xref: /linux/drivers/gpu/drm/msm/disp/dpu1/dpu_encoder.c (revision a44e4f3ab16bc808590763a543a93b6fbf3abcc4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2014-2018, The Linux Foundation. All rights reserved.
4  * Copyright (C) 2013 Red Hat
5  * Author: Rob Clark <robdclark@gmail.com>
6  */
7 
8 #define pr_fmt(fmt)	"[drm:%s:%d] " fmt, __func__, __LINE__
9 #include <linux/debugfs.h>
10 #include <linux/kthread.h>
11 #include <linux/seq_file.h>
12 
13 #include <drm/drm_crtc.h>
14 #include <drm/drm_file.h>
15 #include <drm/drm_probe_helper.h>
16 
17 #include "msm_drv.h"
18 #include "dpu_kms.h"
19 #include "dpu_hwio.h"
20 #include "dpu_hw_catalog.h"
21 #include "dpu_hw_intf.h"
22 #include "dpu_hw_ctl.h"
23 #include "dpu_formats.h"
24 #include "dpu_encoder_phys.h"
25 #include "dpu_crtc.h"
26 #include "dpu_trace.h"
27 #include "dpu_core_irq.h"
28 
29 #define DPU_DEBUG_ENC(e, fmt, ...) DPU_DEBUG("enc%d " fmt,\
30 		(e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
31 
32 #define DPU_ERROR_ENC(e, fmt, ...) DPU_ERROR("enc%d " fmt,\
33 		(e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
34 
35 #define DPU_DEBUG_PHYS(p, fmt, ...) DPU_DEBUG("enc%d intf%d pp%d " fmt,\
36 		(p) ? (p)->parent->base.id : -1, \
37 		(p) ? (p)->intf_idx - INTF_0 : -1, \
38 		(p) ? ((p)->hw_pp ? (p)->hw_pp->idx - PINGPONG_0 : -1) : -1, \
39 		##__VA_ARGS__)
40 
41 #define DPU_ERROR_PHYS(p, fmt, ...) DPU_ERROR("enc%d intf%d pp%d " fmt,\
42 		(p) ? (p)->parent->base.id : -1, \
43 		(p) ? (p)->intf_idx - INTF_0 : -1, \
44 		(p) ? ((p)->hw_pp ? (p)->hw_pp->idx - PINGPONG_0 : -1) : -1, \
45 		##__VA_ARGS__)
46 
47 /*
48  * Two to anticipate panels that can do cmd/vid dynamic switching
49  * plan is to create all possible physical encoder types, and switch between
50  * them at runtime
51  */
52 #define NUM_PHYS_ENCODER_TYPES 2
53 
54 #define MAX_PHYS_ENCODERS_PER_VIRTUAL \
55 	(MAX_H_TILES_PER_DISPLAY * NUM_PHYS_ENCODER_TYPES)
56 
57 #define MAX_CHANNELS_PER_ENC 2
58 
59 #define IDLE_SHORT_TIMEOUT	1
60 
61 #define MAX_VDISPLAY_SPLIT 1080
62 
63 /* timeout in frames waiting for frame done */
64 #define DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES 5
65 
66 /**
67  * enum dpu_enc_rc_events - events for resource control state machine
68  * @DPU_ENC_RC_EVENT_KICKOFF:
69  *	This event happens at NORMAL priority.
70  *	Event that signals the start of the transfer. When this event is
71  *	received, enable MDP/DSI core clocks. Regardless of the previous
72  *	state, the resource should be in ON state at the end of this event.
73  * @DPU_ENC_RC_EVENT_FRAME_DONE:
74  *	This event happens at INTERRUPT level.
75  *	Event signals the end of the data transfer after the PP FRAME_DONE
76  *	event. At the end of this event, a delayed work is scheduled to go to
77  *	IDLE_PC state after IDLE_TIMEOUT time.
78  * @DPU_ENC_RC_EVENT_PRE_STOP:
79  *	This event happens at NORMAL priority.
80  *	This event, when received during the ON state, leave the RC STATE
81  *	in the PRE_OFF state. It should be followed by the STOP event as
82  *	part of encoder disable.
83  *	If received during IDLE or OFF states, it will do nothing.
84  * @DPU_ENC_RC_EVENT_STOP:
85  *	This event happens at NORMAL priority.
86  *	When this event is received, disable all the MDP/DSI core clocks, and
87  *	disable IRQs. It should be called from the PRE_OFF or IDLE states.
88  *	IDLE is expected when IDLE_PC has run, and PRE_OFF did nothing.
89  *	PRE_OFF is expected when PRE_STOP was executed during the ON state.
90  *	Resource state should be in OFF at the end of the event.
91  * @DPU_ENC_RC_EVENT_ENTER_IDLE:
92  *	This event happens at NORMAL priority from a work item.
93  *	Event signals that there were no frame updates for IDLE_TIMEOUT time.
94  *	This would disable MDP/DSI core clocks and change the resource state
95  *	to IDLE.
96  */
97 enum dpu_enc_rc_events {
98 	DPU_ENC_RC_EVENT_KICKOFF = 1,
99 	DPU_ENC_RC_EVENT_FRAME_DONE,
100 	DPU_ENC_RC_EVENT_PRE_STOP,
101 	DPU_ENC_RC_EVENT_STOP,
102 	DPU_ENC_RC_EVENT_ENTER_IDLE
103 };
104 
105 /*
106  * enum dpu_enc_rc_states - states that the resource control maintains
107  * @DPU_ENC_RC_STATE_OFF: Resource is in OFF state
108  * @DPU_ENC_RC_STATE_PRE_OFF: Resource is transitioning to OFF state
109  * @DPU_ENC_RC_STATE_ON: Resource is in ON state
110  * @DPU_ENC_RC_STATE_MODESET: Resource is in modeset state
111  * @DPU_ENC_RC_STATE_IDLE: Resource is in IDLE state
112  */
113 enum dpu_enc_rc_states {
114 	DPU_ENC_RC_STATE_OFF,
115 	DPU_ENC_RC_STATE_PRE_OFF,
116 	DPU_ENC_RC_STATE_ON,
117 	DPU_ENC_RC_STATE_IDLE
118 };
119 
120 /**
121  * struct dpu_encoder_virt - virtual encoder. Container of one or more physical
122  *	encoders. Virtual encoder manages one "logical" display. Physical
123  *	encoders manage one intf block, tied to a specific panel/sub-panel.
124  *	Virtual encoder defers as much as possible to the physical encoders.
125  *	Virtual encoder registers itself with the DRM Framework as the encoder.
126  * @base:		drm_encoder base class for registration with DRM
127  * @enc_spinlock:	Virtual-Encoder-Wide Spin Lock for IRQ purposes
128  * @bus_scaling_client:	Client handle to the bus scaling interface
129  * @enabled:		True if the encoder is active, protected by enc_lock
130  * @num_phys_encs:	Actual number of physical encoders contained.
131  * @phys_encs:		Container of physical encoders managed.
132  * @cur_master:		Pointer to the current master in this mode. Optimization
133  *			Only valid after enable. Cleared as disable.
134  * @hw_pp		Handle to the pingpong blocks used for the display. No.
135  *			pingpong blocks can be different than num_phys_encs.
136  * @intfs_swapped	Whether or not the phys_enc interfaces have been swapped
137  *			for partial update right-only cases, such as pingpong
138  *			split where virtual pingpong does not generate IRQs
139  * @crtc:		Pointer to the currently assigned crtc. Normally you
140  *			would use crtc->state->encoder_mask to determine the
141  *			link between encoder/crtc. However in this case we need
142  *			to track crtc in the disable() hook which is called
143  *			_after_ encoder_mask is cleared.
144  * @crtc_kickoff_cb:		Callback into CRTC that will flush & start
145  *				all CTL paths
146  * @crtc_kickoff_cb_data:	Opaque user data given to crtc_kickoff_cb
147  * @debugfs_root:		Debug file system root file node
148  * @enc_lock:			Lock around physical encoder
149  *				create/destroy/enable/disable
150  * @frame_busy_mask:		Bitmask tracking which phys_enc we are still
151  *				busy processing current command.
152  *				Bit0 = phys_encs[0] etc.
153  * @crtc_frame_event_cb:	callback handler for frame event
154  * @crtc_frame_event_cb_data:	callback handler private data
155  * @frame_done_timeout_ms:	frame done timeout in ms
156  * @frame_done_timer:		watchdog timer for frame done event
157  * @vsync_event_timer:		vsync timer
158  * @disp_info:			local copy of msm_display_info struct
159  * @idle_pc_supported:		indicate if idle power collaps is supported
160  * @rc_lock:			resource control mutex lock to protect
161  *				virt encoder over various state changes
162  * @rc_state:			resource controller state
163  * @delayed_off_work:		delayed worker to schedule disabling of
164  *				clks and resources after IDLE_TIMEOUT time.
165  * @vsync_event_work:		worker to handle vsync event for autorefresh
166  * @topology:                   topology of the display
167  * @mode_set_complete:          flag to indicate modeset completion
168  * @idle_timeout:		idle timeout duration in milliseconds
169  */
170 struct dpu_encoder_virt {
171 	struct drm_encoder base;
172 	spinlock_t enc_spinlock;
173 	uint32_t bus_scaling_client;
174 
175 	bool enabled;
176 
177 	unsigned int num_phys_encs;
178 	struct dpu_encoder_phys *phys_encs[MAX_PHYS_ENCODERS_PER_VIRTUAL];
179 	struct dpu_encoder_phys *cur_master;
180 	struct dpu_encoder_phys *cur_slave;
181 	struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC];
182 
183 	bool intfs_swapped;
184 
185 	struct drm_crtc *crtc;
186 
187 	struct dentry *debugfs_root;
188 	struct mutex enc_lock;
189 	DECLARE_BITMAP(frame_busy_mask, MAX_PHYS_ENCODERS_PER_VIRTUAL);
190 	void (*crtc_frame_event_cb)(void *, u32 event);
191 	void *crtc_frame_event_cb_data;
192 
193 	atomic_t frame_done_timeout_ms;
194 	struct timer_list frame_done_timer;
195 	struct timer_list vsync_event_timer;
196 
197 	struct msm_display_info disp_info;
198 
199 	bool idle_pc_supported;
200 	struct mutex rc_lock;
201 	enum dpu_enc_rc_states rc_state;
202 	struct delayed_work delayed_off_work;
203 	struct kthread_work vsync_event_work;
204 	struct msm_display_topology topology;
205 	bool mode_set_complete;
206 
207 	u32 idle_timeout;
208 };
209 
210 #define to_dpu_encoder_virt(x) container_of(x, struct dpu_encoder_virt, base)
211 
212 void dpu_encoder_helper_report_irq_timeout(struct dpu_encoder_phys *phys_enc,
213 		enum dpu_intr_idx intr_idx)
214 {
215 	DRM_ERROR("irq timeout id=%u, intf=%d, pp=%d, intr=%d\n",
216 		  DRMID(phys_enc->parent), phys_enc->intf_idx - INTF_0,
217 		  phys_enc->hw_pp->idx - PINGPONG_0, intr_idx);
218 
219 	if (phys_enc->parent_ops->handle_frame_done)
220 		phys_enc->parent_ops->handle_frame_done(
221 				phys_enc->parent, phys_enc,
222 				DPU_ENCODER_FRAME_EVENT_ERROR);
223 }
224 
225 static int dpu_encoder_helper_wait_event_timeout(int32_t drm_id,
226 		int32_t hw_id, struct dpu_encoder_wait_info *info);
227 
228 int dpu_encoder_helper_wait_for_irq(struct dpu_encoder_phys *phys_enc,
229 		enum dpu_intr_idx intr_idx,
230 		struct dpu_encoder_wait_info *wait_info)
231 {
232 	struct dpu_encoder_irq *irq;
233 	u32 irq_status;
234 	int ret;
235 
236 	if (!phys_enc || !wait_info || intr_idx >= INTR_IDX_MAX) {
237 		DPU_ERROR("invalid params\n");
238 		return -EINVAL;
239 	}
240 	irq = &phys_enc->irq[intr_idx];
241 
242 	/* note: do master / slave checking outside */
243 
244 	/* return EWOULDBLOCK since we know the wait isn't necessary */
245 	if (phys_enc->enable_state == DPU_ENC_DISABLED) {
246 		DRM_ERROR("encoder is disabled id=%u, intr=%d, hw=%d, irq=%d",
247 			  DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
248 			  irq->irq_idx);
249 		return -EWOULDBLOCK;
250 	}
251 
252 	if (irq->irq_idx < 0) {
253 		DRM_DEBUG_KMS("skip irq wait id=%u, intr=%d, hw=%d, irq=%s",
254 			      DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
255 			      irq->name);
256 		return 0;
257 	}
258 
259 	DRM_DEBUG_KMS("id=%u, intr=%d, hw=%d, irq=%d, pp=%d, pending_cnt=%d",
260 		      DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
261 		      irq->irq_idx, phys_enc->hw_pp->idx - PINGPONG_0,
262 		      atomic_read(wait_info->atomic_cnt));
263 
264 	ret = dpu_encoder_helper_wait_event_timeout(
265 			DRMID(phys_enc->parent),
266 			irq->hw_idx,
267 			wait_info);
268 
269 	if (ret <= 0) {
270 		irq_status = dpu_core_irq_read(phys_enc->dpu_kms,
271 				irq->irq_idx, true);
272 		if (irq_status) {
273 			unsigned long flags;
274 
275 			DRM_DEBUG_KMS("irq not triggered id=%u, intr=%d, "
276 				      "hw=%d, irq=%d, pp=%d, atomic_cnt=%d",
277 				      DRMID(phys_enc->parent), intr_idx,
278 				      irq->hw_idx, irq->irq_idx,
279 				      phys_enc->hw_pp->idx - PINGPONG_0,
280 				      atomic_read(wait_info->atomic_cnt));
281 			local_irq_save(flags);
282 			irq->cb.func(phys_enc, irq->irq_idx);
283 			local_irq_restore(flags);
284 			ret = 0;
285 		} else {
286 			ret = -ETIMEDOUT;
287 			DRM_DEBUG_KMS("irq timeout id=%u, intr=%d, "
288 				      "hw=%d, irq=%d, pp=%d, atomic_cnt=%d",
289 				      DRMID(phys_enc->parent), intr_idx,
290 				      irq->hw_idx, irq->irq_idx,
291 				      phys_enc->hw_pp->idx - PINGPONG_0,
292 				      atomic_read(wait_info->atomic_cnt));
293 		}
294 	} else {
295 		ret = 0;
296 		trace_dpu_enc_irq_wait_success(DRMID(phys_enc->parent),
297 			intr_idx, irq->hw_idx, irq->irq_idx,
298 			phys_enc->hw_pp->idx - PINGPONG_0,
299 			atomic_read(wait_info->atomic_cnt));
300 	}
301 
302 	return ret;
303 }
304 
305 int dpu_encoder_helper_register_irq(struct dpu_encoder_phys *phys_enc,
306 		enum dpu_intr_idx intr_idx)
307 {
308 	struct dpu_encoder_irq *irq;
309 	int ret = 0;
310 
311 	if (!phys_enc || intr_idx >= INTR_IDX_MAX) {
312 		DPU_ERROR("invalid params\n");
313 		return -EINVAL;
314 	}
315 	irq = &phys_enc->irq[intr_idx];
316 
317 	if (irq->irq_idx >= 0) {
318 		DPU_DEBUG_PHYS(phys_enc,
319 				"skipping already registered irq %s type %d\n",
320 				irq->name, irq->intr_type);
321 		return 0;
322 	}
323 
324 	irq->irq_idx = dpu_core_irq_idx_lookup(phys_enc->dpu_kms,
325 			irq->intr_type, irq->hw_idx);
326 	if (irq->irq_idx < 0) {
327 		DPU_ERROR_PHYS(phys_enc,
328 			"failed to lookup IRQ index for %s type:%d\n",
329 			irq->name, irq->intr_type);
330 		return -EINVAL;
331 	}
332 
333 	ret = dpu_core_irq_register_callback(phys_enc->dpu_kms, irq->irq_idx,
334 			&irq->cb);
335 	if (ret) {
336 		DPU_ERROR_PHYS(phys_enc,
337 			"failed to register IRQ callback for %s\n",
338 			irq->name);
339 		irq->irq_idx = -EINVAL;
340 		return ret;
341 	}
342 
343 	ret = dpu_core_irq_enable(phys_enc->dpu_kms, &irq->irq_idx, 1);
344 	if (ret) {
345 		DRM_ERROR("enable failed id=%u, intr=%d, hw=%d, irq=%d",
346 			  DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
347 			  irq->irq_idx);
348 		dpu_core_irq_unregister_callback(phys_enc->dpu_kms,
349 				irq->irq_idx, &irq->cb);
350 		irq->irq_idx = -EINVAL;
351 		return ret;
352 	}
353 
354 	trace_dpu_enc_irq_register_success(DRMID(phys_enc->parent), intr_idx,
355 				irq->hw_idx, irq->irq_idx);
356 
357 	return ret;
358 }
359 
360 int dpu_encoder_helper_unregister_irq(struct dpu_encoder_phys *phys_enc,
361 		enum dpu_intr_idx intr_idx)
362 {
363 	struct dpu_encoder_irq *irq;
364 	int ret;
365 
366 	if (!phys_enc) {
367 		DPU_ERROR("invalid encoder\n");
368 		return -EINVAL;
369 	}
370 	irq = &phys_enc->irq[intr_idx];
371 
372 	/* silently skip irqs that weren't registered */
373 	if (irq->irq_idx < 0) {
374 		DRM_ERROR("duplicate unregister id=%u, intr=%d, hw=%d, irq=%d",
375 			  DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
376 			  irq->irq_idx);
377 		return 0;
378 	}
379 
380 	ret = dpu_core_irq_disable(phys_enc->dpu_kms, &irq->irq_idx, 1);
381 	if (ret) {
382 		DRM_ERROR("disable failed id=%u, intr=%d, hw=%d, irq=%d ret=%d",
383 			  DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
384 			  irq->irq_idx, ret);
385 	}
386 
387 	ret = dpu_core_irq_unregister_callback(phys_enc->dpu_kms, irq->irq_idx,
388 			&irq->cb);
389 	if (ret) {
390 		DRM_ERROR("unreg cb fail id=%u, intr=%d, hw=%d, irq=%d ret=%d",
391 			  DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
392 			  irq->irq_idx, ret);
393 	}
394 
395 	trace_dpu_enc_irq_unregister_success(DRMID(phys_enc->parent), intr_idx,
396 					     irq->hw_idx, irq->irq_idx);
397 
398 	irq->irq_idx = -EINVAL;
399 
400 	return 0;
401 }
402 
403 void dpu_encoder_get_hw_resources(struct drm_encoder *drm_enc,
404 				  struct dpu_encoder_hw_resources *hw_res)
405 {
406 	struct dpu_encoder_virt *dpu_enc = NULL;
407 	int i = 0;
408 
409 	dpu_enc = to_dpu_encoder_virt(drm_enc);
410 	DPU_DEBUG_ENC(dpu_enc, "\n");
411 
412 	/* Query resources used by phys encs, expected to be without overlap */
413 	memset(hw_res, 0, sizeof(*hw_res));
414 
415 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
416 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
417 
418 		if (phys && phys->ops.get_hw_resources)
419 			phys->ops.get_hw_resources(phys, hw_res);
420 	}
421 }
422 
423 static void dpu_encoder_destroy(struct drm_encoder *drm_enc)
424 {
425 	struct dpu_encoder_virt *dpu_enc = NULL;
426 	int i = 0;
427 
428 	if (!drm_enc) {
429 		DPU_ERROR("invalid encoder\n");
430 		return;
431 	}
432 
433 	dpu_enc = to_dpu_encoder_virt(drm_enc);
434 	DPU_DEBUG_ENC(dpu_enc, "\n");
435 
436 	mutex_lock(&dpu_enc->enc_lock);
437 
438 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
439 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
440 
441 		if (phys && phys->ops.destroy) {
442 			phys->ops.destroy(phys);
443 			--dpu_enc->num_phys_encs;
444 			dpu_enc->phys_encs[i] = NULL;
445 		}
446 	}
447 
448 	if (dpu_enc->num_phys_encs)
449 		DPU_ERROR_ENC(dpu_enc, "expected 0 num_phys_encs not %d\n",
450 				dpu_enc->num_phys_encs);
451 	dpu_enc->num_phys_encs = 0;
452 	mutex_unlock(&dpu_enc->enc_lock);
453 
454 	drm_encoder_cleanup(drm_enc);
455 	mutex_destroy(&dpu_enc->enc_lock);
456 }
457 
458 void dpu_encoder_helper_split_config(
459 		struct dpu_encoder_phys *phys_enc,
460 		enum dpu_intf interface)
461 {
462 	struct dpu_encoder_virt *dpu_enc;
463 	struct split_pipe_cfg cfg = { 0 };
464 	struct dpu_hw_mdp *hw_mdptop;
465 	struct msm_display_info *disp_info;
466 
467 	if (!phys_enc || !phys_enc->hw_mdptop || !phys_enc->parent) {
468 		DPU_ERROR("invalid arg(s), encoder %d\n", phys_enc != 0);
469 		return;
470 	}
471 
472 	dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
473 	hw_mdptop = phys_enc->hw_mdptop;
474 	disp_info = &dpu_enc->disp_info;
475 
476 	if (disp_info->intf_type != DRM_MODE_ENCODER_DSI)
477 		return;
478 
479 	/**
480 	 * disable split modes since encoder will be operating in as the only
481 	 * encoder, either for the entire use case in the case of, for example,
482 	 * single DSI, or for this frame in the case of left/right only partial
483 	 * update.
484 	 */
485 	if (phys_enc->split_role == ENC_ROLE_SOLO) {
486 		if (hw_mdptop->ops.setup_split_pipe)
487 			hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg);
488 		return;
489 	}
490 
491 	cfg.en = true;
492 	cfg.mode = phys_enc->intf_mode;
493 	cfg.intf = interface;
494 
495 	if (cfg.en && phys_enc->ops.needs_single_flush &&
496 			phys_enc->ops.needs_single_flush(phys_enc))
497 		cfg.split_flush_en = true;
498 
499 	if (phys_enc->split_role == ENC_ROLE_MASTER) {
500 		DPU_DEBUG_ENC(dpu_enc, "enable %d\n", cfg.en);
501 
502 		if (hw_mdptop->ops.setup_split_pipe)
503 			hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg);
504 	}
505 }
506 
507 static void _dpu_encoder_adjust_mode(struct drm_connector *connector,
508 		struct drm_display_mode *adj_mode)
509 {
510 	struct drm_display_mode *cur_mode;
511 
512 	if (!connector || !adj_mode)
513 		return;
514 
515 	list_for_each_entry(cur_mode, &connector->modes, head) {
516 		if (cur_mode->vdisplay == adj_mode->vdisplay &&
517 		    cur_mode->hdisplay == adj_mode->hdisplay &&
518 		    drm_mode_vrefresh(cur_mode) == drm_mode_vrefresh(adj_mode)) {
519 			adj_mode->private = cur_mode->private;
520 			adj_mode->private_flags |= cur_mode->private_flags;
521 		}
522 	}
523 }
524 
525 static struct msm_display_topology dpu_encoder_get_topology(
526 			struct dpu_encoder_virt *dpu_enc,
527 			struct dpu_kms *dpu_kms,
528 			struct drm_display_mode *mode)
529 {
530 	struct msm_display_topology topology;
531 	int i, intf_count = 0;
532 
533 	for (i = 0; i < MAX_PHYS_ENCODERS_PER_VIRTUAL; i++)
534 		if (dpu_enc->phys_encs[i])
535 			intf_count++;
536 
537 	/* User split topology for width > 1080 */
538 	topology.num_lm = (mode->vdisplay > MAX_VDISPLAY_SPLIT) ? 2 : 1;
539 	topology.num_enc = 0;
540 	topology.num_intf = intf_count;
541 
542 	return topology;
543 }
544 static int dpu_encoder_virt_atomic_check(
545 		struct drm_encoder *drm_enc,
546 		struct drm_crtc_state *crtc_state,
547 		struct drm_connector_state *conn_state)
548 {
549 	struct dpu_encoder_virt *dpu_enc;
550 	struct msm_drm_private *priv;
551 	struct dpu_kms *dpu_kms;
552 	const struct drm_display_mode *mode;
553 	struct drm_display_mode *adj_mode;
554 	struct msm_display_topology topology;
555 	int i = 0;
556 	int ret = 0;
557 
558 	if (!drm_enc || !crtc_state || !conn_state) {
559 		DPU_ERROR("invalid arg(s), drm_enc %d, crtc/conn state %d/%d\n",
560 				drm_enc != 0, crtc_state != 0, conn_state != 0);
561 		return -EINVAL;
562 	}
563 
564 	dpu_enc = to_dpu_encoder_virt(drm_enc);
565 	DPU_DEBUG_ENC(dpu_enc, "\n");
566 
567 	priv = drm_enc->dev->dev_private;
568 	dpu_kms = to_dpu_kms(priv->kms);
569 	mode = &crtc_state->mode;
570 	adj_mode = &crtc_state->adjusted_mode;
571 	trace_dpu_enc_atomic_check(DRMID(drm_enc));
572 
573 	/*
574 	 * display drivers may populate private fields of the drm display mode
575 	 * structure while registering possible modes of a connector with DRM.
576 	 * These private fields are not populated back while DRM invokes
577 	 * the mode_set callbacks. This module retrieves and populates the
578 	 * private fields of the given mode.
579 	 */
580 	_dpu_encoder_adjust_mode(conn_state->connector, adj_mode);
581 
582 	/* perform atomic check on the first physical encoder (master) */
583 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
584 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
585 
586 		if (phys && phys->ops.atomic_check)
587 			ret = phys->ops.atomic_check(phys, crtc_state,
588 					conn_state);
589 		else if (phys && phys->ops.mode_fixup)
590 			if (!phys->ops.mode_fixup(phys, mode, adj_mode))
591 				ret = -EINVAL;
592 
593 		if (ret) {
594 			DPU_ERROR_ENC(dpu_enc,
595 					"mode unsupported, phys idx %d\n", i);
596 			break;
597 		}
598 	}
599 
600 	topology = dpu_encoder_get_topology(dpu_enc, dpu_kms, adj_mode);
601 
602 	/* Reserve dynamic resources now. Indicating AtomicTest phase */
603 	if (!ret) {
604 		/*
605 		 * Avoid reserving resources when mode set is pending. Topology
606 		 * info may not be available to complete reservation.
607 		 */
608 		if (drm_atomic_crtc_needs_modeset(crtc_state)
609 				&& dpu_enc->mode_set_complete) {
610 			ret = dpu_rm_reserve(&dpu_kms->rm, drm_enc, crtc_state,
611 					     topology, true);
612 			dpu_enc->mode_set_complete = false;
613 		}
614 	}
615 
616 	trace_dpu_enc_atomic_check_flags(DRMID(drm_enc), adj_mode->flags,
617 			adj_mode->private_flags);
618 
619 	return ret;
620 }
621 
622 static void _dpu_encoder_update_vsync_source(struct dpu_encoder_virt *dpu_enc,
623 			struct msm_display_info *disp_info)
624 {
625 	struct dpu_vsync_source_cfg vsync_cfg = { 0 };
626 	struct msm_drm_private *priv;
627 	struct dpu_kms *dpu_kms;
628 	struct dpu_hw_mdp *hw_mdptop;
629 	struct drm_encoder *drm_enc;
630 	int i;
631 
632 	if (!dpu_enc || !disp_info) {
633 		DPU_ERROR("invalid param dpu_enc:%d or disp_info:%d\n",
634 					dpu_enc != NULL, disp_info != NULL);
635 		return;
636 	} else if (dpu_enc->num_phys_encs > ARRAY_SIZE(dpu_enc->hw_pp)) {
637 		DPU_ERROR("invalid num phys enc %d/%d\n",
638 				dpu_enc->num_phys_encs,
639 				(int) ARRAY_SIZE(dpu_enc->hw_pp));
640 		return;
641 	}
642 
643 	drm_enc = &dpu_enc->base;
644 	/* this pointers are checked in virt_enable_helper */
645 	priv = drm_enc->dev->dev_private;
646 
647 	dpu_kms = to_dpu_kms(priv->kms);
648 	if (!dpu_kms) {
649 		DPU_ERROR("invalid dpu_kms\n");
650 		return;
651 	}
652 
653 	hw_mdptop = dpu_kms->hw_mdp;
654 	if (!hw_mdptop) {
655 		DPU_ERROR("invalid mdptop\n");
656 		return;
657 	}
658 
659 	if (hw_mdptop->ops.setup_vsync_source &&
660 			disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE) {
661 		for (i = 0; i < dpu_enc->num_phys_encs; i++)
662 			vsync_cfg.ppnumber[i] = dpu_enc->hw_pp[i]->idx;
663 
664 		vsync_cfg.pp_count = dpu_enc->num_phys_encs;
665 		if (disp_info->is_te_using_watchdog_timer)
666 			vsync_cfg.vsync_source = DPU_VSYNC_SOURCE_WD_TIMER_0;
667 		else
668 			vsync_cfg.vsync_source = DPU_VSYNC0_SOURCE_GPIO;
669 
670 		hw_mdptop->ops.setup_vsync_source(hw_mdptop, &vsync_cfg);
671 	}
672 }
673 
674 static void _dpu_encoder_irq_control(struct drm_encoder *drm_enc, bool enable)
675 {
676 	struct dpu_encoder_virt *dpu_enc;
677 	int i;
678 
679 	if (!drm_enc) {
680 		DPU_ERROR("invalid encoder\n");
681 		return;
682 	}
683 
684 	dpu_enc = to_dpu_encoder_virt(drm_enc);
685 
686 	DPU_DEBUG_ENC(dpu_enc, "enable:%d\n", enable);
687 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
688 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
689 
690 		if (phys && phys->ops.irq_control)
691 			phys->ops.irq_control(phys, enable);
692 	}
693 
694 }
695 
696 static void _dpu_encoder_resource_control_helper(struct drm_encoder *drm_enc,
697 		bool enable)
698 {
699 	struct msm_drm_private *priv;
700 	struct dpu_kms *dpu_kms;
701 	struct dpu_encoder_virt *dpu_enc;
702 
703 	dpu_enc = to_dpu_encoder_virt(drm_enc);
704 	priv = drm_enc->dev->dev_private;
705 	dpu_kms = to_dpu_kms(priv->kms);
706 
707 	trace_dpu_enc_rc_helper(DRMID(drm_enc), enable);
708 
709 	if (!dpu_enc->cur_master) {
710 		DPU_ERROR("encoder master not set\n");
711 		return;
712 	}
713 
714 	if (enable) {
715 		/* enable DPU core clks */
716 		pm_runtime_get_sync(&dpu_kms->pdev->dev);
717 
718 		/* enable all the irq */
719 		_dpu_encoder_irq_control(drm_enc, true);
720 
721 	} else {
722 		/* disable all the irq */
723 		_dpu_encoder_irq_control(drm_enc, false);
724 
725 		/* disable DPU core clks */
726 		pm_runtime_put_sync(&dpu_kms->pdev->dev);
727 	}
728 
729 }
730 
731 static int dpu_encoder_resource_control(struct drm_encoder *drm_enc,
732 		u32 sw_event)
733 {
734 	struct dpu_encoder_virt *dpu_enc;
735 	struct msm_drm_private *priv;
736 	bool is_vid_mode = false;
737 
738 	if (!drm_enc || !drm_enc->dev || !drm_enc->dev->dev_private ||
739 			!drm_enc->crtc) {
740 		DPU_ERROR("invalid parameters\n");
741 		return -EINVAL;
742 	}
743 	dpu_enc = to_dpu_encoder_virt(drm_enc);
744 	priv = drm_enc->dev->dev_private;
745 	is_vid_mode = dpu_enc->disp_info.capabilities &
746 						MSM_DISPLAY_CAP_VID_MODE;
747 
748 	/*
749 	 * when idle_pc is not supported, process only KICKOFF, STOP and MODESET
750 	 * events and return early for other events (ie wb display).
751 	 */
752 	if (!dpu_enc->idle_pc_supported &&
753 			(sw_event != DPU_ENC_RC_EVENT_KICKOFF &&
754 			sw_event != DPU_ENC_RC_EVENT_STOP &&
755 			sw_event != DPU_ENC_RC_EVENT_PRE_STOP))
756 		return 0;
757 
758 	trace_dpu_enc_rc(DRMID(drm_enc), sw_event, dpu_enc->idle_pc_supported,
759 			 dpu_enc->rc_state, "begin");
760 
761 	switch (sw_event) {
762 	case DPU_ENC_RC_EVENT_KICKOFF:
763 		/* cancel delayed off work, if any */
764 		if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work))
765 			DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n",
766 					sw_event);
767 
768 		mutex_lock(&dpu_enc->rc_lock);
769 
770 		/* return if the resource control is already in ON state */
771 		if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) {
772 			DRM_DEBUG_KMS("id;%u, sw_event:%d, rc in ON state\n",
773 				      DRMID(drm_enc), sw_event);
774 			mutex_unlock(&dpu_enc->rc_lock);
775 			return 0;
776 		} else if (dpu_enc->rc_state != DPU_ENC_RC_STATE_OFF &&
777 				dpu_enc->rc_state != DPU_ENC_RC_STATE_IDLE) {
778 			DRM_DEBUG_KMS("id;%u, sw_event:%d, rc in state %d\n",
779 				      DRMID(drm_enc), sw_event,
780 				      dpu_enc->rc_state);
781 			mutex_unlock(&dpu_enc->rc_lock);
782 			return -EINVAL;
783 		}
784 
785 		if (is_vid_mode && dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE)
786 			_dpu_encoder_irq_control(drm_enc, true);
787 		else
788 			_dpu_encoder_resource_control_helper(drm_enc, true);
789 
790 		dpu_enc->rc_state = DPU_ENC_RC_STATE_ON;
791 
792 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
793 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
794 				 "kickoff");
795 
796 		mutex_unlock(&dpu_enc->rc_lock);
797 		break;
798 
799 	case DPU_ENC_RC_EVENT_FRAME_DONE:
800 		/*
801 		 * mutex lock is not used as this event happens at interrupt
802 		 * context. And locking is not required as, the other events
803 		 * like KICKOFF and STOP does a wait-for-idle before executing
804 		 * the resource_control
805 		 */
806 		if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) {
807 			DRM_DEBUG_KMS("id:%d, sw_event:%d,rc:%d-unexpected\n",
808 				      DRMID(drm_enc), sw_event,
809 				      dpu_enc->rc_state);
810 			return -EINVAL;
811 		}
812 
813 		/*
814 		 * schedule off work item only when there are no
815 		 * frames pending
816 		 */
817 		if (dpu_crtc_frame_pending(drm_enc->crtc) > 1) {
818 			DRM_DEBUG_KMS("id:%d skip schedule work\n",
819 				      DRMID(drm_enc));
820 			return 0;
821 		}
822 
823 		queue_delayed_work(priv->wq, &dpu_enc->delayed_off_work,
824 				   msecs_to_jiffies(dpu_enc->idle_timeout));
825 
826 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
827 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
828 				 "frame done");
829 		break;
830 
831 	case DPU_ENC_RC_EVENT_PRE_STOP:
832 		/* cancel delayed off work, if any */
833 		if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work))
834 			DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n",
835 					sw_event);
836 
837 		mutex_lock(&dpu_enc->rc_lock);
838 
839 		if (is_vid_mode &&
840 			  dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) {
841 			_dpu_encoder_irq_control(drm_enc, true);
842 		}
843 		/* skip if is already OFF or IDLE, resources are off already */
844 		else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF ||
845 				dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) {
846 			DRM_DEBUG_KMS("id:%u, sw_event:%d, rc in %d state\n",
847 				      DRMID(drm_enc), sw_event,
848 				      dpu_enc->rc_state);
849 			mutex_unlock(&dpu_enc->rc_lock);
850 			return 0;
851 		}
852 
853 		dpu_enc->rc_state = DPU_ENC_RC_STATE_PRE_OFF;
854 
855 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
856 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
857 				 "pre stop");
858 
859 		mutex_unlock(&dpu_enc->rc_lock);
860 		break;
861 
862 	case DPU_ENC_RC_EVENT_STOP:
863 		mutex_lock(&dpu_enc->rc_lock);
864 
865 		/* return if the resource control is already in OFF state */
866 		if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF) {
867 			DRM_DEBUG_KMS("id: %u, sw_event:%d, rc in OFF state\n",
868 				      DRMID(drm_enc), sw_event);
869 			mutex_unlock(&dpu_enc->rc_lock);
870 			return 0;
871 		} else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) {
872 			DRM_ERROR("id: %u, sw_event:%d, rc in state %d\n",
873 				  DRMID(drm_enc), sw_event, dpu_enc->rc_state);
874 			mutex_unlock(&dpu_enc->rc_lock);
875 			return -EINVAL;
876 		}
877 
878 		/**
879 		 * expect to arrive here only if in either idle state or pre-off
880 		 * and in IDLE state the resources are already disabled
881 		 */
882 		if (dpu_enc->rc_state == DPU_ENC_RC_STATE_PRE_OFF)
883 			_dpu_encoder_resource_control_helper(drm_enc, false);
884 
885 		dpu_enc->rc_state = DPU_ENC_RC_STATE_OFF;
886 
887 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
888 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
889 				 "stop");
890 
891 		mutex_unlock(&dpu_enc->rc_lock);
892 		break;
893 
894 	case DPU_ENC_RC_EVENT_ENTER_IDLE:
895 		mutex_lock(&dpu_enc->rc_lock);
896 
897 		if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) {
898 			DRM_ERROR("id: %u, sw_event:%d, rc:%d !ON state\n",
899 				  DRMID(drm_enc), sw_event, dpu_enc->rc_state);
900 			mutex_unlock(&dpu_enc->rc_lock);
901 			return 0;
902 		}
903 
904 		/*
905 		 * if we are in ON but a frame was just kicked off,
906 		 * ignore the IDLE event, it's probably a stale timer event
907 		 */
908 		if (dpu_enc->frame_busy_mask[0]) {
909 			DRM_ERROR("id:%u, sw_event:%d, rc:%d frame pending\n",
910 				  DRMID(drm_enc), sw_event, dpu_enc->rc_state);
911 			mutex_unlock(&dpu_enc->rc_lock);
912 			return 0;
913 		}
914 
915 		if (is_vid_mode)
916 			_dpu_encoder_irq_control(drm_enc, false);
917 		else
918 			_dpu_encoder_resource_control_helper(drm_enc, false);
919 
920 		dpu_enc->rc_state = DPU_ENC_RC_STATE_IDLE;
921 
922 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
923 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
924 				 "idle");
925 
926 		mutex_unlock(&dpu_enc->rc_lock);
927 		break;
928 
929 	default:
930 		DRM_ERROR("id:%u, unexpected sw_event: %d\n", DRMID(drm_enc),
931 			  sw_event);
932 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
933 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
934 				 "error");
935 		break;
936 	}
937 
938 	trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
939 			 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
940 			 "end");
941 	return 0;
942 }
943 
944 static void dpu_encoder_virt_mode_set(struct drm_encoder *drm_enc,
945 				      struct drm_display_mode *mode,
946 				      struct drm_display_mode *adj_mode)
947 {
948 	struct dpu_encoder_virt *dpu_enc;
949 	struct msm_drm_private *priv;
950 	struct dpu_kms *dpu_kms;
951 	struct list_head *connector_list;
952 	struct drm_connector *conn = NULL, *conn_iter;
953 	struct drm_crtc *drm_crtc;
954 	struct dpu_crtc_state *cstate;
955 	struct dpu_rm_hw_iter hw_iter;
956 	struct msm_display_topology topology;
957 	struct dpu_hw_ctl *hw_ctl[MAX_CHANNELS_PER_ENC] = { NULL };
958 	struct dpu_hw_mixer *hw_lm[MAX_CHANNELS_PER_ENC] = { NULL };
959 	int num_lm = 0, num_ctl = 0;
960 	int i, j, ret;
961 
962 	if (!drm_enc) {
963 		DPU_ERROR("invalid encoder\n");
964 		return;
965 	}
966 
967 	dpu_enc = to_dpu_encoder_virt(drm_enc);
968 	DPU_DEBUG_ENC(dpu_enc, "\n");
969 
970 	priv = drm_enc->dev->dev_private;
971 	dpu_kms = to_dpu_kms(priv->kms);
972 	connector_list = &dpu_kms->dev->mode_config.connector_list;
973 
974 	trace_dpu_enc_mode_set(DRMID(drm_enc));
975 
976 	list_for_each_entry(conn_iter, connector_list, head)
977 		if (conn_iter->encoder == drm_enc)
978 			conn = conn_iter;
979 
980 	if (!conn) {
981 		DPU_ERROR_ENC(dpu_enc, "failed to find attached connector\n");
982 		return;
983 	} else if (!conn->state) {
984 		DPU_ERROR_ENC(dpu_enc, "invalid connector state\n");
985 		return;
986 	}
987 
988 	drm_for_each_crtc(drm_crtc, drm_enc->dev)
989 		if (drm_crtc->state->encoder_mask & drm_encoder_mask(drm_enc))
990 			break;
991 
992 	topology = dpu_encoder_get_topology(dpu_enc, dpu_kms, adj_mode);
993 
994 	/* Reserve dynamic resources now. Indicating non-AtomicTest phase */
995 	ret = dpu_rm_reserve(&dpu_kms->rm, drm_enc, drm_crtc->state,
996 			     topology, false);
997 	if (ret) {
998 		DPU_ERROR_ENC(dpu_enc,
999 				"failed to reserve hw resources, %d\n", ret);
1000 		return;
1001 	}
1002 
1003 	dpu_rm_init_hw_iter(&hw_iter, drm_enc->base.id, DPU_HW_BLK_PINGPONG);
1004 	for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
1005 		dpu_enc->hw_pp[i] = NULL;
1006 		if (!dpu_rm_get_hw(&dpu_kms->rm, &hw_iter))
1007 			break;
1008 		dpu_enc->hw_pp[i] = (struct dpu_hw_pingpong *) hw_iter.hw;
1009 	}
1010 
1011 	dpu_rm_init_hw_iter(&hw_iter, drm_enc->base.id, DPU_HW_BLK_CTL);
1012 	for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
1013 		if (!dpu_rm_get_hw(&dpu_kms->rm, &hw_iter))
1014 			break;
1015 		hw_ctl[i] = (struct dpu_hw_ctl *)hw_iter.hw;
1016 		num_ctl++;
1017 	}
1018 
1019 	dpu_rm_init_hw_iter(&hw_iter, drm_enc->base.id, DPU_HW_BLK_LM);
1020 	for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
1021 		if (!dpu_rm_get_hw(&dpu_kms->rm, &hw_iter))
1022 			break;
1023 		hw_lm[i] = (struct dpu_hw_mixer *)hw_iter.hw;
1024 		num_lm++;
1025 	}
1026 
1027 	cstate = to_dpu_crtc_state(drm_crtc->state);
1028 
1029 	for (i = 0; i < num_lm; i++) {
1030 		int ctl_idx = (i < num_ctl) ? i : (num_ctl-1);
1031 
1032 		cstate->mixers[i].hw_lm = hw_lm[i];
1033 		cstate->mixers[i].lm_ctl = hw_ctl[ctl_idx];
1034 	}
1035 
1036 	cstate->num_mixers = num_lm;
1037 
1038 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1039 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1040 
1041 		if (phys) {
1042 			if (!dpu_enc->hw_pp[i]) {
1043 				DPU_ERROR_ENC(dpu_enc, "no pp block assigned"
1044 					     "at idx: %d\n", i);
1045 				goto error;
1046 			}
1047 
1048 			if (!hw_ctl[i]) {
1049 				DPU_ERROR_ENC(dpu_enc, "no ctl block assigned"
1050 					     "at idx: %d\n", i);
1051 				goto error;
1052 			}
1053 
1054 			phys->hw_pp = dpu_enc->hw_pp[i];
1055 			phys->hw_ctl = hw_ctl[i];
1056 
1057 			dpu_rm_init_hw_iter(&hw_iter, drm_enc->base.id,
1058 					    DPU_HW_BLK_INTF);
1059 			for (j = 0; j < MAX_CHANNELS_PER_ENC; j++) {
1060 				struct dpu_hw_intf *hw_intf;
1061 
1062 				if (!dpu_rm_get_hw(&dpu_kms->rm, &hw_iter))
1063 					break;
1064 
1065 				hw_intf = (struct dpu_hw_intf *)hw_iter.hw;
1066 				if (hw_intf->idx == phys->intf_idx)
1067 					phys->hw_intf = hw_intf;
1068 			}
1069 
1070 			if (!phys->hw_intf) {
1071 				DPU_ERROR_ENC(dpu_enc,
1072 					      "no intf block assigned at idx: %d\n",
1073 					      i);
1074 				goto error;
1075 			}
1076 
1077 			phys->connector = conn->state->connector;
1078 			if (phys->ops.mode_set)
1079 				phys->ops.mode_set(phys, mode, adj_mode);
1080 		}
1081 	}
1082 
1083 	dpu_enc->mode_set_complete = true;
1084 
1085 error:
1086 	dpu_rm_release(&dpu_kms->rm, drm_enc);
1087 }
1088 
1089 static void _dpu_encoder_virt_enable_helper(struct drm_encoder *drm_enc)
1090 {
1091 	struct dpu_encoder_virt *dpu_enc = NULL;
1092 	struct msm_drm_private *priv;
1093 	struct dpu_kms *dpu_kms;
1094 
1095 	if (!drm_enc || !drm_enc->dev || !drm_enc->dev->dev_private) {
1096 		DPU_ERROR("invalid parameters\n");
1097 		return;
1098 	}
1099 
1100 	priv = drm_enc->dev->dev_private;
1101 	dpu_kms = to_dpu_kms(priv->kms);
1102 	if (!dpu_kms) {
1103 		DPU_ERROR("invalid dpu_kms\n");
1104 		return;
1105 	}
1106 
1107 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1108 	if (!dpu_enc || !dpu_enc->cur_master) {
1109 		DPU_ERROR("invalid dpu encoder/master\n");
1110 		return;
1111 	}
1112 
1113 	if (dpu_enc->cur_master->hw_mdptop &&
1114 			dpu_enc->cur_master->hw_mdptop->ops.reset_ubwc)
1115 		dpu_enc->cur_master->hw_mdptop->ops.reset_ubwc(
1116 				dpu_enc->cur_master->hw_mdptop,
1117 				dpu_kms->catalog);
1118 
1119 	_dpu_encoder_update_vsync_source(dpu_enc, &dpu_enc->disp_info);
1120 }
1121 
1122 void dpu_encoder_virt_runtime_resume(struct drm_encoder *drm_enc)
1123 {
1124 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1125 
1126 	mutex_lock(&dpu_enc->enc_lock);
1127 
1128 	if (!dpu_enc->enabled)
1129 		goto out;
1130 
1131 	if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.restore)
1132 		dpu_enc->cur_slave->ops.restore(dpu_enc->cur_slave);
1133 	if (dpu_enc->cur_master && dpu_enc->cur_master->ops.restore)
1134 		dpu_enc->cur_master->ops.restore(dpu_enc->cur_master);
1135 
1136 	_dpu_encoder_virt_enable_helper(drm_enc);
1137 
1138 out:
1139 	mutex_unlock(&dpu_enc->enc_lock);
1140 }
1141 
1142 static void dpu_encoder_virt_enable(struct drm_encoder *drm_enc)
1143 {
1144 	struct dpu_encoder_virt *dpu_enc = NULL;
1145 	int ret = 0;
1146 	struct drm_display_mode *cur_mode = NULL;
1147 
1148 	if (!drm_enc) {
1149 		DPU_ERROR("invalid encoder\n");
1150 		return;
1151 	}
1152 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1153 
1154 	mutex_lock(&dpu_enc->enc_lock);
1155 	cur_mode = &dpu_enc->base.crtc->state->adjusted_mode;
1156 
1157 	trace_dpu_enc_enable(DRMID(drm_enc), cur_mode->hdisplay,
1158 			     cur_mode->vdisplay);
1159 
1160 	/* always enable slave encoder before master */
1161 	if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.enable)
1162 		dpu_enc->cur_slave->ops.enable(dpu_enc->cur_slave);
1163 
1164 	if (dpu_enc->cur_master && dpu_enc->cur_master->ops.enable)
1165 		dpu_enc->cur_master->ops.enable(dpu_enc->cur_master);
1166 
1167 	ret = dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF);
1168 	if (ret) {
1169 		DPU_ERROR_ENC(dpu_enc, "dpu resource control failed: %d\n",
1170 				ret);
1171 		goto out;
1172 	}
1173 
1174 	_dpu_encoder_virt_enable_helper(drm_enc);
1175 
1176 	dpu_enc->enabled = true;
1177 
1178 out:
1179 	mutex_unlock(&dpu_enc->enc_lock);
1180 }
1181 
1182 static void dpu_encoder_virt_disable(struct drm_encoder *drm_enc)
1183 {
1184 	struct dpu_encoder_virt *dpu_enc = NULL;
1185 	struct msm_drm_private *priv;
1186 	struct dpu_kms *dpu_kms;
1187 	struct drm_display_mode *mode;
1188 	int i = 0;
1189 
1190 	if (!drm_enc) {
1191 		DPU_ERROR("invalid encoder\n");
1192 		return;
1193 	} else if (!drm_enc->dev) {
1194 		DPU_ERROR("invalid dev\n");
1195 		return;
1196 	} else if (!drm_enc->dev->dev_private) {
1197 		DPU_ERROR("invalid dev_private\n");
1198 		return;
1199 	}
1200 
1201 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1202 	DPU_DEBUG_ENC(dpu_enc, "\n");
1203 
1204 	mutex_lock(&dpu_enc->enc_lock);
1205 	dpu_enc->enabled = false;
1206 
1207 	mode = &drm_enc->crtc->state->adjusted_mode;
1208 
1209 	priv = drm_enc->dev->dev_private;
1210 	dpu_kms = to_dpu_kms(priv->kms);
1211 
1212 	trace_dpu_enc_disable(DRMID(drm_enc));
1213 
1214 	/* wait for idle */
1215 	dpu_encoder_wait_for_event(drm_enc, MSM_ENC_TX_COMPLETE);
1216 
1217 	dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_PRE_STOP);
1218 
1219 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1220 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1221 
1222 		if (phys && phys->ops.disable)
1223 			phys->ops.disable(phys);
1224 	}
1225 
1226 	/* after phys waits for frame-done, should be no more frames pending */
1227 	if (atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) {
1228 		DPU_ERROR("enc%d timeout pending\n", drm_enc->base.id);
1229 		del_timer_sync(&dpu_enc->frame_done_timer);
1230 	}
1231 
1232 	dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_STOP);
1233 
1234 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1235 		if (dpu_enc->phys_encs[i])
1236 			dpu_enc->phys_encs[i]->connector = NULL;
1237 	}
1238 
1239 	DPU_DEBUG_ENC(dpu_enc, "encoder disabled\n");
1240 
1241 	dpu_rm_release(&dpu_kms->rm, drm_enc);
1242 
1243 	mutex_unlock(&dpu_enc->enc_lock);
1244 }
1245 
1246 static enum dpu_intf dpu_encoder_get_intf(struct dpu_mdss_cfg *catalog,
1247 		enum dpu_intf_type type, u32 controller_id)
1248 {
1249 	int i = 0;
1250 
1251 	for (i = 0; i < catalog->intf_count; i++) {
1252 		if (catalog->intf[i].type == type
1253 		    && catalog->intf[i].controller_id == controller_id) {
1254 			return catalog->intf[i].id;
1255 		}
1256 	}
1257 
1258 	return INTF_MAX;
1259 }
1260 
1261 static void dpu_encoder_vblank_callback(struct drm_encoder *drm_enc,
1262 		struct dpu_encoder_phys *phy_enc)
1263 {
1264 	struct dpu_encoder_virt *dpu_enc = NULL;
1265 	unsigned long lock_flags;
1266 
1267 	if (!drm_enc || !phy_enc)
1268 		return;
1269 
1270 	DPU_ATRACE_BEGIN("encoder_vblank_callback");
1271 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1272 
1273 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1274 	if (dpu_enc->crtc)
1275 		dpu_crtc_vblank_callback(dpu_enc->crtc);
1276 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1277 
1278 	atomic_inc(&phy_enc->vsync_cnt);
1279 	DPU_ATRACE_END("encoder_vblank_callback");
1280 }
1281 
1282 static void dpu_encoder_underrun_callback(struct drm_encoder *drm_enc,
1283 		struct dpu_encoder_phys *phy_enc)
1284 {
1285 	if (!phy_enc)
1286 		return;
1287 
1288 	DPU_ATRACE_BEGIN("encoder_underrun_callback");
1289 	atomic_inc(&phy_enc->underrun_cnt);
1290 	trace_dpu_enc_underrun_cb(DRMID(drm_enc),
1291 				  atomic_read(&phy_enc->underrun_cnt));
1292 	DPU_ATRACE_END("encoder_underrun_callback");
1293 }
1294 
1295 void dpu_encoder_assign_crtc(struct drm_encoder *drm_enc, struct drm_crtc *crtc)
1296 {
1297 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1298 	unsigned long lock_flags;
1299 
1300 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1301 	/* crtc should always be cleared before re-assigning */
1302 	WARN_ON(crtc && dpu_enc->crtc);
1303 	dpu_enc->crtc = crtc;
1304 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1305 }
1306 
1307 void dpu_encoder_toggle_vblank_for_crtc(struct drm_encoder *drm_enc,
1308 					struct drm_crtc *crtc, bool enable)
1309 {
1310 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1311 	unsigned long lock_flags;
1312 	int i;
1313 
1314 	trace_dpu_enc_vblank_cb(DRMID(drm_enc), enable);
1315 
1316 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1317 	if (dpu_enc->crtc != crtc) {
1318 		spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1319 		return;
1320 	}
1321 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1322 
1323 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1324 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1325 
1326 		if (phys && phys->ops.control_vblank_irq)
1327 			phys->ops.control_vblank_irq(phys, enable);
1328 	}
1329 }
1330 
1331 void dpu_encoder_register_frame_event_callback(struct drm_encoder *drm_enc,
1332 		void (*frame_event_cb)(void *, u32 event),
1333 		void *frame_event_cb_data)
1334 {
1335 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1336 	unsigned long lock_flags;
1337 	bool enable;
1338 
1339 	enable = frame_event_cb ? true : false;
1340 
1341 	if (!drm_enc) {
1342 		DPU_ERROR("invalid encoder\n");
1343 		return;
1344 	}
1345 	trace_dpu_enc_frame_event_cb(DRMID(drm_enc), enable);
1346 
1347 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1348 	dpu_enc->crtc_frame_event_cb = frame_event_cb;
1349 	dpu_enc->crtc_frame_event_cb_data = frame_event_cb_data;
1350 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1351 }
1352 
1353 static void dpu_encoder_frame_done_callback(
1354 		struct drm_encoder *drm_enc,
1355 		struct dpu_encoder_phys *ready_phys, u32 event)
1356 {
1357 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1358 	unsigned int i;
1359 
1360 	if (event & (DPU_ENCODER_FRAME_EVENT_DONE
1361 			| DPU_ENCODER_FRAME_EVENT_ERROR
1362 			| DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)) {
1363 
1364 		if (!dpu_enc->frame_busy_mask[0]) {
1365 			/**
1366 			 * suppress frame_done without waiter,
1367 			 * likely autorefresh
1368 			 */
1369 			trace_dpu_enc_frame_done_cb_not_busy(DRMID(drm_enc),
1370 					event, ready_phys->intf_idx);
1371 			return;
1372 		}
1373 
1374 		/* One of the physical encoders has become idle */
1375 		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1376 			if (dpu_enc->phys_encs[i] == ready_phys) {
1377 				trace_dpu_enc_frame_done_cb(DRMID(drm_enc), i,
1378 						dpu_enc->frame_busy_mask[0]);
1379 				clear_bit(i, dpu_enc->frame_busy_mask);
1380 			}
1381 		}
1382 
1383 		if (!dpu_enc->frame_busy_mask[0]) {
1384 			atomic_set(&dpu_enc->frame_done_timeout_ms, 0);
1385 			del_timer(&dpu_enc->frame_done_timer);
1386 
1387 			dpu_encoder_resource_control(drm_enc,
1388 					DPU_ENC_RC_EVENT_FRAME_DONE);
1389 
1390 			if (dpu_enc->crtc_frame_event_cb)
1391 				dpu_enc->crtc_frame_event_cb(
1392 					dpu_enc->crtc_frame_event_cb_data,
1393 					event);
1394 		}
1395 	} else {
1396 		if (dpu_enc->crtc_frame_event_cb)
1397 			dpu_enc->crtc_frame_event_cb(
1398 				dpu_enc->crtc_frame_event_cb_data, event);
1399 	}
1400 }
1401 
1402 static void dpu_encoder_off_work(struct work_struct *work)
1403 {
1404 	struct dpu_encoder_virt *dpu_enc = container_of(work,
1405 			struct dpu_encoder_virt, delayed_off_work.work);
1406 
1407 	if (!dpu_enc) {
1408 		DPU_ERROR("invalid dpu encoder\n");
1409 		return;
1410 	}
1411 
1412 	dpu_encoder_resource_control(&dpu_enc->base,
1413 						DPU_ENC_RC_EVENT_ENTER_IDLE);
1414 
1415 	dpu_encoder_frame_done_callback(&dpu_enc->base, NULL,
1416 				DPU_ENCODER_FRAME_EVENT_IDLE);
1417 }
1418 
1419 /**
1420  * _dpu_encoder_trigger_flush - trigger flush for a physical encoder
1421  * drm_enc: Pointer to drm encoder structure
1422  * phys: Pointer to physical encoder structure
1423  * extra_flush_bits: Additional bit mask to include in flush trigger
1424  */
1425 static void _dpu_encoder_trigger_flush(struct drm_encoder *drm_enc,
1426 		struct dpu_encoder_phys *phys, uint32_t extra_flush_bits)
1427 {
1428 	struct dpu_hw_ctl *ctl;
1429 	int pending_kickoff_cnt;
1430 	u32 ret = UINT_MAX;
1431 
1432 	if (!phys->hw_pp) {
1433 		DPU_ERROR("invalid pingpong hw\n");
1434 		return;
1435 	}
1436 
1437 	ctl = phys->hw_ctl;
1438 	if (!ctl || !ctl->ops.trigger_flush) {
1439 		DPU_ERROR("missing trigger cb\n");
1440 		return;
1441 	}
1442 
1443 	pending_kickoff_cnt = dpu_encoder_phys_inc_pending(phys);
1444 
1445 	if (extra_flush_bits && ctl->ops.update_pending_flush)
1446 		ctl->ops.update_pending_flush(ctl, extra_flush_bits);
1447 
1448 	ctl->ops.trigger_flush(ctl);
1449 
1450 	if (ctl->ops.get_pending_flush)
1451 		ret = ctl->ops.get_pending_flush(ctl);
1452 
1453 	trace_dpu_enc_trigger_flush(DRMID(drm_enc), phys->intf_idx,
1454 				    pending_kickoff_cnt, ctl->idx,
1455 				    extra_flush_bits, ret);
1456 }
1457 
1458 /**
1459  * _dpu_encoder_trigger_start - trigger start for a physical encoder
1460  * phys: Pointer to physical encoder structure
1461  */
1462 static void _dpu_encoder_trigger_start(struct dpu_encoder_phys *phys)
1463 {
1464 	if (!phys) {
1465 		DPU_ERROR("invalid argument(s)\n");
1466 		return;
1467 	}
1468 
1469 	if (!phys->hw_pp) {
1470 		DPU_ERROR("invalid pingpong hw\n");
1471 		return;
1472 	}
1473 
1474 	if (phys->ops.trigger_start && phys->enable_state != DPU_ENC_DISABLED)
1475 		phys->ops.trigger_start(phys);
1476 }
1477 
1478 void dpu_encoder_helper_trigger_start(struct dpu_encoder_phys *phys_enc)
1479 {
1480 	struct dpu_hw_ctl *ctl;
1481 
1482 	if (!phys_enc) {
1483 		DPU_ERROR("invalid encoder\n");
1484 		return;
1485 	}
1486 
1487 	ctl = phys_enc->hw_ctl;
1488 	if (ctl && ctl->ops.trigger_start) {
1489 		ctl->ops.trigger_start(ctl);
1490 		trace_dpu_enc_trigger_start(DRMID(phys_enc->parent), ctl->idx);
1491 	}
1492 }
1493 
1494 static int dpu_encoder_helper_wait_event_timeout(
1495 		int32_t drm_id,
1496 		int32_t hw_id,
1497 		struct dpu_encoder_wait_info *info)
1498 {
1499 	int rc = 0;
1500 	s64 expected_time = ktime_to_ms(ktime_get()) + info->timeout_ms;
1501 	s64 jiffies = msecs_to_jiffies(info->timeout_ms);
1502 	s64 time;
1503 
1504 	do {
1505 		rc = wait_event_timeout(*(info->wq),
1506 				atomic_read(info->atomic_cnt) == 0, jiffies);
1507 		time = ktime_to_ms(ktime_get());
1508 
1509 		trace_dpu_enc_wait_event_timeout(drm_id, hw_id, rc, time,
1510 						 expected_time,
1511 						 atomic_read(info->atomic_cnt));
1512 	/* If we timed out, counter is valid and time is less, wait again */
1513 	} while (atomic_read(info->atomic_cnt) && (rc == 0) &&
1514 			(time < expected_time));
1515 
1516 	return rc;
1517 }
1518 
1519 static void dpu_encoder_helper_hw_reset(struct dpu_encoder_phys *phys_enc)
1520 {
1521 	struct dpu_encoder_virt *dpu_enc;
1522 	struct dpu_hw_ctl *ctl;
1523 	int rc;
1524 
1525 	if (!phys_enc) {
1526 		DPU_ERROR("invalid encoder\n");
1527 		return;
1528 	}
1529 	dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
1530 	ctl = phys_enc->hw_ctl;
1531 
1532 	if (!ctl || !ctl->ops.reset)
1533 		return;
1534 
1535 	DRM_DEBUG_KMS("id:%u ctl %d reset\n", DRMID(phys_enc->parent),
1536 		      ctl->idx);
1537 
1538 	rc = ctl->ops.reset(ctl);
1539 	if (rc)
1540 		DPU_ERROR_ENC(dpu_enc, "ctl %d reset failure\n",  ctl->idx);
1541 
1542 	phys_enc->enable_state = DPU_ENC_ENABLED;
1543 }
1544 
1545 /**
1546  * _dpu_encoder_kickoff_phys - handle physical encoder kickoff
1547  *	Iterate through the physical encoders and perform consolidated flush
1548  *	and/or control start triggering as needed. This is done in the virtual
1549  *	encoder rather than the individual physical ones in order to handle
1550  *	use cases that require visibility into multiple physical encoders at
1551  *	a time.
1552  * dpu_enc: Pointer to virtual encoder structure
1553  */
1554 static void _dpu_encoder_kickoff_phys(struct dpu_encoder_virt *dpu_enc)
1555 {
1556 	struct dpu_hw_ctl *ctl;
1557 	uint32_t i, pending_flush;
1558 	unsigned long lock_flags;
1559 
1560 	pending_flush = 0x0;
1561 
1562 	/* update pending counts and trigger kickoff ctl flush atomically */
1563 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1564 
1565 	/* don't perform flush/start operations for slave encoders */
1566 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1567 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1568 
1569 		if (!phys || phys->enable_state == DPU_ENC_DISABLED)
1570 			continue;
1571 
1572 		ctl = phys->hw_ctl;
1573 		if (!ctl)
1574 			continue;
1575 
1576 		/*
1577 		 * This is cleared in frame_done worker, which isn't invoked
1578 		 * for async commits. So don't set this for async, since it'll
1579 		 * roll over to the next commit.
1580 		 */
1581 		if (phys->split_role != ENC_ROLE_SLAVE)
1582 			set_bit(i, dpu_enc->frame_busy_mask);
1583 
1584 		if (!phys->ops.needs_single_flush ||
1585 				!phys->ops.needs_single_flush(phys))
1586 			_dpu_encoder_trigger_flush(&dpu_enc->base, phys, 0x0);
1587 		else if (ctl->ops.get_pending_flush)
1588 			pending_flush |= ctl->ops.get_pending_flush(ctl);
1589 	}
1590 
1591 	/* for split flush, combine pending flush masks and send to master */
1592 	if (pending_flush && dpu_enc->cur_master) {
1593 		_dpu_encoder_trigger_flush(
1594 				&dpu_enc->base,
1595 				dpu_enc->cur_master,
1596 				pending_flush);
1597 	}
1598 
1599 	_dpu_encoder_trigger_start(dpu_enc->cur_master);
1600 
1601 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1602 }
1603 
1604 void dpu_encoder_trigger_kickoff_pending(struct drm_encoder *drm_enc)
1605 {
1606 	struct dpu_encoder_virt *dpu_enc;
1607 	struct dpu_encoder_phys *phys;
1608 	unsigned int i;
1609 	struct dpu_hw_ctl *ctl;
1610 	struct msm_display_info *disp_info;
1611 
1612 	if (!drm_enc) {
1613 		DPU_ERROR("invalid encoder\n");
1614 		return;
1615 	}
1616 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1617 	disp_info = &dpu_enc->disp_info;
1618 
1619 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1620 		phys = dpu_enc->phys_encs[i];
1621 
1622 		if (phys && phys->hw_ctl) {
1623 			ctl = phys->hw_ctl;
1624 			if (ctl->ops.clear_pending_flush)
1625 				ctl->ops.clear_pending_flush(ctl);
1626 
1627 			/* update only for command mode primary ctl */
1628 			if ((phys == dpu_enc->cur_master) &&
1629 			   (disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE)
1630 			    && ctl->ops.trigger_pending)
1631 				ctl->ops.trigger_pending(ctl);
1632 		}
1633 	}
1634 }
1635 
1636 static u32 _dpu_encoder_calculate_linetime(struct dpu_encoder_virt *dpu_enc,
1637 		struct drm_display_mode *mode)
1638 {
1639 	u64 pclk_rate;
1640 	u32 pclk_period;
1641 	u32 line_time;
1642 
1643 	/*
1644 	 * For linetime calculation, only operate on master encoder.
1645 	 */
1646 	if (!dpu_enc->cur_master)
1647 		return 0;
1648 
1649 	if (!dpu_enc->cur_master->ops.get_line_count) {
1650 		DPU_ERROR("get_line_count function not defined\n");
1651 		return 0;
1652 	}
1653 
1654 	pclk_rate = mode->clock; /* pixel clock in kHz */
1655 	if (pclk_rate == 0) {
1656 		DPU_ERROR("pclk is 0, cannot calculate line time\n");
1657 		return 0;
1658 	}
1659 
1660 	pclk_period = DIV_ROUND_UP_ULL(1000000000ull, pclk_rate);
1661 	if (pclk_period == 0) {
1662 		DPU_ERROR("pclk period is 0\n");
1663 		return 0;
1664 	}
1665 
1666 	/*
1667 	 * Line time calculation based on Pixel clock and HTOTAL.
1668 	 * Final unit is in ns.
1669 	 */
1670 	line_time = (pclk_period * mode->htotal) / 1000;
1671 	if (line_time == 0) {
1672 		DPU_ERROR("line time calculation is 0\n");
1673 		return 0;
1674 	}
1675 
1676 	DPU_DEBUG_ENC(dpu_enc,
1677 			"clk_rate=%lldkHz, clk_period=%d, linetime=%dns\n",
1678 			pclk_rate, pclk_period, line_time);
1679 
1680 	return line_time;
1681 }
1682 
1683 int dpu_encoder_vsync_time(struct drm_encoder *drm_enc, ktime_t *wakeup_time)
1684 {
1685 	struct drm_display_mode *mode;
1686 	struct dpu_encoder_virt *dpu_enc;
1687 	u32 cur_line;
1688 	u32 line_time;
1689 	u32 vtotal, time_to_vsync;
1690 	ktime_t cur_time;
1691 
1692 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1693 
1694 	if (!drm_enc->crtc || !drm_enc->crtc->state) {
1695 		DPU_ERROR("crtc/crtc state object is NULL\n");
1696 		return -EINVAL;
1697 	}
1698 	mode = &drm_enc->crtc->state->adjusted_mode;
1699 
1700 	line_time = _dpu_encoder_calculate_linetime(dpu_enc, mode);
1701 	if (!line_time)
1702 		return -EINVAL;
1703 
1704 	cur_line = dpu_enc->cur_master->ops.get_line_count(dpu_enc->cur_master);
1705 
1706 	vtotal = mode->vtotal;
1707 	if (cur_line >= vtotal)
1708 		time_to_vsync = line_time * vtotal;
1709 	else
1710 		time_to_vsync = line_time * (vtotal - cur_line);
1711 
1712 	if (time_to_vsync == 0) {
1713 		DPU_ERROR("time to vsync should not be zero, vtotal=%d\n",
1714 				vtotal);
1715 		return -EINVAL;
1716 	}
1717 
1718 	cur_time = ktime_get();
1719 	*wakeup_time = ktime_add_ns(cur_time, time_to_vsync);
1720 
1721 	DPU_DEBUG_ENC(dpu_enc,
1722 			"cur_line=%u vtotal=%u time_to_vsync=%u, cur_time=%lld, wakeup_time=%lld\n",
1723 			cur_line, vtotal, time_to_vsync,
1724 			ktime_to_ms(cur_time),
1725 			ktime_to_ms(*wakeup_time));
1726 	return 0;
1727 }
1728 
1729 static void dpu_encoder_vsync_event_handler(struct timer_list *t)
1730 {
1731 	struct dpu_encoder_virt *dpu_enc = from_timer(dpu_enc, t,
1732 			vsync_event_timer);
1733 	struct drm_encoder *drm_enc = &dpu_enc->base;
1734 	struct msm_drm_private *priv;
1735 	struct msm_drm_thread *event_thread;
1736 
1737 	if (!drm_enc->dev || !drm_enc->dev->dev_private ||
1738 			!drm_enc->crtc) {
1739 		DPU_ERROR("invalid parameters\n");
1740 		return;
1741 	}
1742 
1743 	priv = drm_enc->dev->dev_private;
1744 
1745 	if (drm_enc->crtc->index >= ARRAY_SIZE(priv->event_thread)) {
1746 		DPU_ERROR("invalid crtc index\n");
1747 		return;
1748 	}
1749 	event_thread = &priv->event_thread[drm_enc->crtc->index];
1750 	if (!event_thread) {
1751 		DPU_ERROR("event_thread not found for crtc:%d\n",
1752 				drm_enc->crtc->index);
1753 		return;
1754 	}
1755 
1756 	del_timer(&dpu_enc->vsync_event_timer);
1757 }
1758 
1759 static void dpu_encoder_vsync_event_work_handler(struct kthread_work *work)
1760 {
1761 	struct dpu_encoder_virt *dpu_enc = container_of(work,
1762 			struct dpu_encoder_virt, vsync_event_work);
1763 	ktime_t wakeup_time;
1764 
1765 	if (!dpu_enc) {
1766 		DPU_ERROR("invalid dpu encoder\n");
1767 		return;
1768 	}
1769 
1770 	if (dpu_encoder_vsync_time(&dpu_enc->base, &wakeup_time))
1771 		return;
1772 
1773 	trace_dpu_enc_vsync_event_work(DRMID(&dpu_enc->base), wakeup_time);
1774 	mod_timer(&dpu_enc->vsync_event_timer,
1775 			nsecs_to_jiffies(ktime_to_ns(wakeup_time)));
1776 }
1777 
1778 void dpu_encoder_prepare_for_kickoff(struct drm_encoder *drm_enc)
1779 {
1780 	struct dpu_encoder_virt *dpu_enc;
1781 	struct dpu_encoder_phys *phys;
1782 	bool needs_hw_reset = false;
1783 	unsigned int i;
1784 
1785 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1786 
1787 	trace_dpu_enc_prepare_kickoff(DRMID(drm_enc));
1788 
1789 	/* prepare for next kickoff, may include waiting on previous kickoff */
1790 	DPU_ATRACE_BEGIN("enc_prepare_for_kickoff");
1791 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1792 		phys = dpu_enc->phys_encs[i];
1793 		if (phys) {
1794 			if (phys->ops.prepare_for_kickoff)
1795 				phys->ops.prepare_for_kickoff(phys);
1796 			if (phys->enable_state == DPU_ENC_ERR_NEEDS_HW_RESET)
1797 				needs_hw_reset = true;
1798 		}
1799 	}
1800 	DPU_ATRACE_END("enc_prepare_for_kickoff");
1801 
1802 	dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF);
1803 
1804 	/* if any phys needs reset, reset all phys, in-order */
1805 	if (needs_hw_reset) {
1806 		trace_dpu_enc_prepare_kickoff_reset(DRMID(drm_enc));
1807 		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1808 			dpu_encoder_helper_hw_reset(dpu_enc->phys_encs[i]);
1809 		}
1810 	}
1811 }
1812 
1813 void dpu_encoder_kickoff(struct drm_encoder *drm_enc)
1814 {
1815 	struct dpu_encoder_virt *dpu_enc;
1816 	struct dpu_encoder_phys *phys;
1817 	ktime_t wakeup_time;
1818 	unsigned long timeout_ms;
1819 	unsigned int i;
1820 
1821 	DPU_ATRACE_BEGIN("encoder_kickoff");
1822 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1823 
1824 	trace_dpu_enc_kickoff(DRMID(drm_enc));
1825 
1826 	timeout_ms = DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES * 1000 /
1827 			drm_mode_vrefresh(&drm_enc->crtc->state->adjusted_mode);
1828 
1829 	atomic_set(&dpu_enc->frame_done_timeout_ms, timeout_ms);
1830 	mod_timer(&dpu_enc->frame_done_timer,
1831 			jiffies + msecs_to_jiffies(timeout_ms));
1832 
1833 	/* All phys encs are ready to go, trigger the kickoff */
1834 	_dpu_encoder_kickoff_phys(dpu_enc);
1835 
1836 	/* allow phys encs to handle any post-kickoff business */
1837 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1838 		phys = dpu_enc->phys_encs[i];
1839 		if (phys && phys->ops.handle_post_kickoff)
1840 			phys->ops.handle_post_kickoff(phys);
1841 	}
1842 
1843 	if (dpu_enc->disp_info.intf_type == DRM_MODE_ENCODER_DSI &&
1844 			!dpu_encoder_vsync_time(drm_enc, &wakeup_time)) {
1845 		trace_dpu_enc_early_kickoff(DRMID(drm_enc),
1846 					    ktime_to_ms(wakeup_time));
1847 		mod_timer(&dpu_enc->vsync_event_timer,
1848 				nsecs_to_jiffies(ktime_to_ns(wakeup_time)));
1849 	}
1850 
1851 	DPU_ATRACE_END("encoder_kickoff");
1852 }
1853 
1854 void dpu_encoder_prepare_commit(struct drm_encoder *drm_enc)
1855 {
1856 	struct dpu_encoder_virt *dpu_enc;
1857 	struct dpu_encoder_phys *phys;
1858 	int i;
1859 
1860 	if (!drm_enc) {
1861 		DPU_ERROR("invalid encoder\n");
1862 		return;
1863 	}
1864 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1865 
1866 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1867 		phys = dpu_enc->phys_encs[i];
1868 		if (phys && phys->ops.prepare_commit)
1869 			phys->ops.prepare_commit(phys);
1870 	}
1871 }
1872 
1873 #ifdef CONFIG_DEBUG_FS
1874 static int _dpu_encoder_status_show(struct seq_file *s, void *data)
1875 {
1876 	struct dpu_encoder_virt *dpu_enc = s->private;
1877 	int i;
1878 
1879 	mutex_lock(&dpu_enc->enc_lock);
1880 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1881 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1882 
1883 		if (!phys)
1884 			continue;
1885 
1886 		seq_printf(s, "intf:%d    vsync:%8d     underrun:%8d    ",
1887 				phys->intf_idx - INTF_0,
1888 				atomic_read(&phys->vsync_cnt),
1889 				atomic_read(&phys->underrun_cnt));
1890 
1891 		switch (phys->intf_mode) {
1892 		case INTF_MODE_VIDEO:
1893 			seq_puts(s, "mode: video\n");
1894 			break;
1895 		case INTF_MODE_CMD:
1896 			seq_puts(s, "mode: command\n");
1897 			break;
1898 		default:
1899 			seq_puts(s, "mode: ???\n");
1900 			break;
1901 		}
1902 	}
1903 	mutex_unlock(&dpu_enc->enc_lock);
1904 
1905 	return 0;
1906 }
1907 
1908 static int _dpu_encoder_debugfs_status_open(struct inode *inode,
1909 		struct file *file)
1910 {
1911 	return single_open(file, _dpu_encoder_status_show, inode->i_private);
1912 }
1913 
1914 static int _dpu_encoder_init_debugfs(struct drm_encoder *drm_enc)
1915 {
1916 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1917 	struct msm_drm_private *priv;
1918 	struct dpu_kms *dpu_kms;
1919 	int i;
1920 
1921 	static const struct file_operations debugfs_status_fops = {
1922 		.open =		_dpu_encoder_debugfs_status_open,
1923 		.read =		seq_read,
1924 		.llseek =	seq_lseek,
1925 		.release =	single_release,
1926 	};
1927 
1928 	char name[DPU_NAME_SIZE];
1929 
1930 	if (!drm_enc->dev || !drm_enc->dev->dev_private) {
1931 		DPU_ERROR("invalid encoder or kms\n");
1932 		return -EINVAL;
1933 	}
1934 
1935 	priv = drm_enc->dev->dev_private;
1936 	dpu_kms = to_dpu_kms(priv->kms);
1937 
1938 	snprintf(name, DPU_NAME_SIZE, "encoder%u", drm_enc->base.id);
1939 
1940 	/* create overall sub-directory for the encoder */
1941 	dpu_enc->debugfs_root = debugfs_create_dir(name,
1942 			drm_enc->dev->primary->debugfs_root);
1943 
1944 	/* don't error check these */
1945 	debugfs_create_file("status", 0600,
1946 		dpu_enc->debugfs_root, dpu_enc, &debugfs_status_fops);
1947 
1948 	for (i = 0; i < dpu_enc->num_phys_encs; i++)
1949 		if (dpu_enc->phys_encs[i] &&
1950 				dpu_enc->phys_encs[i]->ops.late_register)
1951 			dpu_enc->phys_encs[i]->ops.late_register(
1952 					dpu_enc->phys_encs[i],
1953 					dpu_enc->debugfs_root);
1954 
1955 	return 0;
1956 }
1957 #else
1958 static int _dpu_encoder_init_debugfs(struct drm_encoder *drm_enc)
1959 {
1960 	return 0;
1961 }
1962 #endif
1963 
1964 static int dpu_encoder_late_register(struct drm_encoder *encoder)
1965 {
1966 	return _dpu_encoder_init_debugfs(encoder);
1967 }
1968 
1969 static void dpu_encoder_early_unregister(struct drm_encoder *encoder)
1970 {
1971 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(encoder);
1972 
1973 	debugfs_remove_recursive(dpu_enc->debugfs_root);
1974 }
1975 
1976 static int dpu_encoder_virt_add_phys_encs(
1977 		u32 display_caps,
1978 		struct dpu_encoder_virt *dpu_enc,
1979 		struct dpu_enc_phys_init_params *params)
1980 {
1981 	struct dpu_encoder_phys *enc = NULL;
1982 
1983 	DPU_DEBUG_ENC(dpu_enc, "\n");
1984 
1985 	/*
1986 	 * We may create up to NUM_PHYS_ENCODER_TYPES physical encoder types
1987 	 * in this function, check up-front.
1988 	 */
1989 	if (dpu_enc->num_phys_encs + NUM_PHYS_ENCODER_TYPES >=
1990 			ARRAY_SIZE(dpu_enc->phys_encs)) {
1991 		DPU_ERROR_ENC(dpu_enc, "too many physical encoders %d\n",
1992 			  dpu_enc->num_phys_encs);
1993 		return -EINVAL;
1994 	}
1995 
1996 	if (display_caps & MSM_DISPLAY_CAP_VID_MODE) {
1997 		enc = dpu_encoder_phys_vid_init(params);
1998 
1999 		if (IS_ERR_OR_NULL(enc)) {
2000 			DPU_ERROR_ENC(dpu_enc, "failed to init vid enc: %ld\n",
2001 				PTR_ERR(enc));
2002 			return enc == 0 ? -EINVAL : PTR_ERR(enc);
2003 		}
2004 
2005 		dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
2006 		++dpu_enc->num_phys_encs;
2007 	}
2008 
2009 	if (display_caps & MSM_DISPLAY_CAP_CMD_MODE) {
2010 		enc = dpu_encoder_phys_cmd_init(params);
2011 
2012 		if (IS_ERR_OR_NULL(enc)) {
2013 			DPU_ERROR_ENC(dpu_enc, "failed to init cmd enc: %ld\n",
2014 				PTR_ERR(enc));
2015 			return enc == 0 ? -EINVAL : PTR_ERR(enc);
2016 		}
2017 
2018 		dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
2019 		++dpu_enc->num_phys_encs;
2020 	}
2021 
2022 	if (params->split_role == ENC_ROLE_SLAVE)
2023 		dpu_enc->cur_slave = enc;
2024 	else
2025 		dpu_enc->cur_master = enc;
2026 
2027 	return 0;
2028 }
2029 
2030 static const struct dpu_encoder_virt_ops dpu_encoder_parent_ops = {
2031 	.handle_vblank_virt = dpu_encoder_vblank_callback,
2032 	.handle_underrun_virt = dpu_encoder_underrun_callback,
2033 	.handle_frame_done = dpu_encoder_frame_done_callback,
2034 };
2035 
2036 static int dpu_encoder_setup_display(struct dpu_encoder_virt *dpu_enc,
2037 				 struct dpu_kms *dpu_kms,
2038 				 struct msm_display_info *disp_info)
2039 {
2040 	int ret = 0;
2041 	int i = 0;
2042 	enum dpu_intf_type intf_type;
2043 	struct dpu_enc_phys_init_params phys_params;
2044 
2045 	if (!dpu_enc || !dpu_kms) {
2046 		DPU_ERROR("invalid arg(s), enc %d kms %d\n",
2047 				dpu_enc != 0, dpu_kms != 0);
2048 		return -EINVAL;
2049 	}
2050 
2051 	dpu_enc->cur_master = NULL;
2052 
2053 	memset(&phys_params, 0, sizeof(phys_params));
2054 	phys_params.dpu_kms = dpu_kms;
2055 	phys_params.parent = &dpu_enc->base;
2056 	phys_params.parent_ops = &dpu_encoder_parent_ops;
2057 	phys_params.enc_spinlock = &dpu_enc->enc_spinlock;
2058 
2059 	DPU_DEBUG("\n");
2060 
2061 	switch (disp_info->intf_type) {
2062 	case DRM_MODE_ENCODER_DSI:
2063 		intf_type = INTF_DSI;
2064 		break;
2065 	default:
2066 		DPU_ERROR_ENC(dpu_enc, "unsupported display interface type\n");
2067 		return -EINVAL;
2068 	}
2069 
2070 	WARN_ON(disp_info->num_of_h_tiles < 1);
2071 
2072 	DPU_DEBUG("dsi_info->num_of_h_tiles %d\n", disp_info->num_of_h_tiles);
2073 
2074 	if ((disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE) ||
2075 	    (disp_info->capabilities & MSM_DISPLAY_CAP_VID_MODE))
2076 		dpu_enc->idle_pc_supported =
2077 				dpu_kms->catalog->caps->has_idle_pc;
2078 
2079 	mutex_lock(&dpu_enc->enc_lock);
2080 	for (i = 0; i < disp_info->num_of_h_tiles && !ret; i++) {
2081 		/*
2082 		 * Left-most tile is at index 0, content is controller id
2083 		 * h_tile_instance_ids[2] = {0, 1}; DSI0 = left, DSI1 = right
2084 		 * h_tile_instance_ids[2] = {1, 0}; DSI1 = left, DSI0 = right
2085 		 */
2086 		u32 controller_id = disp_info->h_tile_instance[i];
2087 
2088 		if (disp_info->num_of_h_tiles > 1) {
2089 			if (i == 0)
2090 				phys_params.split_role = ENC_ROLE_MASTER;
2091 			else
2092 				phys_params.split_role = ENC_ROLE_SLAVE;
2093 		} else {
2094 			phys_params.split_role = ENC_ROLE_SOLO;
2095 		}
2096 
2097 		DPU_DEBUG("h_tile_instance %d = %d, split_role %d\n",
2098 				i, controller_id, phys_params.split_role);
2099 
2100 		phys_params.intf_idx = dpu_encoder_get_intf(dpu_kms->catalog,
2101 													intf_type,
2102 													controller_id);
2103 		if (phys_params.intf_idx == INTF_MAX) {
2104 			DPU_ERROR_ENC(dpu_enc, "could not get intf: type %d, id %d\n",
2105 						  intf_type, controller_id);
2106 			ret = -EINVAL;
2107 		}
2108 
2109 		if (!ret) {
2110 			ret = dpu_encoder_virt_add_phys_encs(disp_info->capabilities,
2111 												 dpu_enc,
2112 												 &phys_params);
2113 			if (ret)
2114 				DPU_ERROR_ENC(dpu_enc, "failed to add phys encs\n");
2115 		}
2116 	}
2117 
2118 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2119 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2120 
2121 		if (phys) {
2122 			atomic_set(&phys->vsync_cnt, 0);
2123 			atomic_set(&phys->underrun_cnt, 0);
2124 		}
2125 	}
2126 	mutex_unlock(&dpu_enc->enc_lock);
2127 
2128 	return ret;
2129 }
2130 
2131 static void dpu_encoder_frame_done_timeout(struct timer_list *t)
2132 {
2133 	struct dpu_encoder_virt *dpu_enc = from_timer(dpu_enc, t,
2134 			frame_done_timer);
2135 	struct drm_encoder *drm_enc = &dpu_enc->base;
2136 	struct msm_drm_private *priv;
2137 	u32 event;
2138 
2139 	if (!drm_enc->dev || !drm_enc->dev->dev_private) {
2140 		DPU_ERROR("invalid parameters\n");
2141 		return;
2142 	}
2143 	priv = drm_enc->dev->dev_private;
2144 
2145 	if (!dpu_enc->frame_busy_mask[0] || !dpu_enc->crtc_frame_event_cb) {
2146 		DRM_DEBUG_KMS("id:%u invalid timeout frame_busy_mask=%lu\n",
2147 			      DRMID(drm_enc), dpu_enc->frame_busy_mask[0]);
2148 		return;
2149 	} else if (!atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) {
2150 		DRM_DEBUG_KMS("id:%u invalid timeout\n", DRMID(drm_enc));
2151 		return;
2152 	}
2153 
2154 	DPU_ERROR_ENC(dpu_enc, "frame done timeout\n");
2155 
2156 	event = DPU_ENCODER_FRAME_EVENT_ERROR;
2157 	trace_dpu_enc_frame_done_timeout(DRMID(drm_enc), event);
2158 	dpu_enc->crtc_frame_event_cb(dpu_enc->crtc_frame_event_cb_data, event);
2159 }
2160 
2161 static const struct drm_encoder_helper_funcs dpu_encoder_helper_funcs = {
2162 	.mode_set = dpu_encoder_virt_mode_set,
2163 	.disable = dpu_encoder_virt_disable,
2164 	.enable = dpu_kms_encoder_enable,
2165 	.atomic_check = dpu_encoder_virt_atomic_check,
2166 
2167 	/* This is called by dpu_kms_encoder_enable */
2168 	.commit = dpu_encoder_virt_enable,
2169 };
2170 
2171 static const struct drm_encoder_funcs dpu_encoder_funcs = {
2172 		.destroy = dpu_encoder_destroy,
2173 		.late_register = dpu_encoder_late_register,
2174 		.early_unregister = dpu_encoder_early_unregister,
2175 };
2176 
2177 int dpu_encoder_setup(struct drm_device *dev, struct drm_encoder *enc,
2178 		struct msm_display_info *disp_info)
2179 {
2180 	struct msm_drm_private *priv = dev->dev_private;
2181 	struct dpu_kms *dpu_kms = to_dpu_kms(priv->kms);
2182 	struct drm_encoder *drm_enc = NULL;
2183 	struct dpu_encoder_virt *dpu_enc = NULL;
2184 	int ret = 0;
2185 
2186 	dpu_enc = to_dpu_encoder_virt(enc);
2187 
2188 	mutex_init(&dpu_enc->enc_lock);
2189 	ret = dpu_encoder_setup_display(dpu_enc, dpu_kms, disp_info);
2190 	if (ret)
2191 		goto fail;
2192 
2193 	atomic_set(&dpu_enc->frame_done_timeout_ms, 0);
2194 	timer_setup(&dpu_enc->frame_done_timer,
2195 			dpu_encoder_frame_done_timeout, 0);
2196 
2197 	if (disp_info->intf_type == DRM_MODE_ENCODER_DSI)
2198 		timer_setup(&dpu_enc->vsync_event_timer,
2199 				dpu_encoder_vsync_event_handler,
2200 				0);
2201 
2202 
2203 	mutex_init(&dpu_enc->rc_lock);
2204 	INIT_DELAYED_WORK(&dpu_enc->delayed_off_work,
2205 			dpu_encoder_off_work);
2206 	dpu_enc->idle_timeout = IDLE_TIMEOUT;
2207 
2208 	kthread_init_work(&dpu_enc->vsync_event_work,
2209 			dpu_encoder_vsync_event_work_handler);
2210 
2211 	memcpy(&dpu_enc->disp_info, disp_info, sizeof(*disp_info));
2212 
2213 	DPU_DEBUG_ENC(dpu_enc, "created\n");
2214 
2215 	return ret;
2216 
2217 fail:
2218 	DPU_ERROR("failed to create encoder\n");
2219 	if (drm_enc)
2220 		dpu_encoder_destroy(drm_enc);
2221 
2222 	return ret;
2223 
2224 
2225 }
2226 
2227 struct drm_encoder *dpu_encoder_init(struct drm_device *dev,
2228 		int drm_enc_mode)
2229 {
2230 	struct dpu_encoder_virt *dpu_enc = NULL;
2231 	int rc = 0;
2232 
2233 	dpu_enc = devm_kzalloc(dev->dev, sizeof(*dpu_enc), GFP_KERNEL);
2234 	if (!dpu_enc)
2235 		return ERR_PTR(ENOMEM);
2236 
2237 	rc = drm_encoder_init(dev, &dpu_enc->base, &dpu_encoder_funcs,
2238 			drm_enc_mode, NULL);
2239 	if (rc) {
2240 		devm_kfree(dev->dev, dpu_enc);
2241 		return ERR_PTR(rc);
2242 	}
2243 
2244 	drm_encoder_helper_add(&dpu_enc->base, &dpu_encoder_helper_funcs);
2245 
2246 	spin_lock_init(&dpu_enc->enc_spinlock);
2247 	dpu_enc->enabled = false;
2248 
2249 	return &dpu_enc->base;
2250 }
2251 
2252 int dpu_encoder_wait_for_event(struct drm_encoder *drm_enc,
2253 	enum msm_event_wait event)
2254 {
2255 	int (*fn_wait)(struct dpu_encoder_phys *phys_enc) = NULL;
2256 	struct dpu_encoder_virt *dpu_enc = NULL;
2257 	int i, ret = 0;
2258 
2259 	if (!drm_enc) {
2260 		DPU_ERROR("invalid encoder\n");
2261 		return -EINVAL;
2262 	}
2263 	dpu_enc = to_dpu_encoder_virt(drm_enc);
2264 	DPU_DEBUG_ENC(dpu_enc, "\n");
2265 
2266 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2267 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2268 		if (!phys)
2269 			continue;
2270 
2271 		switch (event) {
2272 		case MSM_ENC_COMMIT_DONE:
2273 			fn_wait = phys->ops.wait_for_commit_done;
2274 			break;
2275 		case MSM_ENC_TX_COMPLETE:
2276 			fn_wait = phys->ops.wait_for_tx_complete;
2277 			break;
2278 		case MSM_ENC_VBLANK:
2279 			fn_wait = phys->ops.wait_for_vblank;
2280 			break;
2281 		default:
2282 			DPU_ERROR_ENC(dpu_enc, "unknown wait event %d\n",
2283 					event);
2284 			return -EINVAL;
2285 		};
2286 
2287 		if (fn_wait) {
2288 			DPU_ATRACE_BEGIN("wait_for_completion_event");
2289 			ret = fn_wait(phys);
2290 			DPU_ATRACE_END("wait_for_completion_event");
2291 			if (ret)
2292 				return ret;
2293 		}
2294 	}
2295 
2296 	return ret;
2297 }
2298 
2299 enum dpu_intf_mode dpu_encoder_get_intf_mode(struct drm_encoder *encoder)
2300 {
2301 	struct dpu_encoder_virt *dpu_enc = NULL;
2302 	int i;
2303 
2304 	if (!encoder) {
2305 		DPU_ERROR("invalid encoder\n");
2306 		return INTF_MODE_NONE;
2307 	}
2308 	dpu_enc = to_dpu_encoder_virt(encoder);
2309 
2310 	if (dpu_enc->cur_master)
2311 		return dpu_enc->cur_master->intf_mode;
2312 
2313 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2314 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2315 
2316 		if (phys)
2317 			return phys->intf_mode;
2318 	}
2319 
2320 	return INTF_MODE_NONE;
2321 }
2322