struct dpu_encoder_virt *dpu_enc;
1794 	struct dpu_encoder_phys *phys;
1795 	ktime_t wakeup_time;
1796 	unsigned long timeout_ms;
1797 	unsigned int i;
1798 
1799 	DPU_ATRACE_BEGIN("encoder_kickoff");
1800 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1801 
1802 	trace_dpu_enc_kickoff(DRMID(drm_enc));
1803 
1804 	timeout_ms = DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES * 1000 /
1805 			drm_mode_vrefresh(&drm_enc->crtc->state->adjusted_mode);
1806 
1807 	atomic_set(&dpu_enc->frame_done_timeout_ms, timeout_ms);
1808 	mod_timer(&dpu_enc->frame_done_timer,
1809 			jiffies + msecs_to_jiffies(timeout_ms));
1810 
1811 	/* All phys encs are ready to go, trigger the kickoff */
1812 	_dpu_encoder_kickoff_phys(dpu_enc);
1813 
1814 	/* allow phys encs to handle any post-kickoff business */
1815 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1816 		phys = dpu_enc->phys_encs[i];
1817 		if (phys->ops.handle_post_kickoff)
1818 			phys->ops.handle_post_kickoff(phys);
1819 	}
1820 
1821 	if (dpu_enc->disp_info.intf_type == DRM_MODE_ENCODER_DSI &&
1822 			!dpu_encoder_vsync_time(drm_enc, &wakeup_time)) {
1823 		trace_dpu_enc_early_kickoff(DRMID(drm_enc),
1824 					    ktime_to_ms(wakeup_time));
1825 		mod_timer(&dpu_enc->vsync_event_timer,
1826 				nsecs_to_jiffies(ktime_to_ns(wakeup_time)));
1827 	}
1828 
1829 	DPU_ATRACE_END("encoder_kickoff");
1830 }
1831 
1832 void dpu_encoder_prepare_commit(struct drm_encoder *drm_enc)
1833 {
1834 	struct dpu_encoder_virt *dpu_enc;
1835 	struct dpu_encoder_phys *phys;
1836 	int i;
1837 
1838 	if (!drm_enc) {
1839 		DPU_ERROR("invalid encoder\n");
1840 		return;
1841 	}
1842 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1843 
1844 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1845 		phys = dpu_enc->phys_encs[i];
1846 		if (phys->ops.prepare_commit)
1847 			phys->ops.prepare_commit(phys);
1848 	}
1849 }
1850 
1851 #ifdef CONFIG_DEBUG_FS
1852 static int _dpu_encoder_status_show(struct seq_file *s, void *data)
1853 {
1854 	struct dpu_encoder_virt *dpu_enc = s->private;
1855 	int i;
1856 
1857 	mutex_lock(&dpu_enc->enc_lock);
1858 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1859 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1860 
1861 		seq_printf(s, "intf:%d    vsync:%8d     underrun:%8d    ",
1862 				phys->intf_idx - INTF_0,
1863 				atomic_read(&phys->vsync_cnt),
1864 				atomic_read(&phys->underrun_cnt));
1865 
1866 		switch (phys->intf_mode) {
1867 		case INTF_MODE_VIDEO:
1868 			seq_puts(s, "mode: video\n");
1869 			break;
1870 		case INTF_MODE_CMD:
1871 			seq_puts(s, "mode: command\n");
1872 			break;
1873 		default:
1874 			seq_puts(s, "mode: ???\n");
1875 			break;
1876 		}
1877 	}
1878 	mutex_unlock(&dpu_enc->enc_lock);
1879 
1880 	return 0;
1881 }
1882 
1883 static int _dpu_encoder_debugfs_status_open(struct inode *inode,
1884 		struct file *file)
1885 {
1886 	return single_open(file, _dpu_encoder_status_show, inode->i_private);
1887 }
1888 
1889 static int _dpu_encoder_init_debugfs(struct drm_encoder *drm_enc)
1890 {
1891 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1892 	int i;
1893 
1894 	static const struct file_operations debugfs_status_fops = {
1895 		.open =		_dpu_encoder_debugfs_status_open,
1896 		.read =		seq_read,
1897 		.llseek =	seq_lseek,
1898 		.release =	single_release,
1899 	};
1900 
1901 	char name[DPU_NAME_SIZE];
1902 
1903 	if (!drm_enc->dev) {
1904 		DPU_ERROR("invalid encoder or kms\n");
1905 		return -EINVAL;
1906 	}
1907 
1908 	snprintf(name, DPU_NAME_SIZE, "encoder%u", drm_enc->base.id);
1909 
1910 	/* create overall sub-directory for the encoder */
1911 	dpu_enc->debugfs_root = debugfs_create_dir(name,
1912 			drm_enc->dev->primary->debugfs_root);
1913 
1914 	/* don't error check these */
1915 	debugfs_create_file("status", 0600,
1916 		dpu_enc->debugfs_root, dpu_enc, &debugfs_status_fops);
1917 
1918 	for (i = 0; i < dpu_enc->num_phys_encs; i++)
1919 		if (dpu_enc->phys_encs[i]->ops.late_register)
1920 			dpu_enc->phys_encs[i]->ops.late_register(
1921 					dpu_enc->phys_encs[i],
1922 					dpu_enc->debugfs_root);
1923 
1924 	return 0;
1925 }
1926 #else
1927 static int _dpu_encoder_init_debugfs(struct drm_encoder *drm_enc)
1928 {
1929 	return 0;
1930 }
1931 #endif
1932 
1933 static int dpu_encoder_late_register(struct drm_encoder *encoder)
1934 {
1935 	return _dpu_encoder_init_debugfs(encoder);
1936 }
1937 
1938 static void dpu_encoder_early_unregister(struct drm_encoder *encoder)
1939 {
1940 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(encoder);
1941 
1942 	debugfs_remove_recursive(dpu_enc->debugfs_root);
1943 }
1944 
1945 static int dpu_encoder_virt_add_phys_encs(
1946 		u32 display_caps,
1947 		struct dpu_encoder_virt *dpu_enc,
1948 		struct dpu_enc_phys_init_params *params)
1949 {
1950 	struct dpu_encoder_phys *enc = NULL;
1951 
1952 	DPU_DEBUG_ENC(dpu_enc, "\n");
1953 
1954 	/*
1955 	 * We may create up to NUM_PHYS_ENCODER_TYPES physical encoder types
1956 	 * in this function, check up-front.
1957 	 */
1958 	if (dpu_enc->num_phys_encs + NUM_PHYS_ENCODER_TYPES >=
1959 			ARRAY_SIZE(dpu_enc->phys_encs)) {
1960 		DPU_ERROR_ENC(dpu_enc, "too many physical encoders %d\n",
1961 			  dpu_enc->num_phys_encs);
1962 		return -EINVAL;
1963 	}
1964 
1965 	if (display_caps & MSM_DISPLAY_CAP_VID_MODE) {
1966 		enc = dpu_encoder_phys_vid_init(params);
1967 
1968 		if (IS_ERR_OR_NULL(enc)) {
1969 			DPU_ERROR_ENC(dpu_enc, "failed to init vid enc: %ld\n",
1970 				PTR_ERR(enc));
1971 			return enc == NULL ? -EINVAL : PTR_ERR(enc);
1972 		}
1973 
1974 		dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
1975 		++dpu_enc->num_phys_encs;
1976 	}
1977 
1978 	if (display_caps & MSM_DISPLAY_CAP_CMD_MODE) {
1979 		enc = dpu_encoder_phys_cmd_init(params);
1980 
1981 		if (IS_ERR_OR_NULL(enc)) {
1982 			DPU_ERROR_ENC(dpu_enc, "failed to init cmd enc: %ld\n",
1983 				PTR_ERR(enc));
1984 			return enc == NULL ? -EINVAL : PTR_ERR(enc);
1985 		}
1986 
1987 		dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
1988 		++dpu_enc->num_phys_encs;
1989 	}
1990 
1991 	if (params->split_role == ENC_ROLE_SLAVE)
1992 		dpu_enc->cur_slave = enc;
1993 	else
1994 		dpu_enc->cur_master = enc;
1995 
1996 	return 0;
1997 }
1998 
1999 static const struct dpu_encoder_virt_ops dpu_encoder_parent_ops = {
2000 	.handle_vblank_virt = dpu_encoder_vblank_callback,
2001 	.handle_underrun_virt = dpu_encoder_underrun_callback,
2002 	.handle_frame_done = dpu_encoder_frame_done_callback,
2003 };
2004 
2005 static int dpu_encoder_setup_display(struct dpu_encoder_virt *dpu_enc,
2006 				 struct dpu_kms *dpu_kms,
2007 				 struct msm_display_info *disp_info)
2008 {
2009 	int ret = 0;
2010 	int i = 0;
2011 	enum dpu_intf_type intf_type;
2012 	struct dpu_enc_phys_init_params phys_params;
2013 
2014 	if (!dpu_enc) {
2015 		DPU_ERROR("invalid arg(s), enc %d\n", dpu_enc != NULL);
2016 		return -EINVAL;
2017 	}
2018 
2019 	dpu_enc->cur_master = NULL;
2020 
2021 	memset(&phys_params, 0, sizeof(phys_params));
2022 	phys_params.dpu_kms = dpu_kms;
2023 	phys_params.parent = &dpu_enc->base;
2024 	phys_params.parent_ops = &dpu_encoder_parent_ops;
2025 	phys_params.enc_spinlock = &dpu_enc->enc_spinlock;
2026 
2027 	DPU_DEBUG("\n");
2028 
2029 	switch (disp_info->intf_type) {
2030 	case DRM_MODE_ENCODER_DSI:
2031 		intf_type = INTF_DSI;
2032 		break;
2033 	default:
2034 		DPU_ERROR_ENC(dpu_enc, "unsupported display interface type\n");
2035 		return -EINVAL;
2036 	}
2037 
2038 	WARN_ON(disp_info->num_of_h_tiles < 1);
2039 
2040 	DPU_DEBUG("dsi_info->num_of_h_tiles %d\n", disp_info->num_of_h_tiles);
2041 
2042 	if ((disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE) ||
2043 	    (disp_info->capabilities & MSM_DISPLAY_CAP_VID_MODE))
2044 		dpu_enc->idle_pc_supported =
2045 				dpu_kms->catalog->caps->has_idle_pc;
2046 
2047 	mutex_lock(&dpu_enc->enc_lock);
2048 	for (i = 0; i < disp_info->num_of_h_tiles && !ret; i++) {
2049 		/*
2050 		 * Left-most tile is at index 0, content is controller id
2051 		 * h_tile_instance_ids[2] = {0, 1}; DSI0 = left, DSI1 = right
2052 		 * h_tile_instance_ids[2] = {1, 0}; DSI1 = left, DSI0 = right
2053 		 */
2054 		u32 controller_id = disp_info->h_tile_instance[i];
2055 
2056 		if (disp_info->num_of_h_tiles > 1) {
2057 			if (i == 0)
2058 				phys_params.split_role = ENC_ROLE_MASTER;
2059 			else
2060 				phys_params.split_role = ENC_ROLE_SLAVE;
2061 		} else {
2062 			phys_params.split_role = ENC_ROLE_SOLO;
2063 		}
2064 
2065 		DPU_DEBUG("h_tile_instance %d = %d, split_role %d\n",
2066 				i, controller_id, phys_params.split_role);
2067 
2068 		phys_params.intf_idx = dpu_encoder_get_intf(dpu_kms->catalog,
2069 													intf_type,
2070 													controller_id);
2071 		if (phys_params.intf_idx == INTF_MAX) {
2072 			DPU_ERROR_ENC(dpu_enc, "could not get intf: type %d, id %d\n",
2073 						  intf_type, controller_id);
2074 			ret = -EINVAL;
2075 		}
2076 
2077 		if (!ret) {
2078 			ret = dpu_encoder_virt_add_phys_encs(disp_info->capabilities,
2079 												 dpu_enc,
2080 												 &phys_params);
2081 			if (ret)
2082 				DPU_ERROR_ENC(dpu_enc, "failed to add phys encs\n");
2083 		}
2084 	}
2085 
2086 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2087 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2088 		atomic_set(&phys->vsync_cnt, 0);
2089 		atomic_set(&phys->underrun_cnt, 0);
2090 	}
2091 	mutex_unlock(&dpu_enc->enc_lock);
2092 
2093 	return ret;
2094 }
2095 
2096 static void dpu_encoder_frame_done_timeout(struct timer_list *t)
2097 {
2098 	struct dpu_encoder_virt *dpu_enc = from_timer(dpu_enc, t,
2099 			frame_done_timer);
2100 	struct drm_encoder *drm_enc = &dpu_enc->base;
2101 	u32 event;
2102 
2103 	if (!drm_enc->dev) {
2104 		DPU_ERROR("invalid parameters\n");
2105 		return;
2106 	}
2107 
2108 	if (!dpu_enc->frame_busy_mask[0] || !dpu_enc->crtc_frame_event_cb) {
2109 		DRM_DEBUG_KMS("id:%u invalid timeout frame_busy_mask=%lu\n",
2110 			      DRMID(drm_enc), dpu_enc->frame_busy_mask[0]);
2111 		return;
2112 	} else if (!atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) {
2113 		DRM_DEBUG_KMS("id:%u invalid timeout\n", DRMID(drm_enc));
2114 		return;
2115 	}
2116 
2117 	DPU_ERROR_ENC(dpu_enc, "frame done timeout\n");
2118 
2119 	event = DPU_ENCODER_FRAME_EVENT_ERROR;
2120 	trace_dpu_enc_frame_done_timeout(DRMID(drm_enc), event);
2121 	dpu_enc->crtc_frame_event_cb(dpu_enc->crtc_frame_event_cb_data, event);
2122 }
2123 
2124 static const struct drm_encoder_helper_funcs dpu_encoder_helper_funcs = {
2125 	.mode_set = dpu_encoder_virt_mode_set,
2126 	.disable = dpu_encoder_virt_disable,
2127 	.enable = dpu_kms_encoder_enable,
2128 	.atomic_check = dpu_encoder_virt_atomic_check,
2129 
2130 	/* This is called by dpu_kms_encoder_enable */
2131 	.commit = dpu_encoder_virt_enable,
2132 };
2133 
2134 static const struct drm_encoder_funcs dpu_encoder_funcs = {
2135 		.destroy = dpu_encoder_destroy,
2136 		.late_register = dpu_encoder_late_register,
2137 		.early_unregister = dpu_encoder_early_unregister,
2138 };
2139 
2140 int dpu_encoder_setup(struct drm_device *dev, struct drm_encoder *enc,
2141 		struct msm_display_info *disp_info)
2142 {
2143 	struct msm_drm_private *priv = dev->dev_private;
2144 	struct dpu_kms *dpu_kms = to_dpu_kms(priv->kms);
2145 	struct drm_encoder *drm_enc = NULL;
2146 	struct dpu_encoder_virt *dpu_enc = NULL;
2147 	int ret = 0;
2148 
2149 	dpu_enc = to_dpu_encoder_virt(enc);
2150 
2151 	ret = dpu_encoder_setup_display(dpu_enc, dpu_kms, disp_info);
2152 	if (ret)
2153 		goto fail;
2154 
2155 	atomic_set(&dpu_enc->frame_done_timeout_ms, 0);
2156 	timer_setup(&dpu_enc->frame_done_timer,
2157 			dpu_encoder_frame_done_timeout, 0);
2158 
2159 	if (disp_info->intf_type == DRM_MODE_ENCODER_DSI)
2160 		timer_setup(&dpu_enc->vsync_event_timer,
2161 				dpu_encoder_vsync_event_handler,
2162 				0);
2163 
2164 
2165 	INIT_DELAYED_WORK(&dpu_enc->delayed_off_work,
2166 			dpu_encoder_off_work);
2167 	dpu_enc->idle_timeout = IDLE_TIMEOUT;
2168 
2169 	kthread_init_work(&dpu_enc->vsync_event_work,
2170 			dpu_encoder_vsync_event_work_handler);
2171 
2172 	memcpy(&dpu_enc->disp_info, disp_info, sizeof(*disp_info));
2173 
2174 	DPU_DEBUG_ENC(dpu_enc, "created\n");
2175 
2176 	return ret;
2177 
2178 fail:
2179 	DPU_ERROR("failed to create encoder\n");
2180 	if (drm_enc)
2181 		dpu_encoder_destroy(drm_enc);
2182 
2183 	return ret;
2184 
2185 
2186 }
2187 
2188 struct drm_encoder *dpu_encoder_init(struct drm_device *dev,
2189 		int drm_enc_mode)
2190 {
2191 	struct dpu_encoder_virt *dpu_enc = NULL;
2192 	int rc = 0;
2193 
2194 	dpu_enc = devm_kzalloc(dev->dev, sizeof(*dpu_enc), GFP_KERNEL);
2195 	if (!dpu_enc)
2196 		return ERR_PTR(-ENOMEM);
2197 
2198 	rc = drm_encoder_init(dev, &dpu_enc->base, &dpu_encoder_funcs,
2199 			drm_enc_mode, NULL);
2200 	if (rc) {
2201 		devm_kfree(dev->dev, dpu_enc);
2202 		return ERR_PTR(rc);
2203 	}
2204 
2205 	drm_encoder_helper_add(&dpu_enc->base, &dpu_encoder_helper_funcs);
2206 
2207 	spin_lock_init(&dpu_enc->enc_spinlock);
2208 	dpu_enc->enabled = false;
2209 	mutex_init(&dpu_enc->enc_lock);
2210 	mutex_init(&dpu_enc->rc_lock);
2211 
2212 	return &dpu_enc->base;
2213 }
2214 
2215 int dpu_encoder_wait_for_event(struct drm_encoder *drm_enc,
2216 	enum msm_event_wait event)
2217 {
2218 	int (*fn_wait)(struct dpu_encoder_phys *phys_enc) = NULL;
2219 	struct dpu_encoder_virt *dpu_enc = NULL;
2220 	int i, ret = 0;
2221 
2222 	if (!drm_enc) {
2223 		DPU_ERROR("invalid encoder\n");
2224 		return -EINVAL;
2225 	}
2226 	dpu_enc = to_dpu_encoder_virt(drm_enc);
2227 	DPU_DEBUG_ENC(dpu_enc, "\n");
2228 
2229 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2230 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2231 
2232 		switch (event) {
2233 		case MSM_ENC_COMMIT_DONE:
2234 			fn_wait = phys->ops.wait_for_commit_done;
2235 			break;
2236 		case MSM_ENC_TX_COMPLETE:
2237 			fn_wait = phys->ops.wait_for_tx_complete;
2238 			break;
2239 		case MSM_ENC_VBLANK:
2240 			fn_wait = phys->ops.wait_for_vblank;
2241 			break;
2242 		default:
2243 			DPU_ERROR_ENC(dpu_enc, "unknown wait event %d\n",
2244 					event);
2245 			return -EINVAL;
2246 		}
2247 
2248 		if (fn_wait) {
2249 			DPU_ATRACE_BEGIN("wait_for_completion_event");
2250 			ret = fn_wait(phys);
2251 			DPU_ATRACE_END("wait_for_completion_event");
2252 			if (ret)
2253 				return ret;
2254 		}
2255 	}
2256 
2257 	return ret;
2258 }
2259 
2260 enum dpu_intf_mode dpu_encoder_get_intf_mode(struct drm_encoder *encoder)
2261 {
2262 	struct dpu_encoder_virt *dpu_enc = NULL;
2263 
2264 	if (!encoder) {
2265 		DPU_ERROR("invalid encoder\n");
2266 		return INTF_MODE_NONE;
2267 	}
2268 	dpu_enc = to_dpu_encoder_virt(encoder);
2269 
2270 	if (dpu_enc->cur_master)
2271 		return dpu_enc->cur_master->intf_mode;
2272 
2273 	if (dpu_enc->num_phys_encs)
2274 		return dpu_enc->phys_encs[0]->intf_mode;
2275 
2276 	return INTF_MODE_NONE;
2277 }
2278