xref: /linux/drivers/gpu/drm/msm/disp/dpu1/dpu_encoder.c (revision 7f4f3b14e8079ecde096bd734af10e30d40c27b7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2013 Red Hat
4  * Copyright (c) 2014-2018, 2020-2021 The Linux Foundation. All rights reserved.
5  * Copyright (c) 2022-2023 Qualcomm Innovation Center, Inc. All rights reserved.
6  *
7  * Author: Rob Clark <robdclark@gmail.com>
8  */
9 
10 #define pr_fmt(fmt)	"[drm:%s:%d] " fmt, __func__, __LINE__
11 #include <linux/debugfs.h>
12 #include <linux/kthread.h>
13 #include <linux/seq_file.h>
14 
15 #include <drm/drm_atomic.h>
16 #include <drm/drm_crtc.h>
17 #include <drm/drm_file.h>
18 #include <drm/drm_probe_helper.h>
19 #include <drm/drm_framebuffer.h>
20 
21 #include "msm_drv.h"
22 #include "dpu_kms.h"
23 #include "dpu_hwio.h"
24 #include "dpu_hw_catalog.h"
25 #include "dpu_hw_intf.h"
26 #include "dpu_hw_ctl.h"
27 #include "dpu_hw_dspp.h"
28 #include "dpu_hw_dsc.h"
29 #include "dpu_hw_merge3d.h"
30 #include "dpu_hw_cdm.h"
31 #include "dpu_formats.h"
32 #include "dpu_encoder_phys.h"
33 #include "dpu_crtc.h"
34 #include "dpu_trace.h"
35 #include "dpu_core_irq.h"
36 #include "disp/msm_disp_snapshot.h"
37 
38 #define DPU_DEBUG_ENC(e, fmt, ...) DRM_DEBUG_ATOMIC("enc%d " fmt,\
39 		(e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
40 
41 #define DPU_ERROR_ENC(e, fmt, ...) DPU_ERROR("enc%d " fmt,\
42 		(e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
43 
44 #define DPU_ERROR_ENC_RATELIMITED(e, fmt, ...) DPU_ERROR_RATELIMITED("enc%d " fmt,\
45 		(e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
46 
47 /*
48  * Two to anticipate panels that can do cmd/vid dynamic switching
49  * plan is to create all possible physical encoder types, and switch between
50  * them at runtime
51  */
52 #define NUM_PHYS_ENCODER_TYPES 2
53 
54 #define MAX_PHYS_ENCODERS_PER_VIRTUAL \
55 	(MAX_H_TILES_PER_DISPLAY * NUM_PHYS_ENCODER_TYPES)
56 
57 #define MAX_CHANNELS_PER_ENC 2
58 
59 #define IDLE_SHORT_TIMEOUT	1
60 
61 #define MAX_HDISPLAY_SPLIT 1080
62 
63 /* timeout in frames waiting for frame done */
64 #define DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES 5
65 
66 /**
67  * enum dpu_enc_rc_events - events for resource control state machine
68  * @DPU_ENC_RC_EVENT_KICKOFF:
69  *	This event happens at NORMAL priority.
70  *	Event that signals the start of the transfer. When this event is
71  *	received, enable MDP/DSI core clocks. Regardless of the previous
72  *	state, the resource should be in ON state at the end of this event.
73  * @DPU_ENC_RC_EVENT_FRAME_DONE:
74  *	This event happens at INTERRUPT level.
75  *	Event signals the end of the data transfer after the PP FRAME_DONE
76  *	event. At the end of this event, a delayed work is scheduled to go to
77  *	IDLE_PC state after IDLE_TIMEOUT time.
78  * @DPU_ENC_RC_EVENT_PRE_STOP:
79  *	This event happens at NORMAL priority.
80  *	This event, when received during the ON state, leave the RC STATE
81  *	in the PRE_OFF state. It should be followed by the STOP event as
82  *	part of encoder disable.
83  *	If received during IDLE or OFF states, it will do nothing.
84  * @DPU_ENC_RC_EVENT_STOP:
85  *	This event happens at NORMAL priority.
86  *	When this event is received, disable all the MDP/DSI core clocks, and
87  *	disable IRQs. It should be called from the PRE_OFF or IDLE states.
88  *	IDLE is expected when IDLE_PC has run, and PRE_OFF did nothing.
89  *	PRE_OFF is expected when PRE_STOP was executed during the ON state.
90  *	Resource state should be in OFF at the end of the event.
91  * @DPU_ENC_RC_EVENT_ENTER_IDLE:
92  *	This event happens at NORMAL priority from a work item.
93  *	Event signals that there were no frame updates for IDLE_TIMEOUT time.
94  *	This would disable MDP/DSI core clocks and change the resource state
95  *	to IDLE.
96  */
97 enum dpu_enc_rc_events {
98 	DPU_ENC_RC_EVENT_KICKOFF = 1,
99 	DPU_ENC_RC_EVENT_FRAME_DONE,
100 	DPU_ENC_RC_EVENT_PRE_STOP,
101 	DPU_ENC_RC_EVENT_STOP,
102 	DPU_ENC_RC_EVENT_ENTER_IDLE
103 };
104 
105 /*
106  * enum dpu_enc_rc_states - states that the resource control maintains
107  * @DPU_ENC_RC_STATE_OFF: Resource is in OFF state
108  * @DPU_ENC_RC_STATE_PRE_OFF: Resource is transitioning to OFF state
109  * @DPU_ENC_RC_STATE_ON: Resource is in ON state
110  * @DPU_ENC_RC_STATE_MODESET: Resource is in modeset state
111  * @DPU_ENC_RC_STATE_IDLE: Resource is in IDLE state
112  */
113 enum dpu_enc_rc_states {
114 	DPU_ENC_RC_STATE_OFF,
115 	DPU_ENC_RC_STATE_PRE_OFF,
116 	DPU_ENC_RC_STATE_ON,
117 	DPU_ENC_RC_STATE_IDLE
118 };
119 
120 /**
121  * struct dpu_encoder_virt - virtual encoder. Container of one or more physical
122  *	encoders. Virtual encoder manages one "logical" display. Physical
123  *	encoders manage one intf block, tied to a specific panel/sub-panel.
124  *	Virtual encoder defers as much as possible to the physical encoders.
125  *	Virtual encoder registers itself with the DRM Framework as the encoder.
126  * @base:		drm_encoder base class for registration with DRM
127  * @enc_spinlock:	Virtual-Encoder-Wide Spin Lock for IRQ purposes
128  * @enabled:		True if the encoder is active, protected by enc_lock
129  * @commit_done_timedout: True if there has been a timeout on commit after
130  *			enabling the encoder.
131  * @num_phys_encs:	Actual number of physical encoders contained.
132  * @phys_encs:		Container of physical encoders managed.
133  * @cur_master:		Pointer to the current master in this mode. Optimization
134  *			Only valid after enable. Cleared as disable.
135  * @cur_slave:		As above but for the slave encoder.
136  * @hw_pp:		Handle to the pingpong blocks used for the display. No.
137  *			pingpong blocks can be different than num_phys_encs.
138  * @hw_dsc:		Handle to the DSC blocks used for the display.
139  * @dsc_mask:		Bitmask of used DSC blocks.
140  * @intfs_swapped:	Whether or not the phys_enc interfaces have been swapped
141  *			for partial update right-only cases, such as pingpong
142  *			split where virtual pingpong does not generate IRQs
143  * @crtc:		Pointer to the currently assigned crtc. Normally you
144  *			would use crtc->state->encoder_mask to determine the
145  *			link between encoder/crtc. However in this case we need
146  *			to track crtc in the disable() hook which is called
147  *			_after_ encoder_mask is cleared.
148  * @connector:		If a mode is set, cached pointer to the active connector
149  * @enc_lock:			Lock around physical encoder
150  *				create/destroy/enable/disable
151  * @frame_busy_mask:		Bitmask tracking which phys_enc we are still
152  *				busy processing current command.
153  *				Bit0 = phys_encs[0] etc.
154  * @frame_done_timeout_ms:	frame done timeout in ms
155  * @frame_done_timeout_cnt:	atomic counter tracking the number of frame
156  * 				done timeouts
157  * @frame_done_timer:		watchdog timer for frame done event
158  * @disp_info:			local copy of msm_display_info struct
159  * @idle_pc_supported:		indicate if idle power collaps is supported
160  * @rc_lock:			resource control mutex lock to protect
161  *				virt encoder over various state changes
162  * @rc_state:			resource controller state
163  * @delayed_off_work:		delayed worker to schedule disabling of
164  *				clks and resources after IDLE_TIMEOUT time.
165  * @topology:                   topology of the display
166  * @idle_timeout:		idle timeout duration in milliseconds
167  * @wide_bus_en:		wide bus is enabled on this interface
168  * @dsc:			drm_dsc_config pointer, for DSC-enabled encoders
169  */
170 struct dpu_encoder_virt {
171 	struct drm_encoder base;
172 	spinlock_t enc_spinlock;
173 
174 	bool enabled;
175 	bool commit_done_timedout;
176 
177 	unsigned int num_phys_encs;
178 	struct dpu_encoder_phys *phys_encs[MAX_PHYS_ENCODERS_PER_VIRTUAL];
179 	struct dpu_encoder_phys *cur_master;
180 	struct dpu_encoder_phys *cur_slave;
181 	struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC];
182 	struct dpu_hw_dsc *hw_dsc[MAX_CHANNELS_PER_ENC];
183 
184 	unsigned int dsc_mask;
185 
186 	bool intfs_swapped;
187 
188 	struct drm_crtc *crtc;
189 	struct drm_connector *connector;
190 
191 	struct mutex enc_lock;
192 	DECLARE_BITMAP(frame_busy_mask, MAX_PHYS_ENCODERS_PER_VIRTUAL);
193 
194 	atomic_t frame_done_timeout_ms;
195 	atomic_t frame_done_timeout_cnt;
196 	struct timer_list frame_done_timer;
197 
198 	struct msm_display_info disp_info;
199 
200 	bool idle_pc_supported;
201 	struct mutex rc_lock;
202 	enum dpu_enc_rc_states rc_state;
203 	struct delayed_work delayed_off_work;
204 	struct msm_display_topology topology;
205 
206 	u32 idle_timeout;
207 
208 	bool wide_bus_en;
209 
210 	/* DSC configuration */
211 	struct drm_dsc_config *dsc;
212 };
213 
214 #define to_dpu_encoder_virt(x) container_of(x, struct dpu_encoder_virt, base)
215 
216 static u32 dither_matrix[DITHER_MATRIX_SZ] = {
217 	15, 7, 13, 5, 3, 11, 1, 9, 12, 4, 14, 6, 0, 8, 2, 10
218 };
219 
220 /**
221  * dpu_encoder_get_drm_fmt - return DRM fourcc format
222  * @phys_enc: Pointer to physical encoder structure
223  */
224 u32 dpu_encoder_get_drm_fmt(struct dpu_encoder_phys *phys_enc)
225 {
226 	struct drm_encoder *drm_enc;
227 	struct dpu_encoder_virt *dpu_enc;
228 	struct drm_display_info *info;
229 	struct drm_display_mode *mode;
230 
231 	drm_enc = phys_enc->parent;
232 	dpu_enc = to_dpu_encoder_virt(drm_enc);
233 	info = &dpu_enc->connector->display_info;
234 	mode = &phys_enc->cached_mode;
235 
236 	if (drm_mode_is_420_only(info, mode))
237 		return DRM_FORMAT_YUV420;
238 
239 	return DRM_FORMAT_RGB888;
240 }
241 
242 /**
243  * dpu_encoder_needs_periph_flush - return true if physical encoder requires
244  *	peripheral flush
245  * @phys_enc: Pointer to physical encoder structure
246  */
247 bool dpu_encoder_needs_periph_flush(struct dpu_encoder_phys *phys_enc)
248 {
249 	struct drm_encoder *drm_enc;
250 	struct dpu_encoder_virt *dpu_enc;
251 	struct msm_display_info *disp_info;
252 	struct msm_drm_private *priv;
253 	struct drm_display_mode *mode;
254 
255 	drm_enc = phys_enc->parent;
256 	dpu_enc = to_dpu_encoder_virt(drm_enc);
257 	disp_info = &dpu_enc->disp_info;
258 	priv = drm_enc->dev->dev_private;
259 	mode = &phys_enc->cached_mode;
260 
261 	return phys_enc->hw_intf->cap->type == INTF_DP &&
262 	       msm_dp_needs_periph_flush(priv->dp[disp_info->h_tile_instance[0]], mode);
263 }
264 
265 /**
266  * dpu_encoder_is_widebus_enabled - return bool value if widebus is enabled
267  * @drm_enc:    Pointer to previously created drm encoder structure
268  */
269 bool dpu_encoder_is_widebus_enabled(const struct drm_encoder *drm_enc)
270 {
271 	const struct dpu_encoder_virt *dpu_enc;
272 	struct msm_drm_private *priv = drm_enc->dev->dev_private;
273 	const struct msm_display_info *disp_info;
274 	int index;
275 
276 	dpu_enc = to_dpu_encoder_virt(drm_enc);
277 	disp_info = &dpu_enc->disp_info;
278 	index = disp_info->h_tile_instance[0];
279 
280 	if (disp_info->intf_type == INTF_DP)
281 		return msm_dp_wide_bus_available(priv->dp[index]);
282 	else if (disp_info->intf_type == INTF_DSI)
283 		return msm_dsi_wide_bus_enabled(priv->dsi[index]);
284 
285 	return false;
286 }
287 
288 /**
289  * dpu_encoder_is_dsc_enabled - indicate whether dsc is enabled
290  *				for the encoder.
291  * @drm_enc:    Pointer to previously created drm encoder structure
292  */
293 bool dpu_encoder_is_dsc_enabled(const struct drm_encoder *drm_enc)
294 {
295 	const struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
296 
297 	return dpu_enc->dsc ? true : false;
298 }
299 
300 /**
301  * dpu_encoder_get_crc_values_cnt - get number of physical encoders contained
302  *	in virtual encoder that can collect CRC values
303  * @drm_enc:    Pointer to previously created drm encoder structure
304  * Returns:     Number of physical encoders for given drm encoder
305  */
306 int dpu_encoder_get_crc_values_cnt(const struct drm_encoder *drm_enc)
307 {
308 	struct dpu_encoder_virt *dpu_enc;
309 	int i, num_intf = 0;
310 
311 	dpu_enc = to_dpu_encoder_virt(drm_enc);
312 
313 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
314 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
315 
316 		if (phys->hw_intf && phys->hw_intf->ops.setup_misr
317 				&& phys->hw_intf->ops.collect_misr)
318 			num_intf++;
319 	}
320 
321 	return num_intf;
322 }
323 
324 /**
325  * dpu_encoder_setup_misr - enable misr calculations
326  * @drm_enc:    Pointer to previously created drm encoder structure
327  */
328 void dpu_encoder_setup_misr(const struct drm_encoder *drm_enc)
329 {
330 	struct dpu_encoder_virt *dpu_enc;
331 
332 	int i;
333 
334 	dpu_enc = to_dpu_encoder_virt(drm_enc);
335 
336 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
337 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
338 
339 		if (!phys->hw_intf || !phys->hw_intf->ops.setup_misr)
340 			continue;
341 
342 		phys->hw_intf->ops.setup_misr(phys->hw_intf);
343 	}
344 }
345 
346 /**
347  * dpu_encoder_get_crc - get the crc value from interface blocks
348  * @drm_enc:    Pointer to previously created drm encoder structure
349  * @crcs:	array to fill with CRC data
350  * @pos:	offset into the @crcs array
351  * Returns:     0 on success, error otherwise
352  */
353 int dpu_encoder_get_crc(const struct drm_encoder *drm_enc, u32 *crcs, int pos)
354 {
355 	struct dpu_encoder_virt *dpu_enc;
356 
357 	int i, rc = 0, entries_added = 0;
358 
359 	if (!drm_enc->crtc) {
360 		DRM_ERROR("no crtc found for encoder %d\n", drm_enc->index);
361 		return -EINVAL;
362 	}
363 
364 	dpu_enc = to_dpu_encoder_virt(drm_enc);
365 
366 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
367 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
368 
369 		if (!phys->hw_intf || !phys->hw_intf->ops.collect_misr)
370 			continue;
371 
372 		rc = phys->hw_intf->ops.collect_misr(phys->hw_intf, &crcs[pos + entries_added]);
373 		if (rc)
374 			return rc;
375 		entries_added++;
376 	}
377 
378 	return entries_added;
379 }
380 
381 static void _dpu_encoder_setup_dither(struct dpu_hw_pingpong *hw_pp, unsigned bpc)
382 {
383 	struct dpu_hw_dither_cfg dither_cfg = { 0 };
384 
385 	if (!hw_pp->ops.setup_dither)
386 		return;
387 
388 	switch (bpc) {
389 	case 6:
390 		dither_cfg.c0_bitdepth = 6;
391 		dither_cfg.c1_bitdepth = 6;
392 		dither_cfg.c2_bitdepth = 6;
393 		dither_cfg.c3_bitdepth = 6;
394 		dither_cfg.temporal_en = 0;
395 		break;
396 	default:
397 		hw_pp->ops.setup_dither(hw_pp, NULL);
398 		return;
399 	}
400 
401 	memcpy(&dither_cfg.matrix, dither_matrix,
402 			sizeof(u32) * DITHER_MATRIX_SZ);
403 
404 	hw_pp->ops.setup_dither(hw_pp, &dither_cfg);
405 }
406 
407 static char *dpu_encoder_helper_get_intf_type(enum dpu_intf_mode intf_mode)
408 {
409 	switch (intf_mode) {
410 	case INTF_MODE_VIDEO:
411 		return "INTF_MODE_VIDEO";
412 	case INTF_MODE_CMD:
413 		return "INTF_MODE_CMD";
414 	case INTF_MODE_WB_BLOCK:
415 		return "INTF_MODE_WB_BLOCK";
416 	case INTF_MODE_WB_LINE:
417 		return "INTF_MODE_WB_LINE";
418 	default:
419 		return "INTF_MODE_UNKNOWN";
420 	}
421 }
422 
423 /**
424  * dpu_encoder_helper_report_irq_timeout - utility to report error that irq has
425  *	timed out, including reporting frame error event to crtc and debug dump
426  * @phys_enc: Pointer to physical encoder structure
427  * @intr_idx: Failing interrupt index
428  */
429 void dpu_encoder_helper_report_irq_timeout(struct dpu_encoder_phys *phys_enc,
430 		enum dpu_intr_idx intr_idx)
431 {
432 	DRM_ERROR("irq timeout id=%u, intf_mode=%s intf=%d wb=%d, pp=%d, intr=%d\n",
433 			DRMID(phys_enc->parent),
434 			dpu_encoder_helper_get_intf_type(phys_enc->intf_mode),
435 			phys_enc->hw_intf ? phys_enc->hw_intf->idx - INTF_0 : -1,
436 			phys_enc->hw_wb ? phys_enc->hw_wb->idx - WB_0 : -1,
437 			phys_enc->hw_pp->idx - PINGPONG_0, intr_idx);
438 
439 	dpu_encoder_frame_done_callback(phys_enc->parent, phys_enc,
440 				DPU_ENCODER_FRAME_EVENT_ERROR);
441 }
442 
443 static int dpu_encoder_helper_wait_event_timeout(int32_t drm_id,
444 		u32 irq_idx, struct dpu_encoder_wait_info *info);
445 
446 /**
447  * dpu_encoder_helper_wait_for_irq - utility to wait on an irq.
448  *	note: will call dpu_encoder_helper_wait_for_irq on timeout
449  * @phys_enc: Pointer to physical encoder structure
450  * @irq_idx: IRQ index
451  * @func: IRQ callback to be called in case of timeout
452  * @wait_info: wait info struct
453  * @return: 0 or -ERROR
454  */
455 int dpu_encoder_helper_wait_for_irq(struct dpu_encoder_phys *phys_enc,
456 		unsigned int irq_idx,
457 		void (*func)(void *arg),
458 		struct dpu_encoder_wait_info *wait_info)
459 {
460 	u32 irq_status;
461 	int ret;
462 
463 	if (!wait_info) {
464 		DPU_ERROR("invalid params\n");
465 		return -EINVAL;
466 	}
467 	/* note: do master / slave checking outside */
468 
469 	/* return EWOULDBLOCK since we know the wait isn't necessary */
470 	if (phys_enc->enable_state == DPU_ENC_DISABLED) {
471 		DRM_ERROR("encoder is disabled id=%u, callback=%ps, IRQ=[%d, %d]\n",
472 			  DRMID(phys_enc->parent), func,
473 			  DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx));
474 		return -EWOULDBLOCK;
475 	}
476 
477 	if (irq_idx == 0) {
478 		DRM_DEBUG_KMS("skip irq wait id=%u, callback=%ps\n",
479 			      DRMID(phys_enc->parent), func);
480 		return 0;
481 	}
482 
483 	DRM_DEBUG_KMS("id=%u, callback=%ps, IRQ=[%d, %d], pp=%d, pending_cnt=%d\n",
484 		      DRMID(phys_enc->parent), func,
485 		      DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx), phys_enc->hw_pp->idx - PINGPONG_0,
486 		      atomic_read(wait_info->atomic_cnt));
487 
488 	ret = dpu_encoder_helper_wait_event_timeout(
489 			DRMID(phys_enc->parent),
490 			irq_idx,
491 			wait_info);
492 
493 	if (ret <= 0) {
494 		irq_status = dpu_core_irq_read(phys_enc->dpu_kms, irq_idx);
495 		if (irq_status) {
496 			unsigned long flags;
497 
498 			DRM_DEBUG_KMS("IRQ=[%d, %d] not triggered id=%u, callback=%ps, pp=%d, atomic_cnt=%d\n",
499 				      DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx),
500 				      DRMID(phys_enc->parent), func,
501 				      phys_enc->hw_pp->idx - PINGPONG_0,
502 				      atomic_read(wait_info->atomic_cnt));
503 			local_irq_save(flags);
504 			func(phys_enc);
505 			local_irq_restore(flags);
506 			ret = 0;
507 		} else {
508 			ret = -ETIMEDOUT;
509 			DRM_DEBUG_KMS("IRQ=[%d, %d] timeout id=%u, callback=%ps, pp=%d, atomic_cnt=%d\n",
510 				      DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx),
511 				      DRMID(phys_enc->parent), func,
512 				      phys_enc->hw_pp->idx - PINGPONG_0,
513 				      atomic_read(wait_info->atomic_cnt));
514 		}
515 	} else {
516 		ret = 0;
517 		trace_dpu_enc_irq_wait_success(DRMID(phys_enc->parent),
518 			func, DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx),
519 			phys_enc->hw_pp->idx - PINGPONG_0,
520 			atomic_read(wait_info->atomic_cnt));
521 	}
522 
523 	return ret;
524 }
525 
526 /**
527  * dpu_encoder_get_vsync_count - get vsync count for the encoder.
528  * @drm_enc:    Pointer to previously created drm encoder structure
529  */
530 int dpu_encoder_get_vsync_count(struct drm_encoder *drm_enc)
531 {
532 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
533 	struct dpu_encoder_phys *phys = dpu_enc ? dpu_enc->cur_master : NULL;
534 	return phys ? atomic_read(&phys->vsync_cnt) : 0;
535 }
536 
537 /**
538  * dpu_encoder_get_linecount - get interface line count for the encoder.
539  * @drm_enc:    Pointer to previously created drm encoder structure
540  */
541 int dpu_encoder_get_linecount(struct drm_encoder *drm_enc)
542 {
543 	struct dpu_encoder_virt *dpu_enc;
544 	struct dpu_encoder_phys *phys;
545 	int linecount = 0;
546 
547 	dpu_enc = to_dpu_encoder_virt(drm_enc);
548 	phys = dpu_enc ? dpu_enc->cur_master : NULL;
549 
550 	if (phys && phys->ops.get_line_count)
551 		linecount = phys->ops.get_line_count(phys);
552 
553 	return linecount;
554 }
555 
556 /**
557  * dpu_encoder_helper_split_config - split display configuration helper function
558  *	This helper function may be used by physical encoders to configure
559  *	the split display related registers.
560  * @phys_enc: Pointer to physical encoder structure
561  * @interface: enum dpu_intf setting
562  */
563 void dpu_encoder_helper_split_config(
564 		struct dpu_encoder_phys *phys_enc,
565 		enum dpu_intf interface)
566 {
567 	struct dpu_encoder_virt *dpu_enc;
568 	struct split_pipe_cfg cfg = { 0 };
569 	struct dpu_hw_mdp *hw_mdptop;
570 	struct msm_display_info *disp_info;
571 
572 	if (!phys_enc->hw_mdptop || !phys_enc->parent) {
573 		DPU_ERROR("invalid arg(s), encoder %d\n", phys_enc != NULL);
574 		return;
575 	}
576 
577 	dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
578 	hw_mdptop = phys_enc->hw_mdptop;
579 	disp_info = &dpu_enc->disp_info;
580 
581 	if (disp_info->intf_type != INTF_DSI)
582 		return;
583 
584 	/**
585 	 * disable split modes since encoder will be operating in as the only
586 	 * encoder, either for the entire use case in the case of, for example,
587 	 * single DSI, or for this frame in the case of left/right only partial
588 	 * update.
589 	 */
590 	if (phys_enc->split_role == ENC_ROLE_SOLO) {
591 		if (hw_mdptop->ops.setup_split_pipe)
592 			hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg);
593 		return;
594 	}
595 
596 	cfg.en = true;
597 	cfg.mode = phys_enc->intf_mode;
598 	cfg.intf = interface;
599 
600 	if (cfg.en && phys_enc->ops.needs_single_flush &&
601 			phys_enc->ops.needs_single_flush(phys_enc))
602 		cfg.split_flush_en = true;
603 
604 	if (phys_enc->split_role == ENC_ROLE_MASTER) {
605 		DPU_DEBUG_ENC(dpu_enc, "enable %d\n", cfg.en);
606 
607 		if (hw_mdptop->ops.setup_split_pipe)
608 			hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg);
609 	}
610 }
611 
612 /**
613  * dpu_encoder_use_dsc_merge - returns true if the encoder uses DSC merge topology.
614  * @drm_enc:    Pointer to previously created drm encoder structure
615  */
616 bool dpu_encoder_use_dsc_merge(struct drm_encoder *drm_enc)
617 {
618 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
619 	int i, intf_count = 0, num_dsc = 0;
620 
621 	for (i = 0; i < MAX_PHYS_ENCODERS_PER_VIRTUAL; i++)
622 		if (dpu_enc->phys_encs[i])
623 			intf_count++;
624 
625 	/* See dpu_encoder_get_topology, we only support 2:2:1 topology */
626 	if (dpu_enc->dsc)
627 		num_dsc = 2;
628 
629 	return (num_dsc > 0) && (num_dsc > intf_count);
630 }
631 
632 /**
633  * dpu_encoder_get_dsc_config - get DSC config for the DPU encoder
634  *   This helper function is used by physical encoder to get DSC config
635  *   used for this encoder.
636  * @drm_enc: Pointer to encoder structure
637  */
638 struct drm_dsc_config *dpu_encoder_get_dsc_config(struct drm_encoder *drm_enc)
639 {
640 	struct msm_drm_private *priv = drm_enc->dev->dev_private;
641 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
642 	int index = dpu_enc->disp_info.h_tile_instance[0];
643 
644 	if (dpu_enc->disp_info.intf_type == INTF_DSI)
645 		return msm_dsi_get_dsc_config(priv->dsi[index]);
646 
647 	return NULL;
648 }
649 
650 static struct msm_display_topology dpu_encoder_get_topology(
651 			struct dpu_encoder_virt *dpu_enc,
652 			struct dpu_kms *dpu_kms,
653 			struct drm_display_mode *mode,
654 			struct drm_crtc_state *crtc_state,
655 			struct drm_dsc_config *dsc)
656 {
657 	struct msm_display_topology topology = {0};
658 	int i, intf_count = 0;
659 
660 	for (i = 0; i < MAX_PHYS_ENCODERS_PER_VIRTUAL; i++)
661 		if (dpu_enc->phys_encs[i])
662 			intf_count++;
663 
664 	/* Datapath topology selection
665 	 *
666 	 * Dual display
667 	 * 2 LM, 2 INTF ( Split display using 2 interfaces)
668 	 *
669 	 * Single display
670 	 * 1 LM, 1 INTF
671 	 * 2 LM, 1 INTF (stream merge to support high resolution interfaces)
672 	 *
673 	 * Add dspps to the reservation requirements if ctm is requested
674 	 */
675 	if (intf_count == 2)
676 		topology.num_lm = 2;
677 	else if (!dpu_kms->catalog->caps->has_3d_merge)
678 		topology.num_lm = 1;
679 	else
680 		topology.num_lm = (mode->hdisplay > MAX_HDISPLAY_SPLIT) ? 2 : 1;
681 
682 	if (crtc_state->ctm)
683 		topology.num_dspp = topology.num_lm;
684 
685 	topology.num_intf = intf_count;
686 
687 	if (dsc) {
688 		/*
689 		 * In case of Display Stream Compression (DSC), we would use
690 		 * 2 DSC encoders, 2 layer mixers and 1 interface
691 		 * this is power optimal and can drive up to (including) 4k
692 		 * screens
693 		 */
694 		topology.num_dsc = 2;
695 		topology.num_lm = 2;
696 		topology.num_intf = 1;
697 	}
698 
699 	return topology;
700 }
701 
702 static void dpu_encoder_assign_crtc_resources(struct dpu_kms *dpu_kms,
703 					      struct drm_encoder *drm_enc,
704 					      struct dpu_global_state *global_state,
705 					      struct drm_crtc_state *crtc_state)
706 {
707 	struct dpu_crtc_state *cstate;
708 	struct dpu_hw_blk *hw_ctl[MAX_CHANNELS_PER_ENC];
709 	struct dpu_hw_blk *hw_lm[MAX_CHANNELS_PER_ENC];
710 	struct dpu_hw_blk *hw_dspp[MAX_CHANNELS_PER_ENC];
711 	int num_lm, num_ctl, num_dspp, i;
712 
713 	cstate = to_dpu_crtc_state(crtc_state);
714 
715 	memset(cstate->mixers, 0, sizeof(cstate->mixers));
716 
717 	num_ctl = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
718 		drm_enc->base.id, DPU_HW_BLK_CTL, hw_ctl, ARRAY_SIZE(hw_ctl));
719 	num_lm = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
720 		drm_enc->base.id, DPU_HW_BLK_LM, hw_lm, ARRAY_SIZE(hw_lm));
721 	num_dspp = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
722 		drm_enc->base.id, DPU_HW_BLK_DSPP, hw_dspp,
723 		ARRAY_SIZE(hw_dspp));
724 
725 	for (i = 0; i < num_lm; i++) {
726 		int ctl_idx = (i < num_ctl) ? i : (num_ctl-1);
727 
728 		cstate->mixers[i].hw_lm = to_dpu_hw_mixer(hw_lm[i]);
729 		cstate->mixers[i].lm_ctl = to_dpu_hw_ctl(hw_ctl[ctl_idx]);
730 		cstate->mixers[i].hw_dspp = i < num_dspp ? to_dpu_hw_dspp(hw_dspp[i]) : NULL;
731 	}
732 
733 	cstate->num_mixers = num_lm;
734 }
735 
736 static int dpu_encoder_virt_atomic_check(
737 		struct drm_encoder *drm_enc,
738 		struct drm_crtc_state *crtc_state,
739 		struct drm_connector_state *conn_state)
740 {
741 	struct dpu_encoder_virt *dpu_enc;
742 	struct msm_drm_private *priv;
743 	struct dpu_kms *dpu_kms;
744 	struct drm_display_mode *adj_mode;
745 	struct msm_display_topology topology;
746 	struct msm_display_info *disp_info;
747 	struct dpu_global_state *global_state;
748 	struct drm_framebuffer *fb;
749 	struct drm_dsc_config *dsc;
750 	int ret = 0;
751 
752 	if (!drm_enc || !crtc_state || !conn_state) {
753 		DPU_ERROR("invalid arg(s), drm_enc %d, crtc/conn state %d/%d\n",
754 				drm_enc != NULL, crtc_state != NULL, conn_state != NULL);
755 		return -EINVAL;
756 	}
757 
758 	dpu_enc = to_dpu_encoder_virt(drm_enc);
759 	DPU_DEBUG_ENC(dpu_enc, "\n");
760 
761 	priv = drm_enc->dev->dev_private;
762 	disp_info = &dpu_enc->disp_info;
763 	dpu_kms = to_dpu_kms(priv->kms);
764 	adj_mode = &crtc_state->adjusted_mode;
765 	global_state = dpu_kms_get_global_state(crtc_state->state);
766 	if (IS_ERR(global_state))
767 		return PTR_ERR(global_state);
768 
769 	trace_dpu_enc_atomic_check(DRMID(drm_enc));
770 
771 	dsc = dpu_encoder_get_dsc_config(drm_enc);
772 
773 	topology = dpu_encoder_get_topology(dpu_enc, dpu_kms, adj_mode, crtc_state, dsc);
774 
775 	/*
776 	 * Use CDM only for writeback or DP at the moment as other interfaces cannot handle it.
777 	 * If writeback itself cannot handle cdm for some reason it will fail in its atomic_check()
778 	 * earlier.
779 	 */
780 	if (disp_info->intf_type == INTF_WB && conn_state->writeback_job) {
781 		fb = conn_state->writeback_job->fb;
782 
783 		if (fb && MSM_FORMAT_IS_YUV(msm_framebuffer_format(fb)))
784 			topology.needs_cdm = true;
785 	} else if (disp_info->intf_type == INTF_DP) {
786 		if (msm_dp_is_yuv_420_enabled(priv->dp[disp_info->h_tile_instance[0]], adj_mode))
787 			topology.needs_cdm = true;
788 	}
789 
790 	if (topology.needs_cdm && !dpu_enc->cur_master->hw_cdm)
791 		crtc_state->mode_changed = true;
792 	else if (!topology.needs_cdm && dpu_enc->cur_master->hw_cdm)
793 		crtc_state->mode_changed = true;
794 	/*
795 	 * Release and Allocate resources on every modeset
796 	 * Dont allocate when active is false.
797 	 */
798 	if (drm_atomic_crtc_needs_modeset(crtc_state)) {
799 		dpu_rm_release(global_state, drm_enc);
800 
801 		if (!crtc_state->active_changed || crtc_state->enable)
802 			ret = dpu_rm_reserve(&dpu_kms->rm, global_state,
803 					drm_enc, crtc_state, topology);
804 		if (!ret)
805 			dpu_encoder_assign_crtc_resources(dpu_kms, drm_enc,
806 							  global_state, crtc_state);
807 	}
808 
809 	trace_dpu_enc_atomic_check_flags(DRMID(drm_enc), adj_mode->flags);
810 
811 	return ret;
812 }
813 
814 static void _dpu_encoder_update_vsync_source(struct dpu_encoder_virt *dpu_enc,
815 			struct msm_display_info *disp_info)
816 {
817 	struct dpu_vsync_source_cfg vsync_cfg = { 0 };
818 	struct msm_drm_private *priv;
819 	struct dpu_kms *dpu_kms;
820 	struct dpu_hw_mdp *hw_mdptop;
821 	struct drm_encoder *drm_enc;
822 	struct dpu_encoder_phys *phys_enc;
823 	int i;
824 
825 	if (!dpu_enc || !disp_info) {
826 		DPU_ERROR("invalid param dpu_enc:%d or disp_info:%d\n",
827 					dpu_enc != NULL, disp_info != NULL);
828 		return;
829 	} else if (dpu_enc->num_phys_encs > ARRAY_SIZE(dpu_enc->hw_pp)) {
830 		DPU_ERROR("invalid num phys enc %d/%d\n",
831 				dpu_enc->num_phys_encs,
832 				(int) ARRAY_SIZE(dpu_enc->hw_pp));
833 		return;
834 	}
835 
836 	drm_enc = &dpu_enc->base;
837 	/* this pointers are checked in virt_enable_helper */
838 	priv = drm_enc->dev->dev_private;
839 
840 	dpu_kms = to_dpu_kms(priv->kms);
841 	hw_mdptop = dpu_kms->hw_mdp;
842 	if (!hw_mdptop) {
843 		DPU_ERROR("invalid mdptop\n");
844 		return;
845 	}
846 
847 	if (hw_mdptop->ops.setup_vsync_source) {
848 		for (i = 0; i < dpu_enc->num_phys_encs; i++)
849 			vsync_cfg.ppnumber[i] = dpu_enc->hw_pp[i]->idx;
850 
851 		vsync_cfg.pp_count = dpu_enc->num_phys_encs;
852 		vsync_cfg.frame_rate = drm_mode_vrefresh(&dpu_enc->base.crtc->state->adjusted_mode);
853 
854 		vsync_cfg.vsync_source = disp_info->vsync_source;
855 
856 		hw_mdptop->ops.setup_vsync_source(hw_mdptop, &vsync_cfg);
857 
858 		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
859 			phys_enc = dpu_enc->phys_encs[i];
860 
861 			if (phys_enc->has_intf_te && phys_enc->hw_intf->ops.vsync_sel)
862 				phys_enc->hw_intf->ops.vsync_sel(phys_enc->hw_intf,
863 						vsync_cfg.vsync_source);
864 		}
865 	}
866 }
867 
868 static void _dpu_encoder_irq_enable(struct drm_encoder *drm_enc)
869 {
870 	struct dpu_encoder_virt *dpu_enc;
871 	int i;
872 
873 	if (!drm_enc) {
874 		DPU_ERROR("invalid encoder\n");
875 		return;
876 	}
877 
878 	dpu_enc = to_dpu_encoder_virt(drm_enc);
879 
880 	DPU_DEBUG_ENC(dpu_enc, "\n");
881 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
882 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
883 
884 		phys->ops.irq_enable(phys);
885 	}
886 }
887 
888 static void _dpu_encoder_irq_disable(struct drm_encoder *drm_enc)
889 {
890 	struct dpu_encoder_virt *dpu_enc;
891 	int i;
892 
893 	if (!drm_enc) {
894 		DPU_ERROR("invalid encoder\n");
895 		return;
896 	}
897 
898 	dpu_enc = to_dpu_encoder_virt(drm_enc);
899 
900 	DPU_DEBUG_ENC(dpu_enc, "\n");
901 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
902 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
903 
904 		phys->ops.irq_disable(phys);
905 	}
906 }
907 
908 static void _dpu_encoder_resource_enable(struct drm_encoder *drm_enc)
909 {
910 	struct msm_drm_private *priv;
911 	struct dpu_kms *dpu_kms;
912 	struct dpu_encoder_virt *dpu_enc;
913 
914 	dpu_enc = to_dpu_encoder_virt(drm_enc);
915 	priv = drm_enc->dev->dev_private;
916 	dpu_kms = to_dpu_kms(priv->kms);
917 
918 	trace_dpu_enc_rc_enable(DRMID(drm_enc));
919 
920 	if (!dpu_enc->cur_master) {
921 		DPU_ERROR("encoder master not set\n");
922 		return;
923 	}
924 
925 	/* enable DPU core clks */
926 	pm_runtime_get_sync(&dpu_kms->pdev->dev);
927 
928 	/* enable all the irq */
929 	_dpu_encoder_irq_enable(drm_enc);
930 }
931 
932 static void _dpu_encoder_resource_disable(struct drm_encoder *drm_enc)
933 {
934 	struct msm_drm_private *priv;
935 	struct dpu_kms *dpu_kms;
936 	struct dpu_encoder_virt *dpu_enc;
937 
938 	dpu_enc = to_dpu_encoder_virt(drm_enc);
939 	priv = drm_enc->dev->dev_private;
940 	dpu_kms = to_dpu_kms(priv->kms);
941 
942 	trace_dpu_enc_rc_disable(DRMID(drm_enc));
943 
944 	if (!dpu_enc->cur_master) {
945 		DPU_ERROR("encoder master not set\n");
946 		return;
947 	}
948 
949 	/* disable all the irq */
950 	_dpu_encoder_irq_disable(drm_enc);
951 
952 	/* disable DPU core clks */
953 	pm_runtime_put_sync(&dpu_kms->pdev->dev);
954 }
955 
956 static int dpu_encoder_resource_control(struct drm_encoder *drm_enc,
957 		u32 sw_event)
958 {
959 	struct dpu_encoder_virt *dpu_enc;
960 	struct msm_drm_private *priv;
961 	bool is_vid_mode = false;
962 
963 	if (!drm_enc || !drm_enc->dev || !drm_enc->crtc) {
964 		DPU_ERROR("invalid parameters\n");
965 		return -EINVAL;
966 	}
967 	dpu_enc = to_dpu_encoder_virt(drm_enc);
968 	priv = drm_enc->dev->dev_private;
969 	is_vid_mode = !dpu_enc->disp_info.is_cmd_mode;
970 
971 	/*
972 	 * when idle_pc is not supported, process only KICKOFF, STOP and MODESET
973 	 * events and return early for other events (ie wb display).
974 	 */
975 	if (!dpu_enc->idle_pc_supported &&
976 			(sw_event != DPU_ENC_RC_EVENT_KICKOFF &&
977 			sw_event != DPU_ENC_RC_EVENT_STOP &&
978 			sw_event != DPU_ENC_RC_EVENT_PRE_STOP))
979 		return 0;
980 
981 	trace_dpu_enc_rc(DRMID(drm_enc), sw_event, dpu_enc->idle_pc_supported,
982 			 dpu_enc->rc_state, "begin");
983 
984 	switch (sw_event) {
985 	case DPU_ENC_RC_EVENT_KICKOFF:
986 		/* cancel delayed off work, if any */
987 		if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work))
988 			DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n",
989 					sw_event);
990 
991 		mutex_lock(&dpu_enc->rc_lock);
992 
993 		/* return if the resource control is already in ON state */
994 		if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) {
995 			DRM_DEBUG_ATOMIC("id;%u, sw_event:%d, rc in ON state\n",
996 				      DRMID(drm_enc), sw_event);
997 			mutex_unlock(&dpu_enc->rc_lock);
998 			return 0;
999 		} else if (dpu_enc->rc_state != DPU_ENC_RC_STATE_OFF &&
1000 				dpu_enc->rc_state != DPU_ENC_RC_STATE_IDLE) {
1001 			DRM_DEBUG_ATOMIC("id;%u, sw_event:%d, rc in state %d\n",
1002 				      DRMID(drm_enc), sw_event,
1003 				      dpu_enc->rc_state);
1004 			mutex_unlock(&dpu_enc->rc_lock);
1005 			return -EINVAL;
1006 		}
1007 
1008 		if (is_vid_mode && dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE)
1009 			_dpu_encoder_irq_enable(drm_enc);
1010 		else
1011 			_dpu_encoder_resource_enable(drm_enc);
1012 
1013 		dpu_enc->rc_state = DPU_ENC_RC_STATE_ON;
1014 
1015 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
1016 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
1017 				 "kickoff");
1018 
1019 		mutex_unlock(&dpu_enc->rc_lock);
1020 		break;
1021 
1022 	case DPU_ENC_RC_EVENT_FRAME_DONE:
1023 		/*
1024 		 * mutex lock is not used as this event happens at interrupt
1025 		 * context. And locking is not required as, the other events
1026 		 * like KICKOFF and STOP does a wait-for-idle before executing
1027 		 * the resource_control
1028 		 */
1029 		if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) {
1030 			DRM_DEBUG_KMS("id:%d, sw_event:%d,rc:%d-unexpected\n",
1031 				      DRMID(drm_enc), sw_event,
1032 				      dpu_enc->rc_state);
1033 			return -EINVAL;
1034 		}
1035 
1036 		/*
1037 		 * schedule off work item only when there are no
1038 		 * frames pending
1039 		 */
1040 		if (dpu_crtc_frame_pending(drm_enc->crtc) > 1) {
1041 			DRM_DEBUG_KMS("id:%d skip schedule work\n",
1042 				      DRMID(drm_enc));
1043 			return 0;
1044 		}
1045 
1046 		queue_delayed_work(priv->wq, &dpu_enc->delayed_off_work,
1047 				   msecs_to_jiffies(dpu_enc->idle_timeout));
1048 
1049 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
1050 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
1051 				 "frame done");
1052 		break;
1053 
1054 	case DPU_ENC_RC_EVENT_PRE_STOP:
1055 		/* cancel delayed off work, if any */
1056 		if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work))
1057 			DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n",
1058 					sw_event);
1059 
1060 		mutex_lock(&dpu_enc->rc_lock);
1061 
1062 		if (is_vid_mode &&
1063 			  dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) {
1064 			_dpu_encoder_irq_enable(drm_enc);
1065 		}
1066 		/* skip if is already OFF or IDLE, resources are off already */
1067 		else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF ||
1068 				dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) {
1069 			DRM_DEBUG_KMS("id:%u, sw_event:%d, rc in %d state\n",
1070 				      DRMID(drm_enc), sw_event,
1071 				      dpu_enc->rc_state);
1072 			mutex_unlock(&dpu_enc->rc_lock);
1073 			return 0;
1074 		}
1075 
1076 		dpu_enc->rc_state = DPU_ENC_RC_STATE_PRE_OFF;
1077 
1078 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
1079 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
1080 				 "pre stop");
1081 
1082 		mutex_unlock(&dpu_enc->rc_lock);
1083 		break;
1084 
1085 	case DPU_ENC_RC_EVENT_STOP:
1086 		mutex_lock(&dpu_enc->rc_lock);
1087 
1088 		/* return if the resource control is already in OFF state */
1089 		if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF) {
1090 			DRM_DEBUG_KMS("id: %u, sw_event:%d, rc in OFF state\n",
1091 				      DRMID(drm_enc), sw_event);
1092 			mutex_unlock(&dpu_enc->rc_lock);
1093 			return 0;
1094 		} else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) {
1095 			DRM_ERROR("id: %u, sw_event:%d, rc in state %d\n",
1096 				  DRMID(drm_enc), sw_event, dpu_enc->rc_state);
1097 			mutex_unlock(&dpu_enc->rc_lock);
1098 			return -EINVAL;
1099 		}
1100 
1101 		/**
1102 		 * expect to arrive here only if in either idle state or pre-off
1103 		 * and in IDLE state the resources are already disabled
1104 		 */
1105 		if (dpu_enc->rc_state == DPU_ENC_RC_STATE_PRE_OFF)
1106 			_dpu_encoder_resource_disable(drm_enc);
1107 
1108 		dpu_enc->rc_state = DPU_ENC_RC_STATE_OFF;
1109 
1110 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
1111 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
1112 				 "stop");
1113 
1114 		mutex_unlock(&dpu_enc->rc_lock);
1115 		break;
1116 
1117 	case DPU_ENC_RC_EVENT_ENTER_IDLE:
1118 		mutex_lock(&dpu_enc->rc_lock);
1119 
1120 		if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) {
1121 			DRM_ERROR("id: %u, sw_event:%d, rc:%d !ON state\n",
1122 				  DRMID(drm_enc), sw_event, dpu_enc->rc_state);
1123 			mutex_unlock(&dpu_enc->rc_lock);
1124 			return 0;
1125 		}
1126 
1127 		/*
1128 		 * if we are in ON but a frame was just kicked off,
1129 		 * ignore the IDLE event, it's probably a stale timer event
1130 		 */
1131 		if (dpu_enc->frame_busy_mask[0]) {
1132 			DRM_ERROR("id:%u, sw_event:%d, rc:%d frame pending\n",
1133 				  DRMID(drm_enc), sw_event, dpu_enc->rc_state);
1134 			mutex_unlock(&dpu_enc->rc_lock);
1135 			return 0;
1136 		}
1137 
1138 		if (is_vid_mode)
1139 			_dpu_encoder_irq_disable(drm_enc);
1140 		else
1141 			_dpu_encoder_resource_disable(drm_enc);
1142 
1143 		dpu_enc->rc_state = DPU_ENC_RC_STATE_IDLE;
1144 
1145 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
1146 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
1147 				 "idle");
1148 
1149 		mutex_unlock(&dpu_enc->rc_lock);
1150 		break;
1151 
1152 	default:
1153 		DRM_ERROR("id:%u, unexpected sw_event: %d\n", DRMID(drm_enc),
1154 			  sw_event);
1155 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
1156 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
1157 				 "error");
1158 		break;
1159 	}
1160 
1161 	trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
1162 			 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
1163 			 "end");
1164 	return 0;
1165 }
1166 
1167 /**
1168  * dpu_encoder_prepare_wb_job - prepare writeback job for the encoder.
1169  * @drm_enc:    Pointer to previously created drm encoder structure
1170  * @job:        Pointer to the current drm writeback job
1171  */
1172 void dpu_encoder_prepare_wb_job(struct drm_encoder *drm_enc,
1173 		struct drm_writeback_job *job)
1174 {
1175 	struct dpu_encoder_virt *dpu_enc;
1176 	int i;
1177 
1178 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1179 
1180 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1181 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1182 
1183 		if (phys->ops.prepare_wb_job)
1184 			phys->ops.prepare_wb_job(phys, job);
1185 
1186 	}
1187 }
1188 
1189 /**
1190  * dpu_encoder_cleanup_wb_job - cleanup writeback job for the encoder.
1191  * @drm_enc:    Pointer to previously created drm encoder structure
1192  * @job:        Pointer to the current drm writeback job
1193  */
1194 void dpu_encoder_cleanup_wb_job(struct drm_encoder *drm_enc,
1195 		struct drm_writeback_job *job)
1196 {
1197 	struct dpu_encoder_virt *dpu_enc;
1198 	int i;
1199 
1200 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1201 
1202 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1203 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1204 
1205 		if (phys->ops.cleanup_wb_job)
1206 			phys->ops.cleanup_wb_job(phys, job);
1207 
1208 	}
1209 }
1210 
1211 static void dpu_encoder_virt_atomic_mode_set(struct drm_encoder *drm_enc,
1212 					     struct drm_crtc_state *crtc_state,
1213 					     struct drm_connector_state *conn_state)
1214 {
1215 	struct dpu_encoder_virt *dpu_enc;
1216 	struct msm_drm_private *priv;
1217 	struct dpu_kms *dpu_kms;
1218 	struct dpu_global_state *global_state;
1219 	struct dpu_hw_blk *hw_pp[MAX_CHANNELS_PER_ENC];
1220 	struct dpu_hw_blk *hw_ctl[MAX_CHANNELS_PER_ENC];
1221 	struct dpu_hw_blk *hw_dsc[MAX_CHANNELS_PER_ENC];
1222 	int num_ctl, num_pp, num_dsc;
1223 	unsigned int dsc_mask = 0;
1224 	int i;
1225 
1226 	if (!drm_enc) {
1227 		DPU_ERROR("invalid encoder\n");
1228 		return;
1229 	}
1230 
1231 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1232 	DPU_DEBUG_ENC(dpu_enc, "\n");
1233 
1234 	priv = drm_enc->dev->dev_private;
1235 	dpu_kms = to_dpu_kms(priv->kms);
1236 
1237 	global_state = dpu_kms_get_existing_global_state(dpu_kms);
1238 	if (IS_ERR_OR_NULL(global_state)) {
1239 		DPU_ERROR("Failed to get global state");
1240 		return;
1241 	}
1242 
1243 	trace_dpu_enc_mode_set(DRMID(drm_enc));
1244 
1245 	/* Query resource that have been reserved in atomic check step. */
1246 	num_pp = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1247 		drm_enc->base.id, DPU_HW_BLK_PINGPONG, hw_pp,
1248 		ARRAY_SIZE(hw_pp));
1249 	num_ctl = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1250 		drm_enc->base.id, DPU_HW_BLK_CTL, hw_ctl, ARRAY_SIZE(hw_ctl));
1251 
1252 	for (i = 0; i < MAX_CHANNELS_PER_ENC; i++)
1253 		dpu_enc->hw_pp[i] = i < num_pp ? to_dpu_hw_pingpong(hw_pp[i])
1254 						: NULL;
1255 
1256 	num_dsc = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1257 						drm_enc->base.id, DPU_HW_BLK_DSC,
1258 						hw_dsc, ARRAY_SIZE(hw_dsc));
1259 	for (i = 0; i < num_dsc; i++) {
1260 		dpu_enc->hw_dsc[i] = to_dpu_hw_dsc(hw_dsc[i]);
1261 		dsc_mask |= BIT(dpu_enc->hw_dsc[i]->idx - DSC_0);
1262 	}
1263 
1264 	dpu_enc->dsc_mask = dsc_mask;
1265 
1266 	if ((dpu_enc->disp_info.intf_type == INTF_WB && conn_state->writeback_job) ||
1267 	    dpu_enc->disp_info.intf_type == INTF_DP) {
1268 		struct dpu_hw_blk *hw_cdm = NULL;
1269 
1270 		dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1271 					      drm_enc->base.id, DPU_HW_BLK_CDM,
1272 					      &hw_cdm, 1);
1273 		dpu_enc->cur_master->hw_cdm = hw_cdm ? to_dpu_hw_cdm(hw_cdm) : NULL;
1274 	}
1275 
1276 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1277 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1278 
1279 		phys->hw_pp = dpu_enc->hw_pp[i];
1280 		if (!phys->hw_pp) {
1281 			DPU_ERROR_ENC(dpu_enc,
1282 				"no pp block assigned at idx: %d\n", i);
1283 			return;
1284 		}
1285 
1286 		phys->hw_ctl = i < num_ctl ? to_dpu_hw_ctl(hw_ctl[i]) : NULL;
1287 		if (!phys->hw_ctl) {
1288 			DPU_ERROR_ENC(dpu_enc,
1289 				"no ctl block assigned at idx: %d\n", i);
1290 			return;
1291 		}
1292 
1293 		phys->cached_mode = crtc_state->adjusted_mode;
1294 		if (phys->ops.atomic_mode_set)
1295 			phys->ops.atomic_mode_set(phys, crtc_state, conn_state);
1296 	}
1297 }
1298 
1299 static void _dpu_encoder_virt_enable_helper(struct drm_encoder *drm_enc)
1300 {
1301 	struct dpu_encoder_virt *dpu_enc = NULL;
1302 	int i;
1303 
1304 	if (!drm_enc || !drm_enc->dev) {
1305 		DPU_ERROR("invalid parameters\n");
1306 		return;
1307 	}
1308 
1309 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1310 	if (!dpu_enc || !dpu_enc->cur_master) {
1311 		DPU_ERROR("invalid dpu encoder/master\n");
1312 		return;
1313 	}
1314 
1315 
1316 	if (dpu_enc->disp_info.intf_type == INTF_DP &&
1317 		dpu_enc->cur_master->hw_mdptop &&
1318 		dpu_enc->cur_master->hw_mdptop->ops.intf_audio_select)
1319 		dpu_enc->cur_master->hw_mdptop->ops.intf_audio_select(
1320 			dpu_enc->cur_master->hw_mdptop);
1321 
1322 	if (dpu_enc->disp_info.is_cmd_mode)
1323 		_dpu_encoder_update_vsync_source(dpu_enc, &dpu_enc->disp_info);
1324 
1325 	if (dpu_enc->disp_info.intf_type == INTF_DSI &&
1326 			!WARN_ON(dpu_enc->num_phys_encs == 0)) {
1327 		unsigned bpc = dpu_enc->connector->display_info.bpc;
1328 		for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
1329 			if (!dpu_enc->hw_pp[i])
1330 				continue;
1331 			_dpu_encoder_setup_dither(dpu_enc->hw_pp[i], bpc);
1332 		}
1333 	}
1334 }
1335 
1336 /**
1337  * dpu_encoder_virt_runtime_resume - pm runtime resume the encoder configs
1338  * @drm_enc:	encoder pointer
1339  */
1340 void dpu_encoder_virt_runtime_resume(struct drm_encoder *drm_enc)
1341 {
1342 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1343 
1344 	mutex_lock(&dpu_enc->enc_lock);
1345 
1346 	if (!dpu_enc->enabled)
1347 		goto out;
1348 
1349 	if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.restore)
1350 		dpu_enc->cur_slave->ops.restore(dpu_enc->cur_slave);
1351 	if (dpu_enc->cur_master && dpu_enc->cur_master->ops.restore)
1352 		dpu_enc->cur_master->ops.restore(dpu_enc->cur_master);
1353 
1354 	_dpu_encoder_virt_enable_helper(drm_enc);
1355 
1356 out:
1357 	mutex_unlock(&dpu_enc->enc_lock);
1358 }
1359 
1360 static void dpu_encoder_virt_atomic_enable(struct drm_encoder *drm_enc,
1361 					struct drm_atomic_state *state)
1362 {
1363 	struct dpu_encoder_virt *dpu_enc = NULL;
1364 	int ret = 0;
1365 	struct drm_display_mode *cur_mode = NULL;
1366 
1367 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1368 	dpu_enc->dsc = dpu_encoder_get_dsc_config(drm_enc);
1369 
1370 	atomic_set(&dpu_enc->frame_done_timeout_cnt, 0);
1371 
1372 	mutex_lock(&dpu_enc->enc_lock);
1373 
1374 	dpu_enc->commit_done_timedout = false;
1375 
1376 	dpu_enc->connector = drm_atomic_get_new_connector_for_encoder(state, drm_enc);
1377 
1378 	cur_mode = &dpu_enc->base.crtc->state->adjusted_mode;
1379 
1380 	dpu_enc->wide_bus_en = dpu_encoder_is_widebus_enabled(drm_enc);
1381 
1382 	trace_dpu_enc_enable(DRMID(drm_enc), cur_mode->hdisplay,
1383 			     cur_mode->vdisplay);
1384 
1385 	/* always enable slave encoder before master */
1386 	if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.enable)
1387 		dpu_enc->cur_slave->ops.enable(dpu_enc->cur_slave);
1388 
1389 	if (dpu_enc->cur_master && dpu_enc->cur_master->ops.enable)
1390 		dpu_enc->cur_master->ops.enable(dpu_enc->cur_master);
1391 
1392 	ret = dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF);
1393 	if (ret) {
1394 		DPU_ERROR_ENC(dpu_enc, "dpu resource control failed: %d\n",
1395 				ret);
1396 		goto out;
1397 	}
1398 
1399 	_dpu_encoder_virt_enable_helper(drm_enc);
1400 
1401 	dpu_enc->enabled = true;
1402 
1403 out:
1404 	mutex_unlock(&dpu_enc->enc_lock);
1405 }
1406 
1407 static void dpu_encoder_virt_atomic_disable(struct drm_encoder *drm_enc,
1408 					struct drm_atomic_state *state)
1409 {
1410 	struct dpu_encoder_virt *dpu_enc = NULL;
1411 	struct drm_crtc *crtc;
1412 	struct drm_crtc_state *old_state = NULL;
1413 	int i = 0;
1414 
1415 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1416 	DPU_DEBUG_ENC(dpu_enc, "\n");
1417 
1418 	crtc = drm_atomic_get_old_crtc_for_encoder(state, drm_enc);
1419 	if (crtc)
1420 		old_state = drm_atomic_get_old_crtc_state(state, crtc);
1421 
1422 	/*
1423 	 * The encoder is already disabled if self refresh mode was set earlier,
1424 	 * in the old_state for the corresponding crtc.
1425 	 */
1426 	if (old_state && old_state->self_refresh_active)
1427 		return;
1428 
1429 	mutex_lock(&dpu_enc->enc_lock);
1430 	dpu_enc->enabled = false;
1431 
1432 	trace_dpu_enc_disable(DRMID(drm_enc));
1433 
1434 	/* wait for idle */
1435 	dpu_encoder_wait_for_tx_complete(drm_enc);
1436 
1437 	dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_PRE_STOP);
1438 
1439 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1440 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1441 
1442 		if (phys->ops.disable)
1443 			phys->ops.disable(phys);
1444 	}
1445 
1446 
1447 	/* after phys waits for frame-done, should be no more frames pending */
1448 	if (atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) {
1449 		DPU_ERROR("enc%d timeout pending\n", drm_enc->base.id);
1450 		del_timer_sync(&dpu_enc->frame_done_timer);
1451 	}
1452 
1453 	dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_STOP);
1454 
1455 	dpu_enc->connector = NULL;
1456 
1457 	DPU_DEBUG_ENC(dpu_enc, "encoder disabled\n");
1458 
1459 	mutex_unlock(&dpu_enc->enc_lock);
1460 }
1461 
1462 static struct dpu_hw_intf *dpu_encoder_get_intf(const struct dpu_mdss_cfg *catalog,
1463 		struct dpu_rm *dpu_rm,
1464 		enum dpu_intf_type type, u32 controller_id)
1465 {
1466 	int i = 0;
1467 
1468 	if (type == INTF_WB)
1469 		return NULL;
1470 
1471 	for (i = 0; i < catalog->intf_count; i++) {
1472 		if (catalog->intf[i].type == type
1473 		    && catalog->intf[i].controller_id == controller_id) {
1474 			return dpu_rm_get_intf(dpu_rm, catalog->intf[i].id);
1475 		}
1476 	}
1477 
1478 	return NULL;
1479 }
1480 
1481 /**
1482  * dpu_encoder_vblank_callback - Notify virtual encoder of vblank IRQ reception
1483  * @drm_enc:    Pointer to drm encoder structure
1484  * @phy_enc:	Pointer to physical encoder
1485  * Note: This is called from IRQ handler context.
1486  */
1487 void dpu_encoder_vblank_callback(struct drm_encoder *drm_enc,
1488 		struct dpu_encoder_phys *phy_enc)
1489 {
1490 	struct dpu_encoder_virt *dpu_enc = NULL;
1491 	unsigned long lock_flags;
1492 
1493 	if (!drm_enc || !phy_enc)
1494 		return;
1495 
1496 	DPU_ATRACE_BEGIN("encoder_vblank_callback");
1497 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1498 
1499 	atomic_inc(&phy_enc->vsync_cnt);
1500 
1501 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1502 	if (dpu_enc->crtc)
1503 		dpu_crtc_vblank_callback(dpu_enc->crtc);
1504 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1505 
1506 	DPU_ATRACE_END("encoder_vblank_callback");
1507 }
1508 
1509 /**
1510  * dpu_encoder_underrun_callback - Notify virtual encoder of underrun IRQ reception
1511  * @drm_enc:    Pointer to drm encoder structure
1512  * @phy_enc:	Pointer to physical encoder
1513  * Note: This is called from IRQ handler context.
1514  */
1515 void dpu_encoder_underrun_callback(struct drm_encoder *drm_enc,
1516 		struct dpu_encoder_phys *phy_enc)
1517 {
1518 	if (!phy_enc)
1519 		return;
1520 
1521 	DPU_ATRACE_BEGIN("encoder_underrun_callback");
1522 	atomic_inc(&phy_enc->underrun_cnt);
1523 
1524 	/* trigger dump only on the first underrun */
1525 	if (atomic_read(&phy_enc->underrun_cnt) == 1)
1526 		msm_disp_snapshot_state(drm_enc->dev);
1527 
1528 	trace_dpu_enc_underrun_cb(DRMID(drm_enc),
1529 				  atomic_read(&phy_enc->underrun_cnt));
1530 	DPU_ATRACE_END("encoder_underrun_callback");
1531 }
1532 
1533 /**
1534  * dpu_encoder_assign_crtc - Link the encoder to the crtc it's assigned to
1535  * @drm_enc:	encoder pointer
1536  * @crtc:	crtc pointer
1537  */
1538 void dpu_encoder_assign_crtc(struct drm_encoder *drm_enc, struct drm_crtc *crtc)
1539 {
1540 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1541 	unsigned long lock_flags;
1542 
1543 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1544 	/* crtc should always be cleared before re-assigning */
1545 	WARN_ON(crtc && dpu_enc->crtc);
1546 	dpu_enc->crtc = crtc;
1547 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1548 }
1549 
1550 /**
1551  * dpu_encoder_toggle_vblank_for_crtc - Toggles vblank interrupts on or off if
1552  *	the encoder is assigned to the given crtc
1553  * @drm_enc:	encoder pointer
1554  * @crtc:	crtc pointer
1555  * @enable:	true if vblank should be enabled
1556  */
1557 void dpu_encoder_toggle_vblank_for_crtc(struct drm_encoder *drm_enc,
1558 					struct drm_crtc *crtc, bool enable)
1559 {
1560 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1561 	unsigned long lock_flags;
1562 	int i;
1563 
1564 	trace_dpu_enc_vblank_cb(DRMID(drm_enc), enable);
1565 
1566 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1567 	if (dpu_enc->crtc != crtc) {
1568 		spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1569 		return;
1570 	}
1571 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1572 
1573 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1574 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1575 
1576 		if (phys->ops.control_vblank_irq)
1577 			phys->ops.control_vblank_irq(phys, enable);
1578 	}
1579 }
1580 
1581 /**
1582  * dpu_encoder_frame_done_callback - Notify virtual encoder that this phys
1583  *     encoder completes last request frame
1584  * @drm_enc:    Pointer to drm encoder structure
1585  * @ready_phys:	Pointer to physical encoder
1586  * @event:	Event to process
1587  */
1588 void dpu_encoder_frame_done_callback(
1589 		struct drm_encoder *drm_enc,
1590 		struct dpu_encoder_phys *ready_phys, u32 event)
1591 {
1592 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1593 	unsigned int i;
1594 
1595 	if (event & (DPU_ENCODER_FRAME_EVENT_DONE
1596 			| DPU_ENCODER_FRAME_EVENT_ERROR
1597 			| DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)) {
1598 
1599 		if (!dpu_enc->frame_busy_mask[0]) {
1600 			/**
1601 			 * suppress frame_done without waiter,
1602 			 * likely autorefresh
1603 			 */
1604 			trace_dpu_enc_frame_done_cb_not_busy(DRMID(drm_enc), event,
1605 					dpu_encoder_helper_get_intf_type(ready_phys->intf_mode),
1606 					ready_phys->hw_intf ? ready_phys->hw_intf->idx : -1,
1607 					ready_phys->hw_wb ? ready_phys->hw_wb->idx : -1);
1608 			return;
1609 		}
1610 
1611 		/* One of the physical encoders has become idle */
1612 		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1613 			if (dpu_enc->phys_encs[i] == ready_phys) {
1614 				trace_dpu_enc_frame_done_cb(DRMID(drm_enc), i,
1615 						dpu_enc->frame_busy_mask[0]);
1616 				clear_bit(i, dpu_enc->frame_busy_mask);
1617 			}
1618 		}
1619 
1620 		if (!dpu_enc->frame_busy_mask[0]) {
1621 			atomic_set(&dpu_enc->frame_done_timeout_ms, 0);
1622 			del_timer(&dpu_enc->frame_done_timer);
1623 
1624 			dpu_encoder_resource_control(drm_enc,
1625 					DPU_ENC_RC_EVENT_FRAME_DONE);
1626 
1627 			if (dpu_enc->crtc)
1628 				dpu_crtc_frame_event_cb(dpu_enc->crtc, event);
1629 		}
1630 	} else {
1631 		if (dpu_enc->crtc)
1632 			dpu_crtc_frame_event_cb(dpu_enc->crtc, event);
1633 	}
1634 }
1635 
1636 static void dpu_encoder_off_work(struct work_struct *work)
1637 {
1638 	struct dpu_encoder_virt *dpu_enc = container_of(work,
1639 			struct dpu_encoder_virt, delayed_off_work.work);
1640 
1641 	dpu_encoder_resource_control(&dpu_enc->base,
1642 						DPU_ENC_RC_EVENT_ENTER_IDLE);
1643 
1644 	dpu_encoder_frame_done_callback(&dpu_enc->base, NULL,
1645 				DPU_ENCODER_FRAME_EVENT_IDLE);
1646 }
1647 
1648 /**
1649  * _dpu_encoder_trigger_flush - trigger flush for a physical encoder
1650  * @drm_enc: Pointer to drm encoder structure
1651  * @phys: Pointer to physical encoder structure
1652  * @extra_flush_bits: Additional bit mask to include in flush trigger
1653  */
1654 static void _dpu_encoder_trigger_flush(struct drm_encoder *drm_enc,
1655 		struct dpu_encoder_phys *phys, uint32_t extra_flush_bits)
1656 {
1657 	struct dpu_hw_ctl *ctl;
1658 	int pending_kickoff_cnt;
1659 	u32 ret = UINT_MAX;
1660 
1661 	if (!phys->hw_pp) {
1662 		DPU_ERROR("invalid pingpong hw\n");
1663 		return;
1664 	}
1665 
1666 	ctl = phys->hw_ctl;
1667 	if (!ctl->ops.trigger_flush) {
1668 		DPU_ERROR("missing trigger cb\n");
1669 		return;
1670 	}
1671 
1672 	pending_kickoff_cnt = dpu_encoder_phys_inc_pending(phys);
1673 
1674 	if (extra_flush_bits && ctl->ops.update_pending_flush)
1675 		ctl->ops.update_pending_flush(ctl, extra_flush_bits);
1676 
1677 	ctl->ops.trigger_flush(ctl);
1678 
1679 	if (ctl->ops.get_pending_flush)
1680 		ret = ctl->ops.get_pending_flush(ctl);
1681 
1682 	trace_dpu_enc_trigger_flush(DRMID(drm_enc),
1683 			dpu_encoder_helper_get_intf_type(phys->intf_mode),
1684 			phys->hw_intf ? phys->hw_intf->idx : -1,
1685 			phys->hw_wb ? phys->hw_wb->idx : -1,
1686 			pending_kickoff_cnt, ctl->idx,
1687 			extra_flush_bits, ret);
1688 }
1689 
1690 /**
1691  * _dpu_encoder_trigger_start - trigger start for a physical encoder
1692  * @phys: Pointer to physical encoder structure
1693  */
1694 static void _dpu_encoder_trigger_start(struct dpu_encoder_phys *phys)
1695 {
1696 	if (!phys) {
1697 		DPU_ERROR("invalid argument(s)\n");
1698 		return;
1699 	}
1700 
1701 	if (!phys->hw_pp) {
1702 		DPU_ERROR("invalid pingpong hw\n");
1703 		return;
1704 	}
1705 
1706 	if (phys->ops.trigger_start && phys->enable_state != DPU_ENC_DISABLED)
1707 		phys->ops.trigger_start(phys);
1708 }
1709 
1710 /**
1711  * dpu_encoder_helper_trigger_start - control start helper function
1712  *	This helper function may be optionally specified by physical
1713  *	encoders if they require ctl_start triggering.
1714  * @phys_enc: Pointer to physical encoder structure
1715  */
1716 void dpu_encoder_helper_trigger_start(struct dpu_encoder_phys *phys_enc)
1717 {
1718 	struct dpu_hw_ctl *ctl;
1719 
1720 	ctl = phys_enc->hw_ctl;
1721 	if (ctl->ops.trigger_start) {
1722 		ctl->ops.trigger_start(ctl);
1723 		trace_dpu_enc_trigger_start(DRMID(phys_enc->parent), ctl->idx);
1724 	}
1725 }
1726 
1727 static int dpu_encoder_helper_wait_event_timeout(
1728 		int32_t drm_id,
1729 		unsigned int irq_idx,
1730 		struct dpu_encoder_wait_info *info)
1731 {
1732 	int rc = 0;
1733 	s64 expected_time = ktime_to_ms(ktime_get()) + info->timeout_ms;
1734 	s64 jiffies = msecs_to_jiffies(info->timeout_ms);
1735 	s64 time;
1736 
1737 	do {
1738 		rc = wait_event_timeout(*(info->wq),
1739 				atomic_read(info->atomic_cnt) == 0, jiffies);
1740 		time = ktime_to_ms(ktime_get());
1741 
1742 		trace_dpu_enc_wait_event_timeout(drm_id,
1743 						 DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx),
1744 						 rc, time,
1745 						 expected_time,
1746 						 atomic_read(info->atomic_cnt));
1747 	/* If we timed out, counter is valid and time is less, wait again */
1748 	} while (atomic_read(info->atomic_cnt) && (rc == 0) &&
1749 			(time < expected_time));
1750 
1751 	return rc;
1752 }
1753 
1754 static void dpu_encoder_helper_hw_reset(struct dpu_encoder_phys *phys_enc)
1755 {
1756 	struct dpu_encoder_virt *dpu_enc;
1757 	struct dpu_hw_ctl *ctl;
1758 	int rc;
1759 	struct drm_encoder *drm_enc;
1760 
1761 	dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
1762 	ctl = phys_enc->hw_ctl;
1763 	drm_enc = phys_enc->parent;
1764 
1765 	if (!ctl->ops.reset)
1766 		return;
1767 
1768 	DRM_DEBUG_KMS("id:%u ctl %d reset\n", DRMID(drm_enc),
1769 		      ctl->idx);
1770 
1771 	rc = ctl->ops.reset(ctl);
1772 	if (rc) {
1773 		DPU_ERROR_ENC(dpu_enc, "ctl %d reset failure\n",  ctl->idx);
1774 		msm_disp_snapshot_state(drm_enc->dev);
1775 	}
1776 
1777 	phys_enc->enable_state = DPU_ENC_ENABLED;
1778 }
1779 
1780 /**
1781  * _dpu_encoder_kickoff_phys - handle physical encoder kickoff
1782  *	Iterate through the physical encoders and perform consolidated flush
1783  *	and/or control start triggering as needed. This is done in the virtual
1784  *	encoder rather than the individual physical ones in order to handle
1785  *	use cases that require visibility into multiple physical encoders at
1786  *	a time.
1787  * @dpu_enc: Pointer to virtual encoder structure
1788  */
1789 static void _dpu_encoder_kickoff_phys(struct dpu_encoder_virt *dpu_enc)
1790 {
1791 	struct dpu_hw_ctl *ctl;
1792 	uint32_t i, pending_flush;
1793 	unsigned long lock_flags;
1794 
1795 	pending_flush = 0x0;
1796 
1797 	/* update pending counts and trigger kickoff ctl flush atomically */
1798 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1799 
1800 	/* don't perform flush/start operations for slave encoders */
1801 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1802 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1803 
1804 		if (phys->enable_state == DPU_ENC_DISABLED)
1805 			continue;
1806 
1807 		ctl = phys->hw_ctl;
1808 
1809 		/*
1810 		 * This is cleared in frame_done worker, which isn't invoked
1811 		 * for async commits. So don't set this for async, since it'll
1812 		 * roll over to the next commit.
1813 		 */
1814 		if (phys->split_role != ENC_ROLE_SLAVE)
1815 			set_bit(i, dpu_enc->frame_busy_mask);
1816 
1817 		if (!phys->ops.needs_single_flush ||
1818 				!phys->ops.needs_single_flush(phys))
1819 			_dpu_encoder_trigger_flush(&dpu_enc->base, phys, 0x0);
1820 		else if (ctl->ops.get_pending_flush)
1821 			pending_flush |= ctl->ops.get_pending_flush(ctl);
1822 	}
1823 
1824 	/* for split flush, combine pending flush masks and send to master */
1825 	if (pending_flush && dpu_enc->cur_master) {
1826 		_dpu_encoder_trigger_flush(
1827 				&dpu_enc->base,
1828 				dpu_enc->cur_master,
1829 				pending_flush);
1830 	}
1831 
1832 	_dpu_encoder_trigger_start(dpu_enc->cur_master);
1833 
1834 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1835 }
1836 
1837 /**
1838  * dpu_encoder_trigger_kickoff_pending - Clear the flush bits from previous
1839  *        kickoff and trigger the ctl prepare progress for command mode display.
1840  * @drm_enc:	encoder pointer
1841  */
1842 void dpu_encoder_trigger_kickoff_pending(struct drm_encoder *drm_enc)
1843 {
1844 	struct dpu_encoder_virt *dpu_enc;
1845 	struct dpu_encoder_phys *phys;
1846 	unsigned int i;
1847 	struct dpu_hw_ctl *ctl;
1848 	struct msm_display_info *disp_info;
1849 
1850 	if (!drm_enc) {
1851 		DPU_ERROR("invalid encoder\n");
1852 		return;
1853 	}
1854 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1855 	disp_info = &dpu_enc->disp_info;
1856 
1857 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1858 		phys = dpu_enc->phys_encs[i];
1859 
1860 		ctl = phys->hw_ctl;
1861 		ctl->ops.clear_pending_flush(ctl);
1862 
1863 		/* update only for command mode primary ctl */
1864 		if ((phys == dpu_enc->cur_master) &&
1865 		    disp_info->is_cmd_mode
1866 		    && ctl->ops.trigger_pending)
1867 			ctl->ops.trigger_pending(ctl);
1868 	}
1869 }
1870 
1871 static u32 _dpu_encoder_calculate_linetime(struct dpu_encoder_virt *dpu_enc,
1872 		struct drm_display_mode *mode)
1873 {
1874 	u64 pclk_rate;
1875 	u32 pclk_period;
1876 	u32 line_time;
1877 
1878 	/*
1879 	 * For linetime calculation, only operate on master encoder.
1880 	 */
1881 	if (!dpu_enc->cur_master)
1882 		return 0;
1883 
1884 	if (!dpu_enc->cur_master->ops.get_line_count) {
1885 		DPU_ERROR("get_line_count function not defined\n");
1886 		return 0;
1887 	}
1888 
1889 	pclk_rate = mode->clock; /* pixel clock in kHz */
1890 	if (pclk_rate == 0) {
1891 		DPU_ERROR("pclk is 0, cannot calculate line time\n");
1892 		return 0;
1893 	}
1894 
1895 	pclk_period = DIV_ROUND_UP_ULL(1000000000ull, pclk_rate);
1896 	if (pclk_period == 0) {
1897 		DPU_ERROR("pclk period is 0\n");
1898 		return 0;
1899 	}
1900 
1901 	/*
1902 	 * Line time calculation based on Pixel clock and HTOTAL.
1903 	 * Final unit is in ns.
1904 	 */
1905 	line_time = (pclk_period * mode->htotal) / 1000;
1906 	if (line_time == 0) {
1907 		DPU_ERROR("line time calculation is 0\n");
1908 		return 0;
1909 	}
1910 
1911 	DPU_DEBUG_ENC(dpu_enc,
1912 			"clk_rate=%lldkHz, clk_period=%d, linetime=%dns\n",
1913 			pclk_rate, pclk_period, line_time);
1914 
1915 	return line_time;
1916 }
1917 
1918 /**
1919  * dpu_encoder_vsync_time - get the time of the next vsync
1920  * @drm_enc:	encoder pointer
1921  * @wakeup_time: pointer to ktime_t to write the vsync time to
1922  */
1923 int dpu_encoder_vsync_time(struct drm_encoder *drm_enc, ktime_t *wakeup_time)
1924 {
1925 	struct drm_display_mode *mode;
1926 	struct dpu_encoder_virt *dpu_enc;
1927 	u32 cur_line;
1928 	u32 line_time;
1929 	u32 vtotal, time_to_vsync;
1930 	ktime_t cur_time;
1931 
1932 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1933 
1934 	if (!drm_enc->crtc || !drm_enc->crtc->state) {
1935 		DPU_ERROR("crtc/crtc state object is NULL\n");
1936 		return -EINVAL;
1937 	}
1938 	mode = &drm_enc->crtc->state->adjusted_mode;
1939 
1940 	line_time = _dpu_encoder_calculate_linetime(dpu_enc, mode);
1941 	if (!line_time)
1942 		return -EINVAL;
1943 
1944 	cur_line = dpu_enc->cur_master->ops.get_line_count(dpu_enc->cur_master);
1945 
1946 	vtotal = mode->vtotal;
1947 	if (cur_line >= vtotal)
1948 		time_to_vsync = line_time * vtotal;
1949 	else
1950 		time_to_vsync = line_time * (vtotal - cur_line);
1951 
1952 	if (time_to_vsync == 0) {
1953 		DPU_ERROR("time to vsync should not be zero, vtotal=%d\n",
1954 				vtotal);
1955 		return -EINVAL;
1956 	}
1957 
1958 	cur_time = ktime_get();
1959 	*wakeup_time = ktime_add_ns(cur_time, time_to_vsync);
1960 
1961 	DPU_DEBUG_ENC(dpu_enc,
1962 			"cur_line=%u vtotal=%u time_to_vsync=%u, cur_time=%lld, wakeup_time=%lld\n",
1963 			cur_line, vtotal, time_to_vsync,
1964 			ktime_to_ms(cur_time),
1965 			ktime_to_ms(*wakeup_time));
1966 	return 0;
1967 }
1968 
1969 static u32
1970 dpu_encoder_dsc_initial_line_calc(struct drm_dsc_config *dsc,
1971 				  u32 enc_ip_width)
1972 {
1973 	int ssm_delay, total_pixels, soft_slice_per_enc;
1974 
1975 	soft_slice_per_enc = enc_ip_width / dsc->slice_width;
1976 
1977 	/*
1978 	 * minimum number of initial line pixels is a sum of:
1979 	 * 1. sub-stream multiplexer delay (83 groups for 8bpc,
1980 	 *    91 for 10 bpc) * 3
1981 	 * 2. for two soft slice cases, add extra sub-stream multiplexer * 3
1982 	 * 3. the initial xmit delay
1983 	 * 4. total pipeline delay through the "lock step" of encoder (47)
1984 	 * 5. 6 additional pixels as the output of the rate buffer is
1985 	 *    48 bits wide
1986 	 */
1987 	ssm_delay = ((dsc->bits_per_component < 10) ? 84 : 92);
1988 	total_pixels = ssm_delay * 3 + dsc->initial_xmit_delay + 47;
1989 	if (soft_slice_per_enc > 1)
1990 		total_pixels += (ssm_delay * 3);
1991 	return DIV_ROUND_UP(total_pixels, dsc->slice_width);
1992 }
1993 
1994 static void dpu_encoder_dsc_pipe_cfg(struct dpu_hw_ctl *ctl,
1995 				     struct dpu_hw_dsc *hw_dsc,
1996 				     struct dpu_hw_pingpong *hw_pp,
1997 				     struct drm_dsc_config *dsc,
1998 				     u32 common_mode,
1999 				     u32 initial_lines)
2000 {
2001 	if (hw_dsc->ops.dsc_config)
2002 		hw_dsc->ops.dsc_config(hw_dsc, dsc, common_mode, initial_lines);
2003 
2004 	if (hw_dsc->ops.dsc_config_thresh)
2005 		hw_dsc->ops.dsc_config_thresh(hw_dsc, dsc);
2006 
2007 	if (hw_pp->ops.setup_dsc)
2008 		hw_pp->ops.setup_dsc(hw_pp);
2009 
2010 	if (hw_dsc->ops.dsc_bind_pingpong_blk)
2011 		hw_dsc->ops.dsc_bind_pingpong_blk(hw_dsc, hw_pp->idx);
2012 
2013 	if (hw_pp->ops.enable_dsc)
2014 		hw_pp->ops.enable_dsc(hw_pp);
2015 
2016 	if (ctl->ops.update_pending_flush_dsc)
2017 		ctl->ops.update_pending_flush_dsc(ctl, hw_dsc->idx);
2018 }
2019 
2020 static void dpu_encoder_prep_dsc(struct dpu_encoder_virt *dpu_enc,
2021 				 struct drm_dsc_config *dsc)
2022 {
2023 	/* coding only for 2LM, 2enc, 1 dsc config */
2024 	struct dpu_encoder_phys *enc_master = dpu_enc->cur_master;
2025 	struct dpu_hw_ctl *ctl = enc_master->hw_ctl;
2026 	struct dpu_hw_dsc *hw_dsc[MAX_CHANNELS_PER_ENC];
2027 	struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC];
2028 	int this_frame_slices;
2029 	int intf_ip_w, enc_ip_w;
2030 	int dsc_common_mode;
2031 	int pic_width;
2032 	u32 initial_lines;
2033 	int i;
2034 
2035 	for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
2036 		hw_pp[i] = dpu_enc->hw_pp[i];
2037 		hw_dsc[i] = dpu_enc->hw_dsc[i];
2038 
2039 		if (!hw_pp[i] || !hw_dsc[i]) {
2040 			DPU_ERROR_ENC(dpu_enc, "invalid params for DSC\n");
2041 			return;
2042 		}
2043 	}
2044 
2045 	dsc_common_mode = 0;
2046 	pic_width = dsc->pic_width;
2047 
2048 	dsc_common_mode = DSC_MODE_SPLIT_PANEL;
2049 	if (dpu_encoder_use_dsc_merge(enc_master->parent))
2050 		dsc_common_mode |= DSC_MODE_MULTIPLEX;
2051 	if (enc_master->intf_mode == INTF_MODE_VIDEO)
2052 		dsc_common_mode |= DSC_MODE_VIDEO;
2053 
2054 	this_frame_slices = pic_width / dsc->slice_width;
2055 	intf_ip_w = this_frame_slices * dsc->slice_width;
2056 
2057 	/*
2058 	 * dsc merge case: when using 2 encoders for the same stream,
2059 	 * no. of slices need to be same on both the encoders.
2060 	 */
2061 	enc_ip_w = intf_ip_w / 2;
2062 	initial_lines = dpu_encoder_dsc_initial_line_calc(dsc, enc_ip_w);
2063 
2064 	for (i = 0; i < MAX_CHANNELS_PER_ENC; i++)
2065 		dpu_encoder_dsc_pipe_cfg(ctl, hw_dsc[i], hw_pp[i],
2066 					 dsc, dsc_common_mode, initial_lines);
2067 }
2068 
2069 /**
2070  * dpu_encoder_prepare_for_kickoff - schedule double buffer flip of the ctl
2071  *	path (i.e. ctl flush and start) at next appropriate time.
2072  *	Immediately: if no previous commit is outstanding.
2073  *	Delayed: Block until next trigger can be issued.
2074  * @drm_enc:	encoder pointer
2075  */
2076 void dpu_encoder_prepare_for_kickoff(struct drm_encoder *drm_enc)
2077 {
2078 	struct dpu_encoder_virt *dpu_enc;
2079 	struct dpu_encoder_phys *phys;
2080 	bool needs_hw_reset = false;
2081 	unsigned int i;
2082 
2083 	dpu_enc = to_dpu_encoder_virt(drm_enc);
2084 
2085 	trace_dpu_enc_prepare_kickoff(DRMID(drm_enc));
2086 
2087 	/* prepare for next kickoff, may include waiting on previous kickoff */
2088 	DPU_ATRACE_BEGIN("enc_prepare_for_kickoff");
2089 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2090 		phys = dpu_enc->phys_encs[i];
2091 		if (phys->ops.prepare_for_kickoff)
2092 			phys->ops.prepare_for_kickoff(phys);
2093 		if (phys->enable_state == DPU_ENC_ERR_NEEDS_HW_RESET)
2094 			needs_hw_reset = true;
2095 	}
2096 	DPU_ATRACE_END("enc_prepare_for_kickoff");
2097 
2098 	dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF);
2099 
2100 	/* if any phys needs reset, reset all phys, in-order */
2101 	if (needs_hw_reset) {
2102 		trace_dpu_enc_prepare_kickoff_reset(DRMID(drm_enc));
2103 		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2104 			dpu_encoder_helper_hw_reset(dpu_enc->phys_encs[i]);
2105 		}
2106 	}
2107 
2108 	if (dpu_enc->dsc)
2109 		dpu_encoder_prep_dsc(dpu_enc, dpu_enc->dsc);
2110 }
2111 
2112 /**
2113  * dpu_encoder_is_valid_for_commit - check if encode has valid parameters for commit.
2114  * @drm_enc:    Pointer to drm encoder structure
2115  */
2116 bool dpu_encoder_is_valid_for_commit(struct drm_encoder *drm_enc)
2117 {
2118 	struct dpu_encoder_virt *dpu_enc;
2119 	unsigned int i;
2120 	struct dpu_encoder_phys *phys;
2121 
2122 	dpu_enc = to_dpu_encoder_virt(drm_enc);
2123 
2124 	if (drm_enc->encoder_type == DRM_MODE_ENCODER_VIRTUAL) {
2125 		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2126 			phys = dpu_enc->phys_encs[i];
2127 			if (phys->ops.is_valid_for_commit && !phys->ops.is_valid_for_commit(phys)) {
2128 				DPU_DEBUG("invalid FB not kicking off\n");
2129 				return false;
2130 			}
2131 		}
2132 	}
2133 
2134 	return true;
2135 }
2136 
2137 /**
2138  * dpu_encoder_kickoff - trigger a double buffer flip of the ctl path
2139  *	(i.e. ctl flush and start) immediately.
2140  * @drm_enc:	encoder pointer
2141  */
2142 void dpu_encoder_kickoff(struct drm_encoder *drm_enc)
2143 {
2144 	struct dpu_encoder_virt *dpu_enc;
2145 	struct dpu_encoder_phys *phys;
2146 	unsigned long timeout_ms;
2147 	unsigned int i;
2148 
2149 	DPU_ATRACE_BEGIN("encoder_kickoff");
2150 	dpu_enc = to_dpu_encoder_virt(drm_enc);
2151 
2152 	trace_dpu_enc_kickoff(DRMID(drm_enc));
2153 
2154 	timeout_ms = DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES * 1000 /
2155 			drm_mode_vrefresh(&drm_enc->crtc->state->adjusted_mode);
2156 
2157 	atomic_set(&dpu_enc->frame_done_timeout_ms, timeout_ms);
2158 	mod_timer(&dpu_enc->frame_done_timer,
2159 			jiffies + msecs_to_jiffies(timeout_ms));
2160 
2161 	/* All phys encs are ready to go, trigger the kickoff */
2162 	_dpu_encoder_kickoff_phys(dpu_enc);
2163 
2164 	/* allow phys encs to handle any post-kickoff business */
2165 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2166 		phys = dpu_enc->phys_encs[i];
2167 		if (phys->ops.handle_post_kickoff)
2168 			phys->ops.handle_post_kickoff(phys);
2169 	}
2170 
2171 	DPU_ATRACE_END("encoder_kickoff");
2172 }
2173 
2174 static void dpu_encoder_helper_reset_mixers(struct dpu_encoder_phys *phys_enc)
2175 {
2176 	struct dpu_hw_mixer_cfg mixer;
2177 	int i, num_lm;
2178 	struct dpu_global_state *global_state;
2179 	struct dpu_hw_blk *hw_lm[2];
2180 	struct dpu_hw_mixer *hw_mixer[2];
2181 	struct dpu_hw_ctl *ctl = phys_enc->hw_ctl;
2182 
2183 	memset(&mixer, 0, sizeof(mixer));
2184 
2185 	/* reset all mixers for this encoder */
2186 	if (phys_enc->hw_ctl->ops.clear_all_blendstages)
2187 		phys_enc->hw_ctl->ops.clear_all_blendstages(phys_enc->hw_ctl);
2188 
2189 	global_state = dpu_kms_get_existing_global_state(phys_enc->dpu_kms);
2190 
2191 	num_lm = dpu_rm_get_assigned_resources(&phys_enc->dpu_kms->rm, global_state,
2192 		phys_enc->parent->base.id, DPU_HW_BLK_LM, hw_lm, ARRAY_SIZE(hw_lm));
2193 
2194 	for (i = 0; i < num_lm; i++) {
2195 		hw_mixer[i] = to_dpu_hw_mixer(hw_lm[i]);
2196 		if (phys_enc->hw_ctl->ops.update_pending_flush_mixer)
2197 			phys_enc->hw_ctl->ops.update_pending_flush_mixer(ctl, hw_mixer[i]->idx);
2198 
2199 		/* clear all blendstages */
2200 		if (phys_enc->hw_ctl->ops.setup_blendstage)
2201 			phys_enc->hw_ctl->ops.setup_blendstage(ctl, hw_mixer[i]->idx, NULL);
2202 	}
2203 }
2204 
2205 static void dpu_encoder_dsc_pipe_clr(struct dpu_hw_ctl *ctl,
2206 				     struct dpu_hw_dsc *hw_dsc,
2207 				     struct dpu_hw_pingpong *hw_pp)
2208 {
2209 	if (hw_dsc->ops.dsc_disable)
2210 		hw_dsc->ops.dsc_disable(hw_dsc);
2211 
2212 	if (hw_pp->ops.disable_dsc)
2213 		hw_pp->ops.disable_dsc(hw_pp);
2214 
2215 	if (hw_dsc->ops.dsc_bind_pingpong_blk)
2216 		hw_dsc->ops.dsc_bind_pingpong_blk(hw_dsc, PINGPONG_NONE);
2217 
2218 	if (ctl->ops.update_pending_flush_dsc)
2219 		ctl->ops.update_pending_flush_dsc(ctl, hw_dsc->idx);
2220 }
2221 
2222 static void dpu_encoder_unprep_dsc(struct dpu_encoder_virt *dpu_enc)
2223 {
2224 	/* coding only for 2LM, 2enc, 1 dsc config */
2225 	struct dpu_encoder_phys *enc_master = dpu_enc->cur_master;
2226 	struct dpu_hw_ctl *ctl = enc_master->hw_ctl;
2227 	struct dpu_hw_dsc *hw_dsc[MAX_CHANNELS_PER_ENC];
2228 	struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC];
2229 	int i;
2230 
2231 	for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
2232 		hw_pp[i] = dpu_enc->hw_pp[i];
2233 		hw_dsc[i] = dpu_enc->hw_dsc[i];
2234 
2235 		if (hw_pp[i] && hw_dsc[i])
2236 			dpu_encoder_dsc_pipe_clr(ctl, hw_dsc[i], hw_pp[i]);
2237 	}
2238 }
2239 
2240 /**
2241  * dpu_encoder_helper_phys_cleanup - helper to cleanup dpu pipeline
2242  * @phys_enc: Pointer to physical encoder structure
2243  */
2244 void dpu_encoder_helper_phys_cleanup(struct dpu_encoder_phys *phys_enc)
2245 {
2246 	struct dpu_hw_ctl *ctl = phys_enc->hw_ctl;
2247 	struct dpu_hw_intf_cfg intf_cfg = { 0 };
2248 	int i;
2249 	struct dpu_encoder_virt *dpu_enc;
2250 
2251 	dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
2252 
2253 	phys_enc->hw_ctl->ops.reset(ctl);
2254 
2255 	dpu_encoder_helper_reset_mixers(phys_enc);
2256 
2257 	/*
2258 	 * TODO: move the once-only operation like CTL flush/trigger
2259 	 * into dpu_encoder_virt_disable() and all operations which need
2260 	 * to be done per phys encoder into the phys_disable() op.
2261 	 */
2262 	if (phys_enc->hw_wb) {
2263 		/* disable the PP block */
2264 		if (phys_enc->hw_wb->ops.bind_pingpong_blk)
2265 			phys_enc->hw_wb->ops.bind_pingpong_blk(phys_enc->hw_wb, PINGPONG_NONE);
2266 
2267 		/* mark WB flush as pending */
2268 		if (phys_enc->hw_ctl->ops.update_pending_flush_wb)
2269 			phys_enc->hw_ctl->ops.update_pending_flush_wb(ctl, phys_enc->hw_wb->idx);
2270 	} else {
2271 		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2272 			if (dpu_enc->phys_encs[i] && phys_enc->hw_intf->ops.bind_pingpong_blk)
2273 				phys_enc->hw_intf->ops.bind_pingpong_blk(
2274 						dpu_enc->phys_encs[i]->hw_intf,
2275 						PINGPONG_NONE);
2276 
2277 			/* mark INTF flush as pending */
2278 			if (phys_enc->hw_ctl->ops.update_pending_flush_intf)
2279 				phys_enc->hw_ctl->ops.update_pending_flush_intf(phys_enc->hw_ctl,
2280 						dpu_enc->phys_encs[i]->hw_intf->idx);
2281 		}
2282 	}
2283 
2284 	/* reset the merge 3D HW block */
2285 	if (phys_enc->hw_pp && phys_enc->hw_pp->merge_3d) {
2286 		phys_enc->hw_pp->merge_3d->ops.setup_3d_mode(phys_enc->hw_pp->merge_3d,
2287 				BLEND_3D_NONE);
2288 		if (phys_enc->hw_ctl->ops.update_pending_flush_merge_3d)
2289 			phys_enc->hw_ctl->ops.update_pending_flush_merge_3d(ctl,
2290 					phys_enc->hw_pp->merge_3d->idx);
2291 	}
2292 
2293 	if (phys_enc->hw_cdm) {
2294 		if (phys_enc->hw_cdm->ops.bind_pingpong_blk && phys_enc->hw_pp)
2295 			phys_enc->hw_cdm->ops.bind_pingpong_blk(phys_enc->hw_cdm,
2296 								PINGPONG_NONE);
2297 		if (phys_enc->hw_ctl->ops.update_pending_flush_cdm)
2298 			phys_enc->hw_ctl->ops.update_pending_flush_cdm(phys_enc->hw_ctl,
2299 								       phys_enc->hw_cdm->idx);
2300 	}
2301 
2302 	if (dpu_enc->dsc) {
2303 		dpu_encoder_unprep_dsc(dpu_enc);
2304 		dpu_enc->dsc = NULL;
2305 	}
2306 
2307 	intf_cfg.stream_sel = 0; /* Don't care value for video mode */
2308 	intf_cfg.mode_3d = dpu_encoder_helper_get_3d_blend_mode(phys_enc);
2309 	intf_cfg.dsc = dpu_encoder_helper_get_dsc(phys_enc);
2310 
2311 	if (phys_enc->hw_intf)
2312 		intf_cfg.intf = phys_enc->hw_intf->idx;
2313 	if (phys_enc->hw_wb)
2314 		intf_cfg.wb = phys_enc->hw_wb->idx;
2315 
2316 	if (phys_enc->hw_pp && phys_enc->hw_pp->merge_3d)
2317 		intf_cfg.merge_3d = phys_enc->hw_pp->merge_3d->idx;
2318 
2319 	if (ctl->ops.reset_intf_cfg)
2320 		ctl->ops.reset_intf_cfg(ctl, &intf_cfg);
2321 
2322 	ctl->ops.trigger_flush(ctl);
2323 	ctl->ops.trigger_start(ctl);
2324 	ctl->ops.clear_pending_flush(ctl);
2325 }
2326 
2327 /**
2328  * dpu_encoder_helper_phys_setup_cdm - setup chroma down sampling block
2329  * @phys_enc: Pointer to physical encoder
2330  * @dpu_fmt: Pinter to the format description
2331  * @output_type: HDMI/WB
2332  */
2333 void dpu_encoder_helper_phys_setup_cdm(struct dpu_encoder_phys *phys_enc,
2334 				       const struct msm_format *dpu_fmt,
2335 				       u32 output_type)
2336 {
2337 	struct dpu_hw_cdm *hw_cdm;
2338 	struct dpu_hw_cdm_cfg *cdm_cfg;
2339 	struct dpu_hw_pingpong *hw_pp;
2340 	int ret;
2341 
2342 	if (!phys_enc)
2343 		return;
2344 
2345 	cdm_cfg = &phys_enc->cdm_cfg;
2346 	hw_pp = phys_enc->hw_pp;
2347 	hw_cdm = phys_enc->hw_cdm;
2348 
2349 	if (!hw_cdm)
2350 		return;
2351 
2352 	if (!MSM_FORMAT_IS_YUV(dpu_fmt)) {
2353 		DPU_DEBUG("[enc:%d] cdm_disable fmt:%p4cc\n", DRMID(phys_enc->parent),
2354 			  &dpu_fmt->pixel_format);
2355 		if (hw_cdm->ops.bind_pingpong_blk)
2356 			hw_cdm->ops.bind_pingpong_blk(hw_cdm, PINGPONG_NONE);
2357 
2358 		return;
2359 	}
2360 
2361 	memset(cdm_cfg, 0, sizeof(struct dpu_hw_cdm_cfg));
2362 
2363 	cdm_cfg->output_width = phys_enc->cached_mode.hdisplay;
2364 	cdm_cfg->output_height = phys_enc->cached_mode.vdisplay;
2365 	cdm_cfg->output_fmt = dpu_fmt;
2366 	cdm_cfg->output_type = output_type;
2367 	cdm_cfg->output_bit_depth = MSM_FORMAT_IS_DX(dpu_fmt) ?
2368 			CDM_CDWN_OUTPUT_10BIT : CDM_CDWN_OUTPUT_8BIT;
2369 	cdm_cfg->csc_cfg = &dpu_csc10_rgb2yuv_601l;
2370 
2371 	/* enable 10 bit logic */
2372 	switch (cdm_cfg->output_fmt->chroma_sample) {
2373 	case CHROMA_FULL:
2374 		cdm_cfg->h_cdwn_type = CDM_CDWN_DISABLE;
2375 		cdm_cfg->v_cdwn_type = CDM_CDWN_DISABLE;
2376 		break;
2377 	case CHROMA_H2V1:
2378 		cdm_cfg->h_cdwn_type = CDM_CDWN_COSITE;
2379 		cdm_cfg->v_cdwn_type = CDM_CDWN_DISABLE;
2380 		break;
2381 	case CHROMA_420:
2382 		cdm_cfg->h_cdwn_type = CDM_CDWN_COSITE;
2383 		cdm_cfg->v_cdwn_type = CDM_CDWN_OFFSITE;
2384 		break;
2385 	case CHROMA_H1V2:
2386 	default:
2387 		DPU_ERROR("[enc:%d] unsupported chroma sampling type\n",
2388 			  DRMID(phys_enc->parent));
2389 		cdm_cfg->h_cdwn_type = CDM_CDWN_DISABLE;
2390 		cdm_cfg->v_cdwn_type = CDM_CDWN_DISABLE;
2391 		break;
2392 	}
2393 
2394 	DPU_DEBUG("[enc:%d] cdm_enable:%d,%d,%p4cc,%d,%d,%d,%d]\n",
2395 		  DRMID(phys_enc->parent), cdm_cfg->output_width,
2396 		  cdm_cfg->output_height, &cdm_cfg->output_fmt->pixel_format,
2397 		  cdm_cfg->output_type, cdm_cfg->output_bit_depth,
2398 		  cdm_cfg->h_cdwn_type, cdm_cfg->v_cdwn_type);
2399 
2400 	if (hw_cdm->ops.enable) {
2401 		cdm_cfg->pp_id = hw_pp->idx;
2402 		ret = hw_cdm->ops.enable(hw_cdm, cdm_cfg);
2403 		if (ret < 0) {
2404 			DPU_ERROR("[enc:%d] failed to enable CDM; ret:%d\n",
2405 				  DRMID(phys_enc->parent), ret);
2406 			return;
2407 		}
2408 	}
2409 }
2410 
2411 #ifdef CONFIG_DEBUG_FS
2412 static int _dpu_encoder_status_show(struct seq_file *s, void *data)
2413 {
2414 	struct drm_encoder *drm_enc = s->private;
2415 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
2416 	int i;
2417 
2418 	mutex_lock(&dpu_enc->enc_lock);
2419 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2420 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2421 
2422 		seq_printf(s, "intf:%d  wb:%d  vsync:%8d     underrun:%8d    frame_done_cnt:%d",
2423 				phys->hw_intf ? phys->hw_intf->idx - INTF_0 : -1,
2424 				phys->hw_wb ? phys->hw_wb->idx - WB_0 : -1,
2425 				atomic_read(&phys->vsync_cnt),
2426 				atomic_read(&phys->underrun_cnt),
2427 				atomic_read(&dpu_enc->frame_done_timeout_cnt));
2428 
2429 		seq_printf(s, "mode: %s\n", dpu_encoder_helper_get_intf_type(phys->intf_mode));
2430 	}
2431 	mutex_unlock(&dpu_enc->enc_lock);
2432 
2433 	return 0;
2434 }
2435 
2436 DEFINE_SHOW_ATTRIBUTE(_dpu_encoder_status);
2437 
2438 static void dpu_encoder_debugfs_init(struct drm_encoder *drm_enc, struct dentry *root)
2439 {
2440 	/* don't error check these */
2441 	debugfs_create_file("status", 0600,
2442 			    root, drm_enc, &_dpu_encoder_status_fops);
2443 }
2444 #else
2445 #define dpu_encoder_debugfs_init NULL
2446 #endif
2447 
2448 static int dpu_encoder_virt_add_phys_encs(
2449 		struct drm_device *dev,
2450 		struct msm_display_info *disp_info,
2451 		struct dpu_encoder_virt *dpu_enc,
2452 		struct dpu_enc_phys_init_params *params)
2453 {
2454 	struct dpu_encoder_phys *enc = NULL;
2455 
2456 	DPU_DEBUG_ENC(dpu_enc, "\n");
2457 
2458 	/*
2459 	 * We may create up to NUM_PHYS_ENCODER_TYPES physical encoder types
2460 	 * in this function, check up-front.
2461 	 */
2462 	if (dpu_enc->num_phys_encs + NUM_PHYS_ENCODER_TYPES >=
2463 			ARRAY_SIZE(dpu_enc->phys_encs)) {
2464 		DPU_ERROR_ENC(dpu_enc, "too many physical encoders %d\n",
2465 			  dpu_enc->num_phys_encs);
2466 		return -EINVAL;
2467 	}
2468 
2469 
2470 	if (disp_info->intf_type == INTF_WB) {
2471 		enc = dpu_encoder_phys_wb_init(dev, params);
2472 
2473 		if (IS_ERR(enc)) {
2474 			DPU_ERROR_ENC(dpu_enc, "failed to init wb enc: %ld\n",
2475 				PTR_ERR(enc));
2476 			return PTR_ERR(enc);
2477 		}
2478 
2479 		dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
2480 		++dpu_enc->num_phys_encs;
2481 	} else if (disp_info->is_cmd_mode) {
2482 		enc = dpu_encoder_phys_cmd_init(dev, params);
2483 
2484 		if (IS_ERR(enc)) {
2485 			DPU_ERROR_ENC(dpu_enc, "failed to init cmd enc: %ld\n",
2486 				PTR_ERR(enc));
2487 			return PTR_ERR(enc);
2488 		}
2489 
2490 		dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
2491 		++dpu_enc->num_phys_encs;
2492 	} else {
2493 		enc = dpu_encoder_phys_vid_init(dev, params);
2494 
2495 		if (IS_ERR(enc)) {
2496 			DPU_ERROR_ENC(dpu_enc, "failed to init vid enc: %ld\n",
2497 				PTR_ERR(enc));
2498 			return PTR_ERR(enc);
2499 		}
2500 
2501 		dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
2502 		++dpu_enc->num_phys_encs;
2503 	}
2504 
2505 	if (params->split_role == ENC_ROLE_SLAVE)
2506 		dpu_enc->cur_slave = enc;
2507 	else
2508 		dpu_enc->cur_master = enc;
2509 
2510 	return 0;
2511 }
2512 
2513 static int dpu_encoder_setup_display(struct dpu_encoder_virt *dpu_enc,
2514 				 struct dpu_kms *dpu_kms,
2515 				 struct msm_display_info *disp_info)
2516 {
2517 	int ret = 0;
2518 	int i = 0;
2519 	struct dpu_enc_phys_init_params phys_params;
2520 
2521 	if (!dpu_enc) {
2522 		DPU_ERROR("invalid arg(s), enc %d\n", dpu_enc != NULL);
2523 		return -EINVAL;
2524 	}
2525 
2526 	dpu_enc->cur_master = NULL;
2527 
2528 	memset(&phys_params, 0, sizeof(phys_params));
2529 	phys_params.dpu_kms = dpu_kms;
2530 	phys_params.parent = &dpu_enc->base;
2531 	phys_params.enc_spinlock = &dpu_enc->enc_spinlock;
2532 
2533 	WARN_ON(disp_info->num_of_h_tiles < 1);
2534 
2535 	DPU_DEBUG("dsi_info->num_of_h_tiles %d\n", disp_info->num_of_h_tiles);
2536 
2537 	if (disp_info->intf_type != INTF_WB)
2538 		dpu_enc->idle_pc_supported =
2539 				dpu_kms->catalog->caps->has_idle_pc;
2540 
2541 	mutex_lock(&dpu_enc->enc_lock);
2542 	for (i = 0; i < disp_info->num_of_h_tiles && !ret; i++) {
2543 		/*
2544 		 * Left-most tile is at index 0, content is controller id
2545 		 * h_tile_instance_ids[2] = {0, 1}; DSI0 = left, DSI1 = right
2546 		 * h_tile_instance_ids[2] = {1, 0}; DSI1 = left, DSI0 = right
2547 		 */
2548 		u32 controller_id = disp_info->h_tile_instance[i];
2549 
2550 		if (disp_info->num_of_h_tiles > 1) {
2551 			if (i == 0)
2552 				phys_params.split_role = ENC_ROLE_MASTER;
2553 			else
2554 				phys_params.split_role = ENC_ROLE_SLAVE;
2555 		} else {
2556 			phys_params.split_role = ENC_ROLE_SOLO;
2557 		}
2558 
2559 		DPU_DEBUG("h_tile_instance %d = %d, split_role %d\n",
2560 				i, controller_id, phys_params.split_role);
2561 
2562 		phys_params.hw_intf = dpu_encoder_get_intf(dpu_kms->catalog, &dpu_kms->rm,
2563 							   disp_info->intf_type,
2564 							   controller_id);
2565 
2566 		if (disp_info->intf_type == INTF_WB && controller_id < WB_MAX)
2567 			phys_params.hw_wb = dpu_rm_get_wb(&dpu_kms->rm, controller_id);
2568 
2569 		if (!phys_params.hw_intf && !phys_params.hw_wb) {
2570 			DPU_ERROR_ENC(dpu_enc, "no intf or wb block assigned at idx: %d\n", i);
2571 			ret = -EINVAL;
2572 			break;
2573 		}
2574 
2575 		if (phys_params.hw_intf && phys_params.hw_wb) {
2576 			DPU_ERROR_ENC(dpu_enc,
2577 					"invalid phys both intf and wb block at idx: %d\n", i);
2578 			ret = -EINVAL;
2579 			break;
2580 		}
2581 
2582 		ret = dpu_encoder_virt_add_phys_encs(dpu_kms->dev, disp_info,
2583 				dpu_enc, &phys_params);
2584 		if (ret) {
2585 			DPU_ERROR_ENC(dpu_enc, "failed to add phys encs\n");
2586 			break;
2587 		}
2588 	}
2589 
2590 	mutex_unlock(&dpu_enc->enc_lock);
2591 
2592 	return ret;
2593 }
2594 
2595 static void dpu_encoder_frame_done_timeout(struct timer_list *t)
2596 {
2597 	struct dpu_encoder_virt *dpu_enc = from_timer(dpu_enc, t,
2598 			frame_done_timer);
2599 	struct drm_encoder *drm_enc = &dpu_enc->base;
2600 	u32 event;
2601 
2602 	if (!drm_enc->dev) {
2603 		DPU_ERROR("invalid parameters\n");
2604 		return;
2605 	}
2606 
2607 	if (!dpu_enc->frame_busy_mask[0] || !dpu_enc->crtc) {
2608 		DRM_DEBUG_KMS("id:%u invalid timeout frame_busy_mask=%lu\n",
2609 			      DRMID(drm_enc), dpu_enc->frame_busy_mask[0]);
2610 		return;
2611 	} else if (!atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) {
2612 		DRM_DEBUG_KMS("id:%u invalid timeout\n", DRMID(drm_enc));
2613 		return;
2614 	}
2615 
2616 	DPU_ERROR_ENC_RATELIMITED(dpu_enc, "frame done timeout\n");
2617 
2618 	if (atomic_inc_return(&dpu_enc->frame_done_timeout_cnt) == 1)
2619 		msm_disp_snapshot_state(drm_enc->dev);
2620 
2621 	event = DPU_ENCODER_FRAME_EVENT_ERROR;
2622 	trace_dpu_enc_frame_done_timeout(DRMID(drm_enc), event);
2623 	dpu_crtc_frame_event_cb(dpu_enc->crtc, event);
2624 }
2625 
2626 static const struct drm_encoder_helper_funcs dpu_encoder_helper_funcs = {
2627 	.atomic_mode_set = dpu_encoder_virt_atomic_mode_set,
2628 	.atomic_disable = dpu_encoder_virt_atomic_disable,
2629 	.atomic_enable = dpu_encoder_virt_atomic_enable,
2630 	.atomic_check = dpu_encoder_virt_atomic_check,
2631 };
2632 
2633 static const struct drm_encoder_funcs dpu_encoder_funcs = {
2634 	.debugfs_init = dpu_encoder_debugfs_init,
2635 };
2636 
2637 /**
2638  * dpu_encoder_init - initialize virtual encoder object
2639  * @dev:        Pointer to drm device structure
2640  * @drm_enc_mode: corresponding DRM_MODE_ENCODER_* constant
2641  * @disp_info:  Pointer to display information structure
2642  * Returns:     Pointer to newly created drm encoder
2643  */
2644 struct drm_encoder *dpu_encoder_init(struct drm_device *dev,
2645 		int drm_enc_mode,
2646 		struct msm_display_info *disp_info)
2647 {
2648 	struct msm_drm_private *priv = dev->dev_private;
2649 	struct dpu_kms *dpu_kms = to_dpu_kms(priv->kms);
2650 	struct dpu_encoder_virt *dpu_enc;
2651 	int ret;
2652 
2653 	dpu_enc = drmm_encoder_alloc(dev, struct dpu_encoder_virt, base,
2654 				     &dpu_encoder_funcs, drm_enc_mode, NULL);
2655 	if (IS_ERR(dpu_enc))
2656 		return ERR_CAST(dpu_enc);
2657 
2658 	drm_encoder_helper_add(&dpu_enc->base, &dpu_encoder_helper_funcs);
2659 
2660 	spin_lock_init(&dpu_enc->enc_spinlock);
2661 	dpu_enc->enabled = false;
2662 	mutex_init(&dpu_enc->enc_lock);
2663 	mutex_init(&dpu_enc->rc_lock);
2664 
2665 	ret = dpu_encoder_setup_display(dpu_enc, dpu_kms, disp_info);
2666 	if (ret) {
2667 		DPU_ERROR("failed to setup encoder\n");
2668 		return ERR_PTR(-ENOMEM);
2669 	}
2670 
2671 	atomic_set(&dpu_enc->frame_done_timeout_ms, 0);
2672 	atomic_set(&dpu_enc->frame_done_timeout_cnt, 0);
2673 	timer_setup(&dpu_enc->frame_done_timer,
2674 			dpu_encoder_frame_done_timeout, 0);
2675 
2676 	INIT_DELAYED_WORK(&dpu_enc->delayed_off_work,
2677 			dpu_encoder_off_work);
2678 	dpu_enc->idle_timeout = IDLE_TIMEOUT;
2679 
2680 	memcpy(&dpu_enc->disp_info, disp_info, sizeof(*disp_info));
2681 
2682 	DPU_DEBUG_ENC(dpu_enc, "created\n");
2683 
2684 	return &dpu_enc->base;
2685 }
2686 
2687 /**
2688  * dpu_encoder_wait_for_commit_done() - Wait for encoder to flush pending state
2689  * @drm_enc:	encoder pointer
2690  *
2691  * Wait for hardware to have flushed the current pending changes to hardware at
2692  * a vblank or CTL_START. Physical encoders will map this differently depending
2693  * on the type: vid mode -> vsync_irq, cmd mode -> CTL_START.
2694  *
2695  * Return: 0 on success, -EWOULDBLOCK if already signaled, error otherwise
2696  */
2697 int dpu_encoder_wait_for_commit_done(struct drm_encoder *drm_enc)
2698 {
2699 	struct dpu_encoder_virt *dpu_enc = NULL;
2700 	int i, ret = 0;
2701 
2702 	if (!drm_enc) {
2703 		DPU_ERROR("invalid encoder\n");
2704 		return -EINVAL;
2705 	}
2706 	dpu_enc = to_dpu_encoder_virt(drm_enc);
2707 	DPU_DEBUG_ENC(dpu_enc, "\n");
2708 
2709 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2710 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2711 
2712 		if (phys->ops.wait_for_commit_done) {
2713 			DPU_ATRACE_BEGIN("wait_for_commit_done");
2714 			ret = phys->ops.wait_for_commit_done(phys);
2715 			DPU_ATRACE_END("wait_for_commit_done");
2716 			if (ret == -ETIMEDOUT && !dpu_enc->commit_done_timedout) {
2717 				dpu_enc->commit_done_timedout = true;
2718 				msm_disp_snapshot_state(drm_enc->dev);
2719 			}
2720 			if (ret)
2721 				return ret;
2722 		}
2723 	}
2724 
2725 	return ret;
2726 }
2727 
2728 /**
2729  * dpu_encoder_wait_for_tx_complete() - Wait for encoder to transfer pixels to panel
2730  * @drm_enc:	encoder pointer
2731  *
2732  * Wait for the hardware to transfer all the pixels to the panel. Physical
2733  * encoders will map this differently depending on the type: vid mode -> vsync_irq,
2734  * cmd mode -> pp_done.
2735  *
2736  * Return: 0 on success, -EWOULDBLOCK if already signaled, error otherwise
2737  */
2738 int dpu_encoder_wait_for_tx_complete(struct drm_encoder *drm_enc)
2739 {
2740 	struct dpu_encoder_virt *dpu_enc = NULL;
2741 	int i, ret = 0;
2742 
2743 	if (!drm_enc) {
2744 		DPU_ERROR("invalid encoder\n");
2745 		return -EINVAL;
2746 	}
2747 	dpu_enc = to_dpu_encoder_virt(drm_enc);
2748 	DPU_DEBUG_ENC(dpu_enc, "\n");
2749 
2750 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2751 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2752 
2753 		if (phys->ops.wait_for_tx_complete) {
2754 			DPU_ATRACE_BEGIN("wait_for_tx_complete");
2755 			ret = phys->ops.wait_for_tx_complete(phys);
2756 			DPU_ATRACE_END("wait_for_tx_complete");
2757 			if (ret)
2758 				return ret;
2759 		}
2760 	}
2761 
2762 	return ret;
2763 }
2764 
2765 /**
2766  * dpu_encoder_get_intf_mode - get interface mode of the given encoder
2767  * @encoder: Pointer to drm encoder object
2768  */
2769 enum dpu_intf_mode dpu_encoder_get_intf_mode(struct drm_encoder *encoder)
2770 {
2771 	struct dpu_encoder_virt *dpu_enc = NULL;
2772 
2773 	if (!encoder) {
2774 		DPU_ERROR("invalid encoder\n");
2775 		return INTF_MODE_NONE;
2776 	}
2777 	dpu_enc = to_dpu_encoder_virt(encoder);
2778 
2779 	if (dpu_enc->cur_master)
2780 		return dpu_enc->cur_master->intf_mode;
2781 
2782 	if (dpu_enc->num_phys_encs)
2783 		return dpu_enc->phys_encs[0]->intf_mode;
2784 
2785 	return INTF_MODE_NONE;
2786 }
2787 
2788 /**
2789  * dpu_encoder_helper_get_dsc - get DSC blocks mask for the DPU encoder
2790  *   This helper function is used by physical encoder to get DSC blocks mask
2791  *   used for this encoder.
2792  * @phys_enc: Pointer to physical encoder structure
2793  */
2794 unsigned int dpu_encoder_helper_get_dsc(struct dpu_encoder_phys *phys_enc)
2795 {
2796 	struct drm_encoder *encoder = phys_enc->parent;
2797 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(encoder);
2798 
2799 	return dpu_enc->dsc_mask;
2800 }
2801 
2802 void dpu_encoder_phys_init(struct dpu_encoder_phys *phys_enc,
2803 			  struct dpu_enc_phys_init_params *p)
2804 {
2805 	phys_enc->hw_mdptop = p->dpu_kms->hw_mdp;
2806 	phys_enc->hw_intf = p->hw_intf;
2807 	phys_enc->hw_wb = p->hw_wb;
2808 	phys_enc->parent = p->parent;
2809 	phys_enc->dpu_kms = p->dpu_kms;
2810 	phys_enc->split_role = p->split_role;
2811 	phys_enc->enc_spinlock = p->enc_spinlock;
2812 	phys_enc->enable_state = DPU_ENC_DISABLED;
2813 
2814 	atomic_set(&phys_enc->pending_kickoff_cnt, 0);
2815 	atomic_set(&phys_enc->pending_ctlstart_cnt, 0);
2816 
2817 	atomic_set(&phys_enc->vsync_cnt, 0);
2818 	atomic_set(&phys_enc->underrun_cnt, 0);
2819 
2820 	init_waitqueue_head(&phys_enc->pending_kickoff_wq);
2821 }
2822