1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2014-2018, The Linux Foundation. All rights reserved. 4 * Copyright (C) 2013 Red Hat 5 * Author: Rob Clark <robdclark@gmail.com> 6 */ 7 8 #define pr_fmt(fmt) "[drm:%s:%d] " fmt, __func__, __LINE__ 9 #include <linux/debugfs.h> 10 #include <linux/kthread.h> 11 #include <linux/seq_file.h> 12 13 #include <drm/drm_crtc.h> 14 #include <drm/drm_file.h> 15 #include <drm/drm_probe_helper.h> 16 17 #include "msm_drv.h" 18 #include "dpu_kms.h" 19 #include "dpu_hwio.h" 20 #include "dpu_hw_catalog.h" 21 #include "dpu_hw_intf.h" 22 #include "dpu_hw_ctl.h" 23 #include "dpu_formats.h" 24 #include "dpu_encoder_phys.h" 25 #include "dpu_crtc.h" 26 #include "dpu_trace.h" 27 #include "dpu_core_irq.h" 28 29 #define DPU_DEBUG_ENC(e, fmt, ...) DPU_DEBUG("enc%d " fmt,\ 30 (e) ? (e)->base.base.id : -1, ##__VA_ARGS__) 31 32 #define DPU_ERROR_ENC(e, fmt, ...) DPU_ERROR("enc%d " fmt,\ 33 (e) ? (e)->base.base.id : -1, ##__VA_ARGS__) 34 35 #define DPU_DEBUG_PHYS(p, fmt, ...) DPU_DEBUG("enc%d intf%d pp%d " fmt,\ 36 (p) ? (p)->parent->base.id : -1, \ 37 (p) ? (p)->intf_idx - INTF_0 : -1, \ 38 (p) ? ((p)->hw_pp ? (p)->hw_pp->idx - PINGPONG_0 : -1) : -1, \ 39 ##__VA_ARGS__) 40 41 #define DPU_ERROR_PHYS(p, fmt, ...) DPU_ERROR("enc%d intf%d pp%d " fmt,\ 42 (p) ? (p)->parent->base.id : -1, \ 43 (p) ? (p)->intf_idx - INTF_0 : -1, \ 44 (p) ? ((p)->hw_pp ? (p)->hw_pp->idx - PINGPONG_0 : -1) : -1, \ 45 ##__VA_ARGS__) 46 47 /* 48 * Two to anticipate panels that can do cmd/vid dynamic switching 49 * plan is to create all possible physical encoder types, and switch between 50 * them at runtime 51 */ 52 #define NUM_PHYS_ENCODER_TYPES 2 53 54 #define MAX_PHYS_ENCODERS_PER_VIRTUAL \ 55 (MAX_H_TILES_PER_DISPLAY * NUM_PHYS_ENCODER_TYPES) 56 57 #define MAX_CHANNELS_PER_ENC 2 58 59 #define IDLE_SHORT_TIMEOUT 1 60 61 #define MAX_VDISPLAY_SPLIT 1080 62 63 /* timeout in frames waiting for frame done */ 64 #define DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES 5 65 66 /** 67 * enum dpu_enc_rc_events - events for resource control state machine 68 * @DPU_ENC_RC_EVENT_KICKOFF: 69 * This event happens at NORMAL priority. 70 * Event that signals the start of the transfer. When this event is 71 * received, enable MDP/DSI core clocks. Regardless of the previous 72 * state, the resource should be in ON state at the end of this event. 73 * @DPU_ENC_RC_EVENT_FRAME_DONE: 74 * This event happens at INTERRUPT level. 75 * Event signals the end of the data transfer after the PP FRAME_DONE 76 * event. At the end of this event, a delayed work is scheduled to go to 77 * IDLE_PC state after IDLE_TIMEOUT time. 78 * @DPU_ENC_RC_EVENT_PRE_STOP: 79 * This event happens at NORMAL priority. 80 * This event, when received during the ON state, leave the RC STATE 81 * in the PRE_OFF state. It should be followed by the STOP event as 82 * part of encoder disable. 83 * If received during IDLE or OFF states, it will do nothing. 84 * @DPU_ENC_RC_EVENT_STOP: 85 * This event happens at NORMAL priority. 86 * When this event is received, disable all the MDP/DSI core clocks, and 87 * disable IRQs. It should be called from the PRE_OFF or IDLE states. 88 * IDLE is expected when IDLE_PC has run, and PRE_OFF did nothing. 89 * PRE_OFF is expected when PRE_STOP was executed during the ON state. 90 * Resource state should be in OFF at the end of the event. 91 * @DPU_ENC_RC_EVENT_ENTER_IDLE: 92 * This event happens at NORMAL priority from a work item. 93 * Event signals that there were no frame updates for IDLE_TIMEOUT time. 94 * This would disable MDP/DSI core clocks and change the resource state 95 * to IDLE. 96 */ 97 enum dpu_enc_rc_events { 98 DPU_ENC_RC_EVENT_KICKOFF = 1, 99 DPU_ENC_RC_EVENT_FRAME_DONE, 100 DPU_ENC_RC_EVENT_PRE_STOP, 101 DPU_ENC_RC_EVENT_STOP, 102 DPU_ENC_RC_EVENT_ENTER_IDLE 103 }; 104 105 /* 106 * enum dpu_enc_rc_states - states that the resource control maintains 107 * @DPU_ENC_RC_STATE_OFF: Resource is in OFF state 108 * @DPU_ENC_RC_STATE_PRE_OFF: Resource is transitioning to OFF state 109 * @DPU_ENC_RC_STATE_ON: Resource is in ON state 110 * @DPU_ENC_RC_STATE_MODESET: Resource is in modeset state 111 * @DPU_ENC_RC_STATE_IDLE: Resource is in IDLE state 112 */ 113 enum dpu_enc_rc_states { 114 DPU_ENC_RC_STATE_OFF, 115 DPU_ENC_RC_STATE_PRE_OFF, 116 DPU_ENC_RC_STATE_ON, 117 DPU_ENC_RC_STATE_IDLE 118 }; 119 120 /** 121 * struct dpu_encoder_virt - virtual encoder. Container of one or more physical 122 * encoders. Virtual encoder manages one "logical" display. Physical 123 * encoders manage one intf block, tied to a specific panel/sub-panel. 124 * Virtual encoder defers as much as possible to the physical encoders. 125 * Virtual encoder registers itself with the DRM Framework as the encoder. 126 * @base: drm_encoder base class for registration with DRM 127 * @enc_spinlock: Virtual-Encoder-Wide Spin Lock for IRQ purposes 128 * @bus_scaling_client: Client handle to the bus scaling interface 129 * @enabled: True if the encoder is active, protected by enc_lock 130 * @num_phys_encs: Actual number of physical encoders contained. 131 * @phys_encs: Container of physical encoders managed. 132 * @cur_master: Pointer to the current master in this mode. Optimization 133 * Only valid after enable. Cleared as disable. 134 * @hw_pp Handle to the pingpong blocks used for the display. No. 135 * pingpong blocks can be different than num_phys_encs. 136 * @intfs_swapped Whether or not the phys_enc interfaces have been swapped 137 * for partial update right-only cases, such as pingpong 138 * split where virtual pingpong does not generate IRQs 139 * @crtc: Pointer to the currently assigned crtc. Normally you 140 * would use crtc->state->encoder_mask to determine the 141 * link between encoder/crtc. However in this case we need 142 * to track crtc in the disable() hook which is called 143 * _after_ encoder_mask is cleared. 144 * @crtc_kickoff_cb: Callback into CRTC that will flush & start 145 * all CTL paths 146 * @crtc_kickoff_cb_data: Opaque user data given to crtc_kickoff_cb 147 * @debugfs_root: Debug file system root file node 148 * @enc_lock: Lock around physical encoder 149 * create/destroy/enable/disable 150 * @frame_busy_mask: Bitmask tracking which phys_enc we are still 151 * busy processing current command. 152 * Bit0 = phys_encs[0] etc. 153 * @crtc_frame_event_cb: callback handler for frame event 154 * @crtc_frame_event_cb_data: callback handler private data 155 * @frame_done_timeout_ms: frame done timeout in ms 156 * @frame_done_timer: watchdog timer for frame done event 157 * @vsync_event_timer: vsync timer 158 * @disp_info: local copy of msm_display_info struct 159 * @idle_pc_supported: indicate if idle power collaps is supported 160 * @rc_lock: resource control mutex lock to protect 161 * virt encoder over various state changes 162 * @rc_state: resource controller state 163 * @delayed_off_work: delayed worker to schedule disabling of 164 * clks and resources after IDLE_TIMEOUT time. 165 * @vsync_event_work: worker to handle vsync event for autorefresh 166 * @topology: topology of the display 167 * @mode_set_complete: flag to indicate modeset completion 168 * @idle_timeout: idle timeout duration in milliseconds 169 */ 170 struct dpu_encoder_virt { 171 struct drm_encoder base; 172 spinlock_t enc_spinlock; 173 uint32_t bus_scaling_client; 174 175 bool enabled; 176 177 unsigned int num_phys_encs; 178 struct dpu_encoder_phys *phys_encs[MAX_PHYS_ENCODERS_PER_VIRTUAL]; 179 struct dpu_encoder_phys *cur_master; 180 struct dpu_encoder_phys *cur_slave; 181 struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC]; 182 183 bool intfs_swapped; 184 185 struct drm_crtc *crtc; 186 187 struct dentry *debugfs_root; 188 struct mutex enc_lock; 189 DECLARE_BITMAP(frame_busy_mask, MAX_PHYS_ENCODERS_PER_VIRTUAL); 190 void (*crtc_frame_event_cb)(void *, u32 event); 191 void *crtc_frame_event_cb_data; 192 193 atomic_t frame_done_timeout_ms; 194 struct timer_list frame_done_timer; 195 struct timer_list vsync_event_timer; 196 197 struct msm_display_info disp_info; 198 199 bool idle_pc_supported; 200 struct mutex rc_lock; 201 enum dpu_enc_rc_states rc_state; 202 struct delayed_work delayed_off_work; 203 struct kthread_work vsync_event_work; 204 struct msm_display_topology topology; 205 bool mode_set_complete; 206 207 u32 idle_timeout; 208 }; 209 210 #define to_dpu_encoder_virt(x) container_of(x, struct dpu_encoder_virt, base) 211 212 void dpu_encoder_helper_report_irq_timeout(struct dpu_encoder_phys *phys_enc, 213 enum dpu_intr_idx intr_idx) 214 { 215 DRM_ERROR("irq timeout id=%u, intf=%d, pp=%d, intr=%d\n", 216 DRMID(phys_enc->parent), phys_enc->intf_idx - INTF_0, 217 phys_enc->hw_pp->idx - PINGPONG_0, intr_idx); 218 219 if (phys_enc->parent_ops->handle_frame_done) 220 phys_enc->parent_ops->handle_frame_done( 221 phys_enc->parent, phys_enc, 222 DPU_ENCODER_FRAME_EVENT_ERROR); 223 } 224 225 static int dpu_encoder_helper_wait_event_timeout(int32_t drm_id, 226 int32_t hw_id, struct dpu_encoder_wait_info *info); 227 228 int dpu_encoder_helper_wait_for_irq(struct dpu_encoder_phys *phys_enc, 229 enum dpu_intr_idx intr_idx, 230 struct dpu_encoder_wait_info *wait_info) 231 { 232 struct dpu_encoder_irq *irq; 233 u32 irq_status; 234 int ret; 235 236 if (!phys_enc || !wait_info || intr_idx >= INTR_IDX_MAX) { 237 DPU_ERROR("invalid params\n"); 238 return -EINVAL; 239 } 240 irq = &phys_enc->irq[intr_idx]; 241 242 /* note: do master / slave checking outside */ 243 244 /* return EWOULDBLOCK since we know the wait isn't necessary */ 245 if (phys_enc->enable_state == DPU_ENC_DISABLED) { 246 DRM_ERROR("encoder is disabled id=%u, intr=%d, hw=%d, irq=%d", 247 DRMID(phys_enc->parent), intr_idx, irq->hw_idx, 248 irq->irq_idx); 249 return -EWOULDBLOCK; 250 } 251 252 if (irq->irq_idx < 0) { 253 DRM_DEBUG_KMS("skip irq wait id=%u, intr=%d, hw=%d, irq=%s", 254 DRMID(phys_enc->parent), intr_idx, irq->hw_idx, 255 irq->name); 256 return 0; 257 } 258 259 DRM_DEBUG_KMS("id=%u, intr=%d, hw=%d, irq=%d, pp=%d, pending_cnt=%d", 260 DRMID(phys_enc->parent), intr_idx, irq->hw_idx, 261 irq->irq_idx, phys_enc->hw_pp->idx - PINGPONG_0, 262 atomic_read(wait_info->atomic_cnt)); 263 264 ret = dpu_encoder_helper_wait_event_timeout( 265 DRMID(phys_enc->parent), 266 irq->hw_idx, 267 wait_info); 268 269 if (ret <= 0) { 270 irq_status = dpu_core_irq_read(phys_enc->dpu_kms, 271 irq->irq_idx, true); 272 if (irq_status) { 273 unsigned long flags; 274 275 DRM_DEBUG_KMS("irq not triggered id=%u, intr=%d, " 276 "hw=%d, irq=%d, pp=%d, atomic_cnt=%d", 277 DRMID(phys_enc->parent), intr_idx, 278 irq->hw_idx, irq->irq_idx, 279 phys_enc->hw_pp->idx - PINGPONG_0, 280 atomic_read(wait_info->atomic_cnt)); 281 local_irq_save(flags); 282 irq->cb.func(phys_enc, irq->irq_idx); 283 local_irq_restore(flags); 284 ret = 0; 285 } else { 286 ret = -ETIMEDOUT; 287 DRM_DEBUG_KMS("irq timeout id=%u, intr=%d, " 288 "hw=%d, irq=%d, pp=%d, atomic_cnt=%d", 289 DRMID(phys_enc->parent), intr_idx, 290 irq->hw_idx, irq->irq_idx, 291 phys_enc->hw_pp->idx - PINGPONG_0, 292 atomic_read(wait_info->atomic_cnt)); 293 } 294 } else { 295 ret = 0; 296 trace_dpu_enc_irq_wait_success(DRMID(phys_enc->parent), 297 intr_idx, irq->hw_idx, irq->irq_idx, 298 phys_enc->hw_pp->idx - PINGPONG_0, 299 atomic_read(wait_info->atomic_cnt)); 300 } 301 302 return ret; 303 } 304 305 int dpu_encoder_helper_register_irq(struct dpu_encoder_phys *phys_enc, 306 enum dpu_intr_idx intr_idx) 307 { 308 struct dpu_encoder_irq *irq; 309 int ret = 0; 310 311 if (!phys_enc || intr_idx >= INTR_IDX_MAX) { 312 DPU_ERROR("invalid params\n"); 313 return -EINVAL; 314 } 315 irq = &phys_enc->irq[intr_idx]; 316 317 if (irq->irq_idx >= 0) { 318 DPU_DEBUG_PHYS(phys_enc, 319 "skipping already registered irq %s type %d\n", 320 irq->name, irq->intr_type); 321 return 0; 322 } 323 324 irq->irq_idx = dpu_core_irq_idx_lookup(phys_enc->dpu_kms, 325 irq->intr_type, irq->hw_idx); 326 if (irq->irq_idx < 0) { 327 DPU_ERROR_PHYS(phys_enc, 328 "failed to lookup IRQ index for %s type:%d\n", 329 irq->name, irq->intr_type); 330 return -EINVAL; 331 } 332 333 ret = dpu_core_irq_register_callback(phys_enc->dpu_kms, irq->irq_idx, 334 &irq->cb); 335 if (ret) { 336 DPU_ERROR_PHYS(phys_enc, 337 "failed to register IRQ callback for %s\n", 338 irq->name); 339 irq->irq_idx = -EINVAL; 340 return ret; 341 } 342 343 ret = dpu_core_irq_enable(phys_enc->dpu_kms, &irq->irq_idx, 1); 344 if (ret) { 345 DRM_ERROR("enable failed id=%u, intr=%d, hw=%d, irq=%d", 346 DRMID(phys_enc->parent), intr_idx, irq->hw_idx, 347 irq->irq_idx); 348 dpu_core_irq_unregister_callback(phys_enc->dpu_kms, 349 irq->irq_idx, &irq->cb); 350 irq->irq_idx = -EINVAL; 351 return ret; 352 } 353 354 trace_dpu_enc_irq_register_success(DRMID(phys_enc->parent), intr_idx, 355 irq->hw_idx, irq->irq_idx); 356 357 return ret; 358 } 359 360 int dpu_encoder_helper_unregister_irq(struct dpu_encoder_phys *phys_enc, 361 enum dpu_intr_idx intr_idx) 362 { 363 struct dpu_encoder_irq *irq; 364 int ret; 365 366 if (!phys_enc) { 367 DPU_ERROR("invalid encoder\n"); 368 return -EINVAL; 369 } 370 irq = &phys_enc->irq[intr_idx]; 371 372 /* silently skip irqs that weren't registered */ 373 if (irq->irq_idx < 0) { 374 DRM_ERROR("duplicate unregister id=%u, intr=%d, hw=%d, irq=%d", 375 DRMID(phys_enc->parent), intr_idx, irq->hw_idx, 376 irq->irq_idx); 377 return 0; 378 } 379 380 ret = dpu_core_irq_disable(phys_enc->dpu_kms, &irq->irq_idx, 1); 381 if (ret) { 382 DRM_ERROR("disable failed id=%u, intr=%d, hw=%d, irq=%d ret=%d", 383 DRMID(phys_enc->parent), intr_idx, irq->hw_idx, 384 irq->irq_idx, ret); 385 } 386 387 ret = dpu_core_irq_unregister_callback(phys_enc->dpu_kms, irq->irq_idx, 388 &irq->cb); 389 if (ret) { 390 DRM_ERROR("unreg cb fail id=%u, intr=%d, hw=%d, irq=%d ret=%d", 391 DRMID(phys_enc->parent), intr_idx, irq->hw_idx, 392 irq->irq_idx, ret); 393 } 394 395 trace_dpu_enc_irq_unregister_success(DRMID(phys_enc->parent), intr_idx, 396 irq->hw_idx, irq->irq_idx); 397 398 irq->irq_idx = -EINVAL; 399 400 return 0; 401 } 402 403 void dpu_encoder_get_hw_resources(struct drm_encoder *drm_enc, 404 struct dpu_encoder_hw_resources *hw_res) 405 { 406 struct dpu_encoder_virt *dpu_enc = NULL; 407 int i = 0; 408 409 dpu_enc = to_dpu_encoder_virt(drm_enc); 410 DPU_DEBUG_ENC(dpu_enc, "\n"); 411 412 /* Query resources used by phys encs, expected to be without overlap */ 413 memset(hw_res, 0, sizeof(*hw_res)); 414 415 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 416 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 417 418 if (phys && phys->ops.get_hw_resources) 419 phys->ops.get_hw_resources(phys, hw_res); 420 } 421 } 422 423 static void dpu_encoder_destroy(struct drm_encoder *drm_enc) 424 { 425 struct dpu_encoder_virt *dpu_enc = NULL; 426 int i = 0; 427 428 if (!drm_enc) { 429 DPU_ERROR("invalid encoder\n"); 430 return; 431 } 432 433 dpu_enc = to_dpu_encoder_virt(drm_enc); 434 DPU_DEBUG_ENC(dpu_enc, "\n"); 435 436 mutex_lock(&dpu_enc->enc_lock); 437 438 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 439 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 440 441 if (phys && phys->ops.destroy) { 442 phys->ops.destroy(phys); 443 --dpu_enc->num_phys_encs; 444 dpu_enc->phys_encs[i] = NULL; 445 } 446 } 447 448 if (dpu_enc->num_phys_encs) 449 DPU_ERROR_ENC(dpu_enc, "expected 0 num_phys_encs not %d\n", 450 dpu_enc->num_phys_encs); 451 dpu_enc->num_phys_encs = 0; 452 mutex_unlock(&dpu_enc->enc_lock); 453 454 drm_encoder_cleanup(drm_enc); 455 mutex_destroy(&dpu_enc->enc_lock); 456 } 457 458 void dpu_encoder_helper_split_config( 459 struct dpu_encoder_phys *phys_enc, 460 enum dpu_intf interface) 461 { 462 struct dpu_encoder_virt *dpu_enc; 463 struct split_pipe_cfg cfg = { 0 }; 464 struct dpu_hw_mdp *hw_mdptop; 465 struct msm_display_info *disp_info; 466 467 if (!phys_enc || !phys_enc->hw_mdptop || !phys_enc->parent) { 468 DPU_ERROR("invalid arg(s), encoder %d\n", phys_enc != 0); 469 return; 470 } 471 472 dpu_enc = to_dpu_encoder_virt(phys_enc->parent); 473 hw_mdptop = phys_enc->hw_mdptop; 474 disp_info = &dpu_enc->disp_info; 475 476 if (disp_info->intf_type != DRM_MODE_ENCODER_DSI) 477 return; 478 479 /** 480 * disable split modes since encoder will be operating in as the only 481 * encoder, either for the entire use case in the case of, for example, 482 * single DSI, or for this frame in the case of left/right only partial 483 * update. 484 */ 485 if (phys_enc->split_role == ENC_ROLE_SOLO) { 486 if (hw_mdptop->ops.setup_split_pipe) 487 hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg); 488 return; 489 } 490 491 cfg.en = true; 492 cfg.mode = phys_enc->intf_mode; 493 cfg.intf = interface; 494 495 if (cfg.en && phys_enc->ops.needs_single_flush && 496 phys_enc->ops.needs_single_flush(phys_enc)) 497 cfg.split_flush_en = true; 498 499 if (phys_enc->split_role == ENC_ROLE_MASTER) { 500 DPU_DEBUG_ENC(dpu_enc, "enable %d\n", cfg.en); 501 502 if (hw_mdptop->ops.setup_split_pipe) 503 hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg); 504 } 505 } 506 507 static void _dpu_encoder_adjust_mode(struct drm_connector *connector, 508 struct drm_display_mode *adj_mode) 509 { 510 struct drm_display_mode *cur_mode; 511 512 if (!connector || !adj_mode) 513 return; 514 515 list_for_each_entry(cur_mode, &connector->modes, head) { 516 if (cur_mode->vdisplay == adj_mode->vdisplay && 517 cur_mode->hdisplay == adj_mode->hdisplay && 518 drm_mode_vrefresh(cur_mode) == drm_mode_vrefresh(adj_mode)) { 519 adj_mode->private = cur_mode->private; 520 adj_mode->private_flags |= cur_mode->private_flags; 521 } 522 } 523 } 524 525 static struct msm_display_topology dpu_encoder_get_topology( 526 struct dpu_encoder_virt *dpu_enc, 527 struct dpu_kms *dpu_kms, 528 struct drm_display_mode *mode) 529 { 530 struct msm_display_topology topology; 531 int i, intf_count = 0; 532 533 for (i = 0; i < MAX_PHYS_ENCODERS_PER_VIRTUAL; i++) 534 if (dpu_enc->phys_encs[i]) 535 intf_count++; 536 537 /* User split topology for width > 1080 */ 538 topology.num_lm = (mode->vdisplay > MAX_VDISPLAY_SPLIT) ? 2 : 1; 539 topology.num_enc = 0; 540 topology.num_intf = intf_count; 541 542 return topology; 543 } 544 static int dpu_encoder_virt_atomic_check( 545 struct drm_encoder *drm_enc, 546 struct drm_crtc_state *crtc_state, 547 struct drm_connector_state *conn_state) 548 { 549 struct dpu_encoder_virt *dpu_enc; 550 struct msm_drm_private *priv; 551 struct dpu_kms *dpu_kms; 552 const struct drm_display_mode *mode; 553 struct drm_display_mode *adj_mode; 554 struct msm_display_topology topology; 555 int i = 0; 556 int ret = 0; 557 558 if (!drm_enc || !crtc_state || !conn_state) { 559 DPU_ERROR("invalid arg(s), drm_enc %d, crtc/conn state %d/%d\n", 560 drm_enc != 0, crtc_state != 0, conn_state != 0); 561 return -EINVAL; 562 } 563 564 dpu_enc = to_dpu_encoder_virt(drm_enc); 565 DPU_DEBUG_ENC(dpu_enc, "\n"); 566 567 priv = drm_enc->dev->dev_private; 568 dpu_kms = to_dpu_kms(priv->kms); 569 mode = &crtc_state->mode; 570 adj_mode = &crtc_state->adjusted_mode; 571 trace_dpu_enc_atomic_check(DRMID(drm_enc)); 572 573 /* 574 * display drivers may populate private fields of the drm display mode 575 * structure while registering possible modes of a connector with DRM. 576 * These private fields are not populated back while DRM invokes 577 * the mode_set callbacks. This module retrieves and populates the 578 * private fields of the given mode. 579 */ 580 _dpu_encoder_adjust_mode(conn_state->connector, adj_mode); 581 582 /* perform atomic check on the first physical encoder (master) */ 583 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 584 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 585 586 if (phys && phys->ops.atomic_check) 587 ret = phys->ops.atomic_check(phys, crtc_state, 588 conn_state); 589 else if (phys && phys->ops.mode_fixup) 590 if (!phys->ops.mode_fixup(phys, mode, adj_mode)) 591 ret = -EINVAL; 592 593 if (ret) { 594 DPU_ERROR_ENC(dpu_enc, 595 "mode unsupported, phys idx %d\n", i); 596 break; 597 } 598 } 599 600 topology = dpu_encoder_get_topology(dpu_enc, dpu_kms, adj_mode); 601 602 /* Reserve dynamic resources now. Indicating AtomicTest phase */ 603 if (!ret) { 604 /* 605 * Avoid reserving resources when mode set is pending. Topology 606 * info may not be available to complete reservation. 607 */ 608 if (drm_atomic_crtc_needs_modeset(crtc_state) 609 && dpu_enc->mode_set_complete) { 610 ret = dpu_rm_reserve(&dpu_kms->rm, drm_enc, crtc_state, 611 topology, true); 612 dpu_enc->mode_set_complete = false; 613 } 614 } 615 616 trace_dpu_enc_atomic_check_flags(DRMID(drm_enc), adj_mode->flags, 617 adj_mode->private_flags); 618 619 return ret; 620 } 621 622 static void _dpu_encoder_update_vsync_source(struct dpu_encoder_virt *dpu_enc, 623 struct msm_display_info *disp_info) 624 { 625 struct dpu_vsync_source_cfg vsync_cfg = { 0 }; 626 struct msm_drm_private *priv; 627 struct dpu_kms *dpu_kms; 628 struct dpu_hw_mdp *hw_mdptop; 629 struct drm_encoder *drm_enc; 630 int i; 631 632 if (!dpu_enc || !disp_info) { 633 DPU_ERROR("invalid param dpu_enc:%d or disp_info:%d\n", 634 dpu_enc != NULL, disp_info != NULL); 635 return; 636 } else if (dpu_enc->num_phys_encs > ARRAY_SIZE(dpu_enc->hw_pp)) { 637 DPU_ERROR("invalid num phys enc %d/%d\n", 638 dpu_enc->num_phys_encs, 639 (int) ARRAY_SIZE(dpu_enc->hw_pp)); 640 return; 641 } 642 643 drm_enc = &dpu_enc->base; 644 /* this pointers are checked in virt_enable_helper */ 645 priv = drm_enc->dev->dev_private; 646 647 dpu_kms = to_dpu_kms(priv->kms); 648 hw_mdptop = dpu_kms->hw_mdp; 649 if (!hw_mdptop) { 650 DPU_ERROR("invalid mdptop\n"); 651 return; 652 } 653 654 if (hw_mdptop->ops.setup_vsync_source && 655 disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE) { 656 for (i = 0; i < dpu_enc->num_phys_encs; i++) 657 vsync_cfg.ppnumber[i] = dpu_enc->hw_pp[i]->idx; 658 659 vsync_cfg.pp_count = dpu_enc->num_phys_encs; 660 if (disp_info->is_te_using_watchdog_timer) 661 vsync_cfg.vsync_source = DPU_VSYNC_SOURCE_WD_TIMER_0; 662 else 663 vsync_cfg.vsync_source = DPU_VSYNC0_SOURCE_GPIO; 664 665 hw_mdptop->ops.setup_vsync_source(hw_mdptop, &vsync_cfg); 666 } 667 } 668 669 static void _dpu_encoder_irq_control(struct drm_encoder *drm_enc, bool enable) 670 { 671 struct dpu_encoder_virt *dpu_enc; 672 int i; 673 674 if (!drm_enc) { 675 DPU_ERROR("invalid encoder\n"); 676 return; 677 } 678 679 dpu_enc = to_dpu_encoder_virt(drm_enc); 680 681 DPU_DEBUG_ENC(dpu_enc, "enable:%d\n", enable); 682 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 683 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 684 685 if (phys && phys->ops.irq_control) 686 phys->ops.irq_control(phys, enable); 687 } 688 689 } 690 691 static void _dpu_encoder_resource_control_helper(struct drm_encoder *drm_enc, 692 bool enable) 693 { 694 struct msm_drm_private *priv; 695 struct dpu_kms *dpu_kms; 696 struct dpu_encoder_virt *dpu_enc; 697 698 dpu_enc = to_dpu_encoder_virt(drm_enc); 699 priv = drm_enc->dev->dev_private; 700 dpu_kms = to_dpu_kms(priv->kms); 701 702 trace_dpu_enc_rc_helper(DRMID(drm_enc), enable); 703 704 if (!dpu_enc->cur_master) { 705 DPU_ERROR("encoder master not set\n"); 706 return; 707 } 708 709 if (enable) { 710 /* enable DPU core clks */ 711 pm_runtime_get_sync(&dpu_kms->pdev->dev); 712 713 /* enable all the irq */ 714 _dpu_encoder_irq_control(drm_enc, true); 715 716 } else { 717 /* disable all the irq */ 718 _dpu_encoder_irq_control(drm_enc, false); 719 720 /* disable DPU core clks */ 721 pm_runtime_put_sync(&dpu_kms->pdev->dev); 722 } 723 724 } 725 726 static int dpu_encoder_resource_control(struct drm_encoder *drm_enc, 727 u32 sw_event) 728 { 729 struct dpu_encoder_virt *dpu_enc; 730 struct msm_drm_private *priv; 731 bool is_vid_mode = false; 732 733 if (!drm_enc || !drm_enc->dev || !drm_enc->crtc) { 734 DPU_ERROR("invalid parameters\n"); 735 return -EINVAL; 736 } 737 dpu_enc = to_dpu_encoder_virt(drm_enc); 738 priv = drm_enc->dev->dev_private; 739 is_vid_mode = dpu_enc->disp_info.capabilities & 740 MSM_DISPLAY_CAP_VID_MODE; 741 742 /* 743 * when idle_pc is not supported, process only KICKOFF, STOP and MODESET 744 * events and return early for other events (ie wb display). 745 */ 746 if (!dpu_enc->idle_pc_supported && 747 (sw_event != DPU_ENC_RC_EVENT_KICKOFF && 748 sw_event != DPU_ENC_RC_EVENT_STOP && 749 sw_event != DPU_ENC_RC_EVENT_PRE_STOP)) 750 return 0; 751 752 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, dpu_enc->idle_pc_supported, 753 dpu_enc->rc_state, "begin"); 754 755 switch (sw_event) { 756 case DPU_ENC_RC_EVENT_KICKOFF: 757 /* cancel delayed off work, if any */ 758 if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work)) 759 DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n", 760 sw_event); 761 762 mutex_lock(&dpu_enc->rc_lock); 763 764 /* return if the resource control is already in ON state */ 765 if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) { 766 DRM_DEBUG_KMS("id;%u, sw_event:%d, rc in ON state\n", 767 DRMID(drm_enc), sw_event); 768 mutex_unlock(&dpu_enc->rc_lock); 769 return 0; 770 } else if (dpu_enc->rc_state != DPU_ENC_RC_STATE_OFF && 771 dpu_enc->rc_state != DPU_ENC_RC_STATE_IDLE) { 772 DRM_DEBUG_KMS("id;%u, sw_event:%d, rc in state %d\n", 773 DRMID(drm_enc), sw_event, 774 dpu_enc->rc_state); 775 mutex_unlock(&dpu_enc->rc_lock); 776 return -EINVAL; 777 } 778 779 if (is_vid_mode && dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) 780 _dpu_encoder_irq_control(drm_enc, true); 781 else 782 _dpu_encoder_resource_control_helper(drm_enc, true); 783 784 dpu_enc->rc_state = DPU_ENC_RC_STATE_ON; 785 786 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, 787 dpu_enc->idle_pc_supported, dpu_enc->rc_state, 788 "kickoff"); 789 790 mutex_unlock(&dpu_enc->rc_lock); 791 break; 792 793 case DPU_ENC_RC_EVENT_FRAME_DONE: 794 /* 795 * mutex lock is not used as this event happens at interrupt 796 * context. And locking is not required as, the other events 797 * like KICKOFF and STOP does a wait-for-idle before executing 798 * the resource_control 799 */ 800 if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) { 801 DRM_DEBUG_KMS("id:%d, sw_event:%d,rc:%d-unexpected\n", 802 DRMID(drm_enc), sw_event, 803 dpu_enc->rc_state); 804 return -EINVAL; 805 } 806 807 /* 808 * schedule off work item only when there are no 809 * frames pending 810 */ 811 if (dpu_crtc_frame_pending(drm_enc->crtc) > 1) { 812 DRM_DEBUG_KMS("id:%d skip schedule work\n", 813 DRMID(drm_enc)); 814 return 0; 815 } 816 817 queue_delayed_work(priv->wq, &dpu_enc->delayed_off_work, 818 msecs_to_jiffies(dpu_enc->idle_timeout)); 819 820 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, 821 dpu_enc->idle_pc_supported, dpu_enc->rc_state, 822 "frame done"); 823 break; 824 825 case DPU_ENC_RC_EVENT_PRE_STOP: 826 /* cancel delayed off work, if any */ 827 if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work)) 828 DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n", 829 sw_event); 830 831 mutex_lock(&dpu_enc->rc_lock); 832 833 if (is_vid_mode && 834 dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) { 835 _dpu_encoder_irq_control(drm_enc, true); 836 } 837 /* skip if is already OFF or IDLE, resources are off already */ 838 else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF || 839 dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) { 840 DRM_DEBUG_KMS("id:%u, sw_event:%d, rc in %d state\n", 841 DRMID(drm_enc), sw_event, 842 dpu_enc->rc_state); 843 mutex_unlock(&dpu_enc->rc_lock); 844 return 0; 845 } 846 847 dpu_enc->rc_state = DPU_ENC_RC_STATE_PRE_OFF; 848 849 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, 850 dpu_enc->idle_pc_supported, dpu_enc->rc_state, 851 "pre stop"); 852 853 mutex_unlock(&dpu_enc->rc_lock); 854 break; 855 856 case DPU_ENC_RC_EVENT_STOP: 857 mutex_lock(&dpu_enc->rc_lock); 858 859 /* return if the resource control is already in OFF state */ 860 if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF) { 861 DRM_DEBUG_KMS("id: %u, sw_event:%d, rc in OFF state\n", 862 DRMID(drm_enc), sw_event); 863 mutex_unlock(&dpu_enc->rc_lock); 864 return 0; 865 } else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) { 866 DRM_ERROR("id: %u, sw_event:%d, rc in state %d\n", 867 DRMID(drm_enc), sw_event, dpu_enc->rc_state); 868 mutex_unlock(&dpu_enc->rc_lock); 869 return -EINVAL; 870 } 871 872 /** 873 * expect to arrive here only if in either idle state or pre-off 874 * and in IDLE state the resources are already disabled 875 */ 876 if (dpu_enc->rc_state == DPU_ENC_RC_STATE_PRE_OFF) 877 _dpu_encoder_resource_control_helper(drm_enc, false); 878 879 dpu_enc->rc_state = DPU_ENC_RC_STATE_OFF; 880 881 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, 882 dpu_enc->idle_pc_supported, dpu_enc->rc_state, 883 "stop"); 884 885 mutex_unlock(&dpu_enc->rc_lock); 886 break; 887 888 case DPU_ENC_RC_EVENT_ENTER_IDLE: 889 mutex_lock(&dpu_enc->rc_lock); 890 891 if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) { 892 DRM_ERROR("id: %u, sw_event:%d, rc:%d !ON state\n", 893 DRMID(drm_enc), sw_event, dpu_enc->rc_state); 894 mutex_unlock(&dpu_enc->rc_lock); 895 return 0; 896 } 897 898 /* 899 * if we are in ON but a frame was just kicked off, 900 * ignore the IDLE event, it's probably a stale timer event 901 */ 902 if (dpu_enc->frame_busy_mask[0]) { 903 DRM_ERROR("id:%u, sw_event:%d, rc:%d frame pending\n", 904 DRMID(drm_enc), sw_event, dpu_enc->rc_state); 905 mutex_unlock(&dpu_enc->rc_lock); 906 return 0; 907 } 908 909 if (is_vid_mode) 910 _dpu_encoder_irq_control(drm_enc, false); 911 else 912 _dpu_encoder_resource_control_helper(drm_enc, false); 913 914 dpu_enc->rc_state = DPU_ENC_RC_STATE_IDLE; 915 916 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, 917 dpu_enc->idle_pc_supported, dpu_enc->rc_state, 918 "idle"); 919 920 mutex_unlock(&dpu_enc->rc_lock); 921 break; 922 923 default: 924 DRM_ERROR("id:%u, unexpected sw_event: %d\n", DRMID(drm_enc), 925 sw_event); 926 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, 927 dpu_enc->idle_pc_supported, dpu_enc->rc_state, 928 "error"); 929 break; 930 } 931 932 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, 933 dpu_enc->idle_pc_supported, dpu_enc->rc_state, 934 "end"); 935 return 0; 936 } 937 938 static void dpu_encoder_virt_mode_set(struct drm_encoder *drm_enc, 939 struct drm_display_mode *mode, 940 struct drm_display_mode *adj_mode) 941 { 942 struct dpu_encoder_virt *dpu_enc; 943 struct msm_drm_private *priv; 944 struct dpu_kms *dpu_kms; 945 struct list_head *connector_list; 946 struct drm_connector *conn = NULL, *conn_iter; 947 struct drm_crtc *drm_crtc; 948 struct dpu_crtc_state *cstate; 949 struct dpu_rm_hw_iter hw_iter; 950 struct msm_display_topology topology; 951 struct dpu_hw_ctl *hw_ctl[MAX_CHANNELS_PER_ENC] = { NULL }; 952 struct dpu_hw_mixer *hw_lm[MAX_CHANNELS_PER_ENC] = { NULL }; 953 int num_lm = 0, num_ctl = 0; 954 int i, j, ret; 955 956 if (!drm_enc) { 957 DPU_ERROR("invalid encoder\n"); 958 return; 959 } 960 961 dpu_enc = to_dpu_encoder_virt(drm_enc); 962 DPU_DEBUG_ENC(dpu_enc, "\n"); 963 964 priv = drm_enc->dev->dev_private; 965 dpu_kms = to_dpu_kms(priv->kms); 966 connector_list = &dpu_kms->dev->mode_config.connector_list; 967 968 trace_dpu_enc_mode_set(DRMID(drm_enc)); 969 970 list_for_each_entry(conn_iter, connector_list, head) 971 if (conn_iter->encoder == drm_enc) 972 conn = conn_iter; 973 974 if (!conn) { 975 DPU_ERROR_ENC(dpu_enc, "failed to find attached connector\n"); 976 return; 977 } else if (!conn->state) { 978 DPU_ERROR_ENC(dpu_enc, "invalid connector state\n"); 979 return; 980 } 981 982 drm_for_each_crtc(drm_crtc, drm_enc->dev) 983 if (drm_crtc->state->encoder_mask & drm_encoder_mask(drm_enc)) 984 break; 985 986 topology = dpu_encoder_get_topology(dpu_enc, dpu_kms, adj_mode); 987 988 /* Reserve dynamic resources now. Indicating non-AtomicTest phase */ 989 ret = dpu_rm_reserve(&dpu_kms->rm, drm_enc, drm_crtc->state, 990 topology, false); 991 if (ret) { 992 DPU_ERROR_ENC(dpu_enc, 993 "failed to reserve hw resources, %d\n", ret); 994 return; 995 } 996 997 dpu_rm_init_hw_iter(&hw_iter, drm_enc->base.id, DPU_HW_BLK_PINGPONG); 998 for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) { 999 dpu_enc->hw_pp[i] = NULL; 1000 if (!dpu_rm_get_hw(&dpu_kms->rm, &hw_iter)) 1001 break; 1002 dpu_enc->hw_pp[i] = (struct dpu_hw_pingpong *) hw_iter.hw; 1003 } 1004 1005 dpu_rm_init_hw_iter(&hw_iter, drm_enc->base.id, DPU_HW_BLK_CTL); 1006 for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) { 1007 if (!dpu_rm_get_hw(&dpu_kms->rm, &hw_iter)) 1008 break; 1009 hw_ctl[i] = (struct dpu_hw_ctl *)hw_iter.hw; 1010 num_ctl++; 1011 } 1012 1013 dpu_rm_init_hw_iter(&hw_iter, drm_enc->base.id, DPU_HW_BLK_LM); 1014 for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) { 1015 if (!dpu_rm_get_hw(&dpu_kms->rm, &hw_iter)) 1016 break; 1017 hw_lm[i] = (struct dpu_hw_mixer *)hw_iter.hw; 1018 num_lm++; 1019 } 1020 1021 cstate = to_dpu_crtc_state(drm_crtc->state); 1022 1023 for (i = 0; i < num_lm; i++) { 1024 int ctl_idx = (i < num_ctl) ? i : (num_ctl-1); 1025 1026 cstate->mixers[i].hw_lm = hw_lm[i]; 1027 cstate->mixers[i].lm_ctl = hw_ctl[ctl_idx]; 1028 } 1029 1030 cstate->num_mixers = num_lm; 1031 1032 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1033 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 1034 1035 if (phys) { 1036 if (!dpu_enc->hw_pp[i]) { 1037 DPU_ERROR_ENC(dpu_enc, "no pp block assigned" 1038 "at idx: %d\n", i); 1039 goto error; 1040 } 1041 1042 if (!hw_ctl[i]) { 1043 DPU_ERROR_ENC(dpu_enc, "no ctl block assigned" 1044 "at idx: %d\n", i); 1045 goto error; 1046 } 1047 1048 phys->hw_pp = dpu_enc->hw_pp[i]; 1049 phys->hw_ctl = hw_ctl[i]; 1050 1051 dpu_rm_init_hw_iter(&hw_iter, drm_enc->base.id, 1052 DPU_HW_BLK_INTF); 1053 for (j = 0; j < MAX_CHANNELS_PER_ENC; j++) { 1054 struct dpu_hw_intf *hw_intf; 1055 1056 if (!dpu_rm_get_hw(&dpu_kms->rm, &hw_iter)) 1057 break; 1058 1059 hw_intf = (struct dpu_hw_intf *)hw_iter.hw; 1060 if (hw_intf->idx == phys->intf_idx) 1061 phys->hw_intf = hw_intf; 1062 } 1063 1064 if (!phys->hw_intf) { 1065 DPU_ERROR_ENC(dpu_enc, 1066 "no intf block assigned at idx: %d\n", 1067 i); 1068 goto error; 1069 } 1070 1071 phys->connector = conn->state->connector; 1072 if (phys->ops.mode_set) 1073 phys->ops.mode_set(phys, mode, adj_mode); 1074 } 1075 } 1076 1077 dpu_enc->mode_set_complete = true; 1078 1079 error: 1080 dpu_rm_release(&dpu_kms->rm, drm_enc); 1081 } 1082 1083 static void _dpu_encoder_virt_enable_helper(struct drm_encoder *drm_enc) 1084 { 1085 struct dpu_encoder_virt *dpu_enc = NULL; 1086 struct msm_drm_private *priv; 1087 struct dpu_kms *dpu_kms; 1088 1089 if (!drm_enc || !drm_enc->dev) { 1090 DPU_ERROR("invalid parameters\n"); 1091 return; 1092 } 1093 1094 priv = drm_enc->dev->dev_private; 1095 dpu_kms = to_dpu_kms(priv->kms); 1096 1097 dpu_enc = to_dpu_encoder_virt(drm_enc); 1098 if (!dpu_enc || !dpu_enc->cur_master) { 1099 DPU_ERROR("invalid dpu encoder/master\n"); 1100 return; 1101 } 1102 1103 if (dpu_enc->cur_master->hw_mdptop && 1104 dpu_enc->cur_master->hw_mdptop->ops.reset_ubwc) 1105 dpu_enc->cur_master->hw_mdptop->ops.reset_ubwc( 1106 dpu_enc->cur_master->hw_mdptop, 1107 dpu_kms->catalog); 1108 1109 _dpu_encoder_update_vsync_source(dpu_enc, &dpu_enc->disp_info); 1110 } 1111 1112 void dpu_encoder_virt_runtime_resume(struct drm_encoder *drm_enc) 1113 { 1114 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); 1115 1116 mutex_lock(&dpu_enc->enc_lock); 1117 1118 if (!dpu_enc->enabled) 1119 goto out; 1120 1121 if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.restore) 1122 dpu_enc->cur_slave->ops.restore(dpu_enc->cur_slave); 1123 if (dpu_enc->cur_master && dpu_enc->cur_master->ops.restore) 1124 dpu_enc->cur_master->ops.restore(dpu_enc->cur_master); 1125 1126 _dpu_encoder_virt_enable_helper(drm_enc); 1127 1128 out: 1129 mutex_unlock(&dpu_enc->enc_lock); 1130 } 1131 1132 static void dpu_encoder_virt_enable(struct drm_encoder *drm_enc) 1133 { 1134 struct dpu_encoder_virt *dpu_enc = NULL; 1135 int ret = 0; 1136 struct drm_display_mode *cur_mode = NULL; 1137 1138 if (!drm_enc) { 1139 DPU_ERROR("invalid encoder\n"); 1140 return; 1141 } 1142 dpu_enc = to_dpu_encoder_virt(drm_enc); 1143 1144 mutex_lock(&dpu_enc->enc_lock); 1145 cur_mode = &dpu_enc->base.crtc->state->adjusted_mode; 1146 1147 trace_dpu_enc_enable(DRMID(drm_enc), cur_mode->hdisplay, 1148 cur_mode->vdisplay); 1149 1150 /* always enable slave encoder before master */ 1151 if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.enable) 1152 dpu_enc->cur_slave->ops.enable(dpu_enc->cur_slave); 1153 1154 if (dpu_enc->cur_master && dpu_enc->cur_master->ops.enable) 1155 dpu_enc->cur_master->ops.enable(dpu_enc->cur_master); 1156 1157 ret = dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF); 1158 if (ret) { 1159 DPU_ERROR_ENC(dpu_enc, "dpu resource control failed: %d\n", 1160 ret); 1161 goto out; 1162 } 1163 1164 _dpu_encoder_virt_enable_helper(drm_enc); 1165 1166 dpu_enc->enabled = true; 1167 1168 out: 1169 mutex_unlock(&dpu_enc->enc_lock); 1170 } 1171 1172 static void dpu_encoder_virt_disable(struct drm_encoder *drm_enc) 1173 { 1174 struct dpu_encoder_virt *dpu_enc = NULL; 1175 struct msm_drm_private *priv; 1176 struct dpu_kms *dpu_kms; 1177 int i = 0; 1178 1179 if (!drm_enc) { 1180 DPU_ERROR("invalid encoder\n"); 1181 return; 1182 } else if (!drm_enc->dev) { 1183 DPU_ERROR("invalid dev\n"); 1184 return; 1185 } 1186 1187 dpu_enc = to_dpu_encoder_virt(drm_enc); 1188 DPU_DEBUG_ENC(dpu_enc, "\n"); 1189 1190 mutex_lock(&dpu_enc->enc_lock); 1191 dpu_enc->enabled = false; 1192 1193 priv = drm_enc->dev->dev_private; 1194 dpu_kms = to_dpu_kms(priv->kms); 1195 1196 trace_dpu_enc_disable(DRMID(drm_enc)); 1197 1198 /* wait for idle */ 1199 dpu_encoder_wait_for_event(drm_enc, MSM_ENC_TX_COMPLETE); 1200 1201 dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_PRE_STOP); 1202 1203 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1204 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 1205 1206 if (phys && phys->ops.disable) 1207 phys->ops.disable(phys); 1208 } 1209 1210 /* after phys waits for frame-done, should be no more frames pending */ 1211 if (atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) { 1212 DPU_ERROR("enc%d timeout pending\n", drm_enc->base.id); 1213 del_timer_sync(&dpu_enc->frame_done_timer); 1214 } 1215 1216 dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_STOP); 1217 1218 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1219 if (dpu_enc->phys_encs[i]) 1220 dpu_enc->phys_encs[i]->connector = NULL; 1221 } 1222 1223 DPU_DEBUG_ENC(dpu_enc, "encoder disabled\n"); 1224 1225 dpu_rm_release(&dpu_kms->rm, drm_enc); 1226 1227 mutex_unlock(&dpu_enc->enc_lock); 1228 } 1229 1230 static enum dpu_intf dpu_encoder_get_intf(struct dpu_mdss_cfg *catalog, 1231 enum dpu_intf_type type, u32 controller_id) 1232 { 1233 int i = 0; 1234 1235 for (i = 0; i < catalog->intf_count; i++) { 1236 if (catalog->intf[i].type == type 1237 && catalog->intf[i].controller_id == controller_id) { 1238 return catalog->intf[i].id; 1239 } 1240 } 1241 1242 return INTF_MAX; 1243 } 1244 1245 static void dpu_encoder_vblank_callback(struct drm_encoder *drm_enc, 1246 struct dpu_encoder_phys *phy_enc) 1247 { 1248 struct dpu_encoder_virt *dpu_enc = NULL; 1249 unsigned long lock_flags; 1250 1251 if (!drm_enc || !phy_enc) 1252 return; 1253 1254 DPU_ATRACE_BEGIN("encoder_vblank_callback"); 1255 dpu_enc = to_dpu_encoder_virt(drm_enc); 1256 1257 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags); 1258 if (dpu_enc->crtc) 1259 dpu_crtc_vblank_callback(dpu_enc->crtc); 1260 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags); 1261 1262 atomic_inc(&phy_enc->vsync_cnt); 1263 DPU_ATRACE_END("encoder_vblank_callback"); 1264 } 1265 1266 static void dpu_encoder_underrun_callback(struct drm_encoder *drm_enc, 1267 struct dpu_encoder_phys *phy_enc) 1268 { 1269 if (!phy_enc) 1270 return; 1271 1272 DPU_ATRACE_BEGIN("encoder_underrun_callback"); 1273 atomic_inc(&phy_enc->underrun_cnt); 1274 trace_dpu_enc_underrun_cb(DRMID(drm_enc), 1275 atomic_read(&phy_enc->underrun_cnt)); 1276 DPU_ATRACE_END("encoder_underrun_callback"); 1277 } 1278 1279 void dpu_encoder_assign_crtc(struct drm_encoder *drm_enc, struct drm_crtc *crtc) 1280 { 1281 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); 1282 unsigned long lock_flags; 1283 1284 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags); 1285 /* crtc should always be cleared before re-assigning */ 1286 WARN_ON(crtc && dpu_enc->crtc); 1287 dpu_enc->crtc = crtc; 1288 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags); 1289 } 1290 1291 void dpu_encoder_toggle_vblank_for_crtc(struct drm_encoder *drm_enc, 1292 struct drm_crtc *crtc, bool enable) 1293 { 1294 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); 1295 unsigned long lock_flags; 1296 int i; 1297 1298 trace_dpu_enc_vblank_cb(DRMID(drm_enc), enable); 1299 1300 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags); 1301 if (dpu_enc->crtc != crtc) { 1302 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags); 1303 return; 1304 } 1305 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags); 1306 1307 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1308 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 1309 1310 if (phys && phys->ops.control_vblank_irq) 1311 phys->ops.control_vblank_irq(phys, enable); 1312 } 1313 } 1314 1315 void dpu_encoder_register_frame_event_callback(struct drm_encoder *drm_enc, 1316 void (*frame_event_cb)(void *, u32 event), 1317 void *frame_event_cb_data) 1318 { 1319 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); 1320 unsigned long lock_flags; 1321 bool enable; 1322 1323 enable = frame_event_cb ? true : false; 1324 1325 if (!drm_enc) { 1326 DPU_ERROR("invalid encoder\n"); 1327 return; 1328 } 1329 trace_dpu_enc_frame_event_cb(DRMID(drm_enc), enable); 1330 1331 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags); 1332 dpu_enc->crtc_frame_event_cb = frame_event_cb; 1333 dpu_enc->crtc_frame_event_cb_data = frame_event_cb_data; 1334 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags); 1335 } 1336 1337 static void dpu_encoder_frame_done_callback( 1338 struct drm_encoder *drm_enc, 1339 struct dpu_encoder_phys *ready_phys, u32 event) 1340 { 1341 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); 1342 unsigned int i; 1343 1344 if (event & (DPU_ENCODER_FRAME_EVENT_DONE 1345 | DPU_ENCODER_FRAME_EVENT_ERROR 1346 | DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)) { 1347 1348 if (!dpu_enc->frame_busy_mask[0]) { 1349 /** 1350 * suppress frame_done without waiter, 1351 * likely autorefresh 1352 */ 1353 trace_dpu_enc_frame_done_cb_not_busy(DRMID(drm_enc), 1354 event, ready_phys->intf_idx); 1355 return; 1356 } 1357 1358 /* One of the physical encoders has become idle */ 1359 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1360 if (dpu_enc->phys_encs[i] == ready_phys) { 1361 trace_dpu_enc_frame_done_cb(DRMID(drm_enc), i, 1362 dpu_enc->frame_busy_mask[0]); 1363 clear_bit(i, dpu_enc->frame_busy_mask); 1364 } 1365 } 1366 1367 if (!dpu_enc->frame_busy_mask[0]) { 1368 atomic_set(&dpu_enc->frame_done_timeout_ms, 0); 1369 del_timer(&dpu_enc->frame_done_timer); 1370 1371 dpu_encoder_resource_control(drm_enc, 1372 DPU_ENC_RC_EVENT_FRAME_DONE); 1373 1374 if (dpu_enc->crtc_frame_event_cb) 1375 dpu_enc->crtc_frame_event_cb( 1376 dpu_enc->crtc_frame_event_cb_data, 1377 event); 1378 } 1379 } else { 1380 if (dpu_enc->crtc_frame_event_cb) 1381 dpu_enc->crtc_frame_event_cb( 1382 dpu_enc->crtc_frame_event_cb_data, event); 1383 } 1384 } 1385 1386 static void dpu_encoder_off_work(struct work_struct *work) 1387 { 1388 struct dpu_encoder_virt *dpu_enc = container_of(work, 1389 struct dpu_encoder_virt, delayed_off_work.work); 1390 1391 if (!dpu_enc) { 1392 DPU_ERROR("invalid dpu encoder\n"); 1393 return; 1394 } 1395 1396 dpu_encoder_resource_control(&dpu_enc->base, 1397 DPU_ENC_RC_EVENT_ENTER_IDLE); 1398 1399 dpu_encoder_frame_done_callback(&dpu_enc->base, NULL, 1400 DPU_ENCODER_FRAME_EVENT_IDLE); 1401 } 1402 1403 /** 1404 * _dpu_encoder_trigger_flush - trigger flush for a physical encoder 1405 * drm_enc: Pointer to drm encoder structure 1406 * phys: Pointer to physical encoder structure 1407 * extra_flush_bits: Additional bit mask to include in flush trigger 1408 */ 1409 static void _dpu_encoder_trigger_flush(struct drm_encoder *drm_enc, 1410 struct dpu_encoder_phys *phys, uint32_t extra_flush_bits) 1411 { 1412 struct dpu_hw_ctl *ctl; 1413 int pending_kickoff_cnt; 1414 u32 ret = UINT_MAX; 1415 1416 if (!phys->hw_pp) { 1417 DPU_ERROR("invalid pingpong hw\n"); 1418 return; 1419 } 1420 1421 ctl = phys->hw_ctl; 1422 if (!ctl || !ctl->ops.trigger_flush) { 1423 DPU_ERROR("missing trigger cb\n"); 1424 return; 1425 } 1426 1427 pending_kickoff_cnt = dpu_encoder_phys_inc_pending(phys); 1428 1429 if (extra_flush_bits && ctl->ops.update_pending_flush) 1430 ctl->ops.update_pending_flush(ctl, extra_flush_bits); 1431 1432 ctl->ops.trigger_flush(ctl); 1433 1434 if (ctl->ops.get_pending_flush) 1435 ret = ctl->ops.get_pending_flush(ctl); 1436 1437 trace_dpu_enc_trigger_flush(DRMID(drm_enc), phys->intf_idx, 1438 pending_kickoff_cnt, ctl->idx, 1439 extra_flush_bits, ret); 1440 } 1441 1442 /** 1443 * _dpu_encoder_trigger_start - trigger start for a physical encoder 1444 * phys: Pointer to physical encoder structure 1445 */ 1446 static void _dpu_encoder_trigger_start(struct dpu_encoder_phys *phys) 1447 { 1448 if (!phys) { 1449 DPU_ERROR("invalid argument(s)\n"); 1450 return; 1451 } 1452 1453 if (!phys->hw_pp) { 1454 DPU_ERROR("invalid pingpong hw\n"); 1455 return; 1456 } 1457 1458 if (phys->ops.trigger_start && phys->enable_state != DPU_ENC_DISABLED) 1459 phys->ops.trigger_start(phys); 1460 } 1461 1462 void dpu_encoder_helper_trigger_start(struct dpu_encoder_phys *phys_enc) 1463 { 1464 struct dpu_hw_ctl *ctl; 1465 1466 if (!phys_enc) { 1467 DPU_ERROR("invalid encoder\n"); 1468 return; 1469 } 1470 1471 ctl = phys_enc->hw_ctl; 1472 if (ctl && ctl->ops.trigger_start) { 1473 ctl->ops.trigger_start(ctl); 1474 trace_dpu_enc_trigger_start(DRMID(phys_enc->parent), ctl->idx); 1475 } 1476 } 1477 1478 static int dpu_encoder_helper_wait_event_timeout( 1479 int32_t drm_id, 1480 int32_t hw_id, 1481 struct dpu_encoder_wait_info *info) 1482 { 1483 int rc = 0; 1484 s64 expected_time = ktime_to_ms(ktime_get()) + info->timeout_ms; 1485 s64 jiffies = msecs_to_jiffies(info->timeout_ms); 1486 s64 time; 1487 1488 do { 1489 rc = wait_event_timeout(*(info->wq), 1490 atomic_read(info->atomic_cnt) == 0, jiffies); 1491 time = ktime_to_ms(ktime_get()); 1492 1493 trace_dpu_enc_wait_event_timeout(drm_id, hw_id, rc, time, 1494 expected_time, 1495 atomic_read(info->atomic_cnt)); 1496 /* If we timed out, counter is valid and time is less, wait again */ 1497 } while (atomic_read(info->atomic_cnt) && (rc == 0) && 1498 (time < expected_time)); 1499 1500 return rc; 1501 } 1502 1503 static void dpu_encoder_helper_hw_reset(struct dpu_encoder_phys *phys_enc) 1504 { 1505 struct dpu_encoder_virt *dpu_enc; 1506 struct dpu_hw_ctl *ctl; 1507 int rc; 1508 1509 if (!phys_enc) { 1510 DPU_ERROR("invalid encoder\n"); 1511 return; 1512 } 1513 dpu_enc = to_dpu_encoder_virt(phys_enc->parent); 1514 ctl = phys_enc->hw_ctl; 1515 1516 if (!ctl || !ctl->ops.reset) 1517 return; 1518 1519 DRM_DEBUG_KMS("id:%u ctl %d reset\n", DRMID(phys_enc->parent), 1520 ctl->idx); 1521 1522 rc = ctl->ops.reset(ctl); 1523 if (rc) 1524 DPU_ERROR_ENC(dpu_enc, "ctl %d reset failure\n", ctl->idx); 1525 1526 phys_enc->enable_state = DPU_ENC_ENABLED; 1527 } 1528 1529 /** 1530 * _dpu_encoder_kickoff_phys - handle physical encoder kickoff 1531 * Iterate through the physical encoders and perform consolidated flush 1532 * and/or control start triggering as needed. This is done in the virtual 1533 * encoder rather than the individual physical ones in order to handle 1534 * use cases that require visibility into multiple physical encoders at 1535 * a time. 1536 * dpu_enc: Pointer to virtual encoder structure 1537 */ 1538 static void _dpu_encoder_kickoff_phys(struct dpu_encoder_virt *dpu_enc) 1539 { 1540 struct dpu_hw_ctl *ctl; 1541 uint32_t i, pending_flush; 1542 unsigned long lock_flags; 1543 1544 pending_flush = 0x0; 1545 1546 /* update pending counts and trigger kickoff ctl flush atomically */ 1547 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags); 1548 1549 /* don't perform flush/start operations for slave encoders */ 1550 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1551 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 1552 1553 if (!phys || phys->enable_state == DPU_ENC_DISABLED) 1554 continue; 1555 1556 ctl = phys->hw_ctl; 1557 if (!ctl) 1558 continue; 1559 1560 /* 1561 * This is cleared in frame_done worker, which isn't invoked 1562 * for async commits. So don't set this for async, since it'll 1563 * roll over to the next commit. 1564 */ 1565 if (phys->split_role != ENC_ROLE_SLAVE) 1566 set_bit(i, dpu_enc->frame_busy_mask); 1567 1568 if (!phys->ops.needs_single_flush || 1569 !phys->ops.needs_single_flush(phys)) 1570 _dpu_encoder_trigger_flush(&dpu_enc->base, phys, 0x0); 1571 else if (ctl->ops.get_pending_flush) 1572 pending_flush |= ctl->ops.get_pending_flush(ctl); 1573 } 1574 1575 /* for split flush, combine pending flush masks and send to master */ 1576 if (pending_flush && dpu_enc->cur_master) { 1577 _dpu_encoder_trigger_flush( 1578 &dpu_enc->base, 1579 dpu_enc->cur_master, 1580 pending_flush); 1581 } 1582 1583 _dpu_encoder_trigger_start(dpu_enc->cur_master); 1584 1585 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags); 1586 } 1587 1588 void dpu_encoder_trigger_kickoff_pending(struct drm_encoder *drm_enc) 1589 { 1590 struct dpu_encoder_virt *dpu_enc; 1591 struct dpu_encoder_phys *phys; 1592 unsigned int i; 1593 struct dpu_hw_ctl *ctl; 1594 struct msm_display_info *disp_info; 1595 1596 if (!drm_enc) { 1597 DPU_ERROR("invalid encoder\n"); 1598 return; 1599 } 1600 dpu_enc = to_dpu_encoder_virt(drm_enc); 1601 disp_info = &dpu_enc->disp_info; 1602 1603 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1604 phys = dpu_enc->phys_encs[i]; 1605 1606 if (phys && phys->hw_ctl) { 1607 ctl = phys->hw_ctl; 1608 if (ctl->ops.clear_pending_flush) 1609 ctl->ops.clear_pending_flush(ctl); 1610 1611 /* update only for command mode primary ctl */ 1612 if ((phys == dpu_enc->cur_master) && 1613 (disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE) 1614 && ctl->ops.trigger_pending) 1615 ctl->ops.trigger_pending(ctl); 1616 } 1617 } 1618 } 1619 1620 static u32 _dpu_encoder_calculate_linetime(struct dpu_encoder_virt *dpu_enc, 1621 struct drm_display_mode *mode) 1622 { 1623 u64 pclk_rate; 1624 u32 pclk_period; 1625 u32 line_time; 1626 1627 /* 1628 * For linetime calculation, only operate on master encoder. 1629 */ 1630 if (!dpu_enc->cur_master) 1631 return 0; 1632 1633 if (!dpu_enc->cur_master->ops.get_line_count) { 1634 DPU_ERROR("get_line_count function not defined\n"); 1635 return 0; 1636 } 1637 1638 pclk_rate = mode->clock; /* pixel clock in kHz */ 1639 if (pclk_rate == 0) { 1640 DPU_ERROR("pclk is 0, cannot calculate line time\n"); 1641 return 0; 1642 } 1643 1644 pclk_period = DIV_ROUND_UP_ULL(1000000000ull, pclk_rate); 1645 if (pclk_period == 0) { 1646 DPU_ERROR("pclk period is 0\n"); 1647 return 0; 1648 } 1649 1650 /* 1651 * Line time calculation based on Pixel clock and HTOTAL. 1652 * Final unit is in ns. 1653 */ 1654 line_time = (pclk_period * mode->htotal) / 1000; 1655 if (line_time == 0) { 1656 DPU_ERROR("line time calculation is 0\n"); 1657 return 0; 1658 } 1659 1660 DPU_DEBUG_ENC(dpu_enc, 1661 "clk_rate=%lldkHz, clk_period=%d, linetime=%dns\n", 1662 pclk_rate, pclk_period, line_time); 1663 1664 return line_time; 1665 } 1666 1667 int dpu_encoder_vsync_time(struct drm_encoder *drm_enc, ktime_t *wakeup_time) 1668 { 1669 struct drm_display_mode *mode; 1670 struct dpu_encoder_virt *dpu_enc; 1671 u32 cur_line; 1672 u32 line_time; 1673 u32 vtotal, time_to_vsync; 1674 ktime_t cur_time; 1675 1676 dpu_enc = to_dpu_encoder_virt(drm_enc); 1677 1678 if (!drm_enc->crtc || !drm_enc->crtc->state) { 1679 DPU_ERROR("crtc/crtc state object is NULL\n"); 1680 return -EINVAL; 1681 } 1682 mode = &drm_enc->crtc->state->adjusted_mode; 1683 1684 line_time = _dpu_encoder_calculate_linetime(dpu_enc, mode); 1685 if (!line_time) 1686 return -EINVAL; 1687 1688 cur_line = dpu_enc->cur_master->ops.get_line_count(dpu_enc->cur_master); 1689 1690 vtotal = mode->vtotal; 1691 if (cur_line >= vtotal) 1692 time_to_vsync = line_time * vtotal; 1693 else 1694 time_to_vsync = line_time * (vtotal - cur_line); 1695 1696 if (time_to_vsync == 0) { 1697 DPU_ERROR("time to vsync should not be zero, vtotal=%d\n", 1698 vtotal); 1699 return -EINVAL; 1700 } 1701 1702 cur_time = ktime_get(); 1703 *wakeup_time = ktime_add_ns(cur_time, time_to_vsync); 1704 1705 DPU_DEBUG_ENC(dpu_enc, 1706 "cur_line=%u vtotal=%u time_to_vsync=%u, cur_time=%lld, wakeup_time=%lld\n", 1707 cur_line, vtotal, time_to_vsync, 1708 ktime_to_ms(cur_time), 1709 ktime_to_ms(*wakeup_time)); 1710 return 0; 1711 } 1712 1713 static void dpu_encoder_vsync_event_handler(struct timer_list *t) 1714 { 1715 struct dpu_encoder_virt *dpu_enc = from_timer(dpu_enc, t, 1716 vsync_event_timer); 1717 struct drm_encoder *drm_enc = &dpu_enc->base; 1718 struct msm_drm_private *priv; 1719 struct msm_drm_thread *event_thread; 1720 1721 if (!drm_enc->dev || !drm_enc->crtc) { 1722 DPU_ERROR("invalid parameters\n"); 1723 return; 1724 } 1725 1726 priv = drm_enc->dev->dev_private; 1727 1728 if (drm_enc->crtc->index >= ARRAY_SIZE(priv->event_thread)) { 1729 DPU_ERROR("invalid crtc index\n"); 1730 return; 1731 } 1732 event_thread = &priv->event_thread[drm_enc->crtc->index]; 1733 if (!event_thread) { 1734 DPU_ERROR("event_thread not found for crtc:%d\n", 1735 drm_enc->crtc->index); 1736 return; 1737 } 1738 1739 del_timer(&dpu_enc->vsync_event_timer); 1740 } 1741 1742 static void dpu_encoder_vsync_event_work_handler(struct kthread_work *work) 1743 { 1744 struct dpu_encoder_virt *dpu_enc = container_of(work, 1745 struct dpu_encoder_virt, vsync_event_work); 1746 ktime_t wakeup_time; 1747 1748 if (!dpu_enc) { 1749 DPU_ERROR("invalid dpu encoder\n"); 1750 return; 1751 } 1752 1753 if (dpu_encoder_vsync_time(&dpu_enc->base, &wakeup_time)) 1754 return; 1755 1756 trace_dpu_enc_vsync_event_work(DRMID(&dpu_enc->base), wakeup_time); 1757 mod_timer(&dpu_enc->vsync_event_timer, 1758 nsecs_to_jiffies(ktime_to_ns(wakeup_time))); 1759 } 1760 1761 void dpu_encoder_prepare_for_kickoff(struct drm_encoder *drm_enc) 1762 { 1763 struct dpu_encoder_virt *dpu_enc; 1764 struct dpu_encoder_phys *phys; 1765 bool needs_hw_reset = false; 1766 unsigned int i; 1767 1768 dpu_enc = to_dpu_encoder_virt(drm_enc); 1769 1770 trace_dpu_enc_prepare_kickoff(DRMID(drm_enc)); 1771 1772 /* prepare for next kickoff, may include waiting on previous kickoff */ 1773 DPU_ATRACE_BEGIN("enc_prepare_for_kickoff"); 1774 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1775 phys = dpu_enc->phys_encs[i]; 1776 if (phys) { 1777 if (phys->ops.prepare_for_kickoff) 1778 phys->ops.prepare_for_kickoff(phys); 1779 if (phys->enable_state == DPU_ENC_ERR_NEEDS_HW_RESET) 1780 needs_hw_reset = true; 1781 } 1782 } 1783 DPU_ATRACE_END("enc_prepare_for_kickoff"); 1784 1785 dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF); 1786 1787 /* if any phys needs reset, reset all phys, in-order */ 1788 if (needs_hw_reset) { 1789 trace_dpu_enc_prepare_kickoff_reset(DRMID(drm_enc)); 1790 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1791 dpu_encoder_helper_hw_reset(dpu_enc->phys_encs[i]); 1792 } 1793 } 1794 } 1795 1796 void dpu_encoder_kickoff(struct drm_encoder *drm_enc) 1797 { 1798 struct dpu_encoder_virt *dpu_enc; 1799 struct dpu_encoder_phys *phys; 1800 ktime_t wakeup_time; 1801 unsigned long timeout_ms; 1802 unsigned int i; 1803 1804 DPU_ATRACE_BEGIN("encoder_kickoff"); 1805 dpu_enc = to_dpu_encoder_virt(drm_enc); 1806 1807 trace_dpu_enc_kickoff(DRMID(drm_enc)); 1808 1809 timeout_ms = DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES * 1000 / 1810 drm_mode_vrefresh(&drm_enc->crtc->state->adjusted_mode); 1811 1812 atomic_set(&dpu_enc->frame_done_timeout_ms, timeout_ms); 1813 mod_timer(&dpu_enc->frame_done_timer, 1814 jiffies + msecs_to_jiffies(timeout_ms)); 1815 1816 /* All phys encs are ready to go, trigger the kickoff */ 1817 _dpu_encoder_kickoff_phys(dpu_enc); 1818 1819 /* allow phys encs to handle any post-kickoff business */ 1820 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1821 phys = dpu_enc->phys_encs[i]; 1822 if (phys && phys->ops.handle_post_kickoff) 1823 phys->ops.handle_post_kickoff(phys); 1824 } 1825 1826 if (dpu_enc->disp_info.intf_type == DRM_MODE_ENCODER_DSI && 1827 !dpu_encoder_vsync_time(drm_enc, &wakeup_time)) { 1828 trace_dpu_enc_early_kickoff(DRMID(drm_enc), 1829 ktime_to_ms(wakeup_time)); 1830 mod_timer(&dpu_enc->vsync_event_timer, 1831 nsecs_to_jiffies(ktime_to_ns(wakeup_time))); 1832 } 1833 1834 DPU_ATRACE_END("encoder_kickoff"); 1835 } 1836 1837 void dpu_encoder_prepare_commit(struct drm_encoder *drm_enc) 1838 { 1839 struct dpu_encoder_virt *dpu_enc; 1840 struct dpu_encoder_phys *phys; 1841 int i; 1842 1843 if (!drm_enc) { 1844 DPU_ERROR("invalid encoder\n"); 1845 return; 1846 } 1847 dpu_enc = to_dpu_encoder_virt(drm_enc); 1848 1849 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1850 phys = dpu_enc->phys_encs[i]; 1851 if (phys && phys->ops.prepare_commit) 1852 phys->ops.prepare_commit(phys); 1853 } 1854 } 1855 1856 #ifdef CONFIG_DEBUG_FS 1857 static int _dpu_encoder_status_show(struct seq_file *s, void *data) 1858 { 1859 struct dpu_encoder_virt *dpu_enc = s->private; 1860 int i; 1861 1862 mutex_lock(&dpu_enc->enc_lock); 1863 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1864 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 1865 1866 if (!phys) 1867 continue; 1868 1869 seq_printf(s, "intf:%d vsync:%8d underrun:%8d ", 1870 phys->intf_idx - INTF_0, 1871 atomic_read(&phys->vsync_cnt), 1872 atomic_read(&phys->underrun_cnt)); 1873 1874 switch (phys->intf_mode) { 1875 case INTF_MODE_VIDEO: 1876 seq_puts(s, "mode: video\n"); 1877 break; 1878 case INTF_MODE_CMD: 1879 seq_puts(s, "mode: command\n"); 1880 break; 1881 default: 1882 seq_puts(s, "mode: ???\n"); 1883 break; 1884 } 1885 } 1886 mutex_unlock(&dpu_enc->enc_lock); 1887 1888 return 0; 1889 } 1890 1891 static int _dpu_encoder_debugfs_status_open(struct inode *inode, 1892 struct file *file) 1893 { 1894 return single_open(file, _dpu_encoder_status_show, inode->i_private); 1895 } 1896 1897 static int _dpu_encoder_init_debugfs(struct drm_encoder *drm_enc) 1898 { 1899 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); 1900 int i; 1901 1902 static const struct file_operations debugfs_status_fops = { 1903 .open = _dpu_encoder_debugfs_status_open, 1904 .read = seq_read, 1905 .llseek = seq_lseek, 1906 .release = single_release, 1907 }; 1908 1909 char name[DPU_NAME_SIZE]; 1910 1911 if (!drm_enc->dev) { 1912 DPU_ERROR("invalid encoder or kms\n"); 1913 return -EINVAL; 1914 } 1915 1916 snprintf(name, DPU_NAME_SIZE, "encoder%u", drm_enc->base.id); 1917 1918 /* create overall sub-directory for the encoder */ 1919 dpu_enc->debugfs_root = debugfs_create_dir(name, 1920 drm_enc->dev->primary->debugfs_root); 1921 1922 /* don't error check these */ 1923 debugfs_create_file("status", 0600, 1924 dpu_enc->debugfs_root, dpu_enc, &debugfs_status_fops); 1925 1926 for (i = 0; i < dpu_enc->num_phys_encs; i++) 1927 if (dpu_enc->phys_encs[i] && 1928 dpu_enc->phys_encs[i]->ops.late_register) 1929 dpu_enc->phys_encs[i]->ops.late_register( 1930 dpu_enc->phys_encs[i], 1931 dpu_enc->debugfs_root); 1932 1933 return 0; 1934 } 1935 #else 1936 static int _dpu_encoder_init_debugfs(struct drm_encoder *drm_enc) 1937 { 1938 return 0; 1939 } 1940 #endif 1941 1942 static int dpu_encoder_late_register(struct drm_encoder *encoder) 1943 { 1944 return _dpu_encoder_init_debugfs(encoder); 1945 } 1946 1947 static void dpu_encoder_early_unregister(struct drm_encoder *encoder) 1948 { 1949 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(encoder); 1950 1951 debugfs_remove_recursive(dpu_enc->debugfs_root); 1952 } 1953 1954 static int dpu_encoder_virt_add_phys_encs( 1955 u32 display_caps, 1956 struct dpu_encoder_virt *dpu_enc, 1957 struct dpu_enc_phys_init_params *params) 1958 { 1959 struct dpu_encoder_phys *enc = NULL; 1960 1961 DPU_DEBUG_ENC(dpu_enc, "\n"); 1962 1963 /* 1964 * We may create up to NUM_PHYS_ENCODER_TYPES physical encoder types 1965 * in this function, check up-front. 1966 */ 1967 if (dpu_enc->num_phys_encs + NUM_PHYS_ENCODER_TYPES >= 1968 ARRAY_SIZE(dpu_enc->phys_encs)) { 1969 DPU_ERROR_ENC(dpu_enc, "too many physical encoders %d\n", 1970 dpu_enc->num_phys_encs); 1971 return -EINVAL; 1972 } 1973 1974 if (display_caps & MSM_DISPLAY_CAP_VID_MODE) { 1975 enc = dpu_encoder_phys_vid_init(params); 1976 1977 if (IS_ERR_OR_NULL(enc)) { 1978 DPU_ERROR_ENC(dpu_enc, "failed to init vid enc: %ld\n", 1979 PTR_ERR(enc)); 1980 return enc == 0 ? -EINVAL : PTR_ERR(enc); 1981 } 1982 1983 dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc; 1984 ++dpu_enc->num_phys_encs; 1985 } 1986 1987 if (display_caps & MSM_DISPLAY_CAP_CMD_MODE) { 1988 enc = dpu_encoder_phys_cmd_init(params); 1989 1990 if (IS_ERR_OR_NULL(enc)) { 1991 DPU_ERROR_ENC(dpu_enc, "failed to init cmd enc: %ld\n", 1992 PTR_ERR(enc)); 1993 return enc == 0 ? -EINVAL : PTR_ERR(enc); 1994 } 1995 1996 dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc; 1997 ++dpu_enc->num_phys_encs; 1998 } 1999 2000 if (params->split_role == ENC_ROLE_SLAVE) 2001 dpu_enc->cur_slave = enc; 2002 else 2003 dpu_enc->cur_master = enc; 2004 2005 return 0; 2006 } 2007 2008 static const struct dpu_encoder_virt_ops dpu_encoder_parent_ops = { 2009 .handle_vblank_virt = dpu_encoder_vblank_callback, 2010 .handle_underrun_virt = dpu_encoder_underrun_callback, 2011 .handle_frame_done = dpu_encoder_frame_done_callback, 2012 }; 2013 2014 static int dpu_encoder_setup_display(struct dpu_encoder_virt *dpu_enc, 2015 struct dpu_kms *dpu_kms, 2016 struct msm_display_info *disp_info) 2017 { 2018 int ret = 0; 2019 int i = 0; 2020 enum dpu_intf_type intf_type; 2021 struct dpu_enc_phys_init_params phys_params; 2022 2023 if (!dpu_enc) { 2024 DPU_ERROR("invalid arg(s), enc %d\n", dpu_enc != 0); 2025 return -EINVAL; 2026 } 2027 2028 dpu_enc->cur_master = NULL; 2029 2030 memset(&phys_params, 0, sizeof(phys_params)); 2031 phys_params.dpu_kms = dpu_kms; 2032 phys_params.parent = &dpu_enc->base; 2033 phys_params.parent_ops = &dpu_encoder_parent_ops; 2034 phys_params.enc_spinlock = &dpu_enc->enc_spinlock; 2035 2036 DPU_DEBUG("\n"); 2037 2038 switch (disp_info->intf_type) { 2039 case DRM_MODE_ENCODER_DSI: 2040 intf_type = INTF_DSI; 2041 break; 2042 default: 2043 DPU_ERROR_ENC(dpu_enc, "unsupported display interface type\n"); 2044 return -EINVAL; 2045 } 2046 2047 WARN_ON(disp_info->num_of_h_tiles < 1); 2048 2049 DPU_DEBUG("dsi_info->num_of_h_tiles %d\n", disp_info->num_of_h_tiles); 2050 2051 if ((disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE) || 2052 (disp_info->capabilities & MSM_DISPLAY_CAP_VID_MODE)) 2053 dpu_enc->idle_pc_supported = 2054 dpu_kms->catalog->caps->has_idle_pc; 2055 2056 mutex_lock(&dpu_enc->enc_lock); 2057 for (i = 0; i < disp_info->num_of_h_tiles && !ret; i++) { 2058 /* 2059 * Left-most tile is at index 0, content is controller id 2060 * h_tile_instance_ids[2] = {0, 1}; DSI0 = left, DSI1 = right 2061 * h_tile_instance_ids[2] = {1, 0}; DSI1 = left, DSI0 = right 2062 */ 2063 u32 controller_id = disp_info->h_tile_instance[i]; 2064 2065 if (disp_info->num_of_h_tiles > 1) { 2066 if (i == 0) 2067 phys_params.split_role = ENC_ROLE_MASTER; 2068 else 2069 phys_params.split_role = ENC_ROLE_SLAVE; 2070 } else { 2071 phys_params.split_role = ENC_ROLE_SOLO; 2072 } 2073 2074 DPU_DEBUG("h_tile_instance %d = %d, split_role %d\n", 2075 i, controller_id, phys_params.split_role); 2076 2077 phys_params.intf_idx = dpu_encoder_get_intf(dpu_kms->catalog, 2078 intf_type, 2079 controller_id); 2080 if (phys_params.intf_idx == INTF_MAX) { 2081 DPU_ERROR_ENC(dpu_enc, "could not get intf: type %d, id %d\n", 2082 intf_type, controller_id); 2083 ret = -EINVAL; 2084 } 2085 2086 if (!ret) { 2087 ret = dpu_encoder_virt_add_phys_encs(disp_info->capabilities, 2088 dpu_enc, 2089 &phys_params); 2090 if (ret) 2091 DPU_ERROR_ENC(dpu_enc, "failed to add phys encs\n"); 2092 } 2093 } 2094 2095 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 2096 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 2097 2098 if (phys) { 2099 atomic_set(&phys->vsync_cnt, 0); 2100 atomic_set(&phys->underrun_cnt, 0); 2101 } 2102 } 2103 mutex_unlock(&dpu_enc->enc_lock); 2104 2105 return ret; 2106 } 2107 2108 static void dpu_encoder_frame_done_timeout(struct timer_list *t) 2109 { 2110 struct dpu_encoder_virt *dpu_enc = from_timer(dpu_enc, t, 2111 frame_done_timer); 2112 struct drm_encoder *drm_enc = &dpu_enc->base; 2113 u32 event; 2114 2115 if (!drm_enc->dev) { 2116 DPU_ERROR("invalid parameters\n"); 2117 return; 2118 } 2119 2120 if (!dpu_enc->frame_busy_mask[0] || !dpu_enc->crtc_frame_event_cb) { 2121 DRM_DEBUG_KMS("id:%u invalid timeout frame_busy_mask=%lu\n", 2122 DRMID(drm_enc), dpu_enc->frame_busy_mask[0]); 2123 return; 2124 } else if (!atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) { 2125 DRM_DEBUG_KMS("id:%u invalid timeout\n", DRMID(drm_enc)); 2126 return; 2127 } 2128 2129 DPU_ERROR_ENC(dpu_enc, "frame done timeout\n"); 2130 2131 event = DPU_ENCODER_FRAME_EVENT_ERROR; 2132 trace_dpu_enc_frame_done_timeout(DRMID(drm_enc), event); 2133 dpu_enc->crtc_frame_event_cb(dpu_enc->crtc_frame_event_cb_data, event); 2134 } 2135 2136 static const struct drm_encoder_helper_funcs dpu_encoder_helper_funcs = { 2137 .mode_set = dpu_encoder_virt_mode_set, 2138 .disable = dpu_encoder_virt_disable, 2139 .enable = dpu_kms_encoder_enable, 2140 .atomic_check = dpu_encoder_virt_atomic_check, 2141 2142 /* This is called by dpu_kms_encoder_enable */ 2143 .commit = dpu_encoder_virt_enable, 2144 }; 2145 2146 static const struct drm_encoder_funcs dpu_encoder_funcs = { 2147 .destroy = dpu_encoder_destroy, 2148 .late_register = dpu_encoder_late_register, 2149 .early_unregister = dpu_encoder_early_unregister, 2150 }; 2151 2152 int dpu_encoder_setup(struct drm_device *dev, struct drm_encoder *enc, 2153 struct msm_display_info *disp_info) 2154 { 2155 struct msm_drm_private *priv = dev->dev_private; 2156 struct dpu_kms *dpu_kms = to_dpu_kms(priv->kms); 2157 struct drm_encoder *drm_enc = NULL; 2158 struct dpu_encoder_virt *dpu_enc = NULL; 2159 int ret = 0; 2160 2161 dpu_enc = to_dpu_encoder_virt(enc); 2162 2163 mutex_init(&dpu_enc->enc_lock); 2164 ret = dpu_encoder_setup_display(dpu_enc, dpu_kms, disp_info); 2165 if (ret) 2166 goto fail; 2167 2168 atomic_set(&dpu_enc->frame_done_timeout_ms, 0); 2169 timer_setup(&dpu_enc->frame_done_timer, 2170 dpu_encoder_frame_done_timeout, 0); 2171 2172 if (disp_info->intf_type == DRM_MODE_ENCODER_DSI) 2173 timer_setup(&dpu_enc->vsync_event_timer, 2174 dpu_encoder_vsync_event_handler, 2175 0); 2176 2177 2178 mutex_init(&dpu_enc->rc_lock); 2179 INIT_DELAYED_WORK(&dpu_enc->delayed_off_work, 2180 dpu_encoder_off_work); 2181 dpu_enc->idle_timeout = IDLE_TIMEOUT; 2182 2183 kthread_init_work(&dpu_enc->vsync_event_work, 2184 dpu_encoder_vsync_event_work_handler); 2185 2186 memcpy(&dpu_enc->disp_info, disp_info, sizeof(*disp_info)); 2187 2188 DPU_DEBUG_ENC(dpu_enc, "created\n"); 2189 2190 return ret; 2191 2192 fail: 2193 DPU_ERROR("failed to create encoder\n"); 2194 if (drm_enc) 2195 dpu_encoder_destroy(drm_enc); 2196 2197 return ret; 2198 2199 2200 } 2201 2202 struct drm_encoder *dpu_encoder_init(struct drm_device *dev, 2203 int drm_enc_mode) 2204 { 2205 struct dpu_encoder_virt *dpu_enc = NULL; 2206 int rc = 0; 2207 2208 dpu_enc = devm_kzalloc(dev->dev, sizeof(*dpu_enc), GFP_KERNEL); 2209 if (!dpu_enc) 2210 return ERR_PTR(ENOMEM); 2211 2212 rc = drm_encoder_init(dev, &dpu_enc->base, &dpu_encoder_funcs, 2213 drm_enc_mode, NULL); 2214 if (rc) { 2215 devm_kfree(dev->dev, dpu_enc); 2216 return ERR_PTR(rc); 2217 } 2218 2219 drm_encoder_helper_add(&dpu_enc->base, &dpu_encoder_helper_funcs); 2220 2221 spin_lock_init(&dpu_enc->enc_spinlock); 2222 dpu_enc->enabled = false; 2223 2224 return &dpu_enc->base; 2225 } 2226 2227 int dpu_encoder_wait_for_event(struct drm_encoder *drm_enc, 2228 enum msm_event_wait event) 2229 { 2230 int (*fn_wait)(struct dpu_encoder_phys *phys_enc) = NULL; 2231 struct dpu_encoder_virt *dpu_enc = NULL; 2232 int i, ret = 0; 2233 2234 if (!drm_enc) { 2235 DPU_ERROR("invalid encoder\n"); 2236 return -EINVAL; 2237 } 2238 dpu_enc = to_dpu_encoder_virt(drm_enc); 2239 DPU_DEBUG_ENC(dpu_enc, "\n"); 2240 2241 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 2242 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 2243 if (!phys) 2244 continue; 2245 2246 switch (event) { 2247 case MSM_ENC_COMMIT_DONE: 2248 fn_wait = phys->ops.wait_for_commit_done; 2249 break; 2250 case MSM_ENC_TX_COMPLETE: 2251 fn_wait = phys->ops.wait_for_tx_complete; 2252 break; 2253 case MSM_ENC_VBLANK: 2254 fn_wait = phys->ops.wait_for_vblank; 2255 break; 2256 default: 2257 DPU_ERROR_ENC(dpu_enc, "unknown wait event %d\n", 2258 event); 2259 return -EINVAL; 2260 }; 2261 2262 if (fn_wait) { 2263 DPU_ATRACE_BEGIN("wait_for_completion_event"); 2264 ret = fn_wait(phys); 2265 DPU_ATRACE_END("wait_for_completion_event"); 2266 if (ret) 2267 return ret; 2268 } 2269 } 2270 2271 return ret; 2272 } 2273 2274 enum dpu_intf_mode dpu_encoder_get_intf_mode(struct drm_encoder *encoder) 2275 { 2276 struct dpu_encoder_virt *dpu_enc = NULL; 2277 int i; 2278 2279 if (!encoder) { 2280 DPU_ERROR("invalid encoder\n"); 2281 return INTF_MODE_NONE; 2282 } 2283 dpu_enc = to_dpu_encoder_virt(encoder); 2284 2285 if (dpu_enc->cur_master) 2286 return dpu_enc->cur_master->intf_mode; 2287 2288 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 2289 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 2290 2291 if (phys) 2292 return phys->intf_mode; 2293 } 2294 2295 return INTF_MODE_NONE; 2296 } 2297