1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2014-2018, The Linux Foundation. All rights reserved. 4 * Copyright (C) 2013 Red Hat 5 * Author: Rob Clark <robdclark@gmail.com> 6 */ 7 8 #define pr_fmt(fmt) "[drm:%s:%d] " fmt, __func__, __LINE__ 9 #include <linux/debugfs.h> 10 #include <linux/kthread.h> 11 #include <linux/seq_file.h> 12 13 #include <drm/drm_crtc.h> 14 #include <drm/drm_file.h> 15 #include <drm/drm_probe_helper.h> 16 17 #include "msm_drv.h" 18 #include "dpu_kms.h" 19 #include "dpu_hwio.h" 20 #include "dpu_hw_catalog.h" 21 #include "dpu_hw_intf.h" 22 #include "dpu_hw_ctl.h" 23 #include "dpu_hw_dspp.h" 24 #include "dpu_formats.h" 25 #include "dpu_encoder_phys.h" 26 #include "dpu_crtc.h" 27 #include "dpu_trace.h" 28 #include "dpu_core_irq.h" 29 30 #define DPU_DEBUG_ENC(e, fmt, ...) DPU_DEBUG("enc%d " fmt,\ 31 (e) ? (e)->base.base.id : -1, ##__VA_ARGS__) 32 33 #define DPU_ERROR_ENC(e, fmt, ...) DPU_ERROR("enc%d " fmt,\ 34 (e) ? (e)->base.base.id : -1, ##__VA_ARGS__) 35 36 #define DPU_DEBUG_PHYS(p, fmt, ...) DPU_DEBUG("enc%d intf%d pp%d " fmt,\ 37 (p) ? (p)->parent->base.id : -1, \ 38 (p) ? (p)->intf_idx - INTF_0 : -1, \ 39 (p) ? ((p)->hw_pp ? (p)->hw_pp->idx - PINGPONG_0 : -1) : -1, \ 40 ##__VA_ARGS__) 41 42 #define DPU_ERROR_PHYS(p, fmt, ...) DPU_ERROR("enc%d intf%d pp%d " fmt,\ 43 (p) ? (p)->parent->base.id : -1, \ 44 (p) ? (p)->intf_idx - INTF_0 : -1, \ 45 (p) ? ((p)->hw_pp ? (p)->hw_pp->idx - PINGPONG_0 : -1) : -1, \ 46 ##__VA_ARGS__) 47 48 /* 49 * Two to anticipate panels that can do cmd/vid dynamic switching 50 * plan is to create all possible physical encoder types, and switch between 51 * them at runtime 52 */ 53 #define NUM_PHYS_ENCODER_TYPES 2 54 55 #define MAX_PHYS_ENCODERS_PER_VIRTUAL \ 56 (MAX_H_TILES_PER_DISPLAY * NUM_PHYS_ENCODER_TYPES) 57 58 #define MAX_CHANNELS_PER_ENC 2 59 60 #define IDLE_SHORT_TIMEOUT 1 61 62 #define MAX_HDISPLAY_SPLIT 1080 63 64 /* timeout in frames waiting for frame done */ 65 #define DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES 5 66 67 /** 68 * enum dpu_enc_rc_events - events for resource control state machine 69 * @DPU_ENC_RC_EVENT_KICKOFF: 70 * This event happens at NORMAL priority. 71 * Event that signals the start of the transfer. When this event is 72 * received, enable MDP/DSI core clocks. Regardless of the previous 73 * state, the resource should be in ON state at the end of this event. 74 * @DPU_ENC_RC_EVENT_FRAME_DONE: 75 * This event happens at INTERRUPT level. 76 * Event signals the end of the data transfer after the PP FRAME_DONE 77 * event. At the end of this event, a delayed work is scheduled to go to 78 * IDLE_PC state after IDLE_TIMEOUT time. 79 * @DPU_ENC_RC_EVENT_PRE_STOP: 80 * This event happens at NORMAL priority. 81 * This event, when received during the ON state, leave the RC STATE 82 * in the PRE_OFF state. It should be followed by the STOP event as 83 * part of encoder disable. 84 * If received during IDLE or OFF states, it will do nothing. 85 * @DPU_ENC_RC_EVENT_STOP: 86 * This event happens at NORMAL priority. 87 * When this event is received, disable all the MDP/DSI core clocks, and 88 * disable IRQs. It should be called from the PRE_OFF or IDLE states. 89 * IDLE is expected when IDLE_PC has run, and PRE_OFF did nothing. 90 * PRE_OFF is expected when PRE_STOP was executed during the ON state. 91 * Resource state should be in OFF at the end of the event. 92 * @DPU_ENC_RC_EVENT_ENTER_IDLE: 93 * This event happens at NORMAL priority from a work item. 94 * Event signals that there were no frame updates for IDLE_TIMEOUT time. 95 * This would disable MDP/DSI core clocks and change the resource state 96 * to IDLE. 97 */ 98 enum dpu_enc_rc_events { 99 DPU_ENC_RC_EVENT_KICKOFF = 1, 100 DPU_ENC_RC_EVENT_FRAME_DONE, 101 DPU_ENC_RC_EVENT_PRE_STOP, 102 DPU_ENC_RC_EVENT_STOP, 103 DPU_ENC_RC_EVENT_ENTER_IDLE 104 }; 105 106 /* 107 * enum dpu_enc_rc_states - states that the resource control maintains 108 * @DPU_ENC_RC_STATE_OFF: Resource is in OFF state 109 * @DPU_ENC_RC_STATE_PRE_OFF: Resource is transitioning to OFF state 110 * @DPU_ENC_RC_STATE_ON: Resource is in ON state 111 * @DPU_ENC_RC_STATE_MODESET: Resource is in modeset state 112 * @DPU_ENC_RC_STATE_IDLE: Resource is in IDLE state 113 */ 114 enum dpu_enc_rc_states { 115 DPU_ENC_RC_STATE_OFF, 116 DPU_ENC_RC_STATE_PRE_OFF, 117 DPU_ENC_RC_STATE_ON, 118 DPU_ENC_RC_STATE_IDLE 119 }; 120 121 /** 122 * struct dpu_encoder_virt - virtual encoder. Container of one or more physical 123 * encoders. Virtual encoder manages one "logical" display. Physical 124 * encoders manage one intf block, tied to a specific panel/sub-panel. 125 * Virtual encoder defers as much as possible to the physical encoders. 126 * Virtual encoder registers itself with the DRM Framework as the encoder. 127 * @base: drm_encoder base class for registration with DRM 128 * @enc_spinlock: Virtual-Encoder-Wide Spin Lock for IRQ purposes 129 * @bus_scaling_client: Client handle to the bus scaling interface 130 * @enabled: True if the encoder is active, protected by enc_lock 131 * @num_phys_encs: Actual number of physical encoders contained. 132 * @phys_encs: Container of physical encoders managed. 133 * @cur_master: Pointer to the current master in this mode. Optimization 134 * Only valid after enable. Cleared as disable. 135 * @hw_pp Handle to the pingpong blocks used for the display. No. 136 * pingpong blocks can be different than num_phys_encs. 137 * @intfs_swapped Whether or not the phys_enc interfaces have been swapped 138 * for partial update right-only cases, such as pingpong 139 * split where virtual pingpong does not generate IRQs 140 * @crtc: Pointer to the currently assigned crtc. Normally you 141 * would use crtc->state->encoder_mask to determine the 142 * link between encoder/crtc. However in this case we need 143 * to track crtc in the disable() hook which is called 144 * _after_ encoder_mask is cleared. 145 * @crtc_kickoff_cb: Callback into CRTC that will flush & start 146 * all CTL paths 147 * @crtc_kickoff_cb_data: Opaque user data given to crtc_kickoff_cb 148 * @debugfs_root: Debug file system root file node 149 * @enc_lock: Lock around physical encoder 150 * create/destroy/enable/disable 151 * @frame_busy_mask: Bitmask tracking which phys_enc we are still 152 * busy processing current command. 153 * Bit0 = phys_encs[0] etc. 154 * @crtc_frame_event_cb: callback handler for frame event 155 * @crtc_frame_event_cb_data: callback handler private data 156 * @frame_done_timeout_ms: frame done timeout in ms 157 * @frame_done_timer: watchdog timer for frame done event 158 * @vsync_event_timer: vsync timer 159 * @disp_info: local copy of msm_display_info struct 160 * @idle_pc_supported: indicate if idle power collaps is supported 161 * @rc_lock: resource control mutex lock to protect 162 * virt encoder over various state changes 163 * @rc_state: resource controller state 164 * @delayed_off_work: delayed worker to schedule disabling of 165 * clks and resources after IDLE_TIMEOUT time. 166 * @vsync_event_work: worker to handle vsync event for autorefresh 167 * @topology: topology of the display 168 * @idle_timeout: idle timeout duration in milliseconds 169 */ 170 struct dpu_encoder_virt { 171 struct drm_encoder base; 172 spinlock_t enc_spinlock; 173 uint32_t bus_scaling_client; 174 175 bool enabled; 176 177 unsigned int num_phys_encs; 178 struct dpu_encoder_phys *phys_encs[MAX_PHYS_ENCODERS_PER_VIRTUAL]; 179 struct dpu_encoder_phys *cur_master; 180 struct dpu_encoder_phys *cur_slave; 181 struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC]; 182 183 bool intfs_swapped; 184 185 struct drm_crtc *crtc; 186 187 struct dentry *debugfs_root; 188 struct mutex enc_lock; 189 DECLARE_BITMAP(frame_busy_mask, MAX_PHYS_ENCODERS_PER_VIRTUAL); 190 void (*crtc_frame_event_cb)(void *, u32 event); 191 void *crtc_frame_event_cb_data; 192 193 atomic_t frame_done_timeout_ms; 194 struct timer_list frame_done_timer; 195 struct timer_list vsync_event_timer; 196 197 struct msm_display_info disp_info; 198 199 bool idle_pc_supported; 200 struct mutex rc_lock; 201 enum dpu_enc_rc_states rc_state; 202 struct delayed_work delayed_off_work; 203 struct kthread_work vsync_event_work; 204 struct msm_display_topology topology; 205 206 u32 idle_timeout; 207 }; 208 209 #define to_dpu_encoder_virt(x) container_of(x, struct dpu_encoder_virt, base) 210 211 void dpu_encoder_helper_report_irq_timeout(struct dpu_encoder_phys *phys_enc, 212 enum dpu_intr_idx intr_idx) 213 { 214 DRM_ERROR("irq timeout id=%u, intf=%d, pp=%d, intr=%d\n", 215 DRMID(phys_enc->parent), phys_enc->intf_idx - INTF_0, 216 phys_enc->hw_pp->idx - PINGPONG_0, intr_idx); 217 218 if (phys_enc->parent_ops->handle_frame_done) 219 phys_enc->parent_ops->handle_frame_done( 220 phys_enc->parent, phys_enc, 221 DPU_ENCODER_FRAME_EVENT_ERROR); 222 } 223 224 static int dpu_encoder_helper_wait_event_timeout(int32_t drm_id, 225 int32_t hw_id, struct dpu_encoder_wait_info *info); 226 227 int dpu_encoder_helper_wait_for_irq(struct dpu_encoder_phys *phys_enc, 228 enum dpu_intr_idx intr_idx, 229 struct dpu_encoder_wait_info *wait_info) 230 { 231 struct dpu_encoder_irq *irq; 232 u32 irq_status; 233 int ret; 234 235 if (!wait_info || intr_idx >= INTR_IDX_MAX) { 236 DPU_ERROR("invalid params\n"); 237 return -EINVAL; 238 } 239 irq = &phys_enc->irq[intr_idx]; 240 241 /* note: do master / slave checking outside */ 242 243 /* return EWOULDBLOCK since we know the wait isn't necessary */ 244 if (phys_enc->enable_state == DPU_ENC_DISABLED) { 245 DRM_ERROR("encoder is disabled id=%u, intr=%d, hw=%d, irq=%d", 246 DRMID(phys_enc->parent), intr_idx, irq->hw_idx, 247 irq->irq_idx); 248 return -EWOULDBLOCK; 249 } 250 251 if (irq->irq_idx < 0) { 252 DRM_DEBUG_KMS("skip irq wait id=%u, intr=%d, hw=%d, irq=%s", 253 DRMID(phys_enc->parent), intr_idx, irq->hw_idx, 254 irq->name); 255 return 0; 256 } 257 258 DRM_DEBUG_KMS("id=%u, intr=%d, hw=%d, irq=%d, pp=%d, pending_cnt=%d", 259 DRMID(phys_enc->parent), intr_idx, irq->hw_idx, 260 irq->irq_idx, phys_enc->hw_pp->idx - PINGPONG_0, 261 atomic_read(wait_info->atomic_cnt)); 262 263 ret = dpu_encoder_helper_wait_event_timeout( 264 DRMID(phys_enc->parent), 265 irq->hw_idx, 266 wait_info); 267 268 if (ret <= 0) { 269 irq_status = dpu_core_irq_read(phys_enc->dpu_kms, 270 irq->irq_idx, true); 271 if (irq_status) { 272 unsigned long flags; 273 274 DRM_DEBUG_KMS("irq not triggered id=%u, intr=%d, " 275 "hw=%d, irq=%d, pp=%d, atomic_cnt=%d", 276 DRMID(phys_enc->parent), intr_idx, 277 irq->hw_idx, irq->irq_idx, 278 phys_enc->hw_pp->idx - PINGPONG_0, 279 atomic_read(wait_info->atomic_cnt)); 280 local_irq_save(flags); 281 irq->cb.func(phys_enc, irq->irq_idx); 282 local_irq_restore(flags); 283 ret = 0; 284 } else { 285 ret = -ETIMEDOUT; 286 DRM_DEBUG_KMS("irq timeout id=%u, intr=%d, " 287 "hw=%d, irq=%d, pp=%d, atomic_cnt=%d", 288 DRMID(phys_enc->parent), intr_idx, 289 irq->hw_idx, irq->irq_idx, 290 phys_enc->hw_pp->idx - PINGPONG_0, 291 atomic_read(wait_info->atomic_cnt)); 292 } 293 } else { 294 ret = 0; 295 trace_dpu_enc_irq_wait_success(DRMID(phys_enc->parent), 296 intr_idx, irq->hw_idx, irq->irq_idx, 297 phys_enc->hw_pp->idx - PINGPONG_0, 298 atomic_read(wait_info->atomic_cnt)); 299 } 300 301 return ret; 302 } 303 304 int dpu_encoder_helper_register_irq(struct dpu_encoder_phys *phys_enc, 305 enum dpu_intr_idx intr_idx) 306 { 307 struct dpu_encoder_irq *irq; 308 int ret = 0; 309 310 if (intr_idx >= INTR_IDX_MAX) { 311 DPU_ERROR("invalid params\n"); 312 return -EINVAL; 313 } 314 irq = &phys_enc->irq[intr_idx]; 315 316 if (irq->irq_idx >= 0) { 317 DPU_DEBUG_PHYS(phys_enc, 318 "skipping already registered irq %s type %d\n", 319 irq->name, irq->intr_type); 320 return 0; 321 } 322 323 irq->irq_idx = dpu_core_irq_idx_lookup(phys_enc->dpu_kms, 324 irq->intr_type, irq->hw_idx); 325 if (irq->irq_idx < 0) { 326 DPU_ERROR_PHYS(phys_enc, 327 "failed to lookup IRQ index for %s type:%d\n", 328 irq->name, irq->intr_type); 329 return -EINVAL; 330 } 331 332 ret = dpu_core_irq_register_callback(phys_enc->dpu_kms, irq->irq_idx, 333 &irq->cb); 334 if (ret) { 335 DPU_ERROR_PHYS(phys_enc, 336 "failed to register IRQ callback for %s\n", 337 irq->name); 338 irq->irq_idx = -EINVAL; 339 return ret; 340 } 341 342 ret = dpu_core_irq_enable(phys_enc->dpu_kms, &irq->irq_idx, 1); 343 if (ret) { 344 DRM_ERROR("enable failed id=%u, intr=%d, hw=%d, irq=%d", 345 DRMID(phys_enc->parent), intr_idx, irq->hw_idx, 346 irq->irq_idx); 347 dpu_core_irq_unregister_callback(phys_enc->dpu_kms, 348 irq->irq_idx, &irq->cb); 349 irq->irq_idx = -EINVAL; 350 return ret; 351 } 352 353 trace_dpu_enc_irq_register_success(DRMID(phys_enc->parent), intr_idx, 354 irq->hw_idx, irq->irq_idx); 355 356 return ret; 357 } 358 359 int dpu_encoder_helper_unregister_irq(struct dpu_encoder_phys *phys_enc, 360 enum dpu_intr_idx intr_idx) 361 { 362 struct dpu_encoder_irq *irq; 363 int ret; 364 365 irq = &phys_enc->irq[intr_idx]; 366 367 /* silently skip irqs that weren't registered */ 368 if (irq->irq_idx < 0) { 369 DRM_ERROR("duplicate unregister id=%u, intr=%d, hw=%d, irq=%d", 370 DRMID(phys_enc->parent), intr_idx, irq->hw_idx, 371 irq->irq_idx); 372 return 0; 373 } 374 375 ret = dpu_core_irq_disable(phys_enc->dpu_kms, &irq->irq_idx, 1); 376 if (ret) { 377 DRM_ERROR("disable failed id=%u, intr=%d, hw=%d, irq=%d ret=%d", 378 DRMID(phys_enc->parent), intr_idx, irq->hw_idx, 379 irq->irq_idx, ret); 380 } 381 382 ret = dpu_core_irq_unregister_callback(phys_enc->dpu_kms, irq->irq_idx, 383 &irq->cb); 384 if (ret) { 385 DRM_ERROR("unreg cb fail id=%u, intr=%d, hw=%d, irq=%d ret=%d", 386 DRMID(phys_enc->parent), intr_idx, irq->hw_idx, 387 irq->irq_idx, ret); 388 } 389 390 trace_dpu_enc_irq_unregister_success(DRMID(phys_enc->parent), intr_idx, 391 irq->hw_idx, irq->irq_idx); 392 393 irq->irq_idx = -EINVAL; 394 395 return 0; 396 } 397 398 void dpu_encoder_get_hw_resources(struct drm_encoder *drm_enc, 399 struct dpu_encoder_hw_resources *hw_res) 400 { 401 struct dpu_encoder_virt *dpu_enc = NULL; 402 int i = 0; 403 404 dpu_enc = to_dpu_encoder_virt(drm_enc); 405 DPU_DEBUG_ENC(dpu_enc, "\n"); 406 407 /* Query resources used by phys encs, expected to be without overlap */ 408 memset(hw_res, 0, sizeof(*hw_res)); 409 410 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 411 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 412 413 if (phys->ops.get_hw_resources) 414 phys->ops.get_hw_resources(phys, hw_res); 415 } 416 } 417 418 static void dpu_encoder_destroy(struct drm_encoder *drm_enc) 419 { 420 struct dpu_encoder_virt *dpu_enc = NULL; 421 int i = 0; 422 423 if (!drm_enc) { 424 DPU_ERROR("invalid encoder\n"); 425 return; 426 } 427 428 dpu_enc = to_dpu_encoder_virt(drm_enc); 429 DPU_DEBUG_ENC(dpu_enc, "\n"); 430 431 mutex_lock(&dpu_enc->enc_lock); 432 433 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 434 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 435 436 if (phys->ops.destroy) { 437 phys->ops.destroy(phys); 438 --dpu_enc->num_phys_encs; 439 dpu_enc->phys_encs[i] = NULL; 440 } 441 } 442 443 if (dpu_enc->num_phys_encs) 444 DPU_ERROR_ENC(dpu_enc, "expected 0 num_phys_encs not %d\n", 445 dpu_enc->num_phys_encs); 446 dpu_enc->num_phys_encs = 0; 447 mutex_unlock(&dpu_enc->enc_lock); 448 449 drm_encoder_cleanup(drm_enc); 450 mutex_destroy(&dpu_enc->enc_lock); 451 } 452 453 void dpu_encoder_helper_split_config( 454 struct dpu_encoder_phys *phys_enc, 455 enum dpu_intf interface) 456 { 457 struct dpu_encoder_virt *dpu_enc; 458 struct split_pipe_cfg cfg = { 0 }; 459 struct dpu_hw_mdp *hw_mdptop; 460 struct msm_display_info *disp_info; 461 462 if (!phys_enc->hw_mdptop || !phys_enc->parent) { 463 DPU_ERROR("invalid arg(s), encoder %d\n", phys_enc != NULL); 464 return; 465 } 466 467 dpu_enc = to_dpu_encoder_virt(phys_enc->parent); 468 hw_mdptop = phys_enc->hw_mdptop; 469 disp_info = &dpu_enc->disp_info; 470 471 if (disp_info->intf_type != DRM_MODE_ENCODER_DSI) 472 return; 473 474 /** 475 * disable split modes since encoder will be operating in as the only 476 * encoder, either for the entire use case in the case of, for example, 477 * single DSI, or for this frame in the case of left/right only partial 478 * update. 479 */ 480 if (phys_enc->split_role == ENC_ROLE_SOLO) { 481 if (hw_mdptop->ops.setup_split_pipe) 482 hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg); 483 return; 484 } 485 486 cfg.en = true; 487 cfg.mode = phys_enc->intf_mode; 488 cfg.intf = interface; 489 490 if (cfg.en && phys_enc->ops.needs_single_flush && 491 phys_enc->ops.needs_single_flush(phys_enc)) 492 cfg.split_flush_en = true; 493 494 if (phys_enc->split_role == ENC_ROLE_MASTER) { 495 DPU_DEBUG_ENC(dpu_enc, "enable %d\n", cfg.en); 496 497 if (hw_mdptop->ops.setup_split_pipe) 498 hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg); 499 } 500 } 501 502 static struct msm_display_topology dpu_encoder_get_topology( 503 struct dpu_encoder_virt *dpu_enc, 504 struct dpu_kms *dpu_kms, 505 struct drm_display_mode *mode) 506 { 507 struct msm_display_topology topology = {0}; 508 int i, intf_count = 0; 509 510 for (i = 0; i < MAX_PHYS_ENCODERS_PER_VIRTUAL; i++) 511 if (dpu_enc->phys_encs[i]) 512 intf_count++; 513 514 /* Datapath topology selection 515 * 516 * Dual display 517 * 2 LM, 2 INTF ( Split display using 2 interfaces) 518 * 519 * Single display 520 * 1 LM, 1 INTF 521 * 2 LM, 1 INTF (stream merge to support high resolution interfaces) 522 * 523 * Adding color blocks only to primary interface if available in 524 * sufficient number 525 */ 526 if (intf_count == 2) 527 topology.num_lm = 2; 528 else if (!dpu_kms->catalog->caps->has_3d_merge) 529 topology.num_lm = 1; 530 else 531 topology.num_lm = (mode->hdisplay > MAX_HDISPLAY_SPLIT) ? 2 : 1; 532 533 if (dpu_enc->disp_info.intf_type == DRM_MODE_ENCODER_DSI) { 534 if (dpu_kms->catalog->dspp && 535 (dpu_kms->catalog->dspp_count >= topology.num_lm)) 536 topology.num_dspp = topology.num_lm; 537 } 538 539 topology.num_enc = 0; 540 topology.num_intf = intf_count; 541 542 return topology; 543 } 544 static int dpu_encoder_virt_atomic_check( 545 struct drm_encoder *drm_enc, 546 struct drm_crtc_state *crtc_state, 547 struct drm_connector_state *conn_state) 548 { 549 struct dpu_encoder_virt *dpu_enc; 550 struct msm_drm_private *priv; 551 struct dpu_kms *dpu_kms; 552 const struct drm_display_mode *mode; 553 struct drm_display_mode *adj_mode; 554 struct msm_display_topology topology; 555 struct dpu_global_state *global_state; 556 int i = 0; 557 int ret = 0; 558 559 if (!drm_enc || !crtc_state || !conn_state) { 560 DPU_ERROR("invalid arg(s), drm_enc %d, crtc/conn state %d/%d\n", 561 drm_enc != NULL, crtc_state != NULL, conn_state != NULL); 562 return -EINVAL; 563 } 564 565 dpu_enc = to_dpu_encoder_virt(drm_enc); 566 DPU_DEBUG_ENC(dpu_enc, "\n"); 567 568 priv = drm_enc->dev->dev_private; 569 dpu_kms = to_dpu_kms(priv->kms); 570 mode = &crtc_state->mode; 571 adj_mode = &crtc_state->adjusted_mode; 572 global_state = dpu_kms_get_existing_global_state(dpu_kms); 573 trace_dpu_enc_atomic_check(DRMID(drm_enc)); 574 575 /* perform atomic check on the first physical encoder (master) */ 576 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 577 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 578 579 if (phys->ops.atomic_check) 580 ret = phys->ops.atomic_check(phys, crtc_state, 581 conn_state); 582 else if (phys->ops.mode_fixup) 583 if (!phys->ops.mode_fixup(phys, mode, adj_mode)) 584 ret = -EINVAL; 585 586 if (ret) { 587 DPU_ERROR_ENC(dpu_enc, 588 "mode unsupported, phys idx %d\n", i); 589 break; 590 } 591 } 592 593 topology = dpu_encoder_get_topology(dpu_enc, dpu_kms, adj_mode); 594 595 /* Reserve dynamic resources now. */ 596 if (!ret) { 597 /* 598 * Avoid reserving resources when mode set is pending. Topology 599 * info may not be available to complete reservation. 600 */ 601 if (drm_atomic_crtc_needs_modeset(crtc_state)) { 602 ret = dpu_rm_reserve(&dpu_kms->rm, global_state, 603 drm_enc, crtc_state, topology); 604 } 605 } 606 607 trace_dpu_enc_atomic_check_flags(DRMID(drm_enc), adj_mode->flags); 608 609 return ret; 610 } 611 612 static void _dpu_encoder_update_vsync_source(struct dpu_encoder_virt *dpu_enc, 613 struct msm_display_info *disp_info) 614 { 615 struct dpu_vsync_source_cfg vsync_cfg = { 0 }; 616 struct msm_drm_private *priv; 617 struct dpu_kms *dpu_kms; 618 struct dpu_hw_mdp *hw_mdptop; 619 struct drm_encoder *drm_enc; 620 int i; 621 622 if (!dpu_enc || !disp_info) { 623 DPU_ERROR("invalid param dpu_enc:%d or disp_info:%d\n", 624 dpu_enc != NULL, disp_info != NULL); 625 return; 626 } else if (dpu_enc->num_phys_encs > ARRAY_SIZE(dpu_enc->hw_pp)) { 627 DPU_ERROR("invalid num phys enc %d/%d\n", 628 dpu_enc->num_phys_encs, 629 (int) ARRAY_SIZE(dpu_enc->hw_pp)); 630 return; 631 } 632 633 drm_enc = &dpu_enc->base; 634 /* this pointers are checked in virt_enable_helper */ 635 priv = drm_enc->dev->dev_private; 636 637 dpu_kms = to_dpu_kms(priv->kms); 638 hw_mdptop = dpu_kms->hw_mdp; 639 if (!hw_mdptop) { 640 DPU_ERROR("invalid mdptop\n"); 641 return; 642 } 643 644 if (hw_mdptop->ops.setup_vsync_source && 645 disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE) { 646 for (i = 0; i < dpu_enc->num_phys_encs; i++) 647 vsync_cfg.ppnumber[i] = dpu_enc->hw_pp[i]->idx; 648 649 vsync_cfg.pp_count = dpu_enc->num_phys_encs; 650 if (disp_info->is_te_using_watchdog_timer) 651 vsync_cfg.vsync_source = DPU_VSYNC_SOURCE_WD_TIMER_0; 652 else 653 vsync_cfg.vsync_source = DPU_VSYNC0_SOURCE_GPIO; 654 655 hw_mdptop->ops.setup_vsync_source(hw_mdptop, &vsync_cfg); 656 } 657 } 658 659 static void _dpu_encoder_irq_control(struct drm_encoder *drm_enc, bool enable) 660 { 661 struct dpu_encoder_virt *dpu_enc; 662 int i; 663 664 if (!drm_enc) { 665 DPU_ERROR("invalid encoder\n"); 666 return; 667 } 668 669 dpu_enc = to_dpu_encoder_virt(drm_enc); 670 671 DPU_DEBUG_ENC(dpu_enc, "enable:%d\n", enable); 672 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 673 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 674 675 if (phys->ops.irq_control) 676 phys->ops.irq_control(phys, enable); 677 } 678 679 } 680 681 static void _dpu_encoder_resource_control_helper(struct drm_encoder *drm_enc, 682 bool enable) 683 { 684 struct msm_drm_private *priv; 685 struct dpu_kms *dpu_kms; 686 struct dpu_encoder_virt *dpu_enc; 687 688 dpu_enc = to_dpu_encoder_virt(drm_enc); 689 priv = drm_enc->dev->dev_private; 690 dpu_kms = to_dpu_kms(priv->kms); 691 692 trace_dpu_enc_rc_helper(DRMID(drm_enc), enable); 693 694 if (!dpu_enc->cur_master) { 695 DPU_ERROR("encoder master not set\n"); 696 return; 697 } 698 699 if (enable) { 700 /* enable DPU core clks */ 701 pm_runtime_get_sync(&dpu_kms->pdev->dev); 702 703 /* enable all the irq */ 704 _dpu_encoder_irq_control(drm_enc, true); 705 706 } else { 707 /* disable all the irq */ 708 _dpu_encoder_irq_control(drm_enc, false); 709 710 /* disable DPU core clks */ 711 pm_runtime_put_sync(&dpu_kms->pdev->dev); 712 } 713 714 } 715 716 static int dpu_encoder_resource_control(struct drm_encoder *drm_enc, 717 u32 sw_event) 718 { 719 struct dpu_encoder_virt *dpu_enc; 720 struct msm_drm_private *priv; 721 bool is_vid_mode = false; 722 723 if (!drm_enc || !drm_enc->dev || !drm_enc->crtc) { 724 DPU_ERROR("invalid parameters\n"); 725 return -EINVAL; 726 } 727 dpu_enc = to_dpu_encoder_virt(drm_enc); 728 priv = drm_enc->dev->dev_private; 729 is_vid_mode = dpu_enc->disp_info.capabilities & 730 MSM_DISPLAY_CAP_VID_MODE; 731 732 /* 733 * when idle_pc is not supported, process only KICKOFF, STOP and MODESET 734 * events and return early for other events (ie wb display). 735 */ 736 if (!dpu_enc->idle_pc_supported && 737 (sw_event != DPU_ENC_RC_EVENT_KICKOFF && 738 sw_event != DPU_ENC_RC_EVENT_STOP && 739 sw_event != DPU_ENC_RC_EVENT_PRE_STOP)) 740 return 0; 741 742 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, dpu_enc->idle_pc_supported, 743 dpu_enc->rc_state, "begin"); 744 745 switch (sw_event) { 746 case DPU_ENC_RC_EVENT_KICKOFF: 747 /* cancel delayed off work, if any */ 748 if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work)) 749 DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n", 750 sw_event); 751 752 mutex_lock(&dpu_enc->rc_lock); 753 754 /* return if the resource control is already in ON state */ 755 if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) { 756 DRM_DEBUG_KMS("id;%u, sw_event:%d, rc in ON state\n", 757 DRMID(drm_enc), sw_event); 758 mutex_unlock(&dpu_enc->rc_lock); 759 return 0; 760 } else if (dpu_enc->rc_state != DPU_ENC_RC_STATE_OFF && 761 dpu_enc->rc_state != DPU_ENC_RC_STATE_IDLE) { 762 DRM_DEBUG_KMS("id;%u, sw_event:%d, rc in state %d\n", 763 DRMID(drm_enc), sw_event, 764 dpu_enc->rc_state); 765 mutex_unlock(&dpu_enc->rc_lock); 766 return -EINVAL; 767 } 768 769 if (is_vid_mode && dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) 770 _dpu_encoder_irq_control(drm_enc, true); 771 else 772 _dpu_encoder_resource_control_helper(drm_enc, true); 773 774 dpu_enc->rc_state = DPU_ENC_RC_STATE_ON; 775 776 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, 777 dpu_enc->idle_pc_supported, dpu_enc->rc_state, 778 "kickoff"); 779 780 mutex_unlock(&dpu_enc->rc_lock); 781 break; 782 783 case DPU_ENC_RC_EVENT_FRAME_DONE: 784 /* 785 * mutex lock is not used as this event happens at interrupt 786 * context. And locking is not required as, the other events 787 * like KICKOFF and STOP does a wait-for-idle before executing 788 * the resource_control 789 */ 790 if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) { 791 DRM_DEBUG_KMS("id:%d, sw_event:%d,rc:%d-unexpected\n", 792 DRMID(drm_enc), sw_event, 793 dpu_enc->rc_state); 794 return -EINVAL; 795 } 796 797 /* 798 * schedule off work item only when there are no 799 * frames pending 800 */ 801 if (dpu_crtc_frame_pending(drm_enc->crtc) > 1) { 802 DRM_DEBUG_KMS("id:%d skip schedule work\n", 803 DRMID(drm_enc)); 804 return 0; 805 } 806 807 queue_delayed_work(priv->wq, &dpu_enc->delayed_off_work, 808 msecs_to_jiffies(dpu_enc->idle_timeout)); 809 810 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, 811 dpu_enc->idle_pc_supported, dpu_enc->rc_state, 812 "frame done"); 813 break; 814 815 case DPU_ENC_RC_EVENT_PRE_STOP: 816 /* cancel delayed off work, if any */ 817 if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work)) 818 DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n", 819 sw_event); 820 821 mutex_lock(&dpu_enc->rc_lock); 822 823 if (is_vid_mode && 824 dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) { 825 _dpu_encoder_irq_control(drm_enc, true); 826 } 827 /* skip if is already OFF or IDLE, resources are off already */ 828 else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF || 829 dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) { 830 DRM_DEBUG_KMS("id:%u, sw_event:%d, rc in %d state\n", 831 DRMID(drm_enc), sw_event, 832 dpu_enc->rc_state); 833 mutex_unlock(&dpu_enc->rc_lock); 834 return 0; 835 } 836 837 dpu_enc->rc_state = DPU_ENC_RC_STATE_PRE_OFF; 838 839 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, 840 dpu_enc->idle_pc_supported, dpu_enc->rc_state, 841 "pre stop"); 842 843 mutex_unlock(&dpu_enc->rc_lock); 844 break; 845 846 case DPU_ENC_RC_EVENT_STOP: 847 mutex_lock(&dpu_enc->rc_lock); 848 849 /* return if the resource control is already in OFF state */ 850 if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF) { 851 DRM_DEBUG_KMS("id: %u, sw_event:%d, rc in OFF state\n", 852 DRMID(drm_enc), sw_event); 853 mutex_unlock(&dpu_enc->rc_lock); 854 return 0; 855 } else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) { 856 DRM_ERROR("id: %u, sw_event:%d, rc in state %d\n", 857 DRMID(drm_enc), sw_event, dpu_enc->rc_state); 858 mutex_unlock(&dpu_enc->rc_lock); 859 return -EINVAL; 860 } 861 862 /** 863 * expect to arrive here only if in either idle state or pre-off 864 * and in IDLE state the resources are already disabled 865 */ 866 if (dpu_enc->rc_state == DPU_ENC_RC_STATE_PRE_OFF) 867 _dpu_encoder_resource_control_helper(drm_enc, false); 868 869 dpu_enc->rc_state = DPU_ENC_RC_STATE_OFF; 870 871 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, 872 dpu_enc->idle_pc_supported, dpu_enc->rc_state, 873 "stop"); 874 875 mutex_unlock(&dpu_enc->rc_lock); 876 break; 877 878 case DPU_ENC_RC_EVENT_ENTER_IDLE: 879 mutex_lock(&dpu_enc->rc_lock); 880 881 if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) { 882 DRM_ERROR("id: %u, sw_event:%d, rc:%d !ON state\n", 883 DRMID(drm_enc), sw_event, dpu_enc->rc_state); 884 mutex_unlock(&dpu_enc->rc_lock); 885 return 0; 886 } 887 888 /* 889 * if we are in ON but a frame was just kicked off, 890 * ignore the IDLE event, it's probably a stale timer event 891 */ 892 if (dpu_enc->frame_busy_mask[0]) { 893 DRM_ERROR("id:%u, sw_event:%d, rc:%d frame pending\n", 894 DRMID(drm_enc), sw_event, dpu_enc->rc_state); 895 mutex_unlock(&dpu_enc->rc_lock); 896 return 0; 897 } 898 899 if (is_vid_mode) 900 _dpu_encoder_irq_control(drm_enc, false); 901 else 902 _dpu_encoder_resource_control_helper(drm_enc, false); 903 904 dpu_enc->rc_state = DPU_ENC_RC_STATE_IDLE; 905 906 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, 907 dpu_enc->idle_pc_supported, dpu_enc->rc_state, 908 "idle"); 909 910 mutex_unlock(&dpu_enc->rc_lock); 911 break; 912 913 default: 914 DRM_ERROR("id:%u, unexpected sw_event: %d\n", DRMID(drm_enc), 915 sw_event); 916 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, 917 dpu_enc->idle_pc_supported, dpu_enc->rc_state, 918 "error"); 919 break; 920 } 921 922 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, 923 dpu_enc->idle_pc_supported, dpu_enc->rc_state, 924 "end"); 925 return 0; 926 } 927 928 static void dpu_encoder_virt_mode_set(struct drm_encoder *drm_enc, 929 struct drm_display_mode *mode, 930 struct drm_display_mode *adj_mode) 931 { 932 struct dpu_encoder_virt *dpu_enc; 933 struct msm_drm_private *priv; 934 struct dpu_kms *dpu_kms; 935 struct list_head *connector_list; 936 struct drm_connector *conn = NULL, *conn_iter; 937 struct drm_crtc *drm_crtc; 938 struct dpu_crtc_state *cstate; 939 struct dpu_global_state *global_state; 940 struct msm_display_topology topology; 941 struct dpu_hw_blk *hw_pp[MAX_CHANNELS_PER_ENC]; 942 struct dpu_hw_blk *hw_ctl[MAX_CHANNELS_PER_ENC]; 943 struct dpu_hw_blk *hw_lm[MAX_CHANNELS_PER_ENC]; 944 struct dpu_hw_blk *hw_dspp[MAX_CHANNELS_PER_ENC] = { NULL }; 945 int num_lm, num_ctl, num_pp, num_dspp; 946 int i, j; 947 948 if (!drm_enc) { 949 DPU_ERROR("invalid encoder\n"); 950 return; 951 } 952 953 dpu_enc = to_dpu_encoder_virt(drm_enc); 954 DPU_DEBUG_ENC(dpu_enc, "\n"); 955 956 priv = drm_enc->dev->dev_private; 957 dpu_kms = to_dpu_kms(priv->kms); 958 connector_list = &dpu_kms->dev->mode_config.connector_list; 959 960 global_state = dpu_kms_get_existing_global_state(dpu_kms); 961 if (IS_ERR_OR_NULL(global_state)) { 962 DPU_ERROR("Failed to get global state"); 963 return; 964 } 965 966 trace_dpu_enc_mode_set(DRMID(drm_enc)); 967 968 list_for_each_entry(conn_iter, connector_list, head) 969 if (conn_iter->encoder == drm_enc) 970 conn = conn_iter; 971 972 if (!conn) { 973 DPU_ERROR_ENC(dpu_enc, "failed to find attached connector\n"); 974 return; 975 } else if (!conn->state) { 976 DPU_ERROR_ENC(dpu_enc, "invalid connector state\n"); 977 return; 978 } 979 980 drm_for_each_crtc(drm_crtc, drm_enc->dev) 981 if (drm_crtc->state->encoder_mask & drm_encoder_mask(drm_enc)) 982 break; 983 984 topology = dpu_encoder_get_topology(dpu_enc, dpu_kms, adj_mode); 985 986 /* Query resource that have been reserved in atomic check step. */ 987 num_pp = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state, 988 drm_enc->base.id, DPU_HW_BLK_PINGPONG, hw_pp, 989 ARRAY_SIZE(hw_pp)); 990 num_ctl = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state, 991 drm_enc->base.id, DPU_HW_BLK_CTL, hw_ctl, ARRAY_SIZE(hw_ctl)); 992 num_lm = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state, 993 drm_enc->base.id, DPU_HW_BLK_LM, hw_lm, ARRAY_SIZE(hw_lm)); 994 num_dspp = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state, 995 drm_enc->base.id, DPU_HW_BLK_DSPP, hw_dspp, 996 ARRAY_SIZE(hw_dspp)); 997 998 for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) 999 dpu_enc->hw_pp[i] = i < num_pp ? to_dpu_hw_pingpong(hw_pp[i]) 1000 : NULL; 1001 1002 cstate = to_dpu_crtc_state(drm_crtc->state); 1003 1004 for (i = 0; i < num_lm; i++) { 1005 int ctl_idx = (i < num_ctl) ? i : (num_ctl-1); 1006 1007 cstate->mixers[i].hw_lm = to_dpu_hw_mixer(hw_lm[i]); 1008 cstate->mixers[i].lm_ctl = to_dpu_hw_ctl(hw_ctl[ctl_idx]); 1009 cstate->mixers[i].hw_dspp = to_dpu_hw_dspp(hw_dspp[i]); 1010 } 1011 1012 cstate->num_mixers = num_lm; 1013 1014 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1015 int num_blk; 1016 struct dpu_hw_blk *hw_blk[MAX_CHANNELS_PER_ENC]; 1017 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 1018 1019 if (!dpu_enc->hw_pp[i]) { 1020 DPU_ERROR_ENC(dpu_enc, 1021 "no pp block assigned at idx: %d\n", i); 1022 return; 1023 } 1024 1025 if (!hw_ctl[i]) { 1026 DPU_ERROR_ENC(dpu_enc, 1027 "no ctl block assigned at idx: %d\n", i); 1028 return; 1029 } 1030 1031 phys->hw_pp = dpu_enc->hw_pp[i]; 1032 phys->hw_ctl = to_dpu_hw_ctl(hw_ctl[i]); 1033 1034 num_blk = dpu_rm_get_assigned_resources(&dpu_kms->rm, 1035 global_state, drm_enc->base.id, DPU_HW_BLK_INTF, 1036 hw_blk, ARRAY_SIZE(hw_blk)); 1037 for (j = 0; j < num_blk; j++) { 1038 struct dpu_hw_intf *hw_intf; 1039 1040 hw_intf = to_dpu_hw_intf(hw_blk[i]); 1041 if (hw_intf->idx == phys->intf_idx) 1042 phys->hw_intf = hw_intf; 1043 } 1044 1045 if (!phys->hw_intf) { 1046 DPU_ERROR_ENC(dpu_enc, 1047 "no intf block assigned at idx: %d\n", i); 1048 return; 1049 } 1050 1051 phys->connector = conn->state->connector; 1052 if (phys->ops.mode_set) 1053 phys->ops.mode_set(phys, mode, adj_mode); 1054 } 1055 } 1056 1057 static void _dpu_encoder_virt_enable_helper(struct drm_encoder *drm_enc) 1058 { 1059 struct dpu_encoder_virt *dpu_enc = NULL; 1060 struct msm_drm_private *priv; 1061 struct dpu_kms *dpu_kms; 1062 1063 if (!drm_enc || !drm_enc->dev) { 1064 DPU_ERROR("invalid parameters\n"); 1065 return; 1066 } 1067 1068 priv = drm_enc->dev->dev_private; 1069 dpu_kms = to_dpu_kms(priv->kms); 1070 1071 dpu_enc = to_dpu_encoder_virt(drm_enc); 1072 if (!dpu_enc || !dpu_enc->cur_master) { 1073 DPU_ERROR("invalid dpu encoder/master\n"); 1074 return; 1075 } 1076 1077 if (dpu_enc->cur_master->hw_mdptop && 1078 dpu_enc->cur_master->hw_mdptop->ops.reset_ubwc) 1079 dpu_enc->cur_master->hw_mdptop->ops.reset_ubwc( 1080 dpu_enc->cur_master->hw_mdptop, 1081 dpu_kms->catalog); 1082 1083 _dpu_encoder_update_vsync_source(dpu_enc, &dpu_enc->disp_info); 1084 } 1085 1086 void dpu_encoder_virt_runtime_resume(struct drm_encoder *drm_enc) 1087 { 1088 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); 1089 1090 mutex_lock(&dpu_enc->enc_lock); 1091 1092 if (!dpu_enc->enabled) 1093 goto out; 1094 1095 if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.restore) 1096 dpu_enc->cur_slave->ops.restore(dpu_enc->cur_slave); 1097 if (dpu_enc->cur_master && dpu_enc->cur_master->ops.restore) 1098 dpu_enc->cur_master->ops.restore(dpu_enc->cur_master); 1099 1100 _dpu_encoder_virt_enable_helper(drm_enc); 1101 1102 out: 1103 mutex_unlock(&dpu_enc->enc_lock); 1104 } 1105 1106 static void dpu_encoder_virt_enable(struct drm_encoder *drm_enc) 1107 { 1108 struct dpu_encoder_virt *dpu_enc = NULL; 1109 int ret = 0; 1110 struct drm_display_mode *cur_mode = NULL; 1111 1112 if (!drm_enc) { 1113 DPU_ERROR("invalid encoder\n"); 1114 return; 1115 } 1116 dpu_enc = to_dpu_encoder_virt(drm_enc); 1117 1118 mutex_lock(&dpu_enc->enc_lock); 1119 cur_mode = &dpu_enc->base.crtc->state->adjusted_mode; 1120 1121 trace_dpu_enc_enable(DRMID(drm_enc), cur_mode->hdisplay, 1122 cur_mode->vdisplay); 1123 1124 /* always enable slave encoder before master */ 1125 if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.enable) 1126 dpu_enc->cur_slave->ops.enable(dpu_enc->cur_slave); 1127 1128 if (dpu_enc->cur_master && dpu_enc->cur_master->ops.enable) 1129 dpu_enc->cur_master->ops.enable(dpu_enc->cur_master); 1130 1131 ret = dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF); 1132 if (ret) { 1133 DPU_ERROR_ENC(dpu_enc, "dpu resource control failed: %d\n", 1134 ret); 1135 goto out; 1136 } 1137 1138 _dpu_encoder_virt_enable_helper(drm_enc); 1139 1140 dpu_enc->enabled = true; 1141 1142 out: 1143 mutex_unlock(&dpu_enc->enc_lock); 1144 } 1145 1146 static void dpu_encoder_virt_disable(struct drm_encoder *drm_enc) 1147 { 1148 struct dpu_encoder_virt *dpu_enc = NULL; 1149 struct msm_drm_private *priv; 1150 struct dpu_kms *dpu_kms; 1151 struct dpu_global_state *global_state; 1152 int i = 0; 1153 1154 if (!drm_enc) { 1155 DPU_ERROR("invalid encoder\n"); 1156 return; 1157 } else if (!drm_enc->dev) { 1158 DPU_ERROR("invalid dev\n"); 1159 return; 1160 } 1161 1162 dpu_enc = to_dpu_encoder_virt(drm_enc); 1163 DPU_DEBUG_ENC(dpu_enc, "\n"); 1164 1165 mutex_lock(&dpu_enc->enc_lock); 1166 dpu_enc->enabled = false; 1167 1168 priv = drm_enc->dev->dev_private; 1169 dpu_kms = to_dpu_kms(priv->kms); 1170 global_state = dpu_kms_get_existing_global_state(dpu_kms); 1171 1172 trace_dpu_enc_disable(DRMID(drm_enc)); 1173 1174 /* wait for idle */ 1175 dpu_encoder_wait_for_event(drm_enc, MSM_ENC_TX_COMPLETE); 1176 1177 dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_PRE_STOP); 1178 1179 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1180 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 1181 1182 if (phys->ops.disable) 1183 phys->ops.disable(phys); 1184 } 1185 1186 /* after phys waits for frame-done, should be no more frames pending */ 1187 if (atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) { 1188 DPU_ERROR("enc%d timeout pending\n", drm_enc->base.id); 1189 del_timer_sync(&dpu_enc->frame_done_timer); 1190 } 1191 1192 dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_STOP); 1193 1194 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1195 dpu_enc->phys_encs[i]->connector = NULL; 1196 } 1197 1198 DPU_DEBUG_ENC(dpu_enc, "encoder disabled\n"); 1199 1200 dpu_rm_release(global_state, drm_enc); 1201 1202 mutex_unlock(&dpu_enc->enc_lock); 1203 } 1204 1205 static enum dpu_intf dpu_encoder_get_intf(struct dpu_mdss_cfg *catalog, 1206 enum dpu_intf_type type, u32 controller_id) 1207 { 1208 int i = 0; 1209 1210 for (i = 0; i < catalog->intf_count; i++) { 1211 if (catalog->intf[i].type == type 1212 && catalog->intf[i].controller_id == controller_id) { 1213 return catalog->intf[i].id; 1214 } 1215 } 1216 1217 return INTF_MAX; 1218 } 1219 1220 static void dpu_encoder_vblank_callback(struct drm_encoder *drm_enc, 1221 struct dpu_encoder_phys *phy_enc) 1222 { 1223 struct dpu_encoder_virt *dpu_enc = NULL; 1224 unsigned long lock_flags; 1225 1226 if (!drm_enc || !phy_enc) 1227 return; 1228 1229 DPU_ATRACE_BEGIN("encoder_vblank_callback"); 1230 dpu_enc = to_dpu_encoder_virt(drm_enc); 1231 1232 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags); 1233 if (dpu_enc->crtc) 1234 dpu_crtc_vblank_callback(dpu_enc->crtc); 1235 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags); 1236 1237 atomic_inc(&phy_enc->vsync_cnt); 1238 DPU_ATRACE_END("encoder_vblank_callback"); 1239 } 1240 1241 static void dpu_encoder_underrun_callback(struct drm_encoder *drm_enc, 1242 struct dpu_encoder_phys *phy_enc) 1243 { 1244 if (!phy_enc) 1245 return; 1246 1247 DPU_ATRACE_BEGIN("encoder_underrun_callback"); 1248 atomic_inc(&phy_enc->underrun_cnt); 1249 trace_dpu_enc_underrun_cb(DRMID(drm_enc), 1250 atomic_read(&phy_enc->underrun_cnt)); 1251 DPU_ATRACE_END("encoder_underrun_callback"); 1252 } 1253 1254 void dpu_encoder_assign_crtc(struct drm_encoder *drm_enc, struct drm_crtc *crtc) 1255 { 1256 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); 1257 unsigned long lock_flags; 1258 1259 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags); 1260 /* crtc should always be cleared before re-assigning */ 1261 WARN_ON(crtc && dpu_enc->crtc); 1262 dpu_enc->crtc = crtc; 1263 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags); 1264 } 1265 1266 void dpu_encoder_toggle_vblank_for_crtc(struct drm_encoder *drm_enc, 1267 struct drm_crtc *crtc, bool enable) 1268 { 1269 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); 1270 unsigned long lock_flags; 1271 int i; 1272 1273 trace_dpu_enc_vblank_cb(DRMID(drm_enc), enable); 1274 1275 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags); 1276 if (dpu_enc->crtc != crtc) { 1277 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags); 1278 return; 1279 } 1280 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags); 1281 1282 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1283 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 1284 1285 if (phys->ops.control_vblank_irq) 1286 phys->ops.control_vblank_irq(phys, enable); 1287 } 1288 } 1289 1290 void dpu_encoder_register_frame_event_callback(struct drm_encoder *drm_enc, 1291 void (*frame_event_cb)(void *, u32 event), 1292 void *frame_event_cb_data) 1293 { 1294 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); 1295 unsigned long lock_flags; 1296 bool enable; 1297 1298 enable = frame_event_cb ? true : false; 1299 1300 if (!drm_enc) { 1301 DPU_ERROR("invalid encoder\n"); 1302 return; 1303 } 1304 trace_dpu_enc_frame_event_cb(DRMID(drm_enc), enable); 1305 1306 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags); 1307 dpu_enc->crtc_frame_event_cb = frame_event_cb; 1308 dpu_enc->crtc_frame_event_cb_data = frame_event_cb_data; 1309 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags); 1310 } 1311 1312 static void dpu_encoder_frame_done_callback( 1313 struct drm_encoder *drm_enc, 1314 struct dpu_encoder_phys *ready_phys, u32 event) 1315 { 1316 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); 1317 unsigned int i; 1318 1319 if (event & (DPU_ENCODER_FRAME_EVENT_DONE 1320 | DPU_ENCODER_FRAME_EVENT_ERROR 1321 | DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)) { 1322 1323 if (!dpu_enc->frame_busy_mask[0]) { 1324 /** 1325 * suppress frame_done without waiter, 1326 * likely autorefresh 1327 */ 1328 trace_dpu_enc_frame_done_cb_not_busy(DRMID(drm_enc), 1329 event, ready_phys->intf_idx); 1330 return; 1331 } 1332 1333 /* One of the physical encoders has become idle */ 1334 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1335 if (dpu_enc->phys_encs[i] == ready_phys) { 1336 trace_dpu_enc_frame_done_cb(DRMID(drm_enc), i, 1337 dpu_enc->frame_busy_mask[0]); 1338 clear_bit(i, dpu_enc->frame_busy_mask); 1339 } 1340 } 1341 1342 if (!dpu_enc->frame_busy_mask[0]) { 1343 atomic_set(&dpu_enc->frame_done_timeout_ms, 0); 1344 del_timer(&dpu_enc->frame_done_timer); 1345 1346 dpu_encoder_resource_control(drm_enc, 1347 DPU_ENC_RC_EVENT_FRAME_DONE); 1348 1349 if (dpu_enc->crtc_frame_event_cb) 1350 dpu_enc->crtc_frame_event_cb( 1351 dpu_enc->crtc_frame_event_cb_data, 1352 event); 1353 } 1354 } else { 1355 if (dpu_enc->crtc_frame_event_cb) 1356 dpu_enc->crtc_frame_event_cb( 1357 dpu_enc->crtc_frame_event_cb_data, event); 1358 } 1359 } 1360 1361 static void dpu_encoder_off_work(struct work_struct *work) 1362 { 1363 struct dpu_encoder_virt *dpu_enc = container_of(work, 1364 struct dpu_encoder_virt, delayed_off_work.work); 1365 1366 if (!dpu_enc) { 1367 DPU_ERROR("invalid dpu encoder\n"); 1368 return; 1369 } 1370 1371 dpu_encoder_resource_control(&dpu_enc->base, 1372 DPU_ENC_RC_EVENT_ENTER_IDLE); 1373 1374 dpu_encoder_frame_done_callback(&dpu_enc->base, NULL, 1375 DPU_ENCODER_FRAME_EVENT_IDLE); 1376 } 1377 1378 /** 1379 * _dpu_encoder_trigger_flush - trigger flush for a physical encoder 1380 * drm_enc: Pointer to drm encoder structure 1381 * phys: Pointer to physical encoder structure 1382 * extra_flush_bits: Additional bit mask to include in flush trigger 1383 */ 1384 static void _dpu_encoder_trigger_flush(struct drm_encoder *drm_enc, 1385 struct dpu_encoder_phys *phys, uint32_t extra_flush_bits) 1386 { 1387 struct dpu_hw_ctl *ctl; 1388 int pending_kickoff_cnt; 1389 u32 ret = UINT_MAX; 1390 1391 if (!phys->hw_pp) { 1392 DPU_ERROR("invalid pingpong hw\n"); 1393 return; 1394 } 1395 1396 ctl = phys->hw_ctl; 1397 if (!ctl->ops.trigger_flush) { 1398 DPU_ERROR("missing trigger cb\n"); 1399 return; 1400 } 1401 1402 pending_kickoff_cnt = dpu_encoder_phys_inc_pending(phys); 1403 1404 if (extra_flush_bits && ctl->ops.update_pending_flush) 1405 ctl->ops.update_pending_flush(ctl, extra_flush_bits); 1406 1407 ctl->ops.trigger_flush(ctl); 1408 1409 if (ctl->ops.get_pending_flush) 1410 ret = ctl->ops.get_pending_flush(ctl); 1411 1412 trace_dpu_enc_trigger_flush(DRMID(drm_enc), phys->intf_idx, 1413 pending_kickoff_cnt, ctl->idx, 1414 extra_flush_bits, ret); 1415 } 1416 1417 /** 1418 * _dpu_encoder_trigger_start - trigger start for a physical encoder 1419 * phys: Pointer to physical encoder structure 1420 */ 1421 static void _dpu_encoder_trigger_start(struct dpu_encoder_phys *phys) 1422 { 1423 if (!phys) { 1424 DPU_ERROR("invalid argument(s)\n"); 1425 return; 1426 } 1427 1428 if (!phys->hw_pp) { 1429 DPU_ERROR("invalid pingpong hw\n"); 1430 return; 1431 } 1432 1433 if (phys->ops.trigger_start && phys->enable_state != DPU_ENC_DISABLED) 1434 phys->ops.trigger_start(phys); 1435 } 1436 1437 void dpu_encoder_helper_trigger_start(struct dpu_encoder_phys *phys_enc) 1438 { 1439 struct dpu_hw_ctl *ctl; 1440 1441 ctl = phys_enc->hw_ctl; 1442 if (ctl->ops.trigger_start) { 1443 ctl->ops.trigger_start(ctl); 1444 trace_dpu_enc_trigger_start(DRMID(phys_enc->parent), ctl->idx); 1445 } 1446 } 1447 1448 static int dpu_encoder_helper_wait_event_timeout( 1449 int32_t drm_id, 1450 int32_t hw_id, 1451 struct dpu_encoder_wait_info *info) 1452 { 1453 int rc = 0; 1454 s64 expected_time = ktime_to_ms(ktime_get()) + info->timeout_ms; 1455 s64 jiffies = msecs_to_jiffies(info->timeout_ms); 1456 s64 time; 1457 1458 do { 1459 rc = wait_event_timeout(*(info->wq), 1460 atomic_read(info->atomic_cnt) == 0, jiffies); 1461 time = ktime_to_ms(ktime_get()); 1462 1463 trace_dpu_enc_wait_event_timeout(drm_id, hw_id, rc, time, 1464 expected_time, 1465 atomic_read(info->atomic_cnt)); 1466 /* If we timed out, counter is valid and time is less, wait again */ 1467 } while (atomic_read(info->atomic_cnt) && (rc == 0) && 1468 (time < expected_time)); 1469 1470 return rc; 1471 } 1472 1473 static void dpu_encoder_helper_hw_reset(struct dpu_encoder_phys *phys_enc) 1474 { 1475 struct dpu_encoder_virt *dpu_enc; 1476 struct dpu_hw_ctl *ctl; 1477 int rc; 1478 1479 dpu_enc = to_dpu_encoder_virt(phys_enc->parent); 1480 ctl = phys_enc->hw_ctl; 1481 1482 if (!ctl->ops.reset) 1483 return; 1484 1485 DRM_DEBUG_KMS("id:%u ctl %d reset\n", DRMID(phys_enc->parent), 1486 ctl->idx); 1487 1488 rc = ctl->ops.reset(ctl); 1489 if (rc) 1490 DPU_ERROR_ENC(dpu_enc, "ctl %d reset failure\n", ctl->idx); 1491 1492 phys_enc->enable_state = DPU_ENC_ENABLED; 1493 } 1494 1495 /** 1496 * _dpu_encoder_kickoff_phys - handle physical encoder kickoff 1497 * Iterate through the physical encoders and perform consolidated flush 1498 * and/or control start triggering as needed. This is done in the virtual 1499 * encoder rather than the individual physical ones in order to handle 1500 * use cases that require visibility into multiple physical encoders at 1501 * a time. 1502 * dpu_enc: Pointer to virtual encoder structure 1503 */ 1504 static void _dpu_encoder_kickoff_phys(struct dpu_encoder_virt *dpu_enc) 1505 { 1506 struct dpu_hw_ctl *ctl; 1507 uint32_t i, pending_flush; 1508 unsigned long lock_flags; 1509 1510 pending_flush = 0x0; 1511 1512 /* update pending counts and trigger kickoff ctl flush atomically */ 1513 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags); 1514 1515 /* don't perform flush/start operations for slave encoders */ 1516 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1517 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 1518 1519 if (phys->enable_state == DPU_ENC_DISABLED) 1520 continue; 1521 1522 ctl = phys->hw_ctl; 1523 1524 /* 1525 * This is cleared in frame_done worker, which isn't invoked 1526 * for async commits. So don't set this for async, since it'll 1527 * roll over to the next commit. 1528 */ 1529 if (phys->split_role != ENC_ROLE_SLAVE) 1530 set_bit(i, dpu_enc->frame_busy_mask); 1531 1532 if (!phys->ops.needs_single_flush || 1533 !phys->ops.needs_single_flush(phys)) 1534 _dpu_encoder_trigger_flush(&dpu_enc->base, phys, 0x0); 1535 else if (ctl->ops.get_pending_flush) 1536 pending_flush |= ctl->ops.get_pending_flush(ctl); 1537 } 1538 1539 /* for split flush, combine pending flush masks and send to master */ 1540 if (pending_flush && dpu_enc->cur_master) { 1541 _dpu_encoder_trigger_flush( 1542 &dpu_enc->base, 1543 dpu_enc->cur_master, 1544 pending_flush); 1545 } 1546 1547 _dpu_encoder_trigger_start(dpu_enc->cur_master); 1548 1549 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags); 1550 } 1551 1552 void dpu_encoder_trigger_kickoff_pending(struct drm_encoder *drm_enc) 1553 { 1554 struct dpu_encoder_virt *dpu_enc; 1555 struct dpu_encoder_phys *phys; 1556 unsigned int i; 1557 struct dpu_hw_ctl *ctl; 1558 struct msm_display_info *disp_info; 1559 1560 if (!drm_enc) { 1561 DPU_ERROR("invalid encoder\n"); 1562 return; 1563 } 1564 dpu_enc = to_dpu_encoder_virt(drm_enc); 1565 disp_info = &dpu_enc->disp_info; 1566 1567 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1568 phys = dpu_enc->phys_encs[i]; 1569 1570 ctl = phys->hw_ctl; 1571 if (ctl->ops.clear_pending_flush) 1572 ctl->ops.clear_pending_flush(ctl); 1573 1574 /* update only for command mode primary ctl */ 1575 if ((phys == dpu_enc->cur_master) && 1576 (disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE) 1577 && ctl->ops.trigger_pending) 1578 ctl->ops.trigger_pending(ctl); 1579 } 1580 } 1581 1582 static u32 _dpu_encoder_calculate_linetime(struct dpu_encoder_virt *dpu_enc, 1583 struct drm_display_mode *mode) 1584 { 1585 u64 pclk_rate; 1586 u32 pclk_period; 1587 u32 line_time; 1588 1589 /* 1590 * For linetime calculation, only operate on master encoder. 1591 */ 1592 if (!dpu_enc->cur_master) 1593 return 0; 1594 1595 if (!dpu_enc->cur_master->ops.get_line_count) { 1596 DPU_ERROR("get_line_count function not defined\n"); 1597 return 0; 1598 } 1599 1600 pclk_rate = mode->clock; /* pixel clock in kHz */ 1601 if (pclk_rate == 0) { 1602 DPU_ERROR("pclk is 0, cannot calculate line time\n"); 1603 return 0; 1604 } 1605 1606 pclk_period = DIV_ROUND_UP_ULL(1000000000ull, pclk_rate); 1607 if (pclk_period == 0) { 1608 DPU_ERROR("pclk period is 0\n"); 1609 return 0; 1610 } 1611 1612 /* 1613 * Line time calculation based on Pixel clock and HTOTAL. 1614 * Final unit is in ns. 1615 */ 1616 line_time = (pclk_period * mode->htotal) / 1000; 1617 if (line_time == 0) { 1618 DPU_ERROR("line time calculation is 0\n"); 1619 return 0; 1620 } 1621 1622 DPU_DEBUG_ENC(dpu_enc, 1623 "clk_rate=%lldkHz, clk_period=%d, linetime=%dns\n", 1624 pclk_rate, pclk_period, line_time); 1625 1626 return line_time; 1627 } 1628 1629 int dpu_encoder_vsync_time(struct drm_encoder *drm_enc, ktime_t *wakeup_time) 1630 { 1631 struct drm_display_mode *mode; 1632 struct dpu_encoder_virt *dpu_enc; 1633 u32 cur_line; 1634 u32 line_time; 1635 u32 vtotal, time_to_vsync; 1636 ktime_t cur_time; 1637 1638 dpu_enc = to_dpu_encoder_virt(drm_enc); 1639 1640 if (!drm_enc->crtc || !drm_enc->crtc->state) { 1641 DPU_ERROR("crtc/crtc state object is NULL\n"); 1642 return -EINVAL; 1643 } 1644 mode = &drm_enc->crtc->state->adjusted_mode; 1645 1646 line_time = _dpu_encoder_calculate_linetime(dpu_enc, mode); 1647 if (!line_time) 1648 return -EINVAL; 1649 1650 cur_line = dpu_enc->cur_master->ops.get_line_count(dpu_enc->cur_master); 1651 1652 vtotal = mode->vtotal; 1653 if (cur_line >= vtotal) 1654 time_to_vsync = line_time * vtotal; 1655 else 1656 time_to_vsync = line_time * (vtotal - cur_line); 1657 1658 if (time_to_vsync == 0) { 1659 DPU_ERROR("time to vsync should not be zero, vtotal=%d\n", 1660 vtotal); 1661 return -EINVAL; 1662 } 1663 1664 cur_time = ktime_get(); 1665 *wakeup_time = ktime_add_ns(cur_time, time_to_vsync); 1666 1667 DPU_DEBUG_ENC(dpu_enc, 1668 "cur_line=%u vtotal=%u time_to_vsync=%u, cur_time=%lld, wakeup_time=%lld\n", 1669 cur_line, vtotal, time_to_vsync, 1670 ktime_to_ms(cur_time), 1671 ktime_to_ms(*wakeup_time)); 1672 return 0; 1673 } 1674 1675 static void dpu_encoder_vsync_event_handler(struct timer_list *t) 1676 { 1677 struct dpu_encoder_virt *dpu_enc = from_timer(dpu_enc, t, 1678 vsync_event_timer); 1679 struct drm_encoder *drm_enc = &dpu_enc->base; 1680 struct msm_drm_private *priv; 1681 struct msm_drm_thread *event_thread; 1682 1683 if (!drm_enc->dev || !drm_enc->crtc) { 1684 DPU_ERROR("invalid parameters\n"); 1685 return; 1686 } 1687 1688 priv = drm_enc->dev->dev_private; 1689 1690 if (drm_enc->crtc->index >= ARRAY_SIZE(priv->event_thread)) { 1691 DPU_ERROR("invalid crtc index\n"); 1692 return; 1693 } 1694 event_thread = &priv->event_thread[drm_enc->crtc->index]; 1695 if (!event_thread) { 1696 DPU_ERROR("event_thread not found for crtc:%d\n", 1697 drm_enc->crtc->index); 1698 return; 1699 } 1700 1701 del_timer(&dpu_enc->vsync_event_timer); 1702 } 1703 1704 static void dpu_encoder_vsync_event_work_handler(struct kthread_work *work) 1705 { 1706 struct dpu_encoder_virt *dpu_enc = container_of(work, 1707 struct dpu_encoder_virt, vsync_event_work); 1708 ktime_t wakeup_time; 1709 1710 if (!dpu_enc) { 1711 DPU_ERROR("invalid dpu encoder\n"); 1712 return; 1713 } 1714 1715 if (dpu_encoder_vsync_time(&dpu_enc->base, &wakeup_time)) 1716 return; 1717 1718 trace_dpu_enc_vsync_event_work(DRMID(&dpu_enc->base), wakeup_time); 1719 mod_timer(&dpu_enc->vsync_event_timer, 1720 nsecs_to_jiffies(ktime_to_ns(wakeup_time))); 1721 } 1722 1723 void dpu_encoder_prepare_for_kickoff(struct drm_encoder *drm_enc) 1724 { 1725 struct dpu_encoder_virt *dpu_enc; 1726 struct dpu_encoder_phys *phys; 1727 bool needs_hw_reset = false; 1728 unsigned int i; 1729 1730 dpu_enc = to_dpu_encoder_virt(drm_enc); 1731 1732 trace_dpu_enc_prepare_kickoff(DRMID(drm_enc)); 1733 1734 /* prepare for next kickoff, may include waiting on previous kickoff */ 1735 DPU_ATRACE_BEGIN("enc_prepare_for_kickoff"); 1736 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1737 phys = dpu_enc->phys_encs[i]; 1738 if (phys->ops.prepare_for_kickoff) 1739 phys->ops.prepare_for_kickoff(phys); 1740 if (phys->enable_state == DPU_ENC_ERR_NEEDS_HW_RESET) 1741 needs_hw_reset = true; 1742 } 1743 DPU_ATRACE_END("enc_prepare_for_kickoff"); 1744 1745 dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF); 1746 1747 /* if any phys needs reset, reset all phys, in-order */ 1748 if (needs_hw_reset) { 1749 trace_dpu_enc_prepare_kickoff_reset(DRMID(drm_enc)); 1750 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1751 dpu_encoder_helper_hw_reset(dpu_enc->phys_encs[i]); 1752 } 1753 } 1754 } 1755 1756 void dpu_encoder_kickoff(struct drm_encoder *drm_enc) 1757 { 1758 struct dpu_encoder_virt *dpu_enc; 1759 struct dpu_encoder_phys *phys; 1760 ktime_t wakeup_time; 1761 unsigned long timeout_ms; 1762 unsigned int i; 1763 1764 DPU_ATRACE_BEGIN("encoder_kickoff"); 1765 dpu_enc = to_dpu_encoder_virt(drm_enc); 1766 1767 trace_dpu_enc_kickoff(DRMID(drm_enc)); 1768 1769 timeout_ms = DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES * 1000 / 1770 drm_mode_vrefresh(&drm_enc->crtc->state->adjusted_mode); 1771 1772 atomic_set(&dpu_enc->frame_done_timeout_ms, timeout_ms); 1773 mod_timer(&dpu_enc->frame_done_timer, 1774 jiffies + msecs_to_jiffies(timeout_ms)); 1775 1776 /* All phys encs are ready to go, trigger the kickoff */ 1777 _dpu_encoder_kickoff_phys(dpu_enc); 1778 1779 /* allow phys encs to handle any post-kickoff business */ 1780 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1781 phys = dpu_enc->phys_encs[i]; 1782 if (phys->ops.handle_post_kickoff) 1783 phys->ops.handle_post_kickoff(phys); 1784 } 1785 1786 if (dpu_enc->disp_info.intf_type == DRM_MODE_ENCODER_DSI && 1787 !dpu_encoder_vsync_time(drm_enc, &wakeup_time)) { 1788 trace_dpu_enc_early_kickoff(DRMID(drm_enc), 1789 ktime_to_ms(wakeup_time)); 1790 mod_timer(&dpu_enc->vsync_event_timer, 1791 nsecs_to_jiffies(ktime_to_ns(wakeup_time))); 1792 } 1793 1794 DPU_ATRACE_END("encoder_kickoff"); 1795 } 1796 1797 void dpu_encoder_prepare_commit(struct drm_encoder *drm_enc) 1798 { 1799 struct dpu_encoder_virt *dpu_enc; 1800 struct dpu_encoder_phys *phys; 1801 int i; 1802 1803 if (!drm_enc) { 1804 DPU_ERROR("invalid encoder\n"); 1805 return; 1806 } 1807 dpu_enc = to_dpu_encoder_virt(drm_enc); 1808 1809 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1810 phys = dpu_enc->phys_encs[i]; 1811 if (phys->ops.prepare_commit) 1812 phys->ops.prepare_commit(phys); 1813 } 1814 } 1815 1816 #ifdef CONFIG_DEBUG_FS 1817 static int _dpu_encoder_status_show(struct seq_file *s, void *data) 1818 { 1819 struct dpu_encoder_virt *dpu_enc = s->private; 1820 int i; 1821 1822 mutex_lock(&dpu_enc->enc_lock); 1823 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1824 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 1825 1826 seq_printf(s, "intf:%d vsync:%8d underrun:%8d ", 1827 phys->intf_idx - INTF_0, 1828 atomic_read(&phys->vsync_cnt), 1829 atomic_read(&phys->underrun_cnt)); 1830 1831 switch (phys->intf_mode) { 1832 case INTF_MODE_VIDEO: 1833 seq_puts(s, "mode: video\n"); 1834 break; 1835 case INTF_MODE_CMD: 1836 seq_puts(s, "mode: command\n"); 1837 break; 1838 default: 1839 seq_puts(s, "mode: ???\n"); 1840 break; 1841 } 1842 } 1843 mutex_unlock(&dpu_enc->enc_lock); 1844 1845 return 0; 1846 } 1847 1848 static int _dpu_encoder_debugfs_status_open(struct inode *inode, 1849 struct file *file) 1850 { 1851 return single_open(file, _dpu_encoder_status_show, inode->i_private); 1852 } 1853 1854 static int _dpu_encoder_init_debugfs(struct drm_encoder *drm_enc) 1855 { 1856 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); 1857 int i; 1858 1859 static const struct file_operations debugfs_status_fops = { 1860 .open = _dpu_encoder_debugfs_status_open, 1861 .read = seq_read, 1862 .llseek = seq_lseek, 1863 .release = single_release, 1864 }; 1865 1866 char name[DPU_NAME_SIZE]; 1867 1868 if (!drm_enc->dev) { 1869 DPU_ERROR("invalid encoder or kms\n"); 1870 return -EINVAL; 1871 } 1872 1873 snprintf(name, DPU_NAME_SIZE, "encoder%u", drm_enc->base.id); 1874 1875 /* create overall sub-directory for the encoder */ 1876 dpu_enc->debugfs_root = debugfs_create_dir(name, 1877 drm_enc->dev->primary->debugfs_root); 1878 1879 /* don't error check these */ 1880 debugfs_create_file("status", 0600, 1881 dpu_enc->debugfs_root, dpu_enc, &debugfs_status_fops); 1882 1883 for (i = 0; i < dpu_enc->num_phys_encs; i++) 1884 if (dpu_enc->phys_encs[i]->ops.late_register) 1885 dpu_enc->phys_encs[i]->ops.late_register( 1886 dpu_enc->phys_encs[i], 1887 dpu_enc->debugfs_root); 1888 1889 return 0; 1890 } 1891 #else 1892 static int _dpu_encoder_init_debugfs(struct drm_encoder *drm_enc) 1893 { 1894 return 0; 1895 } 1896 #endif 1897 1898 static int dpu_encoder_late_register(struct drm_encoder *encoder) 1899 { 1900 return _dpu_encoder_init_debugfs(encoder); 1901 } 1902 1903 static void dpu_encoder_early_unregister(struct drm_encoder *encoder) 1904 { 1905 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(encoder); 1906 1907 debugfs_remove_recursive(dpu_enc->debugfs_root); 1908 } 1909 1910 static int dpu_encoder_virt_add_phys_encs( 1911 u32 display_caps, 1912 struct dpu_encoder_virt *dpu_enc, 1913 struct dpu_enc_phys_init_params *params) 1914 { 1915 struct dpu_encoder_phys *enc = NULL; 1916 1917 DPU_DEBUG_ENC(dpu_enc, "\n"); 1918 1919 /* 1920 * We may create up to NUM_PHYS_ENCODER_TYPES physical encoder types 1921 * in this function, check up-front. 1922 */ 1923 if (dpu_enc->num_phys_encs + NUM_PHYS_ENCODER_TYPES >= 1924 ARRAY_SIZE(dpu_enc->phys_encs)) { 1925 DPU_ERROR_ENC(dpu_enc, "too many physical encoders %d\n", 1926 dpu_enc->num_phys_encs); 1927 return -EINVAL; 1928 } 1929 1930 if (display_caps & MSM_DISPLAY_CAP_VID_MODE) { 1931 enc = dpu_encoder_phys_vid_init(params); 1932 1933 if (IS_ERR_OR_NULL(enc)) { 1934 DPU_ERROR_ENC(dpu_enc, "failed to init vid enc: %ld\n", 1935 PTR_ERR(enc)); 1936 return enc == NULL ? -EINVAL : PTR_ERR(enc); 1937 } 1938 1939 dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc; 1940 ++dpu_enc->num_phys_encs; 1941 } 1942 1943 if (display_caps & MSM_DISPLAY_CAP_CMD_MODE) { 1944 enc = dpu_encoder_phys_cmd_init(params); 1945 1946 if (IS_ERR_OR_NULL(enc)) { 1947 DPU_ERROR_ENC(dpu_enc, "failed to init cmd enc: %ld\n", 1948 PTR_ERR(enc)); 1949 return enc == NULL ? -EINVAL : PTR_ERR(enc); 1950 } 1951 1952 dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc; 1953 ++dpu_enc->num_phys_encs; 1954 } 1955 1956 if (params->split_role == ENC_ROLE_SLAVE) 1957 dpu_enc->cur_slave = enc; 1958 else 1959 dpu_enc->cur_master = enc; 1960 1961 return 0; 1962 } 1963 1964 static const struct dpu_encoder_virt_ops dpu_encoder_parent_ops = { 1965 .handle_vblank_virt = dpu_encoder_vblank_callback, 1966 .handle_underrun_virt = dpu_encoder_underrun_callback, 1967 .handle_frame_done = dpu_encoder_frame_done_callback, 1968 }; 1969 1970 static int dpu_encoder_setup_display(struct dpu_encoder_virt *dpu_enc, 1971 struct dpu_kms *dpu_kms, 1972 struct msm_display_info *disp_info) 1973 { 1974 int ret = 0; 1975 int i = 0; 1976 enum dpu_intf_type intf_type; 1977 struct dpu_enc_phys_init_params phys_params; 1978 1979 if (!dpu_enc) { 1980 DPU_ERROR("invalid arg(s), enc %d\n", dpu_enc != NULL); 1981 return -EINVAL; 1982 } 1983 1984 dpu_enc->cur_master = NULL; 1985 1986 memset(&phys_params, 0, sizeof(phys_params)); 1987 phys_params.dpu_kms = dpu_kms; 1988 phys_params.parent = &dpu_enc->base; 1989 phys_params.parent_ops = &dpu_encoder_parent_ops; 1990 phys_params.enc_spinlock = &dpu_enc->enc_spinlock; 1991 1992 DPU_DEBUG("\n"); 1993 1994 switch (disp_info->intf_type) { 1995 case DRM_MODE_ENCODER_DSI: 1996 intf_type = INTF_DSI; 1997 break; 1998 default: 1999 DPU_ERROR_ENC(dpu_enc, "unsupported display interface type\n"); 2000 return -EINVAL; 2001 } 2002 2003 WARN_ON(disp_info->num_of_h_tiles < 1); 2004 2005 DPU_DEBUG("dsi_info->num_of_h_tiles %d\n", disp_info->num_of_h_tiles); 2006 2007 if ((disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE) || 2008 (disp_info->capabilities & MSM_DISPLAY_CAP_VID_MODE)) 2009 dpu_enc->idle_pc_supported = 2010 dpu_kms->catalog->caps->has_idle_pc; 2011 2012 mutex_lock(&dpu_enc->enc_lock); 2013 for (i = 0; i < disp_info->num_of_h_tiles && !ret; i++) { 2014 /* 2015 * Left-most tile is at index 0, content is controller id 2016 * h_tile_instance_ids[2] = {0, 1}; DSI0 = left, DSI1 = right 2017 * h_tile_instance_ids[2] = {1, 0}; DSI1 = left, DSI0 = right 2018 */ 2019 u32 controller_id = disp_info->h_tile_instance[i]; 2020 2021 if (disp_info->num_of_h_tiles > 1) { 2022 if (i == 0) 2023 phys_params.split_role = ENC_ROLE_MASTER; 2024 else 2025 phys_params.split_role = ENC_ROLE_SLAVE; 2026 } else { 2027 phys_params.split_role = ENC_ROLE_SOLO; 2028 } 2029 2030 DPU_DEBUG("h_tile_instance %d = %d, split_role %d\n", 2031 i, controller_id, phys_params.split_role); 2032 2033 phys_params.intf_idx = dpu_encoder_get_intf(dpu_kms->catalog, 2034 intf_type, 2035 controller_id); 2036 if (phys_params.intf_idx == INTF_MAX) { 2037 DPU_ERROR_ENC(dpu_enc, "could not get intf: type %d, id %d\n", 2038 intf_type, controller_id); 2039 ret = -EINVAL; 2040 } 2041 2042 if (!ret) { 2043 ret = dpu_encoder_virt_add_phys_encs(disp_info->capabilities, 2044 dpu_enc, 2045 &phys_params); 2046 if (ret) 2047 DPU_ERROR_ENC(dpu_enc, "failed to add phys encs\n"); 2048 } 2049 } 2050 2051 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 2052 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 2053 atomic_set(&phys->vsync_cnt, 0); 2054 atomic_set(&phys->underrun_cnt, 0); 2055 } 2056 mutex_unlock(&dpu_enc->enc_lock); 2057 2058 return ret; 2059 } 2060 2061 static void dpu_encoder_frame_done_timeout(struct timer_list *t) 2062 { 2063 struct dpu_encoder_virt *dpu_enc = from_timer(dpu_enc, t, 2064 frame_done_timer); 2065 struct drm_encoder *drm_enc = &dpu_enc->base; 2066 u32 event; 2067 2068 if (!drm_enc->dev) { 2069 DPU_ERROR("invalid parameters\n"); 2070 return; 2071 } 2072 2073 if (!dpu_enc->frame_busy_mask[0] || !dpu_enc->crtc_frame_event_cb) { 2074 DRM_DEBUG_KMS("id:%u invalid timeout frame_busy_mask=%lu\n", 2075 DRMID(drm_enc), dpu_enc->frame_busy_mask[0]); 2076 return; 2077 } else if (!atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) { 2078 DRM_DEBUG_KMS("id:%u invalid timeout\n", DRMID(drm_enc)); 2079 return; 2080 } 2081 2082 DPU_ERROR_ENC(dpu_enc, "frame done timeout\n"); 2083 2084 event = DPU_ENCODER_FRAME_EVENT_ERROR; 2085 trace_dpu_enc_frame_done_timeout(DRMID(drm_enc), event); 2086 dpu_enc->crtc_frame_event_cb(dpu_enc->crtc_frame_event_cb_data, event); 2087 } 2088 2089 static const struct drm_encoder_helper_funcs dpu_encoder_helper_funcs = { 2090 .mode_set = dpu_encoder_virt_mode_set, 2091 .disable = dpu_encoder_virt_disable, 2092 .enable = dpu_kms_encoder_enable, 2093 .atomic_check = dpu_encoder_virt_atomic_check, 2094 2095 /* This is called by dpu_kms_encoder_enable */ 2096 .commit = dpu_encoder_virt_enable, 2097 }; 2098 2099 static const struct drm_encoder_funcs dpu_encoder_funcs = { 2100 .destroy = dpu_encoder_destroy, 2101 .late_register = dpu_encoder_late_register, 2102 .early_unregister = dpu_encoder_early_unregister, 2103 }; 2104 2105 int dpu_encoder_setup(struct drm_device *dev, struct drm_encoder *enc, 2106 struct msm_display_info *disp_info) 2107 { 2108 struct msm_drm_private *priv = dev->dev_private; 2109 struct dpu_kms *dpu_kms = to_dpu_kms(priv->kms); 2110 struct drm_encoder *drm_enc = NULL; 2111 struct dpu_encoder_virt *dpu_enc = NULL; 2112 int ret = 0; 2113 2114 dpu_enc = to_dpu_encoder_virt(enc); 2115 2116 ret = dpu_encoder_setup_display(dpu_enc, dpu_kms, disp_info); 2117 if (ret) 2118 goto fail; 2119 2120 atomic_set(&dpu_enc->frame_done_timeout_ms, 0); 2121 timer_setup(&dpu_enc->frame_done_timer, 2122 dpu_encoder_frame_done_timeout, 0); 2123 2124 if (disp_info->intf_type == DRM_MODE_ENCODER_DSI) 2125 timer_setup(&dpu_enc->vsync_event_timer, 2126 dpu_encoder_vsync_event_handler, 2127 0); 2128 2129 2130 INIT_DELAYED_WORK(&dpu_enc->delayed_off_work, 2131 dpu_encoder_off_work); 2132 dpu_enc->idle_timeout = IDLE_TIMEOUT; 2133 2134 kthread_init_work(&dpu_enc->vsync_event_work, 2135 dpu_encoder_vsync_event_work_handler); 2136 2137 memcpy(&dpu_enc->disp_info, disp_info, sizeof(*disp_info)); 2138 2139 DPU_DEBUG_ENC(dpu_enc, "created\n"); 2140 2141 return ret; 2142 2143 fail: 2144 DPU_ERROR("failed to create encoder\n"); 2145 if (drm_enc) 2146 dpu_encoder_destroy(drm_enc); 2147 2148 return ret; 2149 2150 2151 } 2152 2153 struct drm_encoder *dpu_encoder_init(struct drm_device *dev, 2154 int drm_enc_mode) 2155 { 2156 struct dpu_encoder_virt *dpu_enc = NULL; 2157 int rc = 0; 2158 2159 dpu_enc = devm_kzalloc(dev->dev, sizeof(*dpu_enc), GFP_KERNEL); 2160 if (!dpu_enc) 2161 return ERR_PTR(-ENOMEM); 2162 2163 rc = drm_encoder_init(dev, &dpu_enc->base, &dpu_encoder_funcs, 2164 drm_enc_mode, NULL); 2165 if (rc) { 2166 devm_kfree(dev->dev, dpu_enc); 2167 return ERR_PTR(rc); 2168 } 2169 2170 drm_encoder_helper_add(&dpu_enc->base, &dpu_encoder_helper_funcs); 2171 2172 spin_lock_init(&dpu_enc->enc_spinlock); 2173 dpu_enc->enabled = false; 2174 mutex_init(&dpu_enc->enc_lock); 2175 mutex_init(&dpu_enc->rc_lock); 2176 2177 return &dpu_enc->base; 2178 } 2179 2180 int dpu_encoder_wait_for_event(struct drm_encoder *drm_enc, 2181 enum msm_event_wait event) 2182 { 2183 int (*fn_wait)(struct dpu_encoder_phys *phys_enc) = NULL; 2184 struct dpu_encoder_virt *dpu_enc = NULL; 2185 int i, ret = 0; 2186 2187 if (!drm_enc) { 2188 DPU_ERROR("invalid encoder\n"); 2189 return -EINVAL; 2190 } 2191 dpu_enc = to_dpu_encoder_virt(drm_enc); 2192 DPU_DEBUG_ENC(dpu_enc, "\n"); 2193 2194 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 2195 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 2196 2197 switch (event) { 2198 case MSM_ENC_COMMIT_DONE: 2199 fn_wait = phys->ops.wait_for_commit_done; 2200 break; 2201 case MSM_ENC_TX_COMPLETE: 2202 fn_wait = phys->ops.wait_for_tx_complete; 2203 break; 2204 case MSM_ENC_VBLANK: 2205 fn_wait = phys->ops.wait_for_vblank; 2206 break; 2207 default: 2208 DPU_ERROR_ENC(dpu_enc, "unknown wait event %d\n", 2209 event); 2210 return -EINVAL; 2211 } 2212 2213 if (fn_wait) { 2214 DPU_ATRACE_BEGIN("wait_for_completion_event"); 2215 ret = fn_wait(phys); 2216 DPU_ATRACE_END("wait_for_completion_event"); 2217 if (ret) 2218 return ret; 2219 } 2220 } 2221 2222 return ret; 2223 } 2224 2225 enum dpu_intf_mode dpu_encoder_get_intf_mode(struct drm_encoder *encoder) 2226 { 2227 struct dpu_encoder_virt *dpu_enc = NULL; 2228 2229 if (!encoder) { 2230 DPU_ERROR("invalid encoder\n"); 2231 return INTF_MODE_NONE; 2232 } 2233 dpu_enc = to_dpu_encoder_virt(encoder); 2234 2235 if (dpu_enc->cur_master) 2236 return dpu_enc->cur_master->intf_mode; 2237 2238 if (dpu_enc->num_phys_encs) 2239 return dpu_enc->phys_encs[0]->intf_mode; 2240 2241 return INTF_MODE_NONE; 2242 } 2243