xref: /linux/drivers/gpu/drm/msm/disp/dpu1/dpu_encoder.c (revision 8f0d91f41000e769f16b62a4b44f1f6da6db905b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2013 Red Hat
4  * Copyright (c) 2014-2018, 2020-2021 The Linux Foundation. All rights reserved.
5  * Copyright (c) 2022-2023 Qualcomm Innovation Center, Inc. All rights reserved.
6  *
7  * Author: Rob Clark <robdclark@gmail.com>
8  */
9 
10 #define pr_fmt(fmt)	"[drm:%s:%d] " fmt, __func__, __LINE__
11 #include <linux/debugfs.h>
12 #include <linux/kthread.h>
13 #include <linux/seq_file.h>
14 
15 #include <drm/drm_atomic.h>
16 #include <drm/drm_crtc.h>
17 #include <drm/drm_file.h>
18 #include <drm/drm_probe_helper.h>
19 #include <drm/drm_framebuffer.h>
20 
21 #include "msm_drv.h"
22 #include "dpu_kms.h"
23 #include "dpu_hwio.h"
24 #include "dpu_hw_catalog.h"
25 #include "dpu_hw_intf.h"
26 #include "dpu_hw_ctl.h"
27 #include "dpu_hw_dspp.h"
28 #include "dpu_hw_dsc.h"
29 #include "dpu_hw_merge3d.h"
30 #include "dpu_hw_cdm.h"
31 #include "dpu_formats.h"
32 #include "dpu_encoder_phys.h"
33 #include "dpu_crtc.h"
34 #include "dpu_trace.h"
35 #include "dpu_core_irq.h"
36 #include "disp/msm_disp_snapshot.h"
37 
38 #define DPU_DEBUG_ENC(e, fmt, ...) DRM_DEBUG_ATOMIC("enc%d " fmt,\
39 		(e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
40 
41 #define DPU_ERROR_ENC(e, fmt, ...) DPU_ERROR("enc%d " fmt,\
42 		(e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
43 
44 #define DPU_ERROR_ENC_RATELIMITED(e, fmt, ...) DPU_ERROR_RATELIMITED("enc%d " fmt,\
45 		(e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
46 
47 /*
48  * Two to anticipate panels that can do cmd/vid dynamic switching
49  * plan is to create all possible physical encoder types, and switch between
50  * them at runtime
51  */
52 #define NUM_PHYS_ENCODER_TYPES 2
53 
54 #define MAX_PHYS_ENCODERS_PER_VIRTUAL \
55 	(MAX_H_TILES_PER_DISPLAY * NUM_PHYS_ENCODER_TYPES)
56 
57 #define MAX_CHANNELS_PER_ENC 2
58 
59 #define IDLE_SHORT_TIMEOUT	1
60 
61 #define MAX_HDISPLAY_SPLIT 1080
62 
63 /* timeout in frames waiting for frame done */
64 #define DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES 5
65 
66 /**
67  * enum dpu_enc_rc_events - events for resource control state machine
68  * @DPU_ENC_RC_EVENT_KICKOFF:
69  *	This event happens at NORMAL priority.
70  *	Event that signals the start of the transfer. When this event is
71  *	received, enable MDP/DSI core clocks. Regardless of the previous
72  *	state, the resource should be in ON state at the end of this event.
73  * @DPU_ENC_RC_EVENT_FRAME_DONE:
74  *	This event happens at INTERRUPT level.
75  *	Event signals the end of the data transfer after the PP FRAME_DONE
76  *	event. At the end of this event, a delayed work is scheduled to go to
77  *	IDLE_PC state after IDLE_TIMEOUT time.
78  * @DPU_ENC_RC_EVENT_PRE_STOP:
79  *	This event happens at NORMAL priority.
80  *	This event, when received during the ON state, leave the RC STATE
81  *	in the PRE_OFF state. It should be followed by the STOP event as
82  *	part of encoder disable.
83  *	If received during IDLE or OFF states, it will do nothing.
84  * @DPU_ENC_RC_EVENT_STOP:
85  *	This event happens at NORMAL priority.
86  *	When this event is received, disable all the MDP/DSI core clocks, and
87  *	disable IRQs. It should be called from the PRE_OFF or IDLE states.
88  *	IDLE is expected when IDLE_PC has run, and PRE_OFF did nothing.
89  *	PRE_OFF is expected when PRE_STOP was executed during the ON state.
90  *	Resource state should be in OFF at the end of the event.
91  * @DPU_ENC_RC_EVENT_ENTER_IDLE:
92  *	This event happens at NORMAL priority from a work item.
93  *	Event signals that there were no frame updates for IDLE_TIMEOUT time.
94  *	This would disable MDP/DSI core clocks and change the resource state
95  *	to IDLE.
96  */
97 enum dpu_enc_rc_events {
98 	DPU_ENC_RC_EVENT_KICKOFF = 1,
99 	DPU_ENC_RC_EVENT_FRAME_DONE,
100 	DPU_ENC_RC_EVENT_PRE_STOP,
101 	DPU_ENC_RC_EVENT_STOP,
102 	DPU_ENC_RC_EVENT_ENTER_IDLE
103 };
104 
105 /*
106  * enum dpu_enc_rc_states - states that the resource control maintains
107  * @DPU_ENC_RC_STATE_OFF: Resource is in OFF state
108  * @DPU_ENC_RC_STATE_PRE_OFF: Resource is transitioning to OFF state
109  * @DPU_ENC_RC_STATE_ON: Resource is in ON state
110  * @DPU_ENC_RC_STATE_MODESET: Resource is in modeset state
111  * @DPU_ENC_RC_STATE_IDLE: Resource is in IDLE state
112  */
113 enum dpu_enc_rc_states {
114 	DPU_ENC_RC_STATE_OFF,
115 	DPU_ENC_RC_STATE_PRE_OFF,
116 	DPU_ENC_RC_STATE_ON,
117 	DPU_ENC_RC_STATE_IDLE
118 };
119 
120 /**
121  * struct dpu_encoder_virt - virtual encoder. Container of one or more physical
122  *	encoders. Virtual encoder manages one "logical" display. Physical
123  *	encoders manage one intf block, tied to a specific panel/sub-panel.
124  *	Virtual encoder defers as much as possible to the physical encoders.
125  *	Virtual encoder registers itself with the DRM Framework as the encoder.
126  * @base:		drm_encoder base class for registration with DRM
127  * @enc_spinlock:	Virtual-Encoder-Wide Spin Lock for IRQ purposes
128  * @enabled:		True if the encoder is active, protected by enc_lock
129  * @commit_done_timedout: True if there has been a timeout on commit after
130  *			enabling the encoder.
131  * @num_phys_encs:	Actual number of physical encoders contained.
132  * @phys_encs:		Container of physical encoders managed.
133  * @cur_master:		Pointer to the current master in this mode. Optimization
134  *			Only valid after enable. Cleared as disable.
135  * @cur_slave:		As above but for the slave encoder.
136  * @hw_pp:		Handle to the pingpong blocks used for the display. No.
137  *			pingpong blocks can be different than num_phys_encs.
138  * @hw_dsc:		Handle to the DSC blocks used for the display.
139  * @dsc_mask:		Bitmask of used DSC blocks.
140  * @intfs_swapped:	Whether or not the phys_enc interfaces have been swapped
141  *			for partial update right-only cases, such as pingpong
142  *			split where virtual pingpong does not generate IRQs
143  * @crtc:		Pointer to the currently assigned crtc. Normally you
144  *			would use crtc->state->encoder_mask to determine the
145  *			link between encoder/crtc. However in this case we need
146  *			to track crtc in the disable() hook which is called
147  *			_after_ encoder_mask is cleared.
148  * @connector:		If a mode is set, cached pointer to the active connector
149  * @enc_lock:			Lock around physical encoder
150  *				create/destroy/enable/disable
151  * @frame_busy_mask:		Bitmask tracking which phys_enc we are still
152  *				busy processing current command.
153  *				Bit0 = phys_encs[0] etc.
154  * @frame_done_timeout_ms:	frame done timeout in ms
155  * @frame_done_timeout_cnt:	atomic counter tracking the number of frame
156  * 				done timeouts
157  * @frame_done_timer:		watchdog timer for frame done event
158  * @disp_info:			local copy of msm_display_info struct
159  * @idle_pc_supported:		indicate if idle power collaps is supported
160  * @rc_lock:			resource control mutex lock to protect
161  *				virt encoder over various state changes
162  * @rc_state:			resource controller state
163  * @delayed_off_work:		delayed worker to schedule disabling of
164  *				clks and resources after IDLE_TIMEOUT time.
165  * @topology:                   topology of the display
166  * @idle_timeout:		idle timeout duration in milliseconds
167  * @wide_bus_en:		wide bus is enabled on this interface
168  * @dsc:			drm_dsc_config pointer, for DSC-enabled encoders
169  */
170 struct dpu_encoder_virt {
171 	struct drm_encoder base;
172 	spinlock_t enc_spinlock;
173 
174 	bool enabled;
175 	bool commit_done_timedout;
176 
177 	unsigned int num_phys_encs;
178 	struct dpu_encoder_phys *phys_encs[MAX_PHYS_ENCODERS_PER_VIRTUAL];
179 	struct dpu_encoder_phys *cur_master;
180 	struct dpu_encoder_phys *cur_slave;
181 	struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC];
182 	struct dpu_hw_dsc *hw_dsc[MAX_CHANNELS_PER_ENC];
183 
184 	unsigned int dsc_mask;
185 
186 	bool intfs_swapped;
187 
188 	struct drm_crtc *crtc;
189 	struct drm_connector *connector;
190 
191 	struct mutex enc_lock;
192 	DECLARE_BITMAP(frame_busy_mask, MAX_PHYS_ENCODERS_PER_VIRTUAL);
193 
194 	atomic_t frame_done_timeout_ms;
195 	atomic_t frame_done_timeout_cnt;
196 	struct timer_list frame_done_timer;
197 
198 	struct msm_display_info disp_info;
199 
200 	bool idle_pc_supported;
201 	struct mutex rc_lock;
202 	enum dpu_enc_rc_states rc_state;
203 	struct delayed_work delayed_off_work;
204 	struct msm_display_topology topology;
205 
206 	u32 idle_timeout;
207 
208 	bool wide_bus_en;
209 
210 	/* DSC configuration */
211 	struct drm_dsc_config *dsc;
212 };
213 
214 #define to_dpu_encoder_virt(x) container_of(x, struct dpu_encoder_virt, base)
215 
216 static u32 dither_matrix[DITHER_MATRIX_SZ] = {
217 	15, 7, 13, 5, 3, 11, 1, 9, 12, 4, 14, 6, 0, 8, 2, 10
218 };
219 
220 u32 dpu_encoder_get_drm_fmt(struct dpu_encoder_phys *phys_enc)
221 {
222 	struct drm_encoder *drm_enc;
223 	struct dpu_encoder_virt *dpu_enc;
224 	struct drm_display_info *info;
225 	struct drm_display_mode *mode;
226 
227 	drm_enc = phys_enc->parent;
228 	dpu_enc = to_dpu_encoder_virt(drm_enc);
229 	info = &dpu_enc->connector->display_info;
230 	mode = &phys_enc->cached_mode;
231 
232 	if (drm_mode_is_420_only(info, mode))
233 		return DRM_FORMAT_YUV420;
234 
235 	return DRM_FORMAT_RGB888;
236 }
237 
238 bool dpu_encoder_needs_periph_flush(struct dpu_encoder_phys *phys_enc)
239 {
240 	struct drm_encoder *drm_enc;
241 	struct dpu_encoder_virt *dpu_enc;
242 	struct msm_display_info *disp_info;
243 	struct msm_drm_private *priv;
244 	struct drm_display_mode *mode;
245 
246 	drm_enc = phys_enc->parent;
247 	dpu_enc = to_dpu_encoder_virt(drm_enc);
248 	disp_info = &dpu_enc->disp_info;
249 	priv = drm_enc->dev->dev_private;
250 	mode = &phys_enc->cached_mode;
251 
252 	return phys_enc->hw_intf->cap->type == INTF_DP &&
253 	       msm_dp_needs_periph_flush(priv->dp[disp_info->h_tile_instance[0]], mode);
254 }
255 
256 bool dpu_encoder_is_widebus_enabled(const struct drm_encoder *drm_enc)
257 {
258 	const struct dpu_encoder_virt *dpu_enc;
259 	struct msm_drm_private *priv = drm_enc->dev->dev_private;
260 	const struct msm_display_info *disp_info;
261 	int index;
262 
263 	dpu_enc = to_dpu_encoder_virt(drm_enc);
264 	disp_info = &dpu_enc->disp_info;
265 	index = disp_info->h_tile_instance[0];
266 
267 	if (disp_info->intf_type == INTF_DP)
268 		return msm_dp_wide_bus_available(priv->dp[index]);
269 	else if (disp_info->intf_type == INTF_DSI)
270 		return msm_dsi_wide_bus_enabled(priv->dsi[index]);
271 
272 	return false;
273 }
274 
275 bool dpu_encoder_is_dsc_enabled(const struct drm_encoder *drm_enc)
276 {
277 	const struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
278 
279 	return dpu_enc->dsc ? true : false;
280 }
281 
282 int dpu_encoder_get_crc_values_cnt(const struct drm_encoder *drm_enc)
283 {
284 	struct dpu_encoder_virt *dpu_enc;
285 	int i, num_intf = 0;
286 
287 	dpu_enc = to_dpu_encoder_virt(drm_enc);
288 
289 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
290 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
291 
292 		if (phys->hw_intf && phys->hw_intf->ops.setup_misr
293 				&& phys->hw_intf->ops.collect_misr)
294 			num_intf++;
295 	}
296 
297 	return num_intf;
298 }
299 
300 void dpu_encoder_setup_misr(const struct drm_encoder *drm_enc)
301 {
302 	struct dpu_encoder_virt *dpu_enc;
303 
304 	int i;
305 
306 	dpu_enc = to_dpu_encoder_virt(drm_enc);
307 
308 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
309 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
310 
311 		if (!phys->hw_intf || !phys->hw_intf->ops.setup_misr)
312 			continue;
313 
314 		phys->hw_intf->ops.setup_misr(phys->hw_intf);
315 	}
316 }
317 
318 int dpu_encoder_get_crc(const struct drm_encoder *drm_enc, u32 *crcs, int pos)
319 {
320 	struct dpu_encoder_virt *dpu_enc;
321 
322 	int i, rc = 0, entries_added = 0;
323 
324 	if (!drm_enc->crtc) {
325 		DRM_ERROR("no crtc found for encoder %d\n", drm_enc->index);
326 		return -EINVAL;
327 	}
328 
329 	dpu_enc = to_dpu_encoder_virt(drm_enc);
330 
331 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
332 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
333 
334 		if (!phys->hw_intf || !phys->hw_intf->ops.collect_misr)
335 			continue;
336 
337 		rc = phys->hw_intf->ops.collect_misr(phys->hw_intf, &crcs[pos + entries_added]);
338 		if (rc)
339 			return rc;
340 		entries_added++;
341 	}
342 
343 	return entries_added;
344 }
345 
346 static void _dpu_encoder_setup_dither(struct dpu_hw_pingpong *hw_pp, unsigned bpc)
347 {
348 	struct dpu_hw_dither_cfg dither_cfg = { 0 };
349 
350 	if (!hw_pp->ops.setup_dither)
351 		return;
352 
353 	switch (bpc) {
354 	case 6:
355 		dither_cfg.c0_bitdepth = 6;
356 		dither_cfg.c1_bitdepth = 6;
357 		dither_cfg.c2_bitdepth = 6;
358 		dither_cfg.c3_bitdepth = 6;
359 		dither_cfg.temporal_en = 0;
360 		break;
361 	default:
362 		hw_pp->ops.setup_dither(hw_pp, NULL);
363 		return;
364 	}
365 
366 	memcpy(&dither_cfg.matrix, dither_matrix,
367 			sizeof(u32) * DITHER_MATRIX_SZ);
368 
369 	hw_pp->ops.setup_dither(hw_pp, &dither_cfg);
370 }
371 
372 static char *dpu_encoder_helper_get_intf_type(enum dpu_intf_mode intf_mode)
373 {
374 	switch (intf_mode) {
375 	case INTF_MODE_VIDEO:
376 		return "INTF_MODE_VIDEO";
377 	case INTF_MODE_CMD:
378 		return "INTF_MODE_CMD";
379 	case INTF_MODE_WB_BLOCK:
380 		return "INTF_MODE_WB_BLOCK";
381 	case INTF_MODE_WB_LINE:
382 		return "INTF_MODE_WB_LINE";
383 	default:
384 		return "INTF_MODE_UNKNOWN";
385 	}
386 }
387 
388 void dpu_encoder_helper_report_irq_timeout(struct dpu_encoder_phys *phys_enc,
389 		enum dpu_intr_idx intr_idx)
390 {
391 	DRM_ERROR("irq timeout id=%u, intf_mode=%s intf=%d wb=%d, pp=%d, intr=%d\n",
392 			DRMID(phys_enc->parent),
393 			dpu_encoder_helper_get_intf_type(phys_enc->intf_mode),
394 			phys_enc->hw_intf ? phys_enc->hw_intf->idx - INTF_0 : -1,
395 			phys_enc->hw_wb ? phys_enc->hw_wb->idx - WB_0 : -1,
396 			phys_enc->hw_pp->idx - PINGPONG_0, intr_idx);
397 
398 	dpu_encoder_frame_done_callback(phys_enc->parent, phys_enc,
399 				DPU_ENCODER_FRAME_EVENT_ERROR);
400 }
401 
402 static int dpu_encoder_helper_wait_event_timeout(int32_t drm_id,
403 		u32 irq_idx, struct dpu_encoder_wait_info *info);
404 
405 int dpu_encoder_helper_wait_for_irq(struct dpu_encoder_phys *phys_enc,
406 		unsigned int irq_idx,
407 		void (*func)(void *arg),
408 		struct dpu_encoder_wait_info *wait_info)
409 {
410 	u32 irq_status;
411 	int ret;
412 
413 	if (!wait_info) {
414 		DPU_ERROR("invalid params\n");
415 		return -EINVAL;
416 	}
417 	/* note: do master / slave checking outside */
418 
419 	/* return EWOULDBLOCK since we know the wait isn't necessary */
420 	if (phys_enc->enable_state == DPU_ENC_DISABLED) {
421 		DRM_ERROR("encoder is disabled id=%u, callback=%ps, IRQ=[%d, %d]\n",
422 			  DRMID(phys_enc->parent), func,
423 			  DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx));
424 		return -EWOULDBLOCK;
425 	}
426 
427 	if (irq_idx == 0) {
428 		DRM_DEBUG_KMS("skip irq wait id=%u, callback=%ps\n",
429 			      DRMID(phys_enc->parent), func);
430 		return 0;
431 	}
432 
433 	DRM_DEBUG_KMS("id=%u, callback=%ps, IRQ=[%d, %d], pp=%d, pending_cnt=%d\n",
434 		      DRMID(phys_enc->parent), func,
435 		      DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx), phys_enc->hw_pp->idx - PINGPONG_0,
436 		      atomic_read(wait_info->atomic_cnt));
437 
438 	ret = dpu_encoder_helper_wait_event_timeout(
439 			DRMID(phys_enc->parent),
440 			irq_idx,
441 			wait_info);
442 
443 	if (ret <= 0) {
444 		irq_status = dpu_core_irq_read(phys_enc->dpu_kms, irq_idx);
445 		if (irq_status) {
446 			unsigned long flags;
447 
448 			DRM_DEBUG_KMS("IRQ=[%d, %d] not triggered id=%u, callback=%ps, pp=%d, atomic_cnt=%d\n",
449 				      DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx),
450 				      DRMID(phys_enc->parent), func,
451 				      phys_enc->hw_pp->idx - PINGPONG_0,
452 				      atomic_read(wait_info->atomic_cnt));
453 			local_irq_save(flags);
454 			func(phys_enc);
455 			local_irq_restore(flags);
456 			ret = 0;
457 		} else {
458 			ret = -ETIMEDOUT;
459 			DRM_DEBUG_KMS("IRQ=[%d, %d] timeout id=%u, callback=%ps, pp=%d, atomic_cnt=%d\n",
460 				      DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx),
461 				      DRMID(phys_enc->parent), func,
462 				      phys_enc->hw_pp->idx - PINGPONG_0,
463 				      atomic_read(wait_info->atomic_cnt));
464 		}
465 	} else {
466 		ret = 0;
467 		trace_dpu_enc_irq_wait_success(DRMID(phys_enc->parent),
468 			func, DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx),
469 			phys_enc->hw_pp->idx - PINGPONG_0,
470 			atomic_read(wait_info->atomic_cnt));
471 	}
472 
473 	return ret;
474 }
475 
476 int dpu_encoder_get_vsync_count(struct drm_encoder *drm_enc)
477 {
478 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
479 	struct dpu_encoder_phys *phys = dpu_enc ? dpu_enc->cur_master : NULL;
480 	return phys ? atomic_read(&phys->vsync_cnt) : 0;
481 }
482 
483 int dpu_encoder_get_linecount(struct drm_encoder *drm_enc)
484 {
485 	struct dpu_encoder_virt *dpu_enc;
486 	struct dpu_encoder_phys *phys;
487 	int linecount = 0;
488 
489 	dpu_enc = to_dpu_encoder_virt(drm_enc);
490 	phys = dpu_enc ? dpu_enc->cur_master : NULL;
491 
492 	if (phys && phys->ops.get_line_count)
493 		linecount = phys->ops.get_line_count(phys);
494 
495 	return linecount;
496 }
497 
498 void dpu_encoder_helper_split_config(
499 		struct dpu_encoder_phys *phys_enc,
500 		enum dpu_intf interface)
501 {
502 	struct dpu_encoder_virt *dpu_enc;
503 	struct split_pipe_cfg cfg = { 0 };
504 	struct dpu_hw_mdp *hw_mdptop;
505 	struct msm_display_info *disp_info;
506 
507 	if (!phys_enc->hw_mdptop || !phys_enc->parent) {
508 		DPU_ERROR("invalid arg(s), encoder %d\n", phys_enc != NULL);
509 		return;
510 	}
511 
512 	dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
513 	hw_mdptop = phys_enc->hw_mdptop;
514 	disp_info = &dpu_enc->disp_info;
515 
516 	if (disp_info->intf_type != INTF_DSI)
517 		return;
518 
519 	/**
520 	 * disable split modes since encoder will be operating in as the only
521 	 * encoder, either for the entire use case in the case of, for example,
522 	 * single DSI, or for this frame in the case of left/right only partial
523 	 * update.
524 	 */
525 	if (phys_enc->split_role == ENC_ROLE_SOLO) {
526 		if (hw_mdptop->ops.setup_split_pipe)
527 			hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg);
528 		return;
529 	}
530 
531 	cfg.en = true;
532 	cfg.mode = phys_enc->intf_mode;
533 	cfg.intf = interface;
534 
535 	if (cfg.en && phys_enc->ops.needs_single_flush &&
536 			phys_enc->ops.needs_single_flush(phys_enc))
537 		cfg.split_flush_en = true;
538 
539 	if (phys_enc->split_role == ENC_ROLE_MASTER) {
540 		DPU_DEBUG_ENC(dpu_enc, "enable %d\n", cfg.en);
541 
542 		if (hw_mdptop->ops.setup_split_pipe)
543 			hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg);
544 	}
545 }
546 
547 bool dpu_encoder_use_dsc_merge(struct drm_encoder *drm_enc)
548 {
549 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
550 	int i, intf_count = 0, num_dsc = 0;
551 
552 	for (i = 0; i < MAX_PHYS_ENCODERS_PER_VIRTUAL; i++)
553 		if (dpu_enc->phys_encs[i])
554 			intf_count++;
555 
556 	/* See dpu_encoder_get_topology, we only support 2:2:1 topology */
557 	if (dpu_enc->dsc)
558 		num_dsc = 2;
559 
560 	return (num_dsc > 0) && (num_dsc > intf_count);
561 }
562 
563 struct drm_dsc_config *dpu_encoder_get_dsc_config(struct drm_encoder *drm_enc)
564 {
565 	struct msm_drm_private *priv = drm_enc->dev->dev_private;
566 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
567 	int index = dpu_enc->disp_info.h_tile_instance[0];
568 
569 	if (dpu_enc->disp_info.intf_type == INTF_DSI)
570 		return msm_dsi_get_dsc_config(priv->dsi[index]);
571 
572 	return NULL;
573 }
574 
575 static struct msm_display_topology dpu_encoder_get_topology(
576 			struct dpu_encoder_virt *dpu_enc,
577 			struct dpu_kms *dpu_kms,
578 			struct drm_display_mode *mode,
579 			struct drm_crtc_state *crtc_state,
580 			struct drm_dsc_config *dsc)
581 {
582 	struct msm_display_topology topology = {0};
583 	int i, intf_count = 0;
584 
585 	for (i = 0; i < MAX_PHYS_ENCODERS_PER_VIRTUAL; i++)
586 		if (dpu_enc->phys_encs[i])
587 			intf_count++;
588 
589 	/* Datapath topology selection
590 	 *
591 	 * Dual display
592 	 * 2 LM, 2 INTF ( Split display using 2 interfaces)
593 	 *
594 	 * Single display
595 	 * 1 LM, 1 INTF
596 	 * 2 LM, 1 INTF (stream merge to support high resolution interfaces)
597 	 *
598 	 * Add dspps to the reservation requirements if ctm is requested
599 	 */
600 	if (intf_count == 2)
601 		topology.num_lm = 2;
602 	else if (!dpu_kms->catalog->caps->has_3d_merge)
603 		topology.num_lm = 1;
604 	else
605 		topology.num_lm = (mode->hdisplay > MAX_HDISPLAY_SPLIT) ? 2 : 1;
606 
607 	if (crtc_state->ctm)
608 		topology.num_dspp = topology.num_lm;
609 
610 	topology.num_intf = intf_count;
611 
612 	if (dsc) {
613 		/*
614 		 * In case of Display Stream Compression (DSC), we would use
615 		 * 2 DSC encoders, 2 layer mixers and 1 interface
616 		 * this is power optimal and can drive up to (including) 4k
617 		 * screens
618 		 */
619 		topology.num_dsc = 2;
620 		topology.num_lm = 2;
621 		topology.num_intf = 1;
622 	}
623 
624 	return topology;
625 }
626 
627 static void dpu_encoder_assign_crtc_resources(struct dpu_kms *dpu_kms,
628 					      struct drm_encoder *drm_enc,
629 					      struct dpu_global_state *global_state,
630 					      struct drm_crtc_state *crtc_state)
631 {
632 	struct dpu_crtc_state *cstate;
633 	struct dpu_hw_blk *hw_ctl[MAX_CHANNELS_PER_ENC];
634 	struct dpu_hw_blk *hw_lm[MAX_CHANNELS_PER_ENC];
635 	struct dpu_hw_blk *hw_dspp[MAX_CHANNELS_PER_ENC];
636 	int num_lm, num_ctl, num_dspp, i;
637 
638 	cstate = to_dpu_crtc_state(crtc_state);
639 
640 	memset(cstate->mixers, 0, sizeof(cstate->mixers));
641 
642 	num_ctl = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
643 		drm_enc->base.id, DPU_HW_BLK_CTL, hw_ctl, ARRAY_SIZE(hw_ctl));
644 	num_lm = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
645 		drm_enc->base.id, DPU_HW_BLK_LM, hw_lm, ARRAY_SIZE(hw_lm));
646 	num_dspp = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
647 		drm_enc->base.id, DPU_HW_BLK_DSPP, hw_dspp,
648 		ARRAY_SIZE(hw_dspp));
649 
650 	for (i = 0; i < num_lm; i++) {
651 		int ctl_idx = (i < num_ctl) ? i : (num_ctl-1);
652 
653 		cstate->mixers[i].hw_lm = to_dpu_hw_mixer(hw_lm[i]);
654 		cstate->mixers[i].lm_ctl = to_dpu_hw_ctl(hw_ctl[ctl_idx]);
655 		cstate->mixers[i].hw_dspp = i < num_dspp ? to_dpu_hw_dspp(hw_dspp[i]) : NULL;
656 	}
657 
658 	cstate->num_mixers = num_lm;
659 }
660 
661 static int dpu_encoder_virt_atomic_check(
662 		struct drm_encoder *drm_enc,
663 		struct drm_crtc_state *crtc_state,
664 		struct drm_connector_state *conn_state)
665 {
666 	struct dpu_encoder_virt *dpu_enc;
667 	struct msm_drm_private *priv;
668 	struct dpu_kms *dpu_kms;
669 	struct drm_display_mode *adj_mode;
670 	struct msm_display_topology topology;
671 	struct msm_display_info *disp_info;
672 	struct dpu_global_state *global_state;
673 	struct drm_framebuffer *fb;
674 	struct drm_dsc_config *dsc;
675 	int ret = 0;
676 
677 	if (!drm_enc || !crtc_state || !conn_state) {
678 		DPU_ERROR("invalid arg(s), drm_enc %d, crtc/conn state %d/%d\n",
679 				drm_enc != NULL, crtc_state != NULL, conn_state != NULL);
680 		return -EINVAL;
681 	}
682 
683 	dpu_enc = to_dpu_encoder_virt(drm_enc);
684 	DPU_DEBUG_ENC(dpu_enc, "\n");
685 
686 	priv = drm_enc->dev->dev_private;
687 	disp_info = &dpu_enc->disp_info;
688 	dpu_kms = to_dpu_kms(priv->kms);
689 	adj_mode = &crtc_state->adjusted_mode;
690 	global_state = dpu_kms_get_global_state(crtc_state->state);
691 	if (IS_ERR(global_state))
692 		return PTR_ERR(global_state);
693 
694 	trace_dpu_enc_atomic_check(DRMID(drm_enc));
695 
696 	dsc = dpu_encoder_get_dsc_config(drm_enc);
697 
698 	topology = dpu_encoder_get_topology(dpu_enc, dpu_kms, adj_mode, crtc_state, dsc);
699 
700 	/*
701 	 * Use CDM only for writeback or DP at the moment as other interfaces cannot handle it.
702 	 * If writeback itself cannot handle cdm for some reason it will fail in its atomic_check()
703 	 * earlier.
704 	 */
705 	if (disp_info->intf_type == INTF_WB && conn_state->writeback_job) {
706 		fb = conn_state->writeback_job->fb;
707 
708 		if (fb && MSM_FORMAT_IS_YUV(msm_framebuffer_format(fb)))
709 			topology.needs_cdm = true;
710 	} else if (disp_info->intf_type == INTF_DP) {
711 		if (msm_dp_is_yuv_420_enabled(priv->dp[disp_info->h_tile_instance[0]], adj_mode))
712 			topology.needs_cdm = true;
713 	}
714 
715 	if (topology.needs_cdm && !dpu_enc->cur_master->hw_cdm)
716 		crtc_state->mode_changed = true;
717 	else if (!topology.needs_cdm && dpu_enc->cur_master->hw_cdm)
718 		crtc_state->mode_changed = true;
719 	/*
720 	 * Release and Allocate resources on every modeset
721 	 * Dont allocate when active is false.
722 	 */
723 	if (drm_atomic_crtc_needs_modeset(crtc_state)) {
724 		dpu_rm_release(global_state, drm_enc);
725 
726 		if (!crtc_state->active_changed || crtc_state->enable)
727 			ret = dpu_rm_reserve(&dpu_kms->rm, global_state,
728 					drm_enc, crtc_state, topology);
729 		if (!ret)
730 			dpu_encoder_assign_crtc_resources(dpu_kms, drm_enc,
731 							  global_state, crtc_state);
732 	}
733 
734 	trace_dpu_enc_atomic_check_flags(DRMID(drm_enc), adj_mode->flags);
735 
736 	return ret;
737 }
738 
739 static void _dpu_encoder_update_vsync_source(struct dpu_encoder_virt *dpu_enc,
740 			struct msm_display_info *disp_info)
741 {
742 	struct dpu_vsync_source_cfg vsync_cfg = { 0 };
743 	struct msm_drm_private *priv;
744 	struct dpu_kms *dpu_kms;
745 	struct dpu_hw_mdp *hw_mdptop;
746 	struct drm_encoder *drm_enc;
747 	struct dpu_encoder_phys *phys_enc;
748 	int i;
749 
750 	if (!dpu_enc || !disp_info) {
751 		DPU_ERROR("invalid param dpu_enc:%d or disp_info:%d\n",
752 					dpu_enc != NULL, disp_info != NULL);
753 		return;
754 	} else if (dpu_enc->num_phys_encs > ARRAY_SIZE(dpu_enc->hw_pp)) {
755 		DPU_ERROR("invalid num phys enc %d/%d\n",
756 				dpu_enc->num_phys_encs,
757 				(int) ARRAY_SIZE(dpu_enc->hw_pp));
758 		return;
759 	}
760 
761 	drm_enc = &dpu_enc->base;
762 	/* this pointers are checked in virt_enable_helper */
763 	priv = drm_enc->dev->dev_private;
764 
765 	dpu_kms = to_dpu_kms(priv->kms);
766 	hw_mdptop = dpu_kms->hw_mdp;
767 	if (!hw_mdptop) {
768 		DPU_ERROR("invalid mdptop\n");
769 		return;
770 	}
771 
772 	if (hw_mdptop->ops.setup_vsync_source) {
773 		for (i = 0; i < dpu_enc->num_phys_encs; i++)
774 			vsync_cfg.ppnumber[i] = dpu_enc->hw_pp[i]->idx;
775 
776 		vsync_cfg.pp_count = dpu_enc->num_phys_encs;
777 		vsync_cfg.frame_rate = drm_mode_vrefresh(&dpu_enc->base.crtc->state->adjusted_mode);
778 
779 		vsync_cfg.vsync_source = disp_info->vsync_source;
780 
781 		hw_mdptop->ops.setup_vsync_source(hw_mdptop, &vsync_cfg);
782 
783 		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
784 			phys_enc = dpu_enc->phys_encs[i];
785 
786 			if (phys_enc->has_intf_te && phys_enc->hw_intf->ops.vsync_sel)
787 				phys_enc->hw_intf->ops.vsync_sel(phys_enc->hw_intf,
788 						vsync_cfg.vsync_source);
789 		}
790 	}
791 }
792 
793 static void _dpu_encoder_irq_enable(struct drm_encoder *drm_enc)
794 {
795 	struct dpu_encoder_virt *dpu_enc;
796 	int i;
797 
798 	if (!drm_enc) {
799 		DPU_ERROR("invalid encoder\n");
800 		return;
801 	}
802 
803 	dpu_enc = to_dpu_encoder_virt(drm_enc);
804 
805 	DPU_DEBUG_ENC(dpu_enc, "\n");
806 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
807 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
808 
809 		phys->ops.irq_enable(phys);
810 	}
811 }
812 
813 static void _dpu_encoder_irq_disable(struct drm_encoder *drm_enc)
814 {
815 	struct dpu_encoder_virt *dpu_enc;
816 	int i;
817 
818 	if (!drm_enc) {
819 		DPU_ERROR("invalid encoder\n");
820 		return;
821 	}
822 
823 	dpu_enc = to_dpu_encoder_virt(drm_enc);
824 
825 	DPU_DEBUG_ENC(dpu_enc, "\n");
826 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
827 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
828 
829 		phys->ops.irq_disable(phys);
830 	}
831 }
832 
833 static void _dpu_encoder_resource_enable(struct drm_encoder *drm_enc)
834 {
835 	struct msm_drm_private *priv;
836 	struct dpu_kms *dpu_kms;
837 	struct dpu_encoder_virt *dpu_enc;
838 
839 	dpu_enc = to_dpu_encoder_virt(drm_enc);
840 	priv = drm_enc->dev->dev_private;
841 	dpu_kms = to_dpu_kms(priv->kms);
842 
843 	trace_dpu_enc_rc_enable(DRMID(drm_enc));
844 
845 	if (!dpu_enc->cur_master) {
846 		DPU_ERROR("encoder master not set\n");
847 		return;
848 	}
849 
850 	/* enable DPU core clks */
851 	pm_runtime_get_sync(&dpu_kms->pdev->dev);
852 
853 	/* enable all the irq */
854 	_dpu_encoder_irq_enable(drm_enc);
855 }
856 
857 static void _dpu_encoder_resource_disable(struct drm_encoder *drm_enc)
858 {
859 	struct msm_drm_private *priv;
860 	struct dpu_kms *dpu_kms;
861 	struct dpu_encoder_virt *dpu_enc;
862 
863 	dpu_enc = to_dpu_encoder_virt(drm_enc);
864 	priv = drm_enc->dev->dev_private;
865 	dpu_kms = to_dpu_kms(priv->kms);
866 
867 	trace_dpu_enc_rc_disable(DRMID(drm_enc));
868 
869 	if (!dpu_enc->cur_master) {
870 		DPU_ERROR("encoder master not set\n");
871 		return;
872 	}
873 
874 	/* disable all the irq */
875 	_dpu_encoder_irq_disable(drm_enc);
876 
877 	/* disable DPU core clks */
878 	pm_runtime_put_sync(&dpu_kms->pdev->dev);
879 }
880 
881 static int dpu_encoder_resource_control(struct drm_encoder *drm_enc,
882 		u32 sw_event)
883 {
884 	struct dpu_encoder_virt *dpu_enc;
885 	struct msm_drm_private *priv;
886 	bool is_vid_mode = false;
887 
888 	if (!drm_enc || !drm_enc->dev || !drm_enc->crtc) {
889 		DPU_ERROR("invalid parameters\n");
890 		return -EINVAL;
891 	}
892 	dpu_enc = to_dpu_encoder_virt(drm_enc);
893 	priv = drm_enc->dev->dev_private;
894 	is_vid_mode = !dpu_enc->disp_info.is_cmd_mode;
895 
896 	/*
897 	 * when idle_pc is not supported, process only KICKOFF, STOP and MODESET
898 	 * events and return early for other events (ie wb display).
899 	 */
900 	if (!dpu_enc->idle_pc_supported &&
901 			(sw_event != DPU_ENC_RC_EVENT_KICKOFF &&
902 			sw_event != DPU_ENC_RC_EVENT_STOP &&
903 			sw_event != DPU_ENC_RC_EVENT_PRE_STOP))
904 		return 0;
905 
906 	trace_dpu_enc_rc(DRMID(drm_enc), sw_event, dpu_enc->idle_pc_supported,
907 			 dpu_enc->rc_state, "begin");
908 
909 	switch (sw_event) {
910 	case DPU_ENC_RC_EVENT_KICKOFF:
911 		/* cancel delayed off work, if any */
912 		if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work))
913 			DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n",
914 					sw_event);
915 
916 		mutex_lock(&dpu_enc->rc_lock);
917 
918 		/* return if the resource control is already in ON state */
919 		if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) {
920 			DRM_DEBUG_ATOMIC("id;%u, sw_event:%d, rc in ON state\n",
921 				      DRMID(drm_enc), sw_event);
922 			mutex_unlock(&dpu_enc->rc_lock);
923 			return 0;
924 		} else if (dpu_enc->rc_state != DPU_ENC_RC_STATE_OFF &&
925 				dpu_enc->rc_state != DPU_ENC_RC_STATE_IDLE) {
926 			DRM_DEBUG_ATOMIC("id;%u, sw_event:%d, rc in state %d\n",
927 				      DRMID(drm_enc), sw_event,
928 				      dpu_enc->rc_state);
929 			mutex_unlock(&dpu_enc->rc_lock);
930 			return -EINVAL;
931 		}
932 
933 		if (is_vid_mode && dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE)
934 			_dpu_encoder_irq_enable(drm_enc);
935 		else
936 			_dpu_encoder_resource_enable(drm_enc);
937 
938 		dpu_enc->rc_state = DPU_ENC_RC_STATE_ON;
939 
940 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
941 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
942 				 "kickoff");
943 
944 		mutex_unlock(&dpu_enc->rc_lock);
945 		break;
946 
947 	case DPU_ENC_RC_EVENT_FRAME_DONE:
948 		/*
949 		 * mutex lock is not used as this event happens at interrupt
950 		 * context. And locking is not required as, the other events
951 		 * like KICKOFF and STOP does a wait-for-idle before executing
952 		 * the resource_control
953 		 */
954 		if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) {
955 			DRM_DEBUG_KMS("id:%d, sw_event:%d,rc:%d-unexpected\n",
956 				      DRMID(drm_enc), sw_event,
957 				      dpu_enc->rc_state);
958 			return -EINVAL;
959 		}
960 
961 		/*
962 		 * schedule off work item only when there are no
963 		 * frames pending
964 		 */
965 		if (dpu_crtc_frame_pending(drm_enc->crtc) > 1) {
966 			DRM_DEBUG_KMS("id:%d skip schedule work\n",
967 				      DRMID(drm_enc));
968 			return 0;
969 		}
970 
971 		queue_delayed_work(priv->wq, &dpu_enc->delayed_off_work,
972 				   msecs_to_jiffies(dpu_enc->idle_timeout));
973 
974 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
975 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
976 				 "frame done");
977 		break;
978 
979 	case DPU_ENC_RC_EVENT_PRE_STOP:
980 		/* cancel delayed off work, if any */
981 		if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work))
982 			DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n",
983 					sw_event);
984 
985 		mutex_lock(&dpu_enc->rc_lock);
986 
987 		if (is_vid_mode &&
988 			  dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) {
989 			_dpu_encoder_irq_enable(drm_enc);
990 		}
991 		/* skip if is already OFF or IDLE, resources are off already */
992 		else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF ||
993 				dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) {
994 			DRM_DEBUG_KMS("id:%u, sw_event:%d, rc in %d state\n",
995 				      DRMID(drm_enc), sw_event,
996 				      dpu_enc->rc_state);
997 			mutex_unlock(&dpu_enc->rc_lock);
998 			return 0;
999 		}
1000 
1001 		dpu_enc->rc_state = DPU_ENC_RC_STATE_PRE_OFF;
1002 
1003 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
1004 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
1005 				 "pre stop");
1006 
1007 		mutex_unlock(&dpu_enc->rc_lock);
1008 		break;
1009 
1010 	case DPU_ENC_RC_EVENT_STOP:
1011 		mutex_lock(&dpu_enc->rc_lock);
1012 
1013 		/* return if the resource control is already in OFF state */
1014 		if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF) {
1015 			DRM_DEBUG_KMS("id: %u, sw_event:%d, rc in OFF state\n",
1016 				      DRMID(drm_enc), sw_event);
1017 			mutex_unlock(&dpu_enc->rc_lock);
1018 			return 0;
1019 		} else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) {
1020 			DRM_ERROR("id: %u, sw_event:%d, rc in state %d\n",
1021 				  DRMID(drm_enc), sw_event, dpu_enc->rc_state);
1022 			mutex_unlock(&dpu_enc->rc_lock);
1023 			return -EINVAL;
1024 		}
1025 
1026 		/**
1027 		 * expect to arrive here only if in either idle state or pre-off
1028 		 * and in IDLE state the resources are already disabled
1029 		 */
1030 		if (dpu_enc->rc_state == DPU_ENC_RC_STATE_PRE_OFF)
1031 			_dpu_encoder_resource_disable(drm_enc);
1032 
1033 		dpu_enc->rc_state = DPU_ENC_RC_STATE_OFF;
1034 
1035 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
1036 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
1037 				 "stop");
1038 
1039 		mutex_unlock(&dpu_enc->rc_lock);
1040 		break;
1041 
1042 	case DPU_ENC_RC_EVENT_ENTER_IDLE:
1043 		mutex_lock(&dpu_enc->rc_lock);
1044 
1045 		if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) {
1046 			DRM_ERROR("id: %u, sw_event:%d, rc:%d !ON state\n",
1047 				  DRMID(drm_enc), sw_event, dpu_enc->rc_state);
1048 			mutex_unlock(&dpu_enc->rc_lock);
1049 			return 0;
1050 		}
1051 
1052 		/*
1053 		 * if we are in ON but a frame was just kicked off,
1054 		 * ignore the IDLE event, it's probably a stale timer event
1055 		 */
1056 		if (dpu_enc->frame_busy_mask[0]) {
1057 			DRM_ERROR("id:%u, sw_event:%d, rc:%d frame pending\n",
1058 				  DRMID(drm_enc), sw_event, dpu_enc->rc_state);
1059 			mutex_unlock(&dpu_enc->rc_lock);
1060 			return 0;
1061 		}
1062 
1063 		if (is_vid_mode)
1064 			_dpu_encoder_irq_disable(drm_enc);
1065 		else
1066 			_dpu_encoder_resource_disable(drm_enc);
1067 
1068 		dpu_enc->rc_state = DPU_ENC_RC_STATE_IDLE;
1069 
1070 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
1071 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
1072 				 "idle");
1073 
1074 		mutex_unlock(&dpu_enc->rc_lock);
1075 		break;
1076 
1077 	default:
1078 		DRM_ERROR("id:%u, unexpected sw_event: %d\n", DRMID(drm_enc),
1079 			  sw_event);
1080 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
1081 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
1082 				 "error");
1083 		break;
1084 	}
1085 
1086 	trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
1087 			 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
1088 			 "end");
1089 	return 0;
1090 }
1091 
1092 void dpu_encoder_prepare_wb_job(struct drm_encoder *drm_enc,
1093 		struct drm_writeback_job *job)
1094 {
1095 	struct dpu_encoder_virt *dpu_enc;
1096 	int i;
1097 
1098 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1099 
1100 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1101 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1102 
1103 		if (phys->ops.prepare_wb_job)
1104 			phys->ops.prepare_wb_job(phys, job);
1105 
1106 	}
1107 }
1108 
1109 void dpu_encoder_cleanup_wb_job(struct drm_encoder *drm_enc,
1110 		struct drm_writeback_job *job)
1111 {
1112 	struct dpu_encoder_virt *dpu_enc;
1113 	int i;
1114 
1115 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1116 
1117 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1118 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1119 
1120 		if (phys->ops.cleanup_wb_job)
1121 			phys->ops.cleanup_wb_job(phys, job);
1122 
1123 	}
1124 }
1125 
1126 static void dpu_encoder_virt_atomic_mode_set(struct drm_encoder *drm_enc,
1127 					     struct drm_crtc_state *crtc_state,
1128 					     struct drm_connector_state *conn_state)
1129 {
1130 	struct dpu_encoder_virt *dpu_enc;
1131 	struct msm_drm_private *priv;
1132 	struct dpu_kms *dpu_kms;
1133 	struct dpu_global_state *global_state;
1134 	struct dpu_hw_blk *hw_pp[MAX_CHANNELS_PER_ENC];
1135 	struct dpu_hw_blk *hw_ctl[MAX_CHANNELS_PER_ENC];
1136 	struct dpu_hw_blk *hw_dsc[MAX_CHANNELS_PER_ENC];
1137 	int num_ctl, num_pp, num_dsc;
1138 	unsigned int dsc_mask = 0;
1139 	int i;
1140 
1141 	if (!drm_enc) {
1142 		DPU_ERROR("invalid encoder\n");
1143 		return;
1144 	}
1145 
1146 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1147 	DPU_DEBUG_ENC(dpu_enc, "\n");
1148 
1149 	priv = drm_enc->dev->dev_private;
1150 	dpu_kms = to_dpu_kms(priv->kms);
1151 
1152 	global_state = dpu_kms_get_existing_global_state(dpu_kms);
1153 	if (IS_ERR_OR_NULL(global_state)) {
1154 		DPU_ERROR("Failed to get global state");
1155 		return;
1156 	}
1157 
1158 	trace_dpu_enc_mode_set(DRMID(drm_enc));
1159 
1160 	/* Query resource that have been reserved in atomic check step. */
1161 	num_pp = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1162 		drm_enc->base.id, DPU_HW_BLK_PINGPONG, hw_pp,
1163 		ARRAY_SIZE(hw_pp));
1164 	num_ctl = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1165 		drm_enc->base.id, DPU_HW_BLK_CTL, hw_ctl, ARRAY_SIZE(hw_ctl));
1166 
1167 	for (i = 0; i < MAX_CHANNELS_PER_ENC; i++)
1168 		dpu_enc->hw_pp[i] = i < num_pp ? to_dpu_hw_pingpong(hw_pp[i])
1169 						: NULL;
1170 
1171 	num_dsc = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1172 						drm_enc->base.id, DPU_HW_BLK_DSC,
1173 						hw_dsc, ARRAY_SIZE(hw_dsc));
1174 	for (i = 0; i < num_dsc; i++) {
1175 		dpu_enc->hw_dsc[i] = to_dpu_hw_dsc(hw_dsc[i]);
1176 		dsc_mask |= BIT(dpu_enc->hw_dsc[i]->idx - DSC_0);
1177 	}
1178 
1179 	dpu_enc->dsc_mask = dsc_mask;
1180 
1181 	if ((dpu_enc->disp_info.intf_type == INTF_WB && conn_state->writeback_job) ||
1182 	    dpu_enc->disp_info.intf_type == INTF_DP) {
1183 		struct dpu_hw_blk *hw_cdm = NULL;
1184 
1185 		dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1186 					      drm_enc->base.id, DPU_HW_BLK_CDM,
1187 					      &hw_cdm, 1);
1188 		dpu_enc->cur_master->hw_cdm = hw_cdm ? to_dpu_hw_cdm(hw_cdm) : NULL;
1189 	}
1190 
1191 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1192 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1193 
1194 		phys->hw_pp = dpu_enc->hw_pp[i];
1195 		if (!phys->hw_pp) {
1196 			DPU_ERROR_ENC(dpu_enc,
1197 				"no pp block assigned at idx: %d\n", i);
1198 			return;
1199 		}
1200 
1201 		phys->hw_ctl = i < num_ctl ? to_dpu_hw_ctl(hw_ctl[i]) : NULL;
1202 		if (!phys->hw_ctl) {
1203 			DPU_ERROR_ENC(dpu_enc,
1204 				"no ctl block assigned at idx: %d\n", i);
1205 			return;
1206 		}
1207 
1208 		phys->cached_mode = crtc_state->adjusted_mode;
1209 		if (phys->ops.atomic_mode_set)
1210 			phys->ops.atomic_mode_set(phys, crtc_state, conn_state);
1211 	}
1212 }
1213 
1214 static void _dpu_encoder_virt_enable_helper(struct drm_encoder *drm_enc)
1215 {
1216 	struct dpu_encoder_virt *dpu_enc = NULL;
1217 	int i;
1218 
1219 	if (!drm_enc || !drm_enc->dev) {
1220 		DPU_ERROR("invalid parameters\n");
1221 		return;
1222 	}
1223 
1224 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1225 	if (!dpu_enc || !dpu_enc->cur_master) {
1226 		DPU_ERROR("invalid dpu encoder/master\n");
1227 		return;
1228 	}
1229 
1230 
1231 	if (dpu_enc->disp_info.intf_type == INTF_DP &&
1232 		dpu_enc->cur_master->hw_mdptop &&
1233 		dpu_enc->cur_master->hw_mdptop->ops.intf_audio_select)
1234 		dpu_enc->cur_master->hw_mdptop->ops.intf_audio_select(
1235 			dpu_enc->cur_master->hw_mdptop);
1236 
1237 	if (dpu_enc->disp_info.is_cmd_mode)
1238 		_dpu_encoder_update_vsync_source(dpu_enc, &dpu_enc->disp_info);
1239 
1240 	if (dpu_enc->disp_info.intf_type == INTF_DSI &&
1241 			!WARN_ON(dpu_enc->num_phys_encs == 0)) {
1242 		unsigned bpc = dpu_enc->connector->display_info.bpc;
1243 		for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
1244 			if (!dpu_enc->hw_pp[i])
1245 				continue;
1246 			_dpu_encoder_setup_dither(dpu_enc->hw_pp[i], bpc);
1247 		}
1248 	}
1249 }
1250 
1251 void dpu_encoder_virt_runtime_resume(struct drm_encoder *drm_enc)
1252 {
1253 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1254 
1255 	mutex_lock(&dpu_enc->enc_lock);
1256 
1257 	if (!dpu_enc->enabled)
1258 		goto out;
1259 
1260 	if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.restore)
1261 		dpu_enc->cur_slave->ops.restore(dpu_enc->cur_slave);
1262 	if (dpu_enc->cur_master && dpu_enc->cur_master->ops.restore)
1263 		dpu_enc->cur_master->ops.restore(dpu_enc->cur_master);
1264 
1265 	_dpu_encoder_virt_enable_helper(drm_enc);
1266 
1267 out:
1268 	mutex_unlock(&dpu_enc->enc_lock);
1269 }
1270 
1271 static void dpu_encoder_virt_atomic_enable(struct drm_encoder *drm_enc,
1272 					struct drm_atomic_state *state)
1273 {
1274 	struct dpu_encoder_virt *dpu_enc = NULL;
1275 	int ret = 0;
1276 	struct drm_display_mode *cur_mode = NULL;
1277 
1278 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1279 	dpu_enc->dsc = dpu_encoder_get_dsc_config(drm_enc);
1280 
1281 	atomic_set(&dpu_enc->frame_done_timeout_cnt, 0);
1282 
1283 	mutex_lock(&dpu_enc->enc_lock);
1284 
1285 	dpu_enc->commit_done_timedout = false;
1286 
1287 	dpu_enc->connector = drm_atomic_get_new_connector_for_encoder(state, drm_enc);
1288 
1289 	cur_mode = &dpu_enc->base.crtc->state->adjusted_mode;
1290 
1291 	dpu_enc->wide_bus_en = dpu_encoder_is_widebus_enabled(drm_enc);
1292 
1293 	trace_dpu_enc_enable(DRMID(drm_enc), cur_mode->hdisplay,
1294 			     cur_mode->vdisplay);
1295 
1296 	/* always enable slave encoder before master */
1297 	if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.enable)
1298 		dpu_enc->cur_slave->ops.enable(dpu_enc->cur_slave);
1299 
1300 	if (dpu_enc->cur_master && dpu_enc->cur_master->ops.enable)
1301 		dpu_enc->cur_master->ops.enable(dpu_enc->cur_master);
1302 
1303 	ret = dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF);
1304 	if (ret) {
1305 		DPU_ERROR_ENC(dpu_enc, "dpu resource control failed: %d\n",
1306 				ret);
1307 		goto out;
1308 	}
1309 
1310 	_dpu_encoder_virt_enable_helper(drm_enc);
1311 
1312 	dpu_enc->enabled = true;
1313 
1314 out:
1315 	mutex_unlock(&dpu_enc->enc_lock);
1316 }
1317 
1318 static void dpu_encoder_virt_atomic_disable(struct drm_encoder *drm_enc,
1319 					struct drm_atomic_state *state)
1320 {
1321 	struct dpu_encoder_virt *dpu_enc = NULL;
1322 	struct drm_crtc *crtc;
1323 	struct drm_crtc_state *old_state = NULL;
1324 	int i = 0;
1325 
1326 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1327 	DPU_DEBUG_ENC(dpu_enc, "\n");
1328 
1329 	crtc = drm_atomic_get_old_crtc_for_encoder(state, drm_enc);
1330 	if (crtc)
1331 		old_state = drm_atomic_get_old_crtc_state(state, crtc);
1332 
1333 	/*
1334 	 * The encoder is already disabled if self refresh mode was set earlier,
1335 	 * in the old_state for the corresponding crtc.
1336 	 */
1337 	if (old_state && old_state->self_refresh_active)
1338 		return;
1339 
1340 	mutex_lock(&dpu_enc->enc_lock);
1341 	dpu_enc->enabled = false;
1342 
1343 	trace_dpu_enc_disable(DRMID(drm_enc));
1344 
1345 	/* wait for idle */
1346 	dpu_encoder_wait_for_tx_complete(drm_enc);
1347 
1348 	dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_PRE_STOP);
1349 
1350 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1351 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1352 
1353 		if (phys->ops.disable)
1354 			phys->ops.disable(phys);
1355 	}
1356 
1357 
1358 	/* after phys waits for frame-done, should be no more frames pending */
1359 	if (atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) {
1360 		DPU_ERROR("enc%d timeout pending\n", drm_enc->base.id);
1361 		del_timer_sync(&dpu_enc->frame_done_timer);
1362 	}
1363 
1364 	dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_STOP);
1365 
1366 	dpu_enc->connector = NULL;
1367 
1368 	DPU_DEBUG_ENC(dpu_enc, "encoder disabled\n");
1369 
1370 	mutex_unlock(&dpu_enc->enc_lock);
1371 }
1372 
1373 static struct dpu_hw_intf *dpu_encoder_get_intf(const struct dpu_mdss_cfg *catalog,
1374 		struct dpu_rm *dpu_rm,
1375 		enum dpu_intf_type type, u32 controller_id)
1376 {
1377 	int i = 0;
1378 
1379 	if (type == INTF_WB)
1380 		return NULL;
1381 
1382 	for (i = 0; i < catalog->intf_count; i++) {
1383 		if (catalog->intf[i].type == type
1384 		    && catalog->intf[i].controller_id == controller_id) {
1385 			return dpu_rm_get_intf(dpu_rm, catalog->intf[i].id);
1386 		}
1387 	}
1388 
1389 	return NULL;
1390 }
1391 
1392 void dpu_encoder_vblank_callback(struct drm_encoder *drm_enc,
1393 		struct dpu_encoder_phys *phy_enc)
1394 {
1395 	struct dpu_encoder_virt *dpu_enc = NULL;
1396 	unsigned long lock_flags;
1397 
1398 	if (!drm_enc || !phy_enc)
1399 		return;
1400 
1401 	DPU_ATRACE_BEGIN("encoder_vblank_callback");
1402 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1403 
1404 	atomic_inc(&phy_enc->vsync_cnt);
1405 
1406 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1407 	if (dpu_enc->crtc)
1408 		dpu_crtc_vblank_callback(dpu_enc->crtc);
1409 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1410 
1411 	DPU_ATRACE_END("encoder_vblank_callback");
1412 }
1413 
1414 void dpu_encoder_underrun_callback(struct drm_encoder *drm_enc,
1415 		struct dpu_encoder_phys *phy_enc)
1416 {
1417 	if (!phy_enc)
1418 		return;
1419 
1420 	DPU_ATRACE_BEGIN("encoder_underrun_callback");
1421 	atomic_inc(&phy_enc->underrun_cnt);
1422 
1423 	/* trigger dump only on the first underrun */
1424 	if (atomic_read(&phy_enc->underrun_cnt) == 1)
1425 		msm_disp_snapshot_state(drm_enc->dev);
1426 
1427 	trace_dpu_enc_underrun_cb(DRMID(drm_enc),
1428 				  atomic_read(&phy_enc->underrun_cnt));
1429 	DPU_ATRACE_END("encoder_underrun_callback");
1430 }
1431 
1432 void dpu_encoder_assign_crtc(struct drm_encoder *drm_enc, struct drm_crtc *crtc)
1433 {
1434 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1435 	unsigned long lock_flags;
1436 
1437 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1438 	/* crtc should always be cleared before re-assigning */
1439 	WARN_ON(crtc && dpu_enc->crtc);
1440 	dpu_enc->crtc = crtc;
1441 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1442 }
1443 
1444 void dpu_encoder_toggle_vblank_for_crtc(struct drm_encoder *drm_enc,
1445 					struct drm_crtc *crtc, bool enable)
1446 {
1447 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1448 	unsigned long lock_flags;
1449 	int i;
1450 
1451 	trace_dpu_enc_vblank_cb(DRMID(drm_enc), enable);
1452 
1453 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1454 	if (dpu_enc->crtc != crtc) {
1455 		spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1456 		return;
1457 	}
1458 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1459 
1460 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1461 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1462 
1463 		if (phys->ops.control_vblank_irq)
1464 			phys->ops.control_vblank_irq(phys, enable);
1465 	}
1466 }
1467 
1468 void dpu_encoder_frame_done_callback(
1469 		struct drm_encoder *drm_enc,
1470 		struct dpu_encoder_phys *ready_phys, u32 event)
1471 {
1472 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1473 	unsigned int i;
1474 
1475 	if (event & (DPU_ENCODER_FRAME_EVENT_DONE
1476 			| DPU_ENCODER_FRAME_EVENT_ERROR
1477 			| DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)) {
1478 
1479 		if (!dpu_enc->frame_busy_mask[0]) {
1480 			/**
1481 			 * suppress frame_done without waiter,
1482 			 * likely autorefresh
1483 			 */
1484 			trace_dpu_enc_frame_done_cb_not_busy(DRMID(drm_enc), event,
1485 					dpu_encoder_helper_get_intf_type(ready_phys->intf_mode),
1486 					ready_phys->hw_intf ? ready_phys->hw_intf->idx : -1,
1487 					ready_phys->hw_wb ? ready_phys->hw_wb->idx : -1);
1488 			return;
1489 		}
1490 
1491 		/* One of the physical encoders has become idle */
1492 		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1493 			if (dpu_enc->phys_encs[i] == ready_phys) {
1494 				trace_dpu_enc_frame_done_cb(DRMID(drm_enc), i,
1495 						dpu_enc->frame_busy_mask[0]);
1496 				clear_bit(i, dpu_enc->frame_busy_mask);
1497 			}
1498 		}
1499 
1500 		if (!dpu_enc->frame_busy_mask[0]) {
1501 			atomic_set(&dpu_enc->frame_done_timeout_ms, 0);
1502 			del_timer(&dpu_enc->frame_done_timer);
1503 
1504 			dpu_encoder_resource_control(drm_enc,
1505 					DPU_ENC_RC_EVENT_FRAME_DONE);
1506 
1507 			if (dpu_enc->crtc)
1508 				dpu_crtc_frame_event_cb(dpu_enc->crtc, event);
1509 		}
1510 	} else {
1511 		if (dpu_enc->crtc)
1512 			dpu_crtc_frame_event_cb(dpu_enc->crtc, event);
1513 	}
1514 }
1515 
1516 static void dpu_encoder_off_work(struct work_struct *work)
1517 {
1518 	struct dpu_encoder_virt *dpu_enc = container_of(work,
1519 			struct dpu_encoder_virt, delayed_off_work.work);
1520 
1521 	dpu_encoder_resource_control(&dpu_enc->base,
1522 						DPU_ENC_RC_EVENT_ENTER_IDLE);
1523 
1524 	dpu_encoder_frame_done_callback(&dpu_enc->base, NULL,
1525 				DPU_ENCODER_FRAME_EVENT_IDLE);
1526 }
1527 
1528 /**
1529  * _dpu_encoder_trigger_flush - trigger flush for a physical encoder
1530  * @drm_enc: Pointer to drm encoder structure
1531  * @phys: Pointer to physical encoder structure
1532  * @extra_flush_bits: Additional bit mask to include in flush trigger
1533  */
1534 static void _dpu_encoder_trigger_flush(struct drm_encoder *drm_enc,
1535 		struct dpu_encoder_phys *phys, uint32_t extra_flush_bits)
1536 {
1537 	struct dpu_hw_ctl *ctl;
1538 	int pending_kickoff_cnt;
1539 	u32 ret = UINT_MAX;
1540 
1541 	if (!phys->hw_pp) {
1542 		DPU_ERROR("invalid pingpong hw\n");
1543 		return;
1544 	}
1545 
1546 	ctl = phys->hw_ctl;
1547 	if (!ctl->ops.trigger_flush) {
1548 		DPU_ERROR("missing trigger cb\n");
1549 		return;
1550 	}
1551 
1552 	pending_kickoff_cnt = dpu_encoder_phys_inc_pending(phys);
1553 
1554 	if (extra_flush_bits && ctl->ops.update_pending_flush)
1555 		ctl->ops.update_pending_flush(ctl, extra_flush_bits);
1556 
1557 	ctl->ops.trigger_flush(ctl);
1558 
1559 	if (ctl->ops.get_pending_flush)
1560 		ret = ctl->ops.get_pending_flush(ctl);
1561 
1562 	trace_dpu_enc_trigger_flush(DRMID(drm_enc),
1563 			dpu_encoder_helper_get_intf_type(phys->intf_mode),
1564 			phys->hw_intf ? phys->hw_intf->idx : -1,
1565 			phys->hw_wb ? phys->hw_wb->idx : -1,
1566 			pending_kickoff_cnt, ctl->idx,
1567 			extra_flush_bits, ret);
1568 }
1569 
1570 /**
1571  * _dpu_encoder_trigger_start - trigger start for a physical encoder
1572  * @phys: Pointer to physical encoder structure
1573  */
1574 static void _dpu_encoder_trigger_start(struct dpu_encoder_phys *phys)
1575 {
1576 	if (!phys) {
1577 		DPU_ERROR("invalid argument(s)\n");
1578 		return;
1579 	}
1580 
1581 	if (!phys->hw_pp) {
1582 		DPU_ERROR("invalid pingpong hw\n");
1583 		return;
1584 	}
1585 
1586 	if (phys->ops.trigger_start && phys->enable_state != DPU_ENC_DISABLED)
1587 		phys->ops.trigger_start(phys);
1588 }
1589 
1590 void dpu_encoder_helper_trigger_start(struct dpu_encoder_phys *phys_enc)
1591 {
1592 	struct dpu_hw_ctl *ctl;
1593 
1594 	ctl = phys_enc->hw_ctl;
1595 	if (ctl->ops.trigger_start) {
1596 		ctl->ops.trigger_start(ctl);
1597 		trace_dpu_enc_trigger_start(DRMID(phys_enc->parent), ctl->idx);
1598 	}
1599 }
1600 
1601 static int dpu_encoder_helper_wait_event_timeout(
1602 		int32_t drm_id,
1603 		unsigned int irq_idx,
1604 		struct dpu_encoder_wait_info *info)
1605 {
1606 	int rc = 0;
1607 	s64 expected_time = ktime_to_ms(ktime_get()) + info->timeout_ms;
1608 	s64 jiffies = msecs_to_jiffies(info->timeout_ms);
1609 	s64 time;
1610 
1611 	do {
1612 		rc = wait_event_timeout(*(info->wq),
1613 				atomic_read(info->atomic_cnt) == 0, jiffies);
1614 		time = ktime_to_ms(ktime_get());
1615 
1616 		trace_dpu_enc_wait_event_timeout(drm_id,
1617 						 DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx),
1618 						 rc, time,
1619 						 expected_time,
1620 						 atomic_read(info->atomic_cnt));
1621 	/* If we timed out, counter is valid and time is less, wait again */
1622 	} while (atomic_read(info->atomic_cnt) && (rc == 0) &&
1623 			(time < expected_time));
1624 
1625 	return rc;
1626 }
1627 
1628 static void dpu_encoder_helper_hw_reset(struct dpu_encoder_phys *phys_enc)
1629 {
1630 	struct dpu_encoder_virt *dpu_enc;
1631 	struct dpu_hw_ctl *ctl;
1632 	int rc;
1633 	struct drm_encoder *drm_enc;
1634 
1635 	dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
1636 	ctl = phys_enc->hw_ctl;
1637 	drm_enc = phys_enc->parent;
1638 
1639 	if (!ctl->ops.reset)
1640 		return;
1641 
1642 	DRM_DEBUG_KMS("id:%u ctl %d reset\n", DRMID(drm_enc),
1643 		      ctl->idx);
1644 
1645 	rc = ctl->ops.reset(ctl);
1646 	if (rc) {
1647 		DPU_ERROR_ENC(dpu_enc, "ctl %d reset failure\n",  ctl->idx);
1648 		msm_disp_snapshot_state(drm_enc->dev);
1649 	}
1650 
1651 	phys_enc->enable_state = DPU_ENC_ENABLED;
1652 }
1653 
1654 /**
1655  * _dpu_encoder_kickoff_phys - handle physical encoder kickoff
1656  *	Iterate through the physical encoders and perform consolidated flush
1657  *	and/or control start triggering as needed. This is done in the virtual
1658  *	encoder rather than the individual physical ones in order to handle
1659  *	use cases that require visibility into multiple physical encoders at
1660  *	a time.
1661  * @dpu_enc: Pointer to virtual encoder structure
1662  */
1663 static void _dpu_encoder_kickoff_phys(struct dpu_encoder_virt *dpu_enc)
1664 {
1665 	struct dpu_hw_ctl *ctl;
1666 	uint32_t i, pending_flush;
1667 	unsigned long lock_flags;
1668 
1669 	pending_flush = 0x0;
1670 
1671 	/* update pending counts and trigger kickoff ctl flush atomically */
1672 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1673 
1674 	/* don't perform flush/start operations for slave encoders */
1675 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1676 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1677 
1678 		if (phys->enable_state == DPU_ENC_DISABLED)
1679 			continue;
1680 
1681 		ctl = phys->hw_ctl;
1682 
1683 		/*
1684 		 * This is cleared in frame_done worker, which isn't invoked
1685 		 * for async commits. So don't set this for async, since it'll
1686 		 * roll over to the next commit.
1687 		 */
1688 		if (phys->split_role != ENC_ROLE_SLAVE)
1689 			set_bit(i, dpu_enc->frame_busy_mask);
1690 
1691 		if (!phys->ops.needs_single_flush ||
1692 				!phys->ops.needs_single_flush(phys))
1693 			_dpu_encoder_trigger_flush(&dpu_enc->base, phys, 0x0);
1694 		else if (ctl->ops.get_pending_flush)
1695 			pending_flush |= ctl->ops.get_pending_flush(ctl);
1696 	}
1697 
1698 	/* for split flush, combine pending flush masks and send to master */
1699 	if (pending_flush && dpu_enc->cur_master) {
1700 		_dpu_encoder_trigger_flush(
1701 				&dpu_enc->base,
1702 				dpu_enc->cur_master,
1703 				pending_flush);
1704 	}
1705 
1706 	_dpu_encoder_trigger_start(dpu_enc->cur_master);
1707 
1708 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1709 }
1710 
1711 void dpu_encoder_trigger_kickoff_pending(struct drm_encoder *drm_enc)
1712 {
1713 	struct dpu_encoder_virt *dpu_enc;
1714 	struct dpu_encoder_phys *phys;
1715 	unsigned int i;
1716 	struct dpu_hw_ctl *ctl;
1717 	struct msm_display_info *disp_info;
1718 
1719 	if (!drm_enc) {
1720 		DPU_ERROR("invalid encoder\n");
1721 		return;
1722 	}
1723 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1724 	disp_info = &dpu_enc->disp_info;
1725 
1726 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1727 		phys = dpu_enc->phys_encs[i];
1728 
1729 		ctl = phys->hw_ctl;
1730 		ctl->ops.clear_pending_flush(ctl);
1731 
1732 		/* update only for command mode primary ctl */
1733 		if ((phys == dpu_enc->cur_master) &&
1734 		    disp_info->is_cmd_mode
1735 		    && ctl->ops.trigger_pending)
1736 			ctl->ops.trigger_pending(ctl);
1737 	}
1738 }
1739 
1740 static u32 _dpu_encoder_calculate_linetime(struct dpu_encoder_virt *dpu_enc,
1741 		struct drm_display_mode *mode)
1742 {
1743 	u64 pclk_rate;
1744 	u32 pclk_period;
1745 	u32 line_time;
1746 
1747 	/*
1748 	 * For linetime calculation, only operate on master encoder.
1749 	 */
1750 	if (!dpu_enc->cur_master)
1751 		return 0;
1752 
1753 	if (!dpu_enc->cur_master->ops.get_line_count) {
1754 		DPU_ERROR("get_line_count function not defined\n");
1755 		return 0;
1756 	}
1757 
1758 	pclk_rate = mode->clock; /* pixel clock in kHz */
1759 	if (pclk_rate == 0) {
1760 		DPU_ERROR("pclk is 0, cannot calculate line time\n");
1761 		return 0;
1762 	}
1763 
1764 	pclk_period = DIV_ROUND_UP_ULL(1000000000ull, pclk_rate);
1765 	if (pclk_period == 0) {
1766 		DPU_ERROR("pclk period is 0\n");
1767 		return 0;
1768 	}
1769 
1770 	/*
1771 	 * Line time calculation based on Pixel clock and HTOTAL.
1772 	 * Final unit is in ns.
1773 	 */
1774 	line_time = (pclk_period * mode->htotal) / 1000;
1775 	if (line_time == 0) {
1776 		DPU_ERROR("line time calculation is 0\n");
1777 		return 0;
1778 	}
1779 
1780 	DPU_DEBUG_ENC(dpu_enc,
1781 			"clk_rate=%lldkHz, clk_period=%d, linetime=%dns\n",
1782 			pclk_rate, pclk_period, line_time);
1783 
1784 	return line_time;
1785 }
1786 
1787 int dpu_encoder_vsync_time(struct drm_encoder *drm_enc, ktime_t *wakeup_time)
1788 {
1789 	struct drm_display_mode *mode;
1790 	struct dpu_encoder_virt *dpu_enc;
1791 	u32 cur_line;
1792 	u32 line_time;
1793 	u32 vtotal, time_to_vsync;
1794 	ktime_t cur_time;
1795 
1796 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1797 
1798 	if (!drm_enc->crtc || !drm_enc->crtc->state) {
1799 		DPU_ERROR("crtc/crtc state object is NULL\n");
1800 		return -EINVAL;
1801 	}
1802 	mode = &drm_enc->crtc->state->adjusted_mode;
1803 
1804 	line_time = _dpu_encoder_calculate_linetime(dpu_enc, mode);
1805 	if (!line_time)
1806 		return -EINVAL;
1807 
1808 	cur_line = dpu_enc->cur_master->ops.get_line_count(dpu_enc->cur_master);
1809 
1810 	vtotal = mode->vtotal;
1811 	if (cur_line >= vtotal)
1812 		time_to_vsync = line_time * vtotal;
1813 	else
1814 		time_to_vsync = line_time * (vtotal - cur_line);
1815 
1816 	if (time_to_vsync == 0) {
1817 		DPU_ERROR("time to vsync should not be zero, vtotal=%d\n",
1818 				vtotal);
1819 		return -EINVAL;
1820 	}
1821 
1822 	cur_time = ktime_get();
1823 	*wakeup_time = ktime_add_ns(cur_time, time_to_vsync);
1824 
1825 	DPU_DEBUG_ENC(dpu_enc,
1826 			"cur_line=%u vtotal=%u time_to_vsync=%u, cur_time=%lld, wakeup_time=%lld\n",
1827 			cur_line, vtotal, time_to_vsync,
1828 			ktime_to_ms(cur_time),
1829 			ktime_to_ms(*wakeup_time));
1830 	return 0;
1831 }
1832 
1833 static u32
1834 dpu_encoder_dsc_initial_line_calc(struct drm_dsc_config *dsc,
1835 				  u32 enc_ip_width)
1836 {
1837 	int ssm_delay, total_pixels, soft_slice_per_enc;
1838 
1839 	soft_slice_per_enc = enc_ip_width / dsc->slice_width;
1840 
1841 	/*
1842 	 * minimum number of initial line pixels is a sum of:
1843 	 * 1. sub-stream multiplexer delay (83 groups for 8bpc,
1844 	 *    91 for 10 bpc) * 3
1845 	 * 2. for two soft slice cases, add extra sub-stream multiplexer * 3
1846 	 * 3. the initial xmit delay
1847 	 * 4. total pipeline delay through the "lock step" of encoder (47)
1848 	 * 5. 6 additional pixels as the output of the rate buffer is
1849 	 *    48 bits wide
1850 	 */
1851 	ssm_delay = ((dsc->bits_per_component < 10) ? 84 : 92);
1852 	total_pixels = ssm_delay * 3 + dsc->initial_xmit_delay + 47;
1853 	if (soft_slice_per_enc > 1)
1854 		total_pixels += (ssm_delay * 3);
1855 	return DIV_ROUND_UP(total_pixels, dsc->slice_width);
1856 }
1857 
1858 static void dpu_encoder_dsc_pipe_cfg(struct dpu_hw_ctl *ctl,
1859 				     struct dpu_hw_dsc *hw_dsc,
1860 				     struct dpu_hw_pingpong *hw_pp,
1861 				     struct drm_dsc_config *dsc,
1862 				     u32 common_mode,
1863 				     u32 initial_lines)
1864 {
1865 	if (hw_dsc->ops.dsc_config)
1866 		hw_dsc->ops.dsc_config(hw_dsc, dsc, common_mode, initial_lines);
1867 
1868 	if (hw_dsc->ops.dsc_config_thresh)
1869 		hw_dsc->ops.dsc_config_thresh(hw_dsc, dsc);
1870 
1871 	if (hw_pp->ops.setup_dsc)
1872 		hw_pp->ops.setup_dsc(hw_pp);
1873 
1874 	if (hw_dsc->ops.dsc_bind_pingpong_blk)
1875 		hw_dsc->ops.dsc_bind_pingpong_blk(hw_dsc, hw_pp->idx);
1876 
1877 	if (hw_pp->ops.enable_dsc)
1878 		hw_pp->ops.enable_dsc(hw_pp);
1879 
1880 	if (ctl->ops.update_pending_flush_dsc)
1881 		ctl->ops.update_pending_flush_dsc(ctl, hw_dsc->idx);
1882 }
1883 
1884 static void dpu_encoder_prep_dsc(struct dpu_encoder_virt *dpu_enc,
1885 				 struct drm_dsc_config *dsc)
1886 {
1887 	/* coding only for 2LM, 2enc, 1 dsc config */
1888 	struct dpu_encoder_phys *enc_master = dpu_enc->cur_master;
1889 	struct dpu_hw_ctl *ctl = enc_master->hw_ctl;
1890 	struct dpu_hw_dsc *hw_dsc[MAX_CHANNELS_PER_ENC];
1891 	struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC];
1892 	int this_frame_slices;
1893 	int intf_ip_w, enc_ip_w;
1894 	int dsc_common_mode;
1895 	int pic_width;
1896 	u32 initial_lines;
1897 	int i;
1898 
1899 	for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
1900 		hw_pp[i] = dpu_enc->hw_pp[i];
1901 		hw_dsc[i] = dpu_enc->hw_dsc[i];
1902 
1903 		if (!hw_pp[i] || !hw_dsc[i]) {
1904 			DPU_ERROR_ENC(dpu_enc, "invalid params for DSC\n");
1905 			return;
1906 		}
1907 	}
1908 
1909 	dsc_common_mode = 0;
1910 	pic_width = dsc->pic_width;
1911 
1912 	dsc_common_mode = DSC_MODE_SPLIT_PANEL;
1913 	if (dpu_encoder_use_dsc_merge(enc_master->parent))
1914 		dsc_common_mode |= DSC_MODE_MULTIPLEX;
1915 	if (enc_master->intf_mode == INTF_MODE_VIDEO)
1916 		dsc_common_mode |= DSC_MODE_VIDEO;
1917 
1918 	this_frame_slices = pic_width / dsc->slice_width;
1919 	intf_ip_w = this_frame_slices * dsc->slice_width;
1920 
1921 	/*
1922 	 * dsc merge case: when using 2 encoders for the same stream,
1923 	 * no. of slices need to be same on both the encoders.
1924 	 */
1925 	enc_ip_w = intf_ip_w / 2;
1926 	initial_lines = dpu_encoder_dsc_initial_line_calc(dsc, enc_ip_w);
1927 
1928 	for (i = 0; i < MAX_CHANNELS_PER_ENC; i++)
1929 		dpu_encoder_dsc_pipe_cfg(ctl, hw_dsc[i], hw_pp[i],
1930 					 dsc, dsc_common_mode, initial_lines);
1931 }
1932 
1933 void dpu_encoder_prepare_for_kickoff(struct drm_encoder *drm_enc)
1934 {
1935 	struct dpu_encoder_virt *dpu_enc;
1936 	struct dpu_encoder_phys *phys;
1937 	bool needs_hw_reset = false;
1938 	unsigned int i;
1939 
1940 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1941 
1942 	trace_dpu_enc_prepare_kickoff(DRMID(drm_enc));
1943 
1944 	/* prepare for next kickoff, may include waiting on previous kickoff */
1945 	DPU_ATRACE_BEGIN("enc_prepare_for_kickoff");
1946 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1947 		phys = dpu_enc->phys_encs[i];
1948 		if (phys->ops.prepare_for_kickoff)
1949 			phys->ops.prepare_for_kickoff(phys);
1950 		if (phys->enable_state == DPU_ENC_ERR_NEEDS_HW_RESET)
1951 			needs_hw_reset = true;
1952 	}
1953 	DPU_ATRACE_END("enc_prepare_for_kickoff");
1954 
1955 	dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF);
1956 
1957 	/* if any phys needs reset, reset all phys, in-order */
1958 	if (needs_hw_reset) {
1959 		trace_dpu_enc_prepare_kickoff_reset(DRMID(drm_enc));
1960 		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1961 			dpu_encoder_helper_hw_reset(dpu_enc->phys_encs[i]);
1962 		}
1963 	}
1964 
1965 	if (dpu_enc->dsc)
1966 		dpu_encoder_prep_dsc(dpu_enc, dpu_enc->dsc);
1967 }
1968 
1969 bool dpu_encoder_is_valid_for_commit(struct drm_encoder *drm_enc)
1970 {
1971 	struct dpu_encoder_virt *dpu_enc;
1972 	unsigned int i;
1973 	struct dpu_encoder_phys *phys;
1974 
1975 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1976 
1977 	if (drm_enc->encoder_type == DRM_MODE_ENCODER_VIRTUAL) {
1978 		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1979 			phys = dpu_enc->phys_encs[i];
1980 			if (phys->ops.is_valid_for_commit && !phys->ops.is_valid_for_commit(phys)) {
1981 				DPU_DEBUG("invalid FB not kicking off\n");
1982 				return false;
1983 			}
1984 		}
1985 	}
1986 
1987 	return true;
1988 }
1989 
1990 void dpu_encoder_kickoff(struct drm_encoder *drm_enc)
1991 {
1992 	struct dpu_encoder_virt *dpu_enc;
1993 	struct dpu_encoder_phys *phys;
1994 	unsigned long timeout_ms;
1995 	unsigned int i;
1996 
1997 	DPU_ATRACE_BEGIN("encoder_kickoff");
1998 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1999 
2000 	trace_dpu_enc_kickoff(DRMID(drm_enc));
2001 
2002 	timeout_ms = DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES * 1000 /
2003 			drm_mode_vrefresh(&drm_enc->crtc->state->adjusted_mode);
2004 
2005 	atomic_set(&dpu_enc->frame_done_timeout_ms, timeout_ms);
2006 	mod_timer(&dpu_enc->frame_done_timer,
2007 			jiffies + msecs_to_jiffies(timeout_ms));
2008 
2009 	/* All phys encs are ready to go, trigger the kickoff */
2010 	_dpu_encoder_kickoff_phys(dpu_enc);
2011 
2012 	/* allow phys encs to handle any post-kickoff business */
2013 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2014 		phys = dpu_enc->phys_encs[i];
2015 		if (phys->ops.handle_post_kickoff)
2016 			phys->ops.handle_post_kickoff(phys);
2017 	}
2018 
2019 	DPU_ATRACE_END("encoder_kickoff");
2020 }
2021 
2022 static void dpu_encoder_helper_reset_mixers(struct dpu_encoder_phys *phys_enc)
2023 {
2024 	struct dpu_hw_mixer_cfg mixer;
2025 	int i, num_lm;
2026 	struct dpu_global_state *global_state;
2027 	struct dpu_hw_blk *hw_lm[2];
2028 	struct dpu_hw_mixer *hw_mixer[2];
2029 	struct dpu_hw_ctl *ctl = phys_enc->hw_ctl;
2030 
2031 	memset(&mixer, 0, sizeof(mixer));
2032 
2033 	/* reset all mixers for this encoder */
2034 	if (phys_enc->hw_ctl->ops.clear_all_blendstages)
2035 		phys_enc->hw_ctl->ops.clear_all_blendstages(phys_enc->hw_ctl);
2036 
2037 	global_state = dpu_kms_get_existing_global_state(phys_enc->dpu_kms);
2038 
2039 	num_lm = dpu_rm_get_assigned_resources(&phys_enc->dpu_kms->rm, global_state,
2040 		phys_enc->parent->base.id, DPU_HW_BLK_LM, hw_lm, ARRAY_SIZE(hw_lm));
2041 
2042 	for (i = 0; i < num_lm; i++) {
2043 		hw_mixer[i] = to_dpu_hw_mixer(hw_lm[i]);
2044 		if (phys_enc->hw_ctl->ops.update_pending_flush_mixer)
2045 			phys_enc->hw_ctl->ops.update_pending_flush_mixer(ctl, hw_mixer[i]->idx);
2046 
2047 		/* clear all blendstages */
2048 		if (phys_enc->hw_ctl->ops.setup_blendstage)
2049 			phys_enc->hw_ctl->ops.setup_blendstage(ctl, hw_mixer[i]->idx, NULL);
2050 	}
2051 }
2052 
2053 static void dpu_encoder_dsc_pipe_clr(struct dpu_hw_ctl *ctl,
2054 				     struct dpu_hw_dsc *hw_dsc,
2055 				     struct dpu_hw_pingpong *hw_pp)
2056 {
2057 	if (hw_dsc->ops.dsc_disable)
2058 		hw_dsc->ops.dsc_disable(hw_dsc);
2059 
2060 	if (hw_pp->ops.disable_dsc)
2061 		hw_pp->ops.disable_dsc(hw_pp);
2062 
2063 	if (hw_dsc->ops.dsc_bind_pingpong_blk)
2064 		hw_dsc->ops.dsc_bind_pingpong_blk(hw_dsc, PINGPONG_NONE);
2065 
2066 	if (ctl->ops.update_pending_flush_dsc)
2067 		ctl->ops.update_pending_flush_dsc(ctl, hw_dsc->idx);
2068 }
2069 
2070 static void dpu_encoder_unprep_dsc(struct dpu_encoder_virt *dpu_enc)
2071 {
2072 	/* coding only for 2LM, 2enc, 1 dsc config */
2073 	struct dpu_encoder_phys *enc_master = dpu_enc->cur_master;
2074 	struct dpu_hw_ctl *ctl = enc_master->hw_ctl;
2075 	struct dpu_hw_dsc *hw_dsc[MAX_CHANNELS_PER_ENC];
2076 	struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC];
2077 	int i;
2078 
2079 	for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
2080 		hw_pp[i] = dpu_enc->hw_pp[i];
2081 		hw_dsc[i] = dpu_enc->hw_dsc[i];
2082 
2083 		if (hw_pp[i] && hw_dsc[i])
2084 			dpu_encoder_dsc_pipe_clr(ctl, hw_dsc[i], hw_pp[i]);
2085 	}
2086 }
2087 
2088 void dpu_encoder_helper_phys_cleanup(struct dpu_encoder_phys *phys_enc)
2089 {
2090 	struct dpu_hw_ctl *ctl = phys_enc->hw_ctl;
2091 	struct dpu_hw_intf_cfg intf_cfg = { 0 };
2092 	int i;
2093 	struct dpu_encoder_virt *dpu_enc;
2094 
2095 	dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
2096 
2097 	phys_enc->hw_ctl->ops.reset(ctl);
2098 
2099 	dpu_encoder_helper_reset_mixers(phys_enc);
2100 
2101 	/*
2102 	 * TODO: move the once-only operation like CTL flush/trigger
2103 	 * into dpu_encoder_virt_disable() and all operations which need
2104 	 * to be done per phys encoder into the phys_disable() op.
2105 	 */
2106 	if (phys_enc->hw_wb) {
2107 		/* disable the PP block */
2108 		if (phys_enc->hw_wb->ops.bind_pingpong_blk)
2109 			phys_enc->hw_wb->ops.bind_pingpong_blk(phys_enc->hw_wb, PINGPONG_NONE);
2110 
2111 		/* mark WB flush as pending */
2112 		if (phys_enc->hw_ctl->ops.update_pending_flush_wb)
2113 			phys_enc->hw_ctl->ops.update_pending_flush_wb(ctl, phys_enc->hw_wb->idx);
2114 	} else {
2115 		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2116 			if (dpu_enc->phys_encs[i] && phys_enc->hw_intf->ops.bind_pingpong_blk)
2117 				phys_enc->hw_intf->ops.bind_pingpong_blk(
2118 						dpu_enc->phys_encs[i]->hw_intf,
2119 						PINGPONG_NONE);
2120 
2121 			/* mark INTF flush as pending */
2122 			if (phys_enc->hw_ctl->ops.update_pending_flush_intf)
2123 				phys_enc->hw_ctl->ops.update_pending_flush_intf(phys_enc->hw_ctl,
2124 						dpu_enc->phys_encs[i]->hw_intf->idx);
2125 		}
2126 	}
2127 
2128 	/* reset the merge 3D HW block */
2129 	if (phys_enc->hw_pp && phys_enc->hw_pp->merge_3d) {
2130 		phys_enc->hw_pp->merge_3d->ops.setup_3d_mode(phys_enc->hw_pp->merge_3d,
2131 				BLEND_3D_NONE);
2132 		if (phys_enc->hw_ctl->ops.update_pending_flush_merge_3d)
2133 			phys_enc->hw_ctl->ops.update_pending_flush_merge_3d(ctl,
2134 					phys_enc->hw_pp->merge_3d->idx);
2135 	}
2136 
2137 	if (phys_enc->hw_cdm) {
2138 		if (phys_enc->hw_cdm->ops.bind_pingpong_blk && phys_enc->hw_pp)
2139 			phys_enc->hw_cdm->ops.bind_pingpong_blk(phys_enc->hw_cdm,
2140 								PINGPONG_NONE);
2141 		if (phys_enc->hw_ctl->ops.update_pending_flush_cdm)
2142 			phys_enc->hw_ctl->ops.update_pending_flush_cdm(phys_enc->hw_ctl,
2143 								       phys_enc->hw_cdm->idx);
2144 	}
2145 
2146 	if (dpu_enc->dsc) {
2147 		dpu_encoder_unprep_dsc(dpu_enc);
2148 		dpu_enc->dsc = NULL;
2149 	}
2150 
2151 	intf_cfg.stream_sel = 0; /* Don't care value for video mode */
2152 	intf_cfg.mode_3d = dpu_encoder_helper_get_3d_blend_mode(phys_enc);
2153 	intf_cfg.dsc = dpu_encoder_helper_get_dsc(phys_enc);
2154 
2155 	if (phys_enc->hw_intf)
2156 		intf_cfg.intf = phys_enc->hw_intf->idx;
2157 	if (phys_enc->hw_wb)
2158 		intf_cfg.wb = phys_enc->hw_wb->idx;
2159 
2160 	if (phys_enc->hw_pp && phys_enc->hw_pp->merge_3d)
2161 		intf_cfg.merge_3d = phys_enc->hw_pp->merge_3d->idx;
2162 
2163 	if (ctl->ops.reset_intf_cfg)
2164 		ctl->ops.reset_intf_cfg(ctl, &intf_cfg);
2165 
2166 	ctl->ops.trigger_flush(ctl);
2167 	ctl->ops.trigger_start(ctl);
2168 	ctl->ops.clear_pending_flush(ctl);
2169 }
2170 
2171 void dpu_encoder_helper_phys_setup_cdm(struct dpu_encoder_phys *phys_enc,
2172 				       const struct msm_format *dpu_fmt,
2173 				       u32 output_type)
2174 {
2175 	struct dpu_hw_cdm *hw_cdm;
2176 	struct dpu_hw_cdm_cfg *cdm_cfg;
2177 	struct dpu_hw_pingpong *hw_pp;
2178 	int ret;
2179 
2180 	if (!phys_enc)
2181 		return;
2182 
2183 	cdm_cfg = &phys_enc->cdm_cfg;
2184 	hw_pp = phys_enc->hw_pp;
2185 	hw_cdm = phys_enc->hw_cdm;
2186 
2187 	if (!hw_cdm)
2188 		return;
2189 
2190 	if (!MSM_FORMAT_IS_YUV(dpu_fmt)) {
2191 		DPU_DEBUG("[enc:%d] cdm_disable fmt:%p4cc\n", DRMID(phys_enc->parent),
2192 			  &dpu_fmt->pixel_format);
2193 		if (hw_cdm->ops.bind_pingpong_blk)
2194 			hw_cdm->ops.bind_pingpong_blk(hw_cdm, PINGPONG_NONE);
2195 
2196 		return;
2197 	}
2198 
2199 	memset(cdm_cfg, 0, sizeof(struct dpu_hw_cdm_cfg));
2200 
2201 	cdm_cfg->output_width = phys_enc->cached_mode.hdisplay;
2202 	cdm_cfg->output_height = phys_enc->cached_mode.vdisplay;
2203 	cdm_cfg->output_fmt = dpu_fmt;
2204 	cdm_cfg->output_type = output_type;
2205 	cdm_cfg->output_bit_depth = MSM_FORMAT_IS_DX(dpu_fmt) ?
2206 			CDM_CDWN_OUTPUT_10BIT : CDM_CDWN_OUTPUT_8BIT;
2207 	cdm_cfg->csc_cfg = &dpu_csc10_rgb2yuv_601l;
2208 
2209 	/* enable 10 bit logic */
2210 	switch (cdm_cfg->output_fmt->chroma_sample) {
2211 	case CHROMA_FULL:
2212 		cdm_cfg->h_cdwn_type = CDM_CDWN_DISABLE;
2213 		cdm_cfg->v_cdwn_type = CDM_CDWN_DISABLE;
2214 		break;
2215 	case CHROMA_H2V1:
2216 		cdm_cfg->h_cdwn_type = CDM_CDWN_COSITE;
2217 		cdm_cfg->v_cdwn_type = CDM_CDWN_DISABLE;
2218 		break;
2219 	case CHROMA_420:
2220 		cdm_cfg->h_cdwn_type = CDM_CDWN_COSITE;
2221 		cdm_cfg->v_cdwn_type = CDM_CDWN_OFFSITE;
2222 		break;
2223 	case CHROMA_H1V2:
2224 	default:
2225 		DPU_ERROR("[enc:%d] unsupported chroma sampling type\n",
2226 			  DRMID(phys_enc->parent));
2227 		cdm_cfg->h_cdwn_type = CDM_CDWN_DISABLE;
2228 		cdm_cfg->v_cdwn_type = CDM_CDWN_DISABLE;
2229 		break;
2230 	}
2231 
2232 	DPU_DEBUG("[enc:%d] cdm_enable:%d,%d,%p4cc,%d,%d,%d,%d]\n",
2233 		  DRMID(phys_enc->parent), cdm_cfg->output_width,
2234 		  cdm_cfg->output_height, &cdm_cfg->output_fmt->pixel_format,
2235 		  cdm_cfg->output_type, cdm_cfg->output_bit_depth,
2236 		  cdm_cfg->h_cdwn_type, cdm_cfg->v_cdwn_type);
2237 
2238 	if (hw_cdm->ops.enable) {
2239 		cdm_cfg->pp_id = hw_pp->idx;
2240 		ret = hw_cdm->ops.enable(hw_cdm, cdm_cfg);
2241 		if (ret < 0) {
2242 			DPU_ERROR("[enc:%d] failed to enable CDM; ret:%d\n",
2243 				  DRMID(phys_enc->parent), ret);
2244 			return;
2245 		}
2246 	}
2247 }
2248 
2249 #ifdef CONFIG_DEBUG_FS
2250 static int _dpu_encoder_status_show(struct seq_file *s, void *data)
2251 {
2252 	struct drm_encoder *drm_enc = s->private;
2253 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
2254 	int i;
2255 
2256 	mutex_lock(&dpu_enc->enc_lock);
2257 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2258 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2259 
2260 		seq_printf(s, "intf:%d  wb:%d  vsync:%8d     underrun:%8d    frame_done_cnt:%d",
2261 				phys->hw_intf ? phys->hw_intf->idx - INTF_0 : -1,
2262 				phys->hw_wb ? phys->hw_wb->idx - WB_0 : -1,
2263 				atomic_read(&phys->vsync_cnt),
2264 				atomic_read(&phys->underrun_cnt),
2265 				atomic_read(&dpu_enc->frame_done_timeout_cnt));
2266 
2267 		seq_printf(s, "mode: %s\n", dpu_encoder_helper_get_intf_type(phys->intf_mode));
2268 	}
2269 	mutex_unlock(&dpu_enc->enc_lock);
2270 
2271 	return 0;
2272 }
2273 
2274 DEFINE_SHOW_ATTRIBUTE(_dpu_encoder_status);
2275 
2276 static void dpu_encoder_debugfs_init(struct drm_encoder *drm_enc, struct dentry *root)
2277 {
2278 	/* don't error check these */
2279 	debugfs_create_file("status", 0600,
2280 			    root, drm_enc, &_dpu_encoder_status_fops);
2281 }
2282 #else
2283 #define dpu_encoder_debugfs_init NULL
2284 #endif
2285 
2286 static int dpu_encoder_virt_add_phys_encs(
2287 		struct drm_device *dev,
2288 		struct msm_display_info *disp_info,
2289 		struct dpu_encoder_virt *dpu_enc,
2290 		struct dpu_enc_phys_init_params *params)
2291 {
2292 	struct dpu_encoder_phys *enc = NULL;
2293 
2294 	DPU_DEBUG_ENC(dpu_enc, "\n");
2295 
2296 	/*
2297 	 * We may create up to NUM_PHYS_ENCODER_TYPES physical encoder types
2298 	 * in this function, check up-front.
2299 	 */
2300 	if (dpu_enc->num_phys_encs + NUM_PHYS_ENCODER_TYPES >=
2301 			ARRAY_SIZE(dpu_enc->phys_encs)) {
2302 		DPU_ERROR_ENC(dpu_enc, "too many physical encoders %d\n",
2303 			  dpu_enc->num_phys_encs);
2304 		return -EINVAL;
2305 	}
2306 
2307 
2308 	if (disp_info->intf_type == INTF_WB) {
2309 		enc = dpu_encoder_phys_wb_init(dev, params);
2310 
2311 		if (IS_ERR(enc)) {
2312 			DPU_ERROR_ENC(dpu_enc, "failed to init wb enc: %ld\n",
2313 				PTR_ERR(enc));
2314 			return PTR_ERR(enc);
2315 		}
2316 
2317 		dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
2318 		++dpu_enc->num_phys_encs;
2319 	} else if (disp_info->is_cmd_mode) {
2320 		enc = dpu_encoder_phys_cmd_init(dev, params);
2321 
2322 		if (IS_ERR(enc)) {
2323 			DPU_ERROR_ENC(dpu_enc, "failed to init cmd enc: %ld\n",
2324 				PTR_ERR(enc));
2325 			return PTR_ERR(enc);
2326 		}
2327 
2328 		dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
2329 		++dpu_enc->num_phys_encs;
2330 	} else {
2331 		enc = dpu_encoder_phys_vid_init(dev, params);
2332 
2333 		if (IS_ERR(enc)) {
2334 			DPU_ERROR_ENC(dpu_enc, "failed to init vid enc: %ld\n",
2335 				PTR_ERR(enc));
2336 			return PTR_ERR(enc);
2337 		}
2338 
2339 		dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
2340 		++dpu_enc->num_phys_encs;
2341 	}
2342 
2343 	if (params->split_role == ENC_ROLE_SLAVE)
2344 		dpu_enc->cur_slave = enc;
2345 	else
2346 		dpu_enc->cur_master = enc;
2347 
2348 	return 0;
2349 }
2350 
2351 static int dpu_encoder_setup_display(struct dpu_encoder_virt *dpu_enc,
2352 				 struct dpu_kms *dpu_kms,
2353 				 struct msm_display_info *disp_info)
2354 {
2355 	int ret = 0;
2356 	int i = 0;
2357 	struct dpu_enc_phys_init_params phys_params;
2358 
2359 	if (!dpu_enc) {
2360 		DPU_ERROR("invalid arg(s), enc %d\n", dpu_enc != NULL);
2361 		return -EINVAL;
2362 	}
2363 
2364 	dpu_enc->cur_master = NULL;
2365 
2366 	memset(&phys_params, 0, sizeof(phys_params));
2367 	phys_params.dpu_kms = dpu_kms;
2368 	phys_params.parent = &dpu_enc->base;
2369 	phys_params.enc_spinlock = &dpu_enc->enc_spinlock;
2370 
2371 	WARN_ON(disp_info->num_of_h_tiles < 1);
2372 
2373 	DPU_DEBUG("dsi_info->num_of_h_tiles %d\n", disp_info->num_of_h_tiles);
2374 
2375 	if (disp_info->intf_type != INTF_WB)
2376 		dpu_enc->idle_pc_supported =
2377 				dpu_kms->catalog->caps->has_idle_pc;
2378 
2379 	mutex_lock(&dpu_enc->enc_lock);
2380 	for (i = 0; i < disp_info->num_of_h_tiles && !ret; i++) {
2381 		/*
2382 		 * Left-most tile is at index 0, content is controller id
2383 		 * h_tile_instance_ids[2] = {0, 1}; DSI0 = left, DSI1 = right
2384 		 * h_tile_instance_ids[2] = {1, 0}; DSI1 = left, DSI0 = right
2385 		 */
2386 		u32 controller_id = disp_info->h_tile_instance[i];
2387 
2388 		if (disp_info->num_of_h_tiles > 1) {
2389 			if (i == 0)
2390 				phys_params.split_role = ENC_ROLE_MASTER;
2391 			else
2392 				phys_params.split_role = ENC_ROLE_SLAVE;
2393 		} else {
2394 			phys_params.split_role = ENC_ROLE_SOLO;
2395 		}
2396 
2397 		DPU_DEBUG("h_tile_instance %d = %d, split_role %d\n",
2398 				i, controller_id, phys_params.split_role);
2399 
2400 		phys_params.hw_intf = dpu_encoder_get_intf(dpu_kms->catalog, &dpu_kms->rm,
2401 							   disp_info->intf_type,
2402 							   controller_id);
2403 
2404 		if (disp_info->intf_type == INTF_WB && controller_id < WB_MAX)
2405 			phys_params.hw_wb = dpu_rm_get_wb(&dpu_kms->rm, controller_id);
2406 
2407 		if (!phys_params.hw_intf && !phys_params.hw_wb) {
2408 			DPU_ERROR_ENC(dpu_enc, "no intf or wb block assigned at idx: %d\n", i);
2409 			ret = -EINVAL;
2410 			break;
2411 		}
2412 
2413 		if (phys_params.hw_intf && phys_params.hw_wb) {
2414 			DPU_ERROR_ENC(dpu_enc,
2415 					"invalid phys both intf and wb block at idx: %d\n", i);
2416 			ret = -EINVAL;
2417 			break;
2418 		}
2419 
2420 		ret = dpu_encoder_virt_add_phys_encs(dpu_kms->dev, disp_info,
2421 				dpu_enc, &phys_params);
2422 		if (ret) {
2423 			DPU_ERROR_ENC(dpu_enc, "failed to add phys encs\n");
2424 			break;
2425 		}
2426 	}
2427 
2428 	mutex_unlock(&dpu_enc->enc_lock);
2429 
2430 	return ret;
2431 }
2432 
2433 static void dpu_encoder_frame_done_timeout(struct timer_list *t)
2434 {
2435 	struct dpu_encoder_virt *dpu_enc = from_timer(dpu_enc, t,
2436 			frame_done_timer);
2437 	struct drm_encoder *drm_enc = &dpu_enc->base;
2438 	u32 event;
2439 
2440 	if (!drm_enc->dev) {
2441 		DPU_ERROR("invalid parameters\n");
2442 		return;
2443 	}
2444 
2445 	if (!dpu_enc->frame_busy_mask[0] || !dpu_enc->crtc) {
2446 		DRM_DEBUG_KMS("id:%u invalid timeout frame_busy_mask=%lu\n",
2447 			      DRMID(drm_enc), dpu_enc->frame_busy_mask[0]);
2448 		return;
2449 	} else if (!atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) {
2450 		DRM_DEBUG_KMS("id:%u invalid timeout\n", DRMID(drm_enc));
2451 		return;
2452 	}
2453 
2454 	DPU_ERROR_ENC_RATELIMITED(dpu_enc, "frame done timeout\n");
2455 
2456 	if (atomic_inc_return(&dpu_enc->frame_done_timeout_cnt) == 1)
2457 		msm_disp_snapshot_state(drm_enc->dev);
2458 
2459 	event = DPU_ENCODER_FRAME_EVENT_ERROR;
2460 	trace_dpu_enc_frame_done_timeout(DRMID(drm_enc), event);
2461 	dpu_crtc_frame_event_cb(dpu_enc->crtc, event);
2462 }
2463 
2464 static const struct drm_encoder_helper_funcs dpu_encoder_helper_funcs = {
2465 	.atomic_mode_set = dpu_encoder_virt_atomic_mode_set,
2466 	.atomic_disable = dpu_encoder_virt_atomic_disable,
2467 	.atomic_enable = dpu_encoder_virt_atomic_enable,
2468 	.atomic_check = dpu_encoder_virt_atomic_check,
2469 };
2470 
2471 static const struct drm_encoder_funcs dpu_encoder_funcs = {
2472 	.debugfs_init = dpu_encoder_debugfs_init,
2473 };
2474 
2475 struct drm_encoder *dpu_encoder_init(struct drm_device *dev,
2476 		int drm_enc_mode,
2477 		struct msm_display_info *disp_info)
2478 {
2479 	struct msm_drm_private *priv = dev->dev_private;
2480 	struct dpu_kms *dpu_kms = to_dpu_kms(priv->kms);
2481 	struct dpu_encoder_virt *dpu_enc;
2482 	int ret;
2483 
2484 	dpu_enc = drmm_encoder_alloc(dev, struct dpu_encoder_virt, base,
2485 				     &dpu_encoder_funcs, drm_enc_mode, NULL);
2486 	if (IS_ERR(dpu_enc))
2487 		return ERR_CAST(dpu_enc);
2488 
2489 	drm_encoder_helper_add(&dpu_enc->base, &dpu_encoder_helper_funcs);
2490 
2491 	spin_lock_init(&dpu_enc->enc_spinlock);
2492 	dpu_enc->enabled = false;
2493 	mutex_init(&dpu_enc->enc_lock);
2494 	mutex_init(&dpu_enc->rc_lock);
2495 
2496 	ret = dpu_encoder_setup_display(dpu_enc, dpu_kms, disp_info);
2497 	if (ret) {
2498 		DPU_ERROR("failed to setup encoder\n");
2499 		return ERR_PTR(-ENOMEM);
2500 	}
2501 
2502 	atomic_set(&dpu_enc->frame_done_timeout_ms, 0);
2503 	atomic_set(&dpu_enc->frame_done_timeout_cnt, 0);
2504 	timer_setup(&dpu_enc->frame_done_timer,
2505 			dpu_encoder_frame_done_timeout, 0);
2506 
2507 	INIT_DELAYED_WORK(&dpu_enc->delayed_off_work,
2508 			dpu_encoder_off_work);
2509 	dpu_enc->idle_timeout = IDLE_TIMEOUT;
2510 
2511 	memcpy(&dpu_enc->disp_info, disp_info, sizeof(*disp_info));
2512 
2513 	DPU_DEBUG_ENC(dpu_enc, "created\n");
2514 
2515 	return &dpu_enc->base;
2516 }
2517 
2518 /**
2519  * dpu_encoder_wait_for_commit_done() - Wait for encoder to flush pending state
2520  * @drm_enc:	encoder pointer
2521  *
2522  * Wait for hardware to have flushed the current pending changes to hardware at
2523  * a vblank or CTL_START. Physical encoders will map this differently depending
2524  * on the type: vid mode -> vsync_irq, cmd mode -> CTL_START.
2525  *
2526  * Return: 0 on success, -EWOULDBLOCK if already signaled, error otherwise
2527  */
2528 int dpu_encoder_wait_for_commit_done(struct drm_encoder *drm_enc)
2529 {
2530 	struct dpu_encoder_virt *dpu_enc = NULL;
2531 	int i, ret = 0;
2532 
2533 	if (!drm_enc) {
2534 		DPU_ERROR("invalid encoder\n");
2535 		return -EINVAL;
2536 	}
2537 	dpu_enc = to_dpu_encoder_virt(drm_enc);
2538 	DPU_DEBUG_ENC(dpu_enc, "\n");
2539 
2540 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2541 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2542 
2543 		if (phys->ops.wait_for_commit_done) {
2544 			DPU_ATRACE_BEGIN("wait_for_commit_done");
2545 			ret = phys->ops.wait_for_commit_done(phys);
2546 			DPU_ATRACE_END("wait_for_commit_done");
2547 			if (ret == -ETIMEDOUT && !dpu_enc->commit_done_timedout) {
2548 				dpu_enc->commit_done_timedout = true;
2549 				msm_disp_snapshot_state(drm_enc->dev);
2550 			}
2551 			if (ret)
2552 				return ret;
2553 		}
2554 	}
2555 
2556 	return ret;
2557 }
2558 
2559 /**
2560  * dpu_encoder_wait_for_tx_complete() - Wait for encoder to transfer pixels to panel
2561  * @drm_enc:	encoder pointer
2562  *
2563  * Wait for the hardware to transfer all the pixels to the panel. Physical
2564  * encoders will map this differently depending on the type: vid mode -> vsync_irq,
2565  * cmd mode -> pp_done.
2566  *
2567  * Return: 0 on success, -EWOULDBLOCK if already signaled, error otherwise
2568  */
2569 int dpu_encoder_wait_for_tx_complete(struct drm_encoder *drm_enc)
2570 {
2571 	struct dpu_encoder_virt *dpu_enc = NULL;
2572 	int i, ret = 0;
2573 
2574 	if (!drm_enc) {
2575 		DPU_ERROR("invalid encoder\n");
2576 		return -EINVAL;
2577 	}
2578 	dpu_enc = to_dpu_encoder_virt(drm_enc);
2579 	DPU_DEBUG_ENC(dpu_enc, "\n");
2580 
2581 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2582 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2583 
2584 		if (phys->ops.wait_for_tx_complete) {
2585 			DPU_ATRACE_BEGIN("wait_for_tx_complete");
2586 			ret = phys->ops.wait_for_tx_complete(phys);
2587 			DPU_ATRACE_END("wait_for_tx_complete");
2588 			if (ret)
2589 				return ret;
2590 		}
2591 	}
2592 
2593 	return ret;
2594 }
2595 
2596 enum dpu_intf_mode dpu_encoder_get_intf_mode(struct drm_encoder *encoder)
2597 {
2598 	struct dpu_encoder_virt *dpu_enc = NULL;
2599 
2600 	if (!encoder) {
2601 		DPU_ERROR("invalid encoder\n");
2602 		return INTF_MODE_NONE;
2603 	}
2604 	dpu_enc = to_dpu_encoder_virt(encoder);
2605 
2606 	if (dpu_enc->cur_master)
2607 		return dpu_enc->cur_master->intf_mode;
2608 
2609 	if (dpu_enc->num_phys_encs)
2610 		return dpu_enc->phys_encs[0]->intf_mode;
2611 
2612 	return INTF_MODE_NONE;
2613 }
2614 
2615 unsigned int dpu_encoder_helper_get_dsc(struct dpu_encoder_phys *phys_enc)
2616 {
2617 	struct drm_encoder *encoder = phys_enc->parent;
2618 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(encoder);
2619 
2620 	return dpu_enc->dsc_mask;
2621 }
2622 
2623 void dpu_encoder_phys_init(struct dpu_encoder_phys *phys_enc,
2624 			  struct dpu_enc_phys_init_params *p)
2625 {
2626 	phys_enc->hw_mdptop = p->dpu_kms->hw_mdp;
2627 	phys_enc->hw_intf = p->hw_intf;
2628 	phys_enc->hw_wb = p->hw_wb;
2629 	phys_enc->parent = p->parent;
2630 	phys_enc->dpu_kms = p->dpu_kms;
2631 	phys_enc->split_role = p->split_role;
2632 	phys_enc->enc_spinlock = p->enc_spinlock;
2633 	phys_enc->enable_state = DPU_ENC_DISABLED;
2634 
2635 	atomic_set(&phys_enc->pending_kickoff_cnt, 0);
2636 	atomic_set(&phys_enc->pending_ctlstart_cnt, 0);
2637 
2638 	atomic_set(&phys_enc->vsync_cnt, 0);
2639 	atomic_set(&phys_enc->underrun_cnt, 0);
2640 
2641 	init_waitqueue_head(&phys_enc->pending_kickoff_wq);
2642 }
2643