xref: /linux/drivers/gpu/drm/msm/disp/dpu1/dpu_encoder.c (revision a1c3be890440a1769ed6f822376a3e3ab0d42994)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2014-2018, The Linux Foundation. All rights reserved.
4  * Copyright (C) 2013 Red Hat
5  * Author: Rob Clark <robdclark@gmail.com>
6  */
7 
8 #define pr_fmt(fmt)	"[drm:%s:%d] " fmt, __func__, __LINE__
9 #include <linux/debugfs.h>
10 #include <linux/kthread.h>
11 #include <linux/seq_file.h>
12 
13 #include <drm/drm_crtc.h>
14 #include <drm/drm_file.h>
15 #include <drm/drm_probe_helper.h>
16 
17 #include "msm_drv.h"
18 #include "dpu_kms.h"
19 #include "dpu_hwio.h"
20 #include "dpu_hw_catalog.h"
21 #include "dpu_hw_intf.h"
22 #include "dpu_hw_ctl.h"
23 #include "dpu_hw_dspp.h"
24 #include "dpu_formats.h"
25 #include "dpu_encoder_phys.h"
26 #include "dpu_crtc.h"
27 #include "dpu_trace.h"
28 #include "dpu_core_irq.h"
29 
30 #define DPU_DEBUG_ENC(e, fmt, ...) DPU_DEBUG("enc%d " fmt,\
31 		(e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
32 
33 #define DPU_ERROR_ENC(e, fmt, ...) DPU_ERROR("enc%d " fmt,\
34 		(e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
35 
36 #define DPU_DEBUG_PHYS(p, fmt, ...) DPU_DEBUG("enc%d intf%d pp%d " fmt,\
37 		(p) ? (p)->parent->base.id : -1, \
38 		(p) ? (p)->intf_idx - INTF_0 : -1, \
39 		(p) ? ((p)->hw_pp ? (p)->hw_pp->idx - PINGPONG_0 : -1) : -1, \
40 		##__VA_ARGS__)
41 
42 #define DPU_ERROR_PHYS(p, fmt, ...) DPU_ERROR("enc%d intf%d pp%d " fmt,\
43 		(p) ? (p)->parent->base.id : -1, \
44 		(p) ? (p)->intf_idx - INTF_0 : -1, \
45 		(p) ? ((p)->hw_pp ? (p)->hw_pp->idx - PINGPONG_0 : -1) : -1, \
46 		##__VA_ARGS__)
47 
48 /*
49  * Two to anticipate panels that can do cmd/vid dynamic switching
50  * plan is to create all possible physical encoder types, and switch between
51  * them at runtime
52  */
53 #define NUM_PHYS_ENCODER_TYPES 2
54 
55 #define MAX_PHYS_ENCODERS_PER_VIRTUAL \
56 	(MAX_H_TILES_PER_DISPLAY * NUM_PHYS_ENCODER_TYPES)
57 
58 #define MAX_CHANNELS_PER_ENC 2
59 
60 #define IDLE_SHORT_TIMEOUT	1
61 
62 #define MAX_HDISPLAY_SPLIT 1080
63 
64 /* timeout in frames waiting for frame done */
65 #define DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES 5
66 
67 /**
68  * enum dpu_enc_rc_events - events for resource control state machine
69  * @DPU_ENC_RC_EVENT_KICKOFF:
70  *	This event happens at NORMAL priority.
71  *	Event that signals the start of the transfer. When this event is
72  *	received, enable MDP/DSI core clocks. Regardless of the previous
73  *	state, the resource should be in ON state at the end of this event.
74  * @DPU_ENC_RC_EVENT_FRAME_DONE:
75  *	This event happens at INTERRUPT level.
76  *	Event signals the end of the data transfer after the PP FRAME_DONE
77  *	event. At the end of this event, a delayed work is scheduled to go to
78  *	IDLE_PC state after IDLE_TIMEOUT time.
79  * @DPU_ENC_RC_EVENT_PRE_STOP:
80  *	This event happens at NORMAL priority.
81  *	This event, when received during the ON state, leave the RC STATE
82  *	in the PRE_OFF state. It should be followed by the STOP event as
83  *	part of encoder disable.
84  *	If received during IDLE or OFF states, it will do nothing.
85  * @DPU_ENC_RC_EVENT_STOP:
86  *	This event happens at NORMAL priority.
87  *	When this event is received, disable all the MDP/DSI core clocks, and
88  *	disable IRQs. It should be called from the PRE_OFF or IDLE states.
89  *	IDLE is expected when IDLE_PC has run, and PRE_OFF did nothing.
90  *	PRE_OFF is expected when PRE_STOP was executed during the ON state.
91  *	Resource state should be in OFF at the end of the event.
92  * @DPU_ENC_RC_EVENT_ENTER_IDLE:
93  *	This event happens at NORMAL priority from a work item.
94  *	Event signals that there were no frame updates for IDLE_TIMEOUT time.
95  *	This would disable MDP/DSI core clocks and change the resource state
96  *	to IDLE.
97  */
98 enum dpu_enc_rc_events {
99 	DPU_ENC_RC_EVENT_KICKOFF = 1,
100 	DPU_ENC_RC_EVENT_FRAME_DONE,
101 	DPU_ENC_RC_EVENT_PRE_STOP,
102 	DPU_ENC_RC_EVENT_STOP,
103 	DPU_ENC_RC_EVENT_ENTER_IDLE
104 };
105 
106 /*
107  * enum dpu_enc_rc_states - states that the resource control maintains
108  * @DPU_ENC_RC_STATE_OFF: Resource is in OFF state
109  * @DPU_ENC_RC_STATE_PRE_OFF: Resource is transitioning to OFF state
110  * @DPU_ENC_RC_STATE_ON: Resource is in ON state
111  * @DPU_ENC_RC_STATE_MODESET: Resource is in modeset state
112  * @DPU_ENC_RC_STATE_IDLE: Resource is in IDLE state
113  */
114 enum dpu_enc_rc_states {
115 	DPU_ENC_RC_STATE_OFF,
116 	DPU_ENC_RC_STATE_PRE_OFF,
117 	DPU_ENC_RC_STATE_ON,
118 	DPU_ENC_RC_STATE_IDLE
119 };
120 
121 /**
122  * struct dpu_encoder_virt - virtual encoder. Container of one or more physical
123  *	encoders. Virtual encoder manages one "logical" display. Physical
124  *	encoders manage one intf block, tied to a specific panel/sub-panel.
125  *	Virtual encoder defers as much as possible to the physical encoders.
126  *	Virtual encoder registers itself with the DRM Framework as the encoder.
127  * @base:		drm_encoder base class for registration with DRM
128  * @enc_spinlock:	Virtual-Encoder-Wide Spin Lock for IRQ purposes
129  * @bus_scaling_client:	Client handle to the bus scaling interface
130  * @enabled:		True if the encoder is active, protected by enc_lock
131  * @num_phys_encs:	Actual number of physical encoders contained.
132  * @phys_encs:		Container of physical encoders managed.
133  * @cur_master:		Pointer to the current master in this mode. Optimization
134  *			Only valid after enable. Cleared as disable.
135  * @cur_slave:		As above but for the slave encoder.
136  * @hw_pp:		Handle to the pingpong blocks used for the display. No.
137  *			pingpong blocks can be different than num_phys_encs.
138  * @intfs_swapped:	Whether or not the phys_enc interfaces have been swapped
139  *			for partial update right-only cases, such as pingpong
140  *			split where virtual pingpong does not generate IRQs
141  * @crtc:		Pointer to the currently assigned crtc. Normally you
142  *			would use crtc->state->encoder_mask to determine the
143  *			link between encoder/crtc. However in this case we need
144  *			to track crtc in the disable() hook which is called
145  *			_after_ encoder_mask is cleared.
146  * @crtc_kickoff_cb:		Callback into CRTC that will flush & start
147  *				all CTL paths
148  * @crtc_kickoff_cb_data:	Opaque user data given to crtc_kickoff_cb
149  * @debugfs_root:		Debug file system root file node
150  * @enc_lock:			Lock around physical encoder
151  *				create/destroy/enable/disable
152  * @frame_busy_mask:		Bitmask tracking which phys_enc we are still
153  *				busy processing current command.
154  *				Bit0 = phys_encs[0] etc.
155  * @crtc_frame_event_cb:	callback handler for frame event
156  * @crtc_frame_event_cb_data:	callback handler private data
157  * @frame_done_timeout_ms:	frame done timeout in ms
158  * @frame_done_timer:		watchdog timer for frame done event
159  * @vsync_event_timer:		vsync timer
160  * @disp_info:			local copy of msm_display_info struct
161  * @idle_pc_supported:		indicate if idle power collaps is supported
162  * @rc_lock:			resource control mutex lock to protect
163  *				virt encoder over various state changes
164  * @rc_state:			resource controller state
165  * @delayed_off_work:		delayed worker to schedule disabling of
166  *				clks and resources after IDLE_TIMEOUT time.
167  * @vsync_event_work:		worker to handle vsync event for autorefresh
168  * @topology:                   topology of the display
169  * @idle_timeout:		idle timeout duration in milliseconds
170  */
171 struct dpu_encoder_virt {
172 	struct drm_encoder base;
173 	spinlock_t enc_spinlock;
174 	uint32_t bus_scaling_client;
175 
176 	bool enabled;
177 
178 	unsigned int num_phys_encs;
179 	struct dpu_encoder_phys *phys_encs[MAX_PHYS_ENCODERS_PER_VIRTUAL];
180 	struct dpu_encoder_phys *cur_master;
181 	struct dpu_encoder_phys *cur_slave;
182 	struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC];
183 
184 	bool intfs_swapped;
185 
186 	struct drm_crtc *crtc;
187 
188 	struct dentry *debugfs_root;
189 	struct mutex enc_lock;
190 	DECLARE_BITMAP(frame_busy_mask, MAX_PHYS_ENCODERS_PER_VIRTUAL);
191 	void (*crtc_frame_event_cb)(void *, u32 event);
192 	void *crtc_frame_event_cb_data;
193 
194 	atomic_t frame_done_timeout_ms;
195 	struct timer_list frame_done_timer;
196 	struct timer_list vsync_event_timer;
197 
198 	struct msm_display_info disp_info;
199 
200 	bool idle_pc_supported;
201 	struct mutex rc_lock;
202 	enum dpu_enc_rc_states rc_state;
203 	struct delayed_work delayed_off_work;
204 	struct kthread_work vsync_event_work;
205 	struct msm_display_topology topology;
206 
207 	u32 idle_timeout;
208 };
209 
210 #define to_dpu_encoder_virt(x) container_of(x, struct dpu_encoder_virt, base)
211 
212 static u32 dither_matrix[DITHER_MATRIX_SZ] = {
213 	15, 7, 13, 5, 3, 11, 1, 9, 12, 4, 14, 6, 0, 8, 2, 10
214 };
215 
216 static void _dpu_encoder_setup_dither(struct dpu_hw_pingpong *hw_pp, unsigned bpc)
217 {
218 	struct dpu_hw_dither_cfg dither_cfg = { 0 };
219 
220 	if (!hw_pp->ops.setup_dither)
221 		return;
222 
223 	switch (bpc) {
224 	case 6:
225 		dither_cfg.c0_bitdepth = 6;
226 		dither_cfg.c1_bitdepth = 6;
227 		dither_cfg.c2_bitdepth = 6;
228 		dither_cfg.c3_bitdepth = 6;
229 		dither_cfg.temporal_en = 0;
230 		break;
231 	default:
232 		hw_pp->ops.setup_dither(hw_pp, NULL);
233 		return;
234 	}
235 
236 	memcpy(&dither_cfg.matrix, dither_matrix,
237 			sizeof(u32) * DITHER_MATRIX_SZ);
238 
239 	hw_pp->ops.setup_dither(hw_pp, &dither_cfg);
240 }
241 
242 void dpu_encoder_helper_report_irq_timeout(struct dpu_encoder_phys *phys_enc,
243 		enum dpu_intr_idx intr_idx)
244 {
245 	DRM_ERROR("irq timeout id=%u, intf=%d, pp=%d, intr=%d\n",
246 		  DRMID(phys_enc->parent), phys_enc->intf_idx - INTF_0,
247 		  phys_enc->hw_pp->idx - PINGPONG_0, intr_idx);
248 
249 	if (phys_enc->parent_ops->handle_frame_done)
250 		phys_enc->parent_ops->handle_frame_done(
251 				phys_enc->parent, phys_enc,
252 				DPU_ENCODER_FRAME_EVENT_ERROR);
253 }
254 
255 static int dpu_encoder_helper_wait_event_timeout(int32_t drm_id,
256 		int32_t hw_id, struct dpu_encoder_wait_info *info);
257 
258 int dpu_encoder_helper_wait_for_irq(struct dpu_encoder_phys *phys_enc,
259 		enum dpu_intr_idx intr_idx,
260 		struct dpu_encoder_wait_info *wait_info)
261 {
262 	struct dpu_encoder_irq *irq;
263 	u32 irq_status;
264 	int ret;
265 
266 	if (!wait_info || intr_idx >= INTR_IDX_MAX) {
267 		DPU_ERROR("invalid params\n");
268 		return -EINVAL;
269 	}
270 	irq = &phys_enc->irq[intr_idx];
271 
272 	/* note: do master / slave checking outside */
273 
274 	/* return EWOULDBLOCK since we know the wait isn't necessary */
275 	if (phys_enc->enable_state == DPU_ENC_DISABLED) {
276 		DRM_ERROR("encoder is disabled id=%u, intr=%d, hw=%d, irq=%d",
277 			  DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
278 			  irq->irq_idx);
279 		return -EWOULDBLOCK;
280 	}
281 
282 	if (irq->irq_idx < 0) {
283 		DRM_DEBUG_KMS("skip irq wait id=%u, intr=%d, hw=%d, irq=%s",
284 			      DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
285 			      irq->name);
286 		return 0;
287 	}
288 
289 	DRM_DEBUG_KMS("id=%u, intr=%d, hw=%d, irq=%d, pp=%d, pending_cnt=%d",
290 		      DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
291 		      irq->irq_idx, phys_enc->hw_pp->idx - PINGPONG_0,
292 		      atomic_read(wait_info->atomic_cnt));
293 
294 	ret = dpu_encoder_helper_wait_event_timeout(
295 			DRMID(phys_enc->parent),
296 			irq->hw_idx,
297 			wait_info);
298 
299 	if (ret <= 0) {
300 		irq_status = dpu_core_irq_read(phys_enc->dpu_kms,
301 				irq->irq_idx, true);
302 		if (irq_status) {
303 			unsigned long flags;
304 
305 			DRM_DEBUG_KMS("irq not triggered id=%u, intr=%d, "
306 				      "hw=%d, irq=%d, pp=%d, atomic_cnt=%d",
307 				      DRMID(phys_enc->parent), intr_idx,
308 				      irq->hw_idx, irq->irq_idx,
309 				      phys_enc->hw_pp->idx - PINGPONG_0,
310 				      atomic_read(wait_info->atomic_cnt));
311 			local_irq_save(flags);
312 			irq->cb.func(phys_enc, irq->irq_idx);
313 			local_irq_restore(flags);
314 			ret = 0;
315 		} else {
316 			ret = -ETIMEDOUT;
317 			DRM_DEBUG_KMS("irq timeout id=%u, intr=%d, "
318 				      "hw=%d, irq=%d, pp=%d, atomic_cnt=%d",
319 				      DRMID(phys_enc->parent), intr_idx,
320 				      irq->hw_idx, irq->irq_idx,
321 				      phys_enc->hw_pp->idx - PINGPONG_0,
322 				      atomic_read(wait_info->atomic_cnt));
323 		}
324 	} else {
325 		ret = 0;
326 		trace_dpu_enc_irq_wait_success(DRMID(phys_enc->parent),
327 			intr_idx, irq->hw_idx, irq->irq_idx,
328 			phys_enc->hw_pp->idx - PINGPONG_0,
329 			atomic_read(wait_info->atomic_cnt));
330 	}
331 
332 	return ret;
333 }
334 
335 int dpu_encoder_helper_register_irq(struct dpu_encoder_phys *phys_enc,
336 		enum dpu_intr_idx intr_idx)
337 {
338 	struct dpu_encoder_irq *irq;
339 	int ret = 0;
340 
341 	if (intr_idx >= INTR_IDX_MAX) {
342 		DPU_ERROR("invalid params\n");
343 		return -EINVAL;
344 	}
345 	irq = &phys_enc->irq[intr_idx];
346 
347 	if (irq->irq_idx >= 0) {
348 		DPU_DEBUG_PHYS(phys_enc,
349 				"skipping already registered irq %s type %d\n",
350 				irq->name, irq->intr_type);
351 		return 0;
352 	}
353 
354 	irq->irq_idx = dpu_core_irq_idx_lookup(phys_enc->dpu_kms,
355 			irq->intr_type, irq->hw_idx);
356 	if (irq->irq_idx < 0) {
357 		DPU_ERROR_PHYS(phys_enc,
358 			"failed to lookup IRQ index for %s type:%d\n",
359 			irq->name, irq->intr_type);
360 		return -EINVAL;
361 	}
362 
363 	ret = dpu_core_irq_register_callback(phys_enc->dpu_kms, irq->irq_idx,
364 			&irq->cb);
365 	if (ret) {
366 		DPU_ERROR_PHYS(phys_enc,
367 			"failed to register IRQ callback for %s\n",
368 			irq->name);
369 		irq->irq_idx = -EINVAL;
370 		return ret;
371 	}
372 
373 	ret = dpu_core_irq_enable(phys_enc->dpu_kms, &irq->irq_idx, 1);
374 	if (ret) {
375 		DRM_ERROR("enable failed id=%u, intr=%d, hw=%d, irq=%d",
376 			  DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
377 			  irq->irq_idx);
378 		dpu_core_irq_unregister_callback(phys_enc->dpu_kms,
379 				irq->irq_idx, &irq->cb);
380 		irq->irq_idx = -EINVAL;
381 		return ret;
382 	}
383 
384 	trace_dpu_enc_irq_register_success(DRMID(phys_enc->parent), intr_idx,
385 				irq->hw_idx, irq->irq_idx);
386 
387 	return ret;
388 }
389 
390 int dpu_encoder_helper_unregister_irq(struct dpu_encoder_phys *phys_enc,
391 		enum dpu_intr_idx intr_idx)
392 {
393 	struct dpu_encoder_irq *irq;
394 	int ret;
395 
396 	irq = &phys_enc->irq[intr_idx];
397 
398 	/* silently skip irqs that weren't registered */
399 	if (irq->irq_idx < 0) {
400 		DRM_ERROR("duplicate unregister id=%u, intr=%d, hw=%d, irq=%d",
401 			  DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
402 			  irq->irq_idx);
403 		return 0;
404 	}
405 
406 	ret = dpu_core_irq_disable(phys_enc->dpu_kms, &irq->irq_idx, 1);
407 	if (ret) {
408 		DRM_ERROR("disable failed id=%u, intr=%d, hw=%d, irq=%d ret=%d",
409 			  DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
410 			  irq->irq_idx, ret);
411 	}
412 
413 	ret = dpu_core_irq_unregister_callback(phys_enc->dpu_kms, irq->irq_idx,
414 			&irq->cb);
415 	if (ret) {
416 		DRM_ERROR("unreg cb fail id=%u, intr=%d, hw=%d, irq=%d ret=%d",
417 			  DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
418 			  irq->irq_idx, ret);
419 	}
420 
421 	trace_dpu_enc_irq_unregister_success(DRMID(phys_enc->parent), intr_idx,
422 					     irq->hw_idx, irq->irq_idx);
423 
424 	irq->irq_idx = -EINVAL;
425 
426 	return 0;
427 }
428 
429 void dpu_encoder_get_hw_resources(struct drm_encoder *drm_enc,
430 				  struct dpu_encoder_hw_resources *hw_res)
431 {
432 	struct dpu_encoder_virt *dpu_enc = NULL;
433 	int i = 0;
434 
435 	dpu_enc = to_dpu_encoder_virt(drm_enc);
436 	DPU_DEBUG_ENC(dpu_enc, "\n");
437 
438 	/* Query resources used by phys encs, expected to be without overlap */
439 	memset(hw_res, 0, sizeof(*hw_res));
440 
441 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
442 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
443 
444 		if (phys->ops.get_hw_resources)
445 			phys->ops.get_hw_resources(phys, hw_res);
446 	}
447 }
448 
449 static void dpu_encoder_destroy(struct drm_encoder *drm_enc)
450 {
451 	struct dpu_encoder_virt *dpu_enc = NULL;
452 	int i = 0;
453 
454 	if (!drm_enc) {
455 		DPU_ERROR("invalid encoder\n");
456 		return;
457 	}
458 
459 	dpu_enc = to_dpu_encoder_virt(drm_enc);
460 	DPU_DEBUG_ENC(dpu_enc, "\n");
461 
462 	mutex_lock(&dpu_enc->enc_lock);
463 
464 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
465 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
466 
467 		if (phys->ops.destroy) {
468 			phys->ops.destroy(phys);
469 			--dpu_enc->num_phys_encs;
470 			dpu_enc->phys_encs[i] = NULL;
471 		}
472 	}
473 
474 	if (dpu_enc->num_phys_encs)
475 		DPU_ERROR_ENC(dpu_enc, "expected 0 num_phys_encs not %d\n",
476 				dpu_enc->num_phys_encs);
477 	dpu_enc->num_phys_encs = 0;
478 	mutex_unlock(&dpu_enc->enc_lock);
479 
480 	drm_encoder_cleanup(drm_enc);
481 	mutex_destroy(&dpu_enc->enc_lock);
482 }
483 
484 void dpu_encoder_helper_split_config(
485 		struct dpu_encoder_phys *phys_enc,
486 		enum dpu_intf interface)
487 {
488 	struct dpu_encoder_virt *dpu_enc;
489 	struct split_pipe_cfg cfg = { 0 };
490 	struct dpu_hw_mdp *hw_mdptop;
491 	struct msm_display_info *disp_info;
492 
493 	if (!phys_enc->hw_mdptop || !phys_enc->parent) {
494 		DPU_ERROR("invalid arg(s), encoder %d\n", phys_enc != NULL);
495 		return;
496 	}
497 
498 	dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
499 	hw_mdptop = phys_enc->hw_mdptop;
500 	disp_info = &dpu_enc->disp_info;
501 
502 	if (disp_info->intf_type != DRM_MODE_ENCODER_DSI)
503 		return;
504 
505 	/**
506 	 * disable split modes since encoder will be operating in as the only
507 	 * encoder, either for the entire use case in the case of, for example,
508 	 * single DSI, or for this frame in the case of left/right only partial
509 	 * update.
510 	 */
511 	if (phys_enc->split_role == ENC_ROLE_SOLO) {
512 		if (hw_mdptop->ops.setup_split_pipe)
513 			hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg);
514 		return;
515 	}
516 
517 	cfg.en = true;
518 	cfg.mode = phys_enc->intf_mode;
519 	cfg.intf = interface;
520 
521 	if (cfg.en && phys_enc->ops.needs_single_flush &&
522 			phys_enc->ops.needs_single_flush(phys_enc))
523 		cfg.split_flush_en = true;
524 
525 	if (phys_enc->split_role == ENC_ROLE_MASTER) {
526 		DPU_DEBUG_ENC(dpu_enc, "enable %d\n", cfg.en);
527 
528 		if (hw_mdptop->ops.setup_split_pipe)
529 			hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg);
530 	}
531 }
532 
533 static struct msm_display_topology dpu_encoder_get_topology(
534 			struct dpu_encoder_virt *dpu_enc,
535 			struct dpu_kms *dpu_kms,
536 			struct drm_display_mode *mode)
537 {
538 	struct msm_display_topology topology = {0};
539 	int i, intf_count = 0;
540 
541 	for (i = 0; i < MAX_PHYS_ENCODERS_PER_VIRTUAL; i++)
542 		if (dpu_enc->phys_encs[i])
543 			intf_count++;
544 
545 	/* Datapath topology selection
546 	 *
547 	 * Dual display
548 	 * 2 LM, 2 INTF ( Split display using 2 interfaces)
549 	 *
550 	 * Single display
551 	 * 1 LM, 1 INTF
552 	 * 2 LM, 1 INTF (stream merge to support high resolution interfaces)
553 	 *
554 	 * Adding color blocks only to primary interface if available in
555 	 * sufficient number
556 	 */
557 	if (intf_count == 2)
558 		topology.num_lm = 2;
559 	else if (!dpu_kms->catalog->caps->has_3d_merge)
560 		topology.num_lm = 1;
561 	else
562 		topology.num_lm = (mode->hdisplay > MAX_HDISPLAY_SPLIT) ? 2 : 1;
563 
564 	if (dpu_enc->disp_info.intf_type == DRM_MODE_ENCODER_DSI) {
565 		if (dpu_kms->catalog->dspp &&
566 			(dpu_kms->catalog->dspp_count >= topology.num_lm))
567 			topology.num_dspp = topology.num_lm;
568 	}
569 
570 	topology.num_enc = 0;
571 	topology.num_intf = intf_count;
572 
573 	return topology;
574 }
575 static int dpu_encoder_virt_atomic_check(
576 		struct drm_encoder *drm_enc,
577 		struct drm_crtc_state *crtc_state,
578 		struct drm_connector_state *conn_state)
579 {
580 	struct dpu_encoder_virt *dpu_enc;
581 	struct msm_drm_private *priv;
582 	struct dpu_kms *dpu_kms;
583 	const struct drm_display_mode *mode;
584 	struct drm_display_mode *adj_mode;
585 	struct msm_display_topology topology;
586 	struct dpu_global_state *global_state;
587 	int i = 0;
588 	int ret = 0;
589 
590 	if (!drm_enc || !crtc_state || !conn_state) {
591 		DPU_ERROR("invalid arg(s), drm_enc %d, crtc/conn state %d/%d\n",
592 				drm_enc != NULL, crtc_state != NULL, conn_state != NULL);
593 		return -EINVAL;
594 	}
595 
596 	dpu_enc = to_dpu_encoder_virt(drm_enc);
597 	DPU_DEBUG_ENC(dpu_enc, "\n");
598 
599 	priv = drm_enc->dev->dev_private;
600 	dpu_kms = to_dpu_kms(priv->kms);
601 	mode = &crtc_state->mode;
602 	adj_mode = &crtc_state->adjusted_mode;
603 	global_state = dpu_kms_get_global_state(crtc_state->state);
604 	if (IS_ERR(global_state))
605 		return PTR_ERR(global_state);
606 
607 	trace_dpu_enc_atomic_check(DRMID(drm_enc));
608 
609 	/* perform atomic check on the first physical encoder (master) */
610 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
611 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
612 
613 		if (phys->ops.atomic_check)
614 			ret = phys->ops.atomic_check(phys, crtc_state,
615 					conn_state);
616 		else if (phys->ops.mode_fixup)
617 			if (!phys->ops.mode_fixup(phys, mode, adj_mode))
618 				ret = -EINVAL;
619 
620 		if (ret) {
621 			DPU_ERROR_ENC(dpu_enc,
622 					"mode unsupported, phys idx %d\n", i);
623 			break;
624 		}
625 	}
626 
627 	topology = dpu_encoder_get_topology(dpu_enc, dpu_kms, adj_mode);
628 
629 	/* Reserve dynamic resources now. */
630 	if (!ret) {
631 		/*
632 		 * Release and Allocate resources on every modeset
633 		 * Dont allocate when active is false.
634 		 */
635 		if (drm_atomic_crtc_needs_modeset(crtc_state)) {
636 			dpu_rm_release(global_state, drm_enc);
637 
638 			if (!crtc_state->active_changed || crtc_state->active)
639 				ret = dpu_rm_reserve(&dpu_kms->rm, global_state,
640 						drm_enc, crtc_state, topology);
641 		}
642 	}
643 
644 	trace_dpu_enc_atomic_check_flags(DRMID(drm_enc), adj_mode->flags);
645 
646 	return ret;
647 }
648 
649 static void _dpu_encoder_update_vsync_source(struct dpu_encoder_virt *dpu_enc,
650 			struct msm_display_info *disp_info)
651 {
652 	struct dpu_vsync_source_cfg vsync_cfg = { 0 };
653 	struct msm_drm_private *priv;
654 	struct dpu_kms *dpu_kms;
655 	struct dpu_hw_mdp *hw_mdptop;
656 	struct drm_encoder *drm_enc;
657 	int i;
658 
659 	if (!dpu_enc || !disp_info) {
660 		DPU_ERROR("invalid param dpu_enc:%d or disp_info:%d\n",
661 					dpu_enc != NULL, disp_info != NULL);
662 		return;
663 	} else if (dpu_enc->num_phys_encs > ARRAY_SIZE(dpu_enc->hw_pp)) {
664 		DPU_ERROR("invalid num phys enc %d/%d\n",
665 				dpu_enc->num_phys_encs,
666 				(int) ARRAY_SIZE(dpu_enc->hw_pp));
667 		return;
668 	}
669 
670 	drm_enc = &dpu_enc->base;
671 	/* this pointers are checked in virt_enable_helper */
672 	priv = drm_enc->dev->dev_private;
673 
674 	dpu_kms = to_dpu_kms(priv->kms);
675 	hw_mdptop = dpu_kms->hw_mdp;
676 	if (!hw_mdptop) {
677 		DPU_ERROR("invalid mdptop\n");
678 		return;
679 	}
680 
681 	if (hw_mdptop->ops.setup_vsync_source &&
682 			disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE) {
683 		for (i = 0; i < dpu_enc->num_phys_encs; i++)
684 			vsync_cfg.ppnumber[i] = dpu_enc->hw_pp[i]->idx;
685 
686 		vsync_cfg.pp_count = dpu_enc->num_phys_encs;
687 		if (disp_info->is_te_using_watchdog_timer)
688 			vsync_cfg.vsync_source = DPU_VSYNC_SOURCE_WD_TIMER_0;
689 		else
690 			vsync_cfg.vsync_source = DPU_VSYNC0_SOURCE_GPIO;
691 
692 		hw_mdptop->ops.setup_vsync_source(hw_mdptop, &vsync_cfg);
693 	}
694 }
695 
696 static void _dpu_encoder_irq_control(struct drm_encoder *drm_enc, bool enable)
697 {
698 	struct dpu_encoder_virt *dpu_enc;
699 	int i;
700 
701 	if (!drm_enc) {
702 		DPU_ERROR("invalid encoder\n");
703 		return;
704 	}
705 
706 	dpu_enc = to_dpu_encoder_virt(drm_enc);
707 
708 	DPU_DEBUG_ENC(dpu_enc, "enable:%d\n", enable);
709 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
710 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
711 
712 		if (phys->ops.irq_control)
713 			phys->ops.irq_control(phys, enable);
714 	}
715 
716 }
717 
718 static void _dpu_encoder_resource_control_helper(struct drm_encoder *drm_enc,
719 		bool enable)
720 {
721 	struct msm_drm_private *priv;
722 	struct dpu_kms *dpu_kms;
723 	struct dpu_encoder_virt *dpu_enc;
724 
725 	dpu_enc = to_dpu_encoder_virt(drm_enc);
726 	priv = drm_enc->dev->dev_private;
727 	dpu_kms = to_dpu_kms(priv->kms);
728 
729 	trace_dpu_enc_rc_helper(DRMID(drm_enc), enable);
730 
731 	if (!dpu_enc->cur_master) {
732 		DPU_ERROR("encoder master not set\n");
733 		return;
734 	}
735 
736 	if (enable) {
737 		/* enable DPU core clks */
738 		pm_runtime_get_sync(&dpu_kms->pdev->dev);
739 
740 		/* enable all the irq */
741 		_dpu_encoder_irq_control(drm_enc, true);
742 
743 	} else {
744 		/* disable all the irq */
745 		_dpu_encoder_irq_control(drm_enc, false);
746 
747 		/* disable DPU core clks */
748 		pm_runtime_put_sync(&dpu_kms->pdev->dev);
749 	}
750 
751 }
752 
753 static int dpu_encoder_resource_control(struct drm_encoder *drm_enc,
754 		u32 sw_event)
755 {
756 	struct dpu_encoder_virt *dpu_enc;
757 	struct msm_drm_private *priv;
758 	bool is_vid_mode = false;
759 
760 	if (!drm_enc || !drm_enc->dev || !drm_enc->crtc) {
761 		DPU_ERROR("invalid parameters\n");
762 		return -EINVAL;
763 	}
764 	dpu_enc = to_dpu_encoder_virt(drm_enc);
765 	priv = drm_enc->dev->dev_private;
766 	is_vid_mode = dpu_enc->disp_info.capabilities &
767 						MSM_DISPLAY_CAP_VID_MODE;
768 
769 	/*
770 	 * when idle_pc is not supported, process only KICKOFF, STOP and MODESET
771 	 * events and return early for other events (ie wb display).
772 	 */
773 	if (!dpu_enc->idle_pc_supported &&
774 			(sw_event != DPU_ENC_RC_EVENT_KICKOFF &&
775 			sw_event != DPU_ENC_RC_EVENT_STOP &&
776 			sw_event != DPU_ENC_RC_EVENT_PRE_STOP))
777 		return 0;
778 
779 	trace_dpu_enc_rc(DRMID(drm_enc), sw_event, dpu_enc->idle_pc_supported,
780 			 dpu_enc->rc_state, "begin");
781 
782 	switch (sw_event) {
783 	case DPU_ENC_RC_EVENT_KICKOFF:
784 		/* cancel delayed off work, if any */
785 		if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work))
786 			DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n",
787 					sw_event);
788 
789 		mutex_lock(&dpu_enc->rc_lock);
790 
791 		/* return if the resource control is already in ON state */
792 		if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) {
793 			DRM_DEBUG_KMS("id;%u, sw_event:%d, rc in ON state\n",
794 				      DRMID(drm_enc), sw_event);
795 			mutex_unlock(&dpu_enc->rc_lock);
796 			return 0;
797 		} else if (dpu_enc->rc_state != DPU_ENC_RC_STATE_OFF &&
798 				dpu_enc->rc_state != DPU_ENC_RC_STATE_IDLE) {
799 			DRM_DEBUG_KMS("id;%u, sw_event:%d, rc in state %d\n",
800 				      DRMID(drm_enc), sw_event,
801 				      dpu_enc->rc_state);
802 			mutex_unlock(&dpu_enc->rc_lock);
803 			return -EINVAL;
804 		}
805 
806 		if (is_vid_mode && dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE)
807 			_dpu_encoder_irq_control(drm_enc, true);
808 		else
809 			_dpu_encoder_resource_control_helper(drm_enc, true);
810 
811 		dpu_enc->rc_state = DPU_ENC_RC_STATE_ON;
812 
813 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
814 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
815 				 "kickoff");
816 
817 		mutex_unlock(&dpu_enc->rc_lock);
818 		break;
819 
820 	case DPU_ENC_RC_EVENT_FRAME_DONE:
821 		/*
822 		 * mutex lock is not used as this event happens at interrupt
823 		 * context. And locking is not required as, the other events
824 		 * like KICKOFF and STOP does a wait-for-idle before executing
825 		 * the resource_control
826 		 */
827 		if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) {
828 			DRM_DEBUG_KMS("id:%d, sw_event:%d,rc:%d-unexpected\n",
829 				      DRMID(drm_enc), sw_event,
830 				      dpu_enc->rc_state);
831 			return -EINVAL;
832 		}
833 
834 		/*
835 		 * schedule off work item only when there are no
836 		 * frames pending
837 		 */
838 		if (dpu_crtc_frame_pending(drm_enc->crtc) > 1) {
839 			DRM_DEBUG_KMS("id:%d skip schedule work\n",
840 				      DRMID(drm_enc));
841 			return 0;
842 		}
843 
844 		queue_delayed_work(priv->wq, &dpu_enc->delayed_off_work,
845 				   msecs_to_jiffies(dpu_enc->idle_timeout));
846 
847 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
848 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
849 				 "frame done");
850 		break;
851 
852 	case DPU_ENC_RC_EVENT_PRE_STOP:
853 		/* cancel delayed off work, if any */
854 		if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work))
855 			DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n",
856 					sw_event);
857 
858 		mutex_lock(&dpu_enc->rc_lock);
859 
860 		if (is_vid_mode &&
861 			  dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) {
862 			_dpu_encoder_irq_control(drm_enc, true);
863 		}
864 		/* skip if is already OFF or IDLE, resources are off already */
865 		else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF ||
866 				dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) {
867 			DRM_DEBUG_KMS("id:%u, sw_event:%d, rc in %d state\n",
868 				      DRMID(drm_enc), sw_event,
869 				      dpu_enc->rc_state);
870 			mutex_unlock(&dpu_enc->rc_lock);
871 			return 0;
872 		}
873 
874 		dpu_enc->rc_state = DPU_ENC_RC_STATE_PRE_OFF;
875 
876 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
877 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
878 				 "pre stop");
879 
880 		mutex_unlock(&dpu_enc->rc_lock);
881 		break;
882 
883 	case DPU_ENC_RC_EVENT_STOP:
884 		mutex_lock(&dpu_enc->rc_lock);
885 
886 		/* return if the resource control is already in OFF state */
887 		if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF) {
888 			DRM_DEBUG_KMS("id: %u, sw_event:%d, rc in OFF state\n",
889 				      DRMID(drm_enc), sw_event);
890 			mutex_unlock(&dpu_enc->rc_lock);
891 			return 0;
892 		} else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) {
893 			DRM_ERROR("id: %u, sw_event:%d, rc in state %d\n",
894 				  DRMID(drm_enc), sw_event, dpu_enc->rc_state);
895 			mutex_unlock(&dpu_enc->rc_lock);
896 			return -EINVAL;
897 		}
898 
899 		/**
900 		 * expect to arrive here only if in either idle state or pre-off
901 		 * and in IDLE state the resources are already disabled
902 		 */
903 		if (dpu_enc->rc_state == DPU_ENC_RC_STATE_PRE_OFF)
904 			_dpu_encoder_resource_control_helper(drm_enc, false);
905 
906 		dpu_enc->rc_state = DPU_ENC_RC_STATE_OFF;
907 
908 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
909 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
910 				 "stop");
911 
912 		mutex_unlock(&dpu_enc->rc_lock);
913 		break;
914 
915 	case DPU_ENC_RC_EVENT_ENTER_IDLE:
916 		mutex_lock(&dpu_enc->rc_lock);
917 
918 		if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) {
919 			DRM_ERROR("id: %u, sw_event:%d, rc:%d !ON state\n",
920 				  DRMID(drm_enc), sw_event, dpu_enc->rc_state);
921 			mutex_unlock(&dpu_enc->rc_lock);
922 			return 0;
923 		}
924 
925 		/*
926 		 * if we are in ON but a frame was just kicked off,
927 		 * ignore the IDLE event, it's probably a stale timer event
928 		 */
929 		if (dpu_enc->frame_busy_mask[0]) {
930 			DRM_ERROR("id:%u, sw_event:%d, rc:%d frame pending\n",
931 				  DRMID(drm_enc), sw_event, dpu_enc->rc_state);
932 			mutex_unlock(&dpu_enc->rc_lock);
933 			return 0;
934 		}
935 
936 		if (is_vid_mode)
937 			_dpu_encoder_irq_control(drm_enc, false);
938 		else
939 			_dpu_encoder_resource_control_helper(drm_enc, false);
940 
941 		dpu_enc->rc_state = DPU_ENC_RC_STATE_IDLE;
942 
943 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
944 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
945 				 "idle");
946 
947 		mutex_unlock(&dpu_enc->rc_lock);
948 		break;
949 
950 	default:
951 		DRM_ERROR("id:%u, unexpected sw_event: %d\n", DRMID(drm_enc),
952 			  sw_event);
953 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
954 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
955 				 "error");
956 		break;
957 	}
958 
959 	trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
960 			 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
961 			 "end");
962 	return 0;
963 }
964 
965 static void dpu_encoder_virt_mode_set(struct drm_encoder *drm_enc,
966 				      struct drm_display_mode *mode,
967 				      struct drm_display_mode *adj_mode)
968 {
969 	struct dpu_encoder_virt *dpu_enc;
970 	struct msm_drm_private *priv;
971 	struct dpu_kms *dpu_kms;
972 	struct list_head *connector_list;
973 	struct drm_connector *conn = NULL, *conn_iter;
974 	struct drm_crtc *drm_crtc;
975 	struct dpu_crtc_state *cstate;
976 	struct dpu_global_state *global_state;
977 	struct dpu_hw_blk *hw_pp[MAX_CHANNELS_PER_ENC];
978 	struct dpu_hw_blk *hw_ctl[MAX_CHANNELS_PER_ENC];
979 	struct dpu_hw_blk *hw_lm[MAX_CHANNELS_PER_ENC];
980 	struct dpu_hw_blk *hw_dspp[MAX_CHANNELS_PER_ENC] = { NULL };
981 	int num_lm, num_ctl, num_pp;
982 	int i, j;
983 
984 	if (!drm_enc) {
985 		DPU_ERROR("invalid encoder\n");
986 		return;
987 	}
988 
989 	dpu_enc = to_dpu_encoder_virt(drm_enc);
990 	DPU_DEBUG_ENC(dpu_enc, "\n");
991 
992 	priv = drm_enc->dev->dev_private;
993 	dpu_kms = to_dpu_kms(priv->kms);
994 	connector_list = &dpu_kms->dev->mode_config.connector_list;
995 
996 	global_state = dpu_kms_get_existing_global_state(dpu_kms);
997 	if (IS_ERR_OR_NULL(global_state)) {
998 		DPU_ERROR("Failed to get global state");
999 		return;
1000 	}
1001 
1002 	trace_dpu_enc_mode_set(DRMID(drm_enc));
1003 
1004 	if (drm_enc->encoder_type == DRM_MODE_ENCODER_TMDS && priv->dp)
1005 		msm_dp_display_mode_set(priv->dp, drm_enc, mode, adj_mode);
1006 
1007 	list_for_each_entry(conn_iter, connector_list, head)
1008 		if (conn_iter->encoder == drm_enc)
1009 			conn = conn_iter;
1010 
1011 	if (!conn) {
1012 		DPU_ERROR_ENC(dpu_enc, "failed to find attached connector\n");
1013 		return;
1014 	} else if (!conn->state) {
1015 		DPU_ERROR_ENC(dpu_enc, "invalid connector state\n");
1016 		return;
1017 	}
1018 
1019 	drm_for_each_crtc(drm_crtc, drm_enc->dev)
1020 		if (drm_crtc->state->encoder_mask & drm_encoder_mask(drm_enc))
1021 			break;
1022 
1023 	/* Query resource that have been reserved in atomic check step. */
1024 	num_pp = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1025 		drm_enc->base.id, DPU_HW_BLK_PINGPONG, hw_pp,
1026 		ARRAY_SIZE(hw_pp));
1027 	num_ctl = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1028 		drm_enc->base.id, DPU_HW_BLK_CTL, hw_ctl, ARRAY_SIZE(hw_ctl));
1029 	num_lm = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1030 		drm_enc->base.id, DPU_HW_BLK_LM, hw_lm, ARRAY_SIZE(hw_lm));
1031 	dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1032 		drm_enc->base.id, DPU_HW_BLK_DSPP, hw_dspp,
1033 		ARRAY_SIZE(hw_dspp));
1034 
1035 	for (i = 0; i < MAX_CHANNELS_PER_ENC; i++)
1036 		dpu_enc->hw_pp[i] = i < num_pp ? to_dpu_hw_pingpong(hw_pp[i])
1037 						: NULL;
1038 
1039 	cstate = to_dpu_crtc_state(drm_crtc->state);
1040 
1041 	for (i = 0; i < num_lm; i++) {
1042 		int ctl_idx = (i < num_ctl) ? i : (num_ctl-1);
1043 
1044 		cstate->mixers[i].hw_lm = to_dpu_hw_mixer(hw_lm[i]);
1045 		cstate->mixers[i].lm_ctl = to_dpu_hw_ctl(hw_ctl[ctl_idx]);
1046 		cstate->mixers[i].hw_dspp = to_dpu_hw_dspp(hw_dspp[i]);
1047 	}
1048 
1049 	cstate->num_mixers = num_lm;
1050 
1051 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1052 		int num_blk;
1053 		struct dpu_hw_blk *hw_blk[MAX_CHANNELS_PER_ENC];
1054 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1055 
1056 		if (!dpu_enc->hw_pp[i]) {
1057 			DPU_ERROR_ENC(dpu_enc,
1058 				"no pp block assigned at idx: %d\n", i);
1059 			return;
1060 		}
1061 
1062 		if (!hw_ctl[i]) {
1063 			DPU_ERROR_ENC(dpu_enc,
1064 				"no ctl block assigned at idx: %d\n", i);
1065 			return;
1066 		}
1067 
1068 		phys->hw_pp = dpu_enc->hw_pp[i];
1069 		phys->hw_ctl = to_dpu_hw_ctl(hw_ctl[i]);
1070 
1071 		num_blk = dpu_rm_get_assigned_resources(&dpu_kms->rm,
1072 			global_state, drm_enc->base.id, DPU_HW_BLK_INTF,
1073 			hw_blk, ARRAY_SIZE(hw_blk));
1074 		for (j = 0; j < num_blk; j++) {
1075 			struct dpu_hw_intf *hw_intf;
1076 
1077 			hw_intf = to_dpu_hw_intf(hw_blk[i]);
1078 			if (hw_intf->idx == phys->intf_idx)
1079 				phys->hw_intf = hw_intf;
1080 		}
1081 
1082 		if (!phys->hw_intf) {
1083 			DPU_ERROR_ENC(dpu_enc,
1084 				      "no intf block assigned at idx: %d\n", i);
1085 			return;
1086 		}
1087 
1088 		phys->connector = conn->state->connector;
1089 		if (phys->ops.mode_set)
1090 			phys->ops.mode_set(phys, mode, adj_mode);
1091 	}
1092 }
1093 
1094 static void _dpu_encoder_virt_enable_helper(struct drm_encoder *drm_enc)
1095 {
1096 	struct dpu_encoder_virt *dpu_enc = NULL;
1097 	int i;
1098 
1099 	if (!drm_enc || !drm_enc->dev) {
1100 		DPU_ERROR("invalid parameters\n");
1101 		return;
1102 	}
1103 
1104 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1105 	if (!dpu_enc || !dpu_enc->cur_master) {
1106 		DPU_ERROR("invalid dpu encoder/master\n");
1107 		return;
1108 	}
1109 
1110 
1111 	if (dpu_enc->disp_info.intf_type == DRM_MODE_CONNECTOR_DisplayPort &&
1112 		dpu_enc->cur_master->hw_mdptop &&
1113 		dpu_enc->cur_master->hw_mdptop->ops.intf_audio_select)
1114 		dpu_enc->cur_master->hw_mdptop->ops.intf_audio_select(
1115 			dpu_enc->cur_master->hw_mdptop);
1116 
1117 	_dpu_encoder_update_vsync_source(dpu_enc, &dpu_enc->disp_info);
1118 
1119 	if (dpu_enc->disp_info.intf_type == DRM_MODE_ENCODER_DSI &&
1120 			!WARN_ON(dpu_enc->num_phys_encs == 0)) {
1121 		unsigned bpc = dpu_enc->phys_encs[0]->connector->display_info.bpc;
1122 		for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
1123 			if (!dpu_enc->hw_pp[i])
1124 				continue;
1125 			_dpu_encoder_setup_dither(dpu_enc->hw_pp[i], bpc);
1126 		}
1127 	}
1128 }
1129 
1130 void dpu_encoder_virt_runtime_resume(struct drm_encoder *drm_enc)
1131 {
1132 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1133 
1134 	mutex_lock(&dpu_enc->enc_lock);
1135 
1136 	if (!dpu_enc->enabled)
1137 		goto out;
1138 
1139 	if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.restore)
1140 		dpu_enc->cur_slave->ops.restore(dpu_enc->cur_slave);
1141 	if (dpu_enc->cur_master && dpu_enc->cur_master->ops.restore)
1142 		dpu_enc->cur_master->ops.restore(dpu_enc->cur_master);
1143 
1144 	_dpu_encoder_virt_enable_helper(drm_enc);
1145 
1146 out:
1147 	mutex_unlock(&dpu_enc->enc_lock);
1148 }
1149 
1150 static void dpu_encoder_virt_enable(struct drm_encoder *drm_enc)
1151 {
1152 	struct dpu_encoder_virt *dpu_enc = NULL;
1153 	int ret = 0;
1154 	struct msm_drm_private *priv;
1155 	struct drm_display_mode *cur_mode = NULL;
1156 
1157 	if (!drm_enc) {
1158 		DPU_ERROR("invalid encoder\n");
1159 		return;
1160 	}
1161 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1162 
1163 	mutex_lock(&dpu_enc->enc_lock);
1164 	cur_mode = &dpu_enc->base.crtc->state->adjusted_mode;
1165 	priv = drm_enc->dev->dev_private;
1166 
1167 	trace_dpu_enc_enable(DRMID(drm_enc), cur_mode->hdisplay,
1168 			     cur_mode->vdisplay);
1169 
1170 	/* always enable slave encoder before master */
1171 	if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.enable)
1172 		dpu_enc->cur_slave->ops.enable(dpu_enc->cur_slave);
1173 
1174 	if (dpu_enc->cur_master && dpu_enc->cur_master->ops.enable)
1175 		dpu_enc->cur_master->ops.enable(dpu_enc->cur_master);
1176 
1177 	ret = dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF);
1178 	if (ret) {
1179 		DPU_ERROR_ENC(dpu_enc, "dpu resource control failed: %d\n",
1180 				ret);
1181 		goto out;
1182 	}
1183 
1184 	_dpu_encoder_virt_enable_helper(drm_enc);
1185 
1186 	if (drm_enc->encoder_type == DRM_MODE_ENCODER_TMDS && priv->dp) {
1187 		ret = msm_dp_display_enable(priv->dp,
1188 						drm_enc);
1189 		if (ret) {
1190 			DPU_ERROR_ENC(dpu_enc, "dp display enable failed: %d\n",
1191 				ret);
1192 			goto out;
1193 		}
1194 	}
1195 	dpu_enc->enabled = true;
1196 
1197 out:
1198 	mutex_unlock(&dpu_enc->enc_lock);
1199 }
1200 
1201 static void dpu_encoder_virt_disable(struct drm_encoder *drm_enc)
1202 {
1203 	struct dpu_encoder_virt *dpu_enc = NULL;
1204 	struct msm_drm_private *priv;
1205 	int i = 0;
1206 
1207 	if (!drm_enc) {
1208 		DPU_ERROR("invalid encoder\n");
1209 		return;
1210 	} else if (!drm_enc->dev) {
1211 		DPU_ERROR("invalid dev\n");
1212 		return;
1213 	}
1214 
1215 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1216 	DPU_DEBUG_ENC(dpu_enc, "\n");
1217 
1218 	mutex_lock(&dpu_enc->enc_lock);
1219 	dpu_enc->enabled = false;
1220 
1221 	priv = drm_enc->dev->dev_private;
1222 
1223 	trace_dpu_enc_disable(DRMID(drm_enc));
1224 
1225 	/* wait for idle */
1226 	dpu_encoder_wait_for_event(drm_enc, MSM_ENC_TX_COMPLETE);
1227 
1228 	if (drm_enc->encoder_type == DRM_MODE_ENCODER_TMDS && priv->dp) {
1229 		if (msm_dp_display_pre_disable(priv->dp, drm_enc))
1230 			DPU_ERROR_ENC(dpu_enc, "dp display push idle failed\n");
1231 	}
1232 
1233 	dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_PRE_STOP);
1234 
1235 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1236 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1237 
1238 		if (phys->ops.disable)
1239 			phys->ops.disable(phys);
1240 	}
1241 
1242 
1243 	/* after phys waits for frame-done, should be no more frames pending */
1244 	if (atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) {
1245 		DPU_ERROR("enc%d timeout pending\n", drm_enc->base.id);
1246 		del_timer_sync(&dpu_enc->frame_done_timer);
1247 	}
1248 
1249 	dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_STOP);
1250 
1251 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1252 		dpu_enc->phys_encs[i]->connector = NULL;
1253 	}
1254 
1255 	DPU_DEBUG_ENC(dpu_enc, "encoder disabled\n");
1256 
1257 	if (drm_enc->encoder_type == DRM_MODE_ENCODER_TMDS && priv->dp) {
1258 		if (msm_dp_display_disable(priv->dp, drm_enc))
1259 			DPU_ERROR_ENC(dpu_enc, "dp display disable failed\n");
1260 	}
1261 
1262 	mutex_unlock(&dpu_enc->enc_lock);
1263 }
1264 
1265 static enum dpu_intf dpu_encoder_get_intf(struct dpu_mdss_cfg *catalog,
1266 		enum dpu_intf_type type, u32 controller_id)
1267 {
1268 	int i = 0;
1269 
1270 	for (i = 0; i < catalog->intf_count; i++) {
1271 		if (catalog->intf[i].type == type
1272 		    && catalog->intf[i].controller_id == controller_id) {
1273 			return catalog->intf[i].id;
1274 		}
1275 	}
1276 
1277 	return INTF_MAX;
1278 }
1279 
1280 static void dpu_encoder_vblank_callback(struct drm_encoder *drm_enc,
1281 		struct dpu_encoder_phys *phy_enc)
1282 {
1283 	struct dpu_encoder_virt *dpu_enc = NULL;
1284 	unsigned long lock_flags;
1285 
1286 	if (!drm_enc || !phy_enc)
1287 		return;
1288 
1289 	DPU_ATRACE_BEGIN("encoder_vblank_callback");
1290 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1291 
1292 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1293 	if (dpu_enc->crtc)
1294 		dpu_crtc_vblank_callback(dpu_enc->crtc);
1295 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1296 
1297 	atomic_inc(&phy_enc->vsync_cnt);
1298 	DPU_ATRACE_END("encoder_vblank_callback");
1299 }
1300 
1301 static void dpu_encoder_underrun_callback(struct drm_encoder *drm_enc,
1302 		struct dpu_encoder_phys *phy_enc)
1303 {
1304 	if (!phy_enc)
1305 		return;
1306 
1307 	DPU_ATRACE_BEGIN("encoder_underrun_callback");
1308 	atomic_inc(&phy_enc->underrun_cnt);
1309 	trace_dpu_enc_underrun_cb(DRMID(drm_enc),
1310 				  atomic_read(&phy_enc->underrun_cnt));
1311 	DPU_ATRACE_END("encoder_underrun_callback");
1312 }
1313 
1314 void dpu_encoder_assign_crtc(struct drm_encoder *drm_enc, struct drm_crtc *crtc)
1315 {
1316 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1317 	unsigned long lock_flags;
1318 
1319 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1320 	/* crtc should always be cleared before re-assigning */
1321 	WARN_ON(crtc && dpu_enc->crtc);
1322 	dpu_enc->crtc = crtc;
1323 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1324 }
1325 
1326 void dpu_encoder_toggle_vblank_for_crtc(struct drm_encoder *drm_enc,
1327 					struct drm_crtc *crtc, bool enable)
1328 {
1329 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1330 	unsigned long lock_flags;
1331 	int i;
1332 
1333 	trace_dpu_enc_vblank_cb(DRMID(drm_enc), enable);
1334 
1335 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1336 	if (dpu_enc->crtc != crtc) {
1337 		spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1338 		return;
1339 	}
1340 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1341 
1342 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1343 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1344 
1345 		if (phys->ops.control_vblank_irq)
1346 			phys->ops.control_vblank_irq(phys, enable);
1347 	}
1348 }
1349 
1350 void dpu_encoder_register_frame_event_callback(struct drm_encoder *drm_enc,
1351 		void (*frame_event_cb)(void *, u32 event),
1352 		void *frame_event_cb_data)
1353 {
1354 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1355 	unsigned long lock_flags;
1356 	bool enable;
1357 
1358 	enable = frame_event_cb ? true : false;
1359 
1360 	if (!drm_enc) {
1361 		DPU_ERROR("invalid encoder\n");
1362 		return;
1363 	}
1364 	trace_dpu_enc_frame_event_cb(DRMID(drm_enc), enable);
1365 
1366 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1367 	dpu_enc->crtc_frame_event_cb = frame_event_cb;
1368 	dpu_enc->crtc_frame_event_cb_data = frame_event_cb_data;
1369 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1370 }
1371 
1372 static void dpu_encoder_frame_done_callback(
1373 		struct drm_encoder *drm_enc,
1374 		struct dpu_encoder_phys *ready_phys, u32 event)
1375 {
1376 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1377 	unsigned int i;
1378 
1379 	if (event & (DPU_ENCODER_FRAME_EVENT_DONE
1380 			| DPU_ENCODER_FRAME_EVENT_ERROR
1381 			| DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)) {
1382 
1383 		if (!dpu_enc->frame_busy_mask[0]) {
1384 			/**
1385 			 * suppress frame_done without waiter,
1386 			 * likely autorefresh
1387 			 */
1388 			trace_dpu_enc_frame_done_cb_not_busy(DRMID(drm_enc),
1389 					event, ready_phys->intf_idx);
1390 			return;
1391 		}
1392 
1393 		/* One of the physical encoders has become idle */
1394 		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1395 			if (dpu_enc->phys_encs[i] == ready_phys) {
1396 				trace_dpu_enc_frame_done_cb(DRMID(drm_enc), i,
1397 						dpu_enc->frame_busy_mask[0]);
1398 				clear_bit(i, dpu_enc->frame_busy_mask);
1399 			}
1400 		}
1401 
1402 		if (!dpu_enc->frame_busy_mask[0]) {
1403 			atomic_set(&dpu_enc->frame_done_timeout_ms, 0);
1404 			del_timer(&dpu_enc->frame_done_timer);
1405 
1406 			dpu_encoder_resource_control(drm_enc,
1407 					DPU_ENC_RC_EVENT_FRAME_DONE);
1408 
1409 			if (dpu_enc->crtc_frame_event_cb)
1410 				dpu_enc->crtc_frame_event_cb(
1411 					dpu_enc->crtc_frame_event_cb_data,
1412 					event);
1413 		}
1414 	} else {
1415 		if (dpu_enc->crtc_frame_event_cb)
1416 			dpu_enc->crtc_frame_event_cb(
1417 				dpu_enc->crtc_frame_event_cb_data, event);
1418 	}
1419 }
1420 
1421 static void dpu_encoder_off_work(struct work_struct *work)
1422 {
1423 	struct dpu_encoder_virt *dpu_enc = container_of(work,
1424 			struct dpu_encoder_virt, delayed_off_work.work);
1425 
1426 	if (!dpu_enc) {
1427 		DPU_ERROR("invalid dpu encoder\n");
1428 		return;
1429 	}
1430 
1431 	dpu_encoder_resource_control(&dpu_enc->base,
1432 						DPU_ENC_RC_EVENT_ENTER_IDLE);
1433 
1434 	dpu_encoder_frame_done_callback(&dpu_enc->base, NULL,
1435 				DPU_ENCODER_FRAME_EVENT_IDLE);
1436 }
1437 
1438 /**
1439  * _dpu_encoder_trigger_flush - trigger flush for a physical encoder
1440  * @drm_enc: Pointer to drm encoder structure
1441  * @phys: Pointer to physical encoder structure
1442  * @extra_flush_bits: Additional bit mask to include in flush trigger
1443  */
1444 static void _dpu_encoder_trigger_flush(struct drm_encoder *drm_enc,
1445 		struct dpu_encoder_phys *phys, uint32_t extra_flush_bits)
1446 {
1447 	struct dpu_hw_ctl *ctl;
1448 	int pending_kickoff_cnt;
1449 	u32 ret = UINT_MAX;
1450 
1451 	if (!phys->hw_pp) {
1452 		DPU_ERROR("invalid pingpong hw\n");
1453 		return;
1454 	}
1455 
1456 	ctl = phys->hw_ctl;
1457 	if (!ctl->ops.trigger_flush) {
1458 		DPU_ERROR("missing trigger cb\n");
1459 		return;
1460 	}
1461 
1462 	pending_kickoff_cnt = dpu_encoder_phys_inc_pending(phys);
1463 
1464 	if (extra_flush_bits && ctl->ops.update_pending_flush)
1465 		ctl->ops.update_pending_flush(ctl, extra_flush_bits);
1466 
1467 	ctl->ops.trigger_flush(ctl);
1468 
1469 	if (ctl->ops.get_pending_flush)
1470 		ret = ctl->ops.get_pending_flush(ctl);
1471 
1472 	trace_dpu_enc_trigger_flush(DRMID(drm_enc), phys->intf_idx,
1473 				    pending_kickoff_cnt, ctl->idx,
1474 				    extra_flush_bits, ret);
1475 }
1476 
1477 /**
1478  * _dpu_encoder_trigger_start - trigger start for a physical encoder
1479  * @phys: Pointer to physical encoder structure
1480  */
1481 static void _dpu_encoder_trigger_start(struct dpu_encoder_phys *phys)
1482 {
1483 	if (!phys) {
1484 		DPU_ERROR("invalid argument(s)\n");
1485 		return;
1486 	}
1487 
1488 	if (!phys->hw_pp) {
1489 		DPU_ERROR("invalid pingpong hw\n");
1490 		return;
1491 	}
1492 
1493 	if (phys->ops.trigger_start && phys->enable_state != DPU_ENC_DISABLED)
1494 		phys->ops.trigger_start(phys);
1495 }
1496 
1497 void dpu_encoder_helper_trigger_start(struct dpu_encoder_phys *phys_enc)
1498 {
1499 	struct dpu_hw_ctl *ctl;
1500 
1501 	ctl = phys_enc->hw_ctl;
1502 	if (ctl->ops.trigger_start) {
1503 		ctl->ops.trigger_start(ctl);
1504 		trace_dpu_enc_trigger_start(DRMID(phys_enc->parent), ctl->idx);
1505 	}
1506 }
1507 
1508 static int dpu_encoder_helper_wait_event_timeout(
1509 		int32_t drm_id,
1510 		int32_t hw_id,
1511 		struct dpu_encoder_wait_info *info)
1512 {
1513 	int rc = 0;
1514 	s64 expected_time = ktime_to_ms(ktime_get()) + info->timeout_ms;
1515 	s64 jiffies = msecs_to_jiffies(info->timeout_ms);
1516 	s64 time;
1517 
1518 	do {
1519 		rc = wait_event_timeout(*(info->wq),
1520 				atomic_read(info->atomic_cnt) == 0, jiffies);
1521 		time = ktime_to_ms(ktime_get());
1522 
1523 		trace_dpu_enc_wait_event_timeout(drm_id, hw_id, rc, time,
1524 						 expected_time,
1525 						 atomic_read(info->atomic_cnt));
1526 	/* If we timed out, counter is valid and time is less, wait again */
1527 	} while (atomic_read(info->atomic_cnt) && (rc == 0) &&
1528 			(time < expected_time));
1529 
1530 	return rc;
1531 }
1532 
1533 static void dpu_encoder_helper_hw_reset(struct dpu_encoder_phys *phys_enc)
1534 {
1535 	struct dpu_encoder_virt *dpu_enc;
1536 	struct dpu_hw_ctl *ctl;
1537 	int rc;
1538 
1539 	dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
1540 	ctl = phys_enc->hw_ctl;
1541 
1542 	if (!ctl->ops.reset)
1543 		return;
1544 
1545 	DRM_DEBUG_KMS("id:%u ctl %d reset\n", DRMID(phys_enc->parent),
1546 		      ctl->idx);
1547 
1548 	rc = ctl->ops.reset(ctl);
1549 	if (rc)
1550 		DPU_ERROR_ENC(dpu_enc, "ctl %d reset failure\n",  ctl->idx);
1551 
1552 	phys_enc->enable_state = DPU_ENC_ENABLED;
1553 }
1554 
1555 /**
1556  * _dpu_encoder_kickoff_phys - handle physical encoder kickoff
1557  *	Iterate through the physical encoders and perform consolidated flush
1558  *	and/or control start triggering as needed. This is done in the virtual
1559  *	encoder rather than the individual physical ones in order to handle
1560  *	use cases that require visibility into multiple physical encoders at
1561  *	a time.
1562  * @dpu_enc: Pointer to virtual encoder structure
1563  */
1564 static void _dpu_encoder_kickoff_phys(struct dpu_encoder_virt *dpu_enc)
1565 {
1566 	struct dpu_hw_ctl *ctl;
1567 	uint32_t i, pending_flush;
1568 	unsigned long lock_flags;
1569 
1570 	pending_flush = 0x0;
1571 
1572 	/* update pending counts and trigger kickoff ctl flush atomically */
1573 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1574 
1575 	/* don't perform flush/start operations for slave encoders */
1576 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1577 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1578 
1579 		if (phys->enable_state == DPU_ENC_DISABLED)
1580 			continue;
1581 
1582 		ctl = phys->hw_ctl;
1583 
1584 		/*
1585 		 * This is cleared in frame_done worker, which isn't invoked
1586 		 * for async commits. So don't set this for async, since it'll
1587 		 * roll over to the next commit.
1588 		 */
1589 		if (phys->split_role != ENC_ROLE_SLAVE)
1590 			set_bit(i, dpu_enc->frame_busy_mask);
1591 
1592 		if (!phys->ops.needs_single_flush ||
1593 				!phys->ops.needs_single_flush(phys))
1594 			_dpu_encoder_trigger_flush(&dpu_enc->base, phys, 0x0);
1595 		else if (ctl->ops.get_pending_flush)
1596 			pending_flush |= ctl->ops.get_pending_flush(ctl);
1597 	}
1598 
1599 	/* for split flush, combine pending flush masks and send to master */
1600 	if (pending_flush && dpu_enc->cur_master) {
1601 		_dpu_encoder_trigger_flush(
1602 				&dpu_enc->base,
1603 				dpu_enc->cur_master,
1604 				pending_flush);
1605 	}
1606 
1607 	_dpu_encoder_trigger_start(dpu_enc->cur_master);
1608 
1609 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1610 }
1611 
1612 void dpu_encoder_trigger_kickoff_pending(struct drm_encoder *drm_enc)
1613 {
1614 	struct dpu_encoder_virt *dpu_enc;
1615 	struct dpu_encoder_phys *phys;
1616 	unsigned int i;
1617 	struct dpu_hw_ctl *ctl;
1618 	struct msm_display_info *disp_info;
1619 
1620 	if (!drm_enc) {
1621 		DPU_ERROR("invalid encoder\n");
1622 		return;
1623 	}
1624 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1625 	disp_info = &dpu_enc->disp_info;
1626 
1627 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1628 		phys = dpu_enc->phys_encs[i];
1629 
1630 		ctl = phys->hw_ctl;
1631 		if (ctl->ops.clear_pending_flush)
1632 			ctl->ops.clear_pending_flush(ctl);
1633 
1634 		/* update only for command mode primary ctl */
1635 		if ((phys == dpu_enc->cur_master) &&
1636 		   (disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE)
1637 		    && ctl->ops.trigger_pending)
1638 			ctl->ops.trigger_pending(ctl);
1639 	}
1640 }
1641 
1642 static u32 _dpu_encoder_calculate_linetime(struct dpu_encoder_virt *dpu_enc,
1643 		struct drm_display_mode *mode)
1644 {
1645 	u64 pclk_rate;
1646 	u32 pclk_period;
1647 	u32 line_time;
1648 
1649 	/*
1650 	 * For linetime calculation, only operate on master encoder.
1651 	 */
1652 	if (!dpu_enc->cur_master)
1653 		return 0;
1654 
1655 	if (!dpu_enc->cur_master->ops.get_line_count) {
1656 		DPU_ERROR("get_line_count function not defined\n");
1657 		return 0;
1658 	}
1659 
1660 	pclk_rate = mode->clock; /* pixel clock in kHz */
1661 	if (pclk_rate == 0) {
1662 		DPU_ERROR("pclk is 0, cannot calculate line time\n");
1663 		return 0;
1664 	}
1665 
1666 	pclk_period = DIV_ROUND_UP_ULL(1000000000ull, pclk_rate);
1667 	if (pclk_period == 0) {
1668 		DPU_ERROR("pclk period is 0\n");
1669 		return 0;
1670 	}
1671 
1672 	/*
1673 	 * Line time calculation based on Pixel clock and HTOTAL.
1674 	 * Final unit is in ns.
1675 	 */
1676 	line_time = (pclk_period * mode->htotal) / 1000;
1677 	if (line_time == 0) {
1678 		DPU_ERROR("line time calculation is 0\n");
1679 		return 0;
1680 	}
1681 
1682 	DPU_DEBUG_ENC(dpu_enc,
1683 			"clk_rate=%lldkHz, clk_period=%d, linetime=%dns\n",
1684 			pclk_rate, pclk_period, line_time);
1685 
1686 	return line_time;
1687 }
1688 
1689 int dpu_encoder_vsync_time(struct drm_encoder *drm_enc, ktime_t *wakeup_time)
1690 {
1691 	struct drm_display_mode *mode;
1692 	struct dpu_encoder_virt *dpu_enc;
1693 	u32 cur_line;
1694 	u32 line_time;
1695 	u32 vtotal, time_to_vsync;
1696 	ktime_t cur_time;
1697 
1698 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1699 
1700 	if (!drm_enc->crtc || !drm_enc->crtc->state) {
1701 		DPU_ERROR("crtc/crtc state object is NULL\n");
1702 		return -EINVAL;
1703 	}
1704 	mode = &drm_enc->crtc->state->adjusted_mode;
1705 
1706 	line_time = _dpu_encoder_calculate_linetime(dpu_enc, mode);
1707 	if (!line_time)
1708 		return -EINVAL;
1709 
1710 	cur_line = dpu_enc->cur_master->ops.get_line_count(dpu_enc->cur_master);
1711 
1712 	vtotal = mode->vtotal;
1713 	if (cur_line >= vtotal)
1714 		time_to_vsync = line_time * vtotal;
1715 	else
1716 		time_to_vsync = line_time * (vtotal - cur_line);
1717 
1718 	if (time_to_vsync == 0) {
1719 		DPU_ERROR("time to vsync should not be zero, vtotal=%d\n",
1720 				vtotal);
1721 		return -EINVAL;
1722 	}
1723 
1724 	cur_time = ktime_get();
1725 	*wakeup_time = ktime_add_ns(cur_time, time_to_vsync);
1726 
1727 	DPU_DEBUG_ENC(dpu_enc,
1728 			"cur_line=%u vtotal=%u time_to_vsync=%u, cur_time=%lld, wakeup_time=%lld\n",
1729 			cur_line, vtotal, time_to_vsync,
1730 			ktime_to_ms(cur_time),
1731 			ktime_to_ms(*wakeup_time));
1732 	return 0;
1733 }
1734 
1735 static void dpu_encoder_vsync_event_handler(struct timer_list *t)
1736 {
1737 	struct dpu_encoder_virt *dpu_enc = from_timer(dpu_enc, t,
1738 			vsync_event_timer);
1739 	struct drm_encoder *drm_enc = &dpu_enc->base;
1740 	struct msm_drm_private *priv;
1741 	struct msm_drm_thread *event_thread;
1742 
1743 	if (!drm_enc->dev || !drm_enc->crtc) {
1744 		DPU_ERROR("invalid parameters\n");
1745 		return;
1746 	}
1747 
1748 	priv = drm_enc->dev->dev_private;
1749 
1750 	if (drm_enc->crtc->index >= ARRAY_SIZE(priv->event_thread)) {
1751 		DPU_ERROR("invalid crtc index\n");
1752 		return;
1753 	}
1754 	event_thread = &priv->event_thread[drm_enc->crtc->index];
1755 	if (!event_thread) {
1756 		DPU_ERROR("event_thread not found for crtc:%d\n",
1757 				drm_enc->crtc->index);
1758 		return;
1759 	}
1760 
1761 	del_timer(&dpu_enc->vsync_event_timer);
1762 }
1763 
1764 static void dpu_encoder_vsync_event_work_handler(struct kthread_work *work)
1765 {
1766 	struct dpu_encoder_virt *dpu_enc = container_of(work,
1767 			struct dpu_encoder_virt, vsync_event_work);
1768 	ktime_t wakeup_time;
1769 
1770 	if (!dpu_enc) {
1771 		DPU_ERROR("invalid dpu encoder\n");
1772 		return;
1773 	}
1774 
1775 	if (dpu_encoder_vsync_time(&dpu_enc->base, &wakeup_time))
1776 		return;
1777 
1778 	trace_dpu_enc_vsync_event_work(DRMID(&dpu_enc->base), wakeup_time);
1779 	mod_timer(&dpu_enc->vsync_event_timer,
1780 			nsecs_to_jiffies(ktime_to_ns(wakeup_time)));
1781 }
1782 
1783 void dpu_encoder_prepare_for_kickoff(struct drm_encoder *drm_enc)
1784 {
1785 	struct dpu_encoder_virt *dpu_enc;
1786 	struct dpu_encoder_phys *phys;
1787 	bool needs_hw_reset = false;
1788 	unsigned int i;
1789 
1790 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1791 
1792 	trace_dpu_enc_prepare_kickoff(DRMID(drm_enc));
1793 
1794 	/* prepare for next kickoff, may include waiting on previous kickoff */
1795 	DPU_ATRACE_BEGIN("enc_prepare_for_kickoff");
1796 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1797 		phys = dpu_enc->phys_encs[i];
1798 		if (phys->ops.prepare_for_kickoff)
1799 			phys->ops.prepare_for_kickoff(phys);
1800 		if (phys->enable_state == DPU_ENC_ERR_NEEDS_HW_RESET)
1801 			needs_hw_reset = true;
1802 	}
1803 	DPU_ATRACE_END("enc_prepare_for_kickoff");
1804 
1805 	dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF);
1806 
1807 	/* if any phys needs reset, reset all phys, in-order */
1808 	if (needs_hw_reset) {
1809 		trace_dpu_enc_prepare_kickoff_reset(DRMID(drm_enc));
1810 		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1811 			dpu_encoder_helper_hw_reset(dpu_enc->phys_encs[i]);
1812 		}
1813 	}
1814 }
1815 
1816 void dpu_encoder_kickoff(struct drm_encoder *drm_enc)
1817 {
1818 	struct dpu_encoder_virt *dpu_enc;
1819 	struct dpu_encoder_phys *phys;
1820 	ktime_t wakeup_time;
1821 	unsigned long timeout_ms;
1822 	unsigned int i;
1823 
1824 	DPU_ATRACE_BEGIN("encoder_kickoff");
1825 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1826 
1827 	trace_dpu_enc_kickoff(DRMID(drm_enc));
1828 
1829 	timeout_ms = DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES * 1000 /
1830 			drm_mode_vrefresh(&drm_enc->crtc->state->adjusted_mode);
1831 
1832 	atomic_set(&dpu_enc->frame_done_timeout_ms, timeout_ms);
1833 	mod_timer(&dpu_enc->frame_done_timer,
1834 			jiffies + msecs_to_jiffies(timeout_ms));
1835 
1836 	/* All phys encs are ready to go, trigger the kickoff */
1837 	_dpu_encoder_kickoff_phys(dpu_enc);
1838 
1839 	/* allow phys encs to handle any post-kickoff business */
1840 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1841 		phys = dpu_enc->phys_encs[i];
1842 		if (phys->ops.handle_post_kickoff)
1843 			phys->ops.handle_post_kickoff(phys);
1844 	}
1845 
1846 	if (dpu_enc->disp_info.intf_type == DRM_MODE_ENCODER_DSI &&
1847 			!dpu_encoder_vsync_time(drm_enc, &wakeup_time)) {
1848 		trace_dpu_enc_early_kickoff(DRMID(drm_enc),
1849 					    ktime_to_ms(wakeup_time));
1850 		mod_timer(&dpu_enc->vsync_event_timer,
1851 				nsecs_to_jiffies(ktime_to_ns(wakeup_time)));
1852 	}
1853 
1854 	DPU_ATRACE_END("encoder_kickoff");
1855 }
1856 
1857 void dpu_encoder_prepare_commit(struct drm_encoder *drm_enc)
1858 {
1859 	struct dpu_encoder_virt *dpu_enc;
1860 	struct dpu_encoder_phys *phys;
1861 	int i;
1862 
1863 	if (!drm_enc) {
1864 		DPU_ERROR("invalid encoder\n");
1865 		return;
1866 	}
1867 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1868 
1869 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1870 		phys = dpu_enc->phys_encs[i];
1871 		if (phys->ops.prepare_commit)
1872 			phys->ops.prepare_commit(phys);
1873 	}
1874 }
1875 
1876 #ifdef CONFIG_DEBUG_FS
1877 static int _dpu_encoder_status_show(struct seq_file *s, void *data)
1878 {
1879 	struct dpu_encoder_virt *dpu_enc = s->private;
1880 	int i;
1881 
1882 	mutex_lock(&dpu_enc->enc_lock);
1883 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1884 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1885 
1886 		seq_printf(s, "intf:%d    vsync:%8d     underrun:%8d    ",
1887 				phys->intf_idx - INTF_0,
1888 				atomic_read(&phys->vsync_cnt),
1889 				atomic_read(&phys->underrun_cnt));
1890 
1891 		switch (phys->intf_mode) {
1892 		case INTF_MODE_VIDEO:
1893 			seq_puts(s, "mode: video\n");
1894 			break;
1895 		case INTF_MODE_CMD:
1896 			seq_puts(s, "mode: command\n");
1897 			break;
1898 		default:
1899 			seq_puts(s, "mode: ???\n");
1900 			break;
1901 		}
1902 	}
1903 	mutex_unlock(&dpu_enc->enc_lock);
1904 
1905 	return 0;
1906 }
1907 
1908 DEFINE_SHOW_ATTRIBUTE(_dpu_encoder_status);
1909 
1910 static int _dpu_encoder_init_debugfs(struct drm_encoder *drm_enc)
1911 {
1912 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1913 	int i;
1914 
1915 	char name[DPU_NAME_SIZE];
1916 
1917 	if (!drm_enc->dev) {
1918 		DPU_ERROR("invalid encoder or kms\n");
1919 		return -EINVAL;
1920 	}
1921 
1922 	snprintf(name, DPU_NAME_SIZE, "encoder%u", drm_enc->base.id);
1923 
1924 	/* create overall sub-directory for the encoder */
1925 	dpu_enc->debugfs_root = debugfs_create_dir(name,
1926 			drm_enc->dev->primary->debugfs_root);
1927 
1928 	/* don't error check these */
1929 	debugfs_create_file("status", 0600,
1930 		dpu_enc->debugfs_root, dpu_enc, &_dpu_encoder_status_fops);
1931 
1932 	for (i = 0; i < dpu_enc->num_phys_encs; i++)
1933 		if (dpu_enc->phys_encs[i]->ops.late_register)
1934 			dpu_enc->phys_encs[i]->ops.late_register(
1935 					dpu_enc->phys_encs[i],
1936 					dpu_enc->debugfs_root);
1937 
1938 	return 0;
1939 }
1940 #else
1941 static int _dpu_encoder_init_debugfs(struct drm_encoder *drm_enc)
1942 {
1943 	return 0;
1944 }
1945 #endif
1946 
1947 static int dpu_encoder_late_register(struct drm_encoder *encoder)
1948 {
1949 	return _dpu_encoder_init_debugfs(encoder);
1950 }
1951 
1952 static void dpu_encoder_early_unregister(struct drm_encoder *encoder)
1953 {
1954 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(encoder);
1955 
1956 	debugfs_remove_recursive(dpu_enc->debugfs_root);
1957 }
1958 
1959 static int dpu_encoder_virt_add_phys_encs(
1960 		u32 display_caps,
1961 		struct dpu_encoder_virt *dpu_enc,
1962 		struct dpu_enc_phys_init_params *params)
1963 {
1964 	struct dpu_encoder_phys *enc = NULL;
1965 
1966 	DPU_DEBUG_ENC(dpu_enc, "\n");
1967 
1968 	/*
1969 	 * We may create up to NUM_PHYS_ENCODER_TYPES physical encoder types
1970 	 * in this function, check up-front.
1971 	 */
1972 	if (dpu_enc->num_phys_encs + NUM_PHYS_ENCODER_TYPES >=
1973 			ARRAY_SIZE(dpu_enc->phys_encs)) {
1974 		DPU_ERROR_ENC(dpu_enc, "too many physical encoders %d\n",
1975 			  dpu_enc->num_phys_encs);
1976 		return -EINVAL;
1977 	}
1978 
1979 	if (display_caps & MSM_DISPLAY_CAP_VID_MODE) {
1980 		enc = dpu_encoder_phys_vid_init(params);
1981 
1982 		if (IS_ERR_OR_NULL(enc)) {
1983 			DPU_ERROR_ENC(dpu_enc, "failed to init vid enc: %ld\n",
1984 				PTR_ERR(enc));
1985 			return enc == NULL ? -EINVAL : PTR_ERR(enc);
1986 		}
1987 
1988 		dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
1989 		++dpu_enc->num_phys_encs;
1990 	}
1991 
1992 	if (display_caps & MSM_DISPLAY_CAP_CMD_MODE) {
1993 		enc = dpu_encoder_phys_cmd_init(params);
1994 
1995 		if (IS_ERR_OR_NULL(enc)) {
1996 			DPU_ERROR_ENC(dpu_enc, "failed to init cmd enc: %ld\n",
1997 				PTR_ERR(enc));
1998 			return enc == NULL ? -EINVAL : PTR_ERR(enc);
1999 		}
2000 
2001 		dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
2002 		++dpu_enc->num_phys_encs;
2003 	}
2004 
2005 	if (params->split_role == ENC_ROLE_SLAVE)
2006 		dpu_enc->cur_slave = enc;
2007 	else
2008 		dpu_enc->cur_master = enc;
2009 
2010 	return 0;
2011 }
2012 
2013 static const struct dpu_encoder_virt_ops dpu_encoder_parent_ops = {
2014 	.handle_vblank_virt = dpu_encoder_vblank_callback,
2015 	.handle_underrun_virt = dpu_encoder_underrun_callback,
2016 	.handle_frame_done = dpu_encoder_frame_done_callback,
2017 };
2018 
2019 static int dpu_encoder_setup_display(struct dpu_encoder_virt *dpu_enc,
2020 				 struct dpu_kms *dpu_kms,
2021 				 struct msm_display_info *disp_info)
2022 {
2023 	int ret = 0;
2024 	int i = 0;
2025 	enum dpu_intf_type intf_type = INTF_NONE;
2026 	struct dpu_enc_phys_init_params phys_params;
2027 
2028 	if (!dpu_enc) {
2029 		DPU_ERROR("invalid arg(s), enc %d\n", dpu_enc != NULL);
2030 		return -EINVAL;
2031 	}
2032 
2033 	dpu_enc->cur_master = NULL;
2034 
2035 	memset(&phys_params, 0, sizeof(phys_params));
2036 	phys_params.dpu_kms = dpu_kms;
2037 	phys_params.parent = &dpu_enc->base;
2038 	phys_params.parent_ops = &dpu_encoder_parent_ops;
2039 	phys_params.enc_spinlock = &dpu_enc->enc_spinlock;
2040 
2041 	DPU_DEBUG("\n");
2042 
2043 	switch (disp_info->intf_type) {
2044 	case DRM_MODE_ENCODER_DSI:
2045 		intf_type = INTF_DSI;
2046 		break;
2047 	case DRM_MODE_ENCODER_TMDS:
2048 		intf_type = INTF_DP;
2049 		break;
2050 	}
2051 
2052 	WARN_ON(disp_info->num_of_h_tiles < 1);
2053 
2054 	DPU_DEBUG("dsi_info->num_of_h_tiles %d\n", disp_info->num_of_h_tiles);
2055 
2056 	if ((disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE) ||
2057 	    (disp_info->capabilities & MSM_DISPLAY_CAP_VID_MODE))
2058 		dpu_enc->idle_pc_supported =
2059 				dpu_kms->catalog->caps->has_idle_pc;
2060 
2061 	mutex_lock(&dpu_enc->enc_lock);
2062 	for (i = 0; i < disp_info->num_of_h_tiles && !ret; i++) {
2063 		/*
2064 		 * Left-most tile is at index 0, content is controller id
2065 		 * h_tile_instance_ids[2] = {0, 1}; DSI0 = left, DSI1 = right
2066 		 * h_tile_instance_ids[2] = {1, 0}; DSI1 = left, DSI0 = right
2067 		 */
2068 		u32 controller_id = disp_info->h_tile_instance[i];
2069 
2070 		if (disp_info->num_of_h_tiles > 1) {
2071 			if (i == 0)
2072 				phys_params.split_role = ENC_ROLE_MASTER;
2073 			else
2074 				phys_params.split_role = ENC_ROLE_SLAVE;
2075 		} else {
2076 			phys_params.split_role = ENC_ROLE_SOLO;
2077 		}
2078 
2079 		DPU_DEBUG("h_tile_instance %d = %d, split_role %d\n",
2080 				i, controller_id, phys_params.split_role);
2081 
2082 		phys_params.intf_idx = dpu_encoder_get_intf(dpu_kms->catalog,
2083 													intf_type,
2084 													controller_id);
2085 		if (phys_params.intf_idx == INTF_MAX) {
2086 			DPU_ERROR_ENC(dpu_enc, "could not get intf: type %d, id %d\n",
2087 						  intf_type, controller_id);
2088 			ret = -EINVAL;
2089 		}
2090 
2091 		if (!ret) {
2092 			ret = dpu_encoder_virt_add_phys_encs(disp_info->capabilities,
2093 												 dpu_enc,
2094 												 &phys_params);
2095 			if (ret)
2096 				DPU_ERROR_ENC(dpu_enc, "failed to add phys encs\n");
2097 		}
2098 	}
2099 
2100 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2101 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2102 		atomic_set(&phys->vsync_cnt, 0);
2103 		atomic_set(&phys->underrun_cnt, 0);
2104 	}
2105 	mutex_unlock(&dpu_enc->enc_lock);
2106 
2107 	return ret;
2108 }
2109 
2110 static void dpu_encoder_frame_done_timeout(struct timer_list *t)
2111 {
2112 	struct dpu_encoder_virt *dpu_enc = from_timer(dpu_enc, t,
2113 			frame_done_timer);
2114 	struct drm_encoder *drm_enc = &dpu_enc->base;
2115 	u32 event;
2116 
2117 	if (!drm_enc->dev) {
2118 		DPU_ERROR("invalid parameters\n");
2119 		return;
2120 	}
2121 
2122 	if (!dpu_enc->frame_busy_mask[0] || !dpu_enc->crtc_frame_event_cb) {
2123 		DRM_DEBUG_KMS("id:%u invalid timeout frame_busy_mask=%lu\n",
2124 			      DRMID(drm_enc), dpu_enc->frame_busy_mask[0]);
2125 		return;
2126 	} else if (!atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) {
2127 		DRM_DEBUG_KMS("id:%u invalid timeout\n", DRMID(drm_enc));
2128 		return;
2129 	}
2130 
2131 	DPU_ERROR_ENC(dpu_enc, "frame done timeout\n");
2132 
2133 	event = DPU_ENCODER_FRAME_EVENT_ERROR;
2134 	trace_dpu_enc_frame_done_timeout(DRMID(drm_enc), event);
2135 	dpu_enc->crtc_frame_event_cb(dpu_enc->crtc_frame_event_cb_data, event);
2136 }
2137 
2138 static const struct drm_encoder_helper_funcs dpu_encoder_helper_funcs = {
2139 	.mode_set = dpu_encoder_virt_mode_set,
2140 	.disable = dpu_encoder_virt_disable,
2141 	.enable = dpu_kms_encoder_enable,
2142 	.atomic_check = dpu_encoder_virt_atomic_check,
2143 
2144 	/* This is called by dpu_kms_encoder_enable */
2145 	.commit = dpu_encoder_virt_enable,
2146 };
2147 
2148 static const struct drm_encoder_funcs dpu_encoder_funcs = {
2149 		.destroy = dpu_encoder_destroy,
2150 		.late_register = dpu_encoder_late_register,
2151 		.early_unregister = dpu_encoder_early_unregister,
2152 };
2153 
2154 int dpu_encoder_setup(struct drm_device *dev, struct drm_encoder *enc,
2155 		struct msm_display_info *disp_info)
2156 {
2157 	struct msm_drm_private *priv = dev->dev_private;
2158 	struct dpu_kms *dpu_kms = to_dpu_kms(priv->kms);
2159 	struct drm_encoder *drm_enc = NULL;
2160 	struct dpu_encoder_virt *dpu_enc = NULL;
2161 	int ret = 0;
2162 
2163 	dpu_enc = to_dpu_encoder_virt(enc);
2164 
2165 	ret = dpu_encoder_setup_display(dpu_enc, dpu_kms, disp_info);
2166 	if (ret)
2167 		goto fail;
2168 
2169 	atomic_set(&dpu_enc->frame_done_timeout_ms, 0);
2170 	timer_setup(&dpu_enc->frame_done_timer,
2171 			dpu_encoder_frame_done_timeout, 0);
2172 
2173 	if (disp_info->intf_type == DRM_MODE_ENCODER_DSI)
2174 		timer_setup(&dpu_enc->vsync_event_timer,
2175 				dpu_encoder_vsync_event_handler,
2176 				0);
2177 
2178 
2179 	INIT_DELAYED_WORK(&dpu_enc->delayed_off_work,
2180 			dpu_encoder_off_work);
2181 	dpu_enc->idle_timeout = IDLE_TIMEOUT;
2182 
2183 	kthread_init_work(&dpu_enc->vsync_event_work,
2184 			dpu_encoder_vsync_event_work_handler);
2185 
2186 	memcpy(&dpu_enc->disp_info, disp_info, sizeof(*disp_info));
2187 
2188 	DPU_DEBUG_ENC(dpu_enc, "created\n");
2189 
2190 	return ret;
2191 
2192 fail:
2193 	DPU_ERROR("failed to create encoder\n");
2194 	if (drm_enc)
2195 		dpu_encoder_destroy(drm_enc);
2196 
2197 	return ret;
2198 
2199 
2200 }
2201 
2202 struct drm_encoder *dpu_encoder_init(struct drm_device *dev,
2203 		int drm_enc_mode)
2204 {
2205 	struct dpu_encoder_virt *dpu_enc = NULL;
2206 	int rc = 0;
2207 
2208 	dpu_enc = devm_kzalloc(dev->dev, sizeof(*dpu_enc), GFP_KERNEL);
2209 	if (!dpu_enc)
2210 		return ERR_PTR(-ENOMEM);
2211 
2212 	rc = drm_encoder_init(dev, &dpu_enc->base, &dpu_encoder_funcs,
2213 			drm_enc_mode, NULL);
2214 	if (rc) {
2215 		devm_kfree(dev->dev, dpu_enc);
2216 		return ERR_PTR(rc);
2217 	}
2218 
2219 	drm_encoder_helper_add(&dpu_enc->base, &dpu_encoder_helper_funcs);
2220 
2221 	spin_lock_init(&dpu_enc->enc_spinlock);
2222 	dpu_enc->enabled = false;
2223 	mutex_init(&dpu_enc->enc_lock);
2224 	mutex_init(&dpu_enc->rc_lock);
2225 
2226 	return &dpu_enc->base;
2227 }
2228 
2229 int dpu_encoder_wait_for_event(struct drm_encoder *drm_enc,
2230 	enum msm_event_wait event)
2231 {
2232 	int (*fn_wait)(struct dpu_encoder_phys *phys_enc) = NULL;
2233 	struct dpu_encoder_virt *dpu_enc = NULL;
2234 	int i, ret = 0;
2235 
2236 	if (!drm_enc) {
2237 		DPU_ERROR("invalid encoder\n");
2238 		return -EINVAL;
2239 	}
2240 	dpu_enc = to_dpu_encoder_virt(drm_enc);
2241 	DPU_DEBUG_ENC(dpu_enc, "\n");
2242 
2243 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2244 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2245 
2246 		switch (event) {
2247 		case MSM_ENC_COMMIT_DONE:
2248 			fn_wait = phys->ops.wait_for_commit_done;
2249 			break;
2250 		case MSM_ENC_TX_COMPLETE:
2251 			fn_wait = phys->ops.wait_for_tx_complete;
2252 			break;
2253 		case MSM_ENC_VBLANK:
2254 			fn_wait = phys->ops.wait_for_vblank;
2255 			break;
2256 		default:
2257 			DPU_ERROR_ENC(dpu_enc, "unknown wait event %d\n",
2258 					event);
2259 			return -EINVAL;
2260 		}
2261 
2262 		if (fn_wait) {
2263 			DPU_ATRACE_BEGIN("wait_for_completion_event");
2264 			ret = fn_wait(phys);
2265 			DPU_ATRACE_END("wait_for_completion_event");
2266 			if (ret)
2267 				return ret;
2268 		}
2269 	}
2270 
2271 	return ret;
2272 }
2273 
2274 enum dpu_intf_mode dpu_encoder_get_intf_mode(struct drm_encoder *encoder)
2275 {
2276 	struct dpu_encoder_virt *dpu_enc = NULL;
2277 
2278 	if (!encoder) {
2279 		DPU_ERROR("invalid encoder\n");
2280 		return INTF_MODE_NONE;
2281 	}
2282 	dpu_enc = to_dpu_encoder_virt(encoder);
2283 
2284 	if (dpu_enc->cur_master)
2285 		return dpu_enc->cur_master->intf_mode;
2286 
2287 	if (dpu_enc->num_phys_encs)
2288 		return dpu_enc->phys_encs[0]->intf_mode;
2289 
2290 	return INTF_MODE_NONE;
2291 }
2292