xref: /linux/drivers/gpu/drm/msm/disp/dpu1/dpu_encoder.c (revision 6fdcba32711044c35c0e1b094cbd8f3f0b4472c9)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2014-2018, The Linux Foundation. All rights reserved.
4  * Copyright (C) 2013 Red Hat
5  * Author: Rob Clark <robdclark@gmail.com>
6  */
7 
8 #define pr_fmt(fmt)	"[drm:%s:%d] " fmt, __func__, __LINE__
9 #include <linux/debugfs.h>
10 #include <linux/kthread.h>
11 #include <linux/seq_file.h>
12 
13 #include <drm/drm_crtc.h>
14 #include <drm/drm_file.h>
15 #include <drm/drm_probe_helper.h>
16 
17 #include "msm_drv.h"
18 #include "dpu_kms.h"
19 #include "dpu_hwio.h"
20 #include "dpu_hw_catalog.h"
21 #include "dpu_hw_intf.h"
22 #include "dpu_hw_ctl.h"
23 #include "dpu_formats.h"
24 #include "dpu_encoder_phys.h"
25 #include "dpu_crtc.h"
26 #include "dpu_trace.h"
27 #include "dpu_core_irq.h"
28 
29 #define DPU_DEBUG_ENC(e, fmt, ...) DPU_DEBUG("enc%d " fmt,\
30 		(e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
31 
32 #define DPU_ERROR_ENC(e, fmt, ...) DPU_ERROR("enc%d " fmt,\
33 		(e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
34 
35 #define DPU_DEBUG_PHYS(p, fmt, ...) DPU_DEBUG("enc%d intf%d pp%d " fmt,\
36 		(p) ? (p)->parent->base.id : -1, \
37 		(p) ? (p)->intf_idx - INTF_0 : -1, \
38 		(p) ? ((p)->hw_pp ? (p)->hw_pp->idx - PINGPONG_0 : -1) : -1, \
39 		##__VA_ARGS__)
40 
41 #define DPU_ERROR_PHYS(p, fmt, ...) DPU_ERROR("enc%d intf%d pp%d " fmt,\
42 		(p) ? (p)->parent->base.id : -1, \
43 		(p) ? (p)->intf_idx - INTF_0 : -1, \
44 		(p) ? ((p)->hw_pp ? (p)->hw_pp->idx - PINGPONG_0 : -1) : -1, \
45 		##__VA_ARGS__)
46 
47 /*
48  * Two to anticipate panels that can do cmd/vid dynamic switching
49  * plan is to create all possible physical encoder types, and switch between
50  * them at runtime
51  */
52 #define NUM_PHYS_ENCODER_TYPES 2
53 
54 #define MAX_PHYS_ENCODERS_PER_VIRTUAL \
55 	(MAX_H_TILES_PER_DISPLAY * NUM_PHYS_ENCODER_TYPES)
56 
57 #define MAX_CHANNELS_PER_ENC 2
58 
59 #define IDLE_SHORT_TIMEOUT	1
60 
61 #define MAX_VDISPLAY_SPLIT 1080
62 
63 /* timeout in frames waiting for frame done */
64 #define DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES 5
65 
66 /**
67  * enum dpu_enc_rc_events - events for resource control state machine
68  * @DPU_ENC_RC_EVENT_KICKOFF:
69  *	This event happens at NORMAL priority.
70  *	Event that signals the start of the transfer. When this event is
71  *	received, enable MDP/DSI core clocks. Regardless of the previous
72  *	state, the resource should be in ON state at the end of this event.
73  * @DPU_ENC_RC_EVENT_FRAME_DONE:
74  *	This event happens at INTERRUPT level.
75  *	Event signals the end of the data transfer after the PP FRAME_DONE
76  *	event. At the end of this event, a delayed work is scheduled to go to
77  *	IDLE_PC state after IDLE_TIMEOUT time.
78  * @DPU_ENC_RC_EVENT_PRE_STOP:
79  *	This event happens at NORMAL priority.
80  *	This event, when received during the ON state, leave the RC STATE
81  *	in the PRE_OFF state. It should be followed by the STOP event as
82  *	part of encoder disable.
83  *	If received during IDLE or OFF states, it will do nothing.
84  * @DPU_ENC_RC_EVENT_STOP:
85  *	This event happens at NORMAL priority.
86  *	When this event is received, disable all the MDP/DSI core clocks, and
87  *	disable IRQs. It should be called from the PRE_OFF or IDLE states.
88  *	IDLE is expected when IDLE_PC has run, and PRE_OFF did nothing.
89  *	PRE_OFF is expected when PRE_STOP was executed during the ON state.
90  *	Resource state should be in OFF at the end of the event.
91  * @DPU_ENC_RC_EVENT_ENTER_IDLE:
92  *	This event happens at NORMAL priority from a work item.
93  *	Event signals that there were no frame updates for IDLE_TIMEOUT time.
94  *	This would disable MDP/DSI core clocks and change the resource state
95  *	to IDLE.
96  */
97 enum dpu_enc_rc_events {
98 	DPU_ENC_RC_EVENT_KICKOFF = 1,
99 	DPU_ENC_RC_EVENT_FRAME_DONE,
100 	DPU_ENC_RC_EVENT_PRE_STOP,
101 	DPU_ENC_RC_EVENT_STOP,
102 	DPU_ENC_RC_EVENT_ENTER_IDLE
103 };
104 
105 /*
106  * enum dpu_enc_rc_states - states that the resource control maintains
107  * @DPU_ENC_RC_STATE_OFF: Resource is in OFF state
108  * @DPU_ENC_RC_STATE_PRE_OFF: Resource is transitioning to OFF state
109  * @DPU_ENC_RC_STATE_ON: Resource is in ON state
110  * @DPU_ENC_RC_STATE_MODESET: Resource is in modeset state
111  * @DPU_ENC_RC_STATE_IDLE: Resource is in IDLE state
112  */
113 enum dpu_enc_rc_states {
114 	DPU_ENC_RC_STATE_OFF,
115 	DPU_ENC_RC_STATE_PRE_OFF,
116 	DPU_ENC_RC_STATE_ON,
117 	DPU_ENC_RC_STATE_IDLE
118 };
119 
120 /**
121  * struct dpu_encoder_virt - virtual encoder. Container of one or more physical
122  *	encoders. Virtual encoder manages one "logical" display. Physical
123  *	encoders manage one intf block, tied to a specific panel/sub-panel.
124  *	Virtual encoder defers as much as possible to the physical encoders.
125  *	Virtual encoder registers itself with the DRM Framework as the encoder.
126  * @base:		drm_encoder base class for registration with DRM
127  * @enc_spinlock:	Virtual-Encoder-Wide Spin Lock for IRQ purposes
128  * @bus_scaling_client:	Client handle to the bus scaling interface
129  * @enabled:		True if the encoder is active, protected by enc_lock
130  * @num_phys_encs:	Actual number of physical encoders contained.
131  * @phys_encs:		Container of physical encoders managed.
132  * @cur_master:		Pointer to the current master in this mode. Optimization
133  *			Only valid after enable. Cleared as disable.
134  * @hw_pp		Handle to the pingpong blocks used for the display. No.
135  *			pingpong blocks can be different than num_phys_encs.
136  * @intfs_swapped	Whether or not the phys_enc interfaces have been swapped
137  *			for partial update right-only cases, such as pingpong
138  *			split where virtual pingpong does not generate IRQs
139  * @crtc:		Pointer to the currently assigned crtc. Normally you
140  *			would use crtc->state->encoder_mask to determine the
141  *			link between encoder/crtc. However in this case we need
142  *			to track crtc in the disable() hook which is called
143  *			_after_ encoder_mask is cleared.
144  * @crtc_kickoff_cb:		Callback into CRTC that will flush & start
145  *				all CTL paths
146  * @crtc_kickoff_cb_data:	Opaque user data given to crtc_kickoff_cb
147  * @debugfs_root:		Debug file system root file node
148  * @enc_lock:			Lock around physical encoder
149  *				create/destroy/enable/disable
150  * @frame_busy_mask:		Bitmask tracking which phys_enc we are still
151  *				busy processing current command.
152  *				Bit0 = phys_encs[0] etc.
153  * @crtc_frame_event_cb:	callback handler for frame event
154  * @crtc_frame_event_cb_data:	callback handler private data
155  * @frame_done_timeout_ms:	frame done timeout in ms
156  * @frame_done_timer:		watchdog timer for frame done event
157  * @vsync_event_timer:		vsync timer
158  * @disp_info:			local copy of msm_display_info struct
159  * @idle_pc_supported:		indicate if idle power collaps is supported
160  * @rc_lock:			resource control mutex lock to protect
161  *				virt encoder over various state changes
162  * @rc_state:			resource controller state
163  * @delayed_off_work:		delayed worker to schedule disabling of
164  *				clks and resources after IDLE_TIMEOUT time.
165  * @vsync_event_work:		worker to handle vsync event for autorefresh
166  * @topology:                   topology of the display
167  * @mode_set_complete:          flag to indicate modeset completion
168  * @idle_timeout:		idle timeout duration in milliseconds
169  */
170 struct dpu_encoder_virt {
171 	struct drm_encoder base;
172 	spinlock_t enc_spinlock;
173 	uint32_t bus_scaling_client;
174 
175 	bool enabled;
176 
177 	unsigned int num_phys_encs;
178 	struct dpu_encoder_phys *phys_encs[MAX_PHYS_ENCODERS_PER_VIRTUAL];
179 	struct dpu_encoder_phys *cur_master;
180 	struct dpu_encoder_phys *cur_slave;
181 	struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC];
182 
183 	bool intfs_swapped;
184 
185 	struct drm_crtc *crtc;
186 
187 	struct dentry *debugfs_root;
188 	struct mutex enc_lock;
189 	DECLARE_BITMAP(frame_busy_mask, MAX_PHYS_ENCODERS_PER_VIRTUAL);
190 	void (*crtc_frame_event_cb)(void *, u32 event);
191 	void *crtc_frame_event_cb_data;
192 
193 	atomic_t frame_done_timeout_ms;
194 	struct timer_list frame_done_timer;
195 	struct timer_list vsync_event_timer;
196 
197 	struct msm_display_info disp_info;
198 
199 	bool idle_pc_supported;
200 	struct mutex rc_lock;
201 	enum dpu_enc_rc_states rc_state;
202 	struct delayed_work delayed_off_work;
203 	struct kthread_work vsync_event_work;
204 	struct msm_display_topology topology;
205 	bool mode_set_complete;
206 
207 	u32 idle_timeout;
208 };
209 
210 #define to_dpu_encoder_virt(x) container_of(x, struct dpu_encoder_virt, base)
211 
212 void dpu_encoder_helper_report_irq_timeout(struct dpu_encoder_phys *phys_enc,
213 		enum dpu_intr_idx intr_idx)
214 {
215 	DRM_ERROR("irq timeout id=%u, intf=%d, pp=%d, intr=%d\n",
216 		  DRMID(phys_enc->parent), phys_enc->intf_idx - INTF_0,
217 		  phys_enc->hw_pp->idx - PINGPONG_0, intr_idx);
218 
219 	if (phys_enc->parent_ops->handle_frame_done)
220 		phys_enc->parent_ops->handle_frame_done(
221 				phys_enc->parent, phys_enc,
222 				DPU_ENCODER_FRAME_EVENT_ERROR);
223 }
224 
225 static int dpu_encoder_helper_wait_event_timeout(int32_t drm_id,
226 		int32_t hw_id, struct dpu_encoder_wait_info *info);
227 
228 int dpu_encoder_helper_wait_for_irq(struct dpu_encoder_phys *phys_enc,
229 		enum dpu_intr_idx intr_idx,
230 		struct dpu_encoder_wait_info *wait_info)
231 {
232 	struct dpu_encoder_irq *irq;
233 	u32 irq_status;
234 	int ret;
235 
236 	if (!phys_enc || !wait_info || intr_idx >= INTR_IDX_MAX) {
237 		DPU_ERROR("invalid params\n");
238 		return -EINVAL;
239 	}
240 	irq = &phys_enc->irq[intr_idx];
241 
242 	/* note: do master / slave checking outside */
243 
244 	/* return EWOULDBLOCK since we know the wait isn't necessary */
245 	if (phys_enc->enable_state == DPU_ENC_DISABLED) {
246 		DRM_ERROR("encoder is disabled id=%u, intr=%d, hw=%d, irq=%d",
247 			  DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
248 			  irq->irq_idx);
249 		return -EWOULDBLOCK;
250 	}
251 
252 	if (irq->irq_idx < 0) {
253 		DRM_DEBUG_KMS("skip irq wait id=%u, intr=%d, hw=%d, irq=%s",
254 			      DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
255 			      irq->name);
256 		return 0;
257 	}
258 
259 	DRM_DEBUG_KMS("id=%u, intr=%d, hw=%d, irq=%d, pp=%d, pending_cnt=%d",
260 		      DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
261 		      irq->irq_idx, phys_enc->hw_pp->idx - PINGPONG_0,
262 		      atomic_read(wait_info->atomic_cnt));
263 
264 	ret = dpu_encoder_helper_wait_event_timeout(
265 			DRMID(phys_enc->parent),
266 			irq->hw_idx,
267 			wait_info);
268 
269 	if (ret <= 0) {
270 		irq_status = dpu_core_irq_read(phys_enc->dpu_kms,
271 				irq->irq_idx, true);
272 		if (irq_status) {
273 			unsigned long flags;
274 
275 			DRM_DEBUG_KMS("irq not triggered id=%u, intr=%d, "
276 				      "hw=%d, irq=%d, pp=%d, atomic_cnt=%d",
277 				      DRMID(phys_enc->parent), intr_idx,
278 				      irq->hw_idx, irq->irq_idx,
279 				      phys_enc->hw_pp->idx - PINGPONG_0,
280 				      atomic_read(wait_info->atomic_cnt));
281 			local_irq_save(flags);
282 			irq->cb.func(phys_enc, irq->irq_idx);
283 			local_irq_restore(flags);
284 			ret = 0;
285 		} else {
286 			ret = -ETIMEDOUT;
287 			DRM_DEBUG_KMS("irq timeout id=%u, intr=%d, "
288 				      "hw=%d, irq=%d, pp=%d, atomic_cnt=%d",
289 				      DRMID(phys_enc->parent), intr_idx,
290 				      irq->hw_idx, irq->irq_idx,
291 				      phys_enc->hw_pp->idx - PINGPONG_0,
292 				      atomic_read(wait_info->atomic_cnt));
293 		}
294 	} else {
295 		ret = 0;
296 		trace_dpu_enc_irq_wait_success(DRMID(phys_enc->parent),
297 			intr_idx, irq->hw_idx, irq->irq_idx,
298 			phys_enc->hw_pp->idx - PINGPONG_0,
299 			atomic_read(wait_info->atomic_cnt));
300 	}
301 
302 	return ret;
303 }
304 
305 int dpu_encoder_helper_register_irq(struct dpu_encoder_phys *phys_enc,
306 		enum dpu_intr_idx intr_idx)
307 {
308 	struct dpu_encoder_irq *irq;
309 	int ret = 0;
310 
311 	if (!phys_enc || intr_idx >= INTR_IDX_MAX) {
312 		DPU_ERROR("invalid params\n");
313 		return -EINVAL;
314 	}
315 	irq = &phys_enc->irq[intr_idx];
316 
317 	if (irq->irq_idx >= 0) {
318 		DPU_DEBUG_PHYS(phys_enc,
319 				"skipping already registered irq %s type %d\n",
320 				irq->name, irq->intr_type);
321 		return 0;
322 	}
323 
324 	irq->irq_idx = dpu_core_irq_idx_lookup(phys_enc->dpu_kms,
325 			irq->intr_type, irq->hw_idx);
326 	if (irq->irq_idx < 0) {
327 		DPU_ERROR_PHYS(phys_enc,
328 			"failed to lookup IRQ index for %s type:%d\n",
329 			irq->name, irq->intr_type);
330 		return -EINVAL;
331 	}
332 
333 	ret = dpu_core_irq_register_callback(phys_enc->dpu_kms, irq->irq_idx,
334 			&irq->cb);
335 	if (ret) {
336 		DPU_ERROR_PHYS(phys_enc,
337 			"failed to register IRQ callback for %s\n",
338 			irq->name);
339 		irq->irq_idx = -EINVAL;
340 		return ret;
341 	}
342 
343 	ret = dpu_core_irq_enable(phys_enc->dpu_kms, &irq->irq_idx, 1);
344 	if (ret) {
345 		DRM_ERROR("enable failed id=%u, intr=%d, hw=%d, irq=%d",
346 			  DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
347 			  irq->irq_idx);
348 		dpu_core_irq_unregister_callback(phys_enc->dpu_kms,
349 				irq->irq_idx, &irq->cb);
350 		irq->irq_idx = -EINVAL;
351 		return ret;
352 	}
353 
354 	trace_dpu_enc_irq_register_success(DRMID(phys_enc->parent), intr_idx,
355 				irq->hw_idx, irq->irq_idx);
356 
357 	return ret;
358 }
359 
360 int dpu_encoder_helper_unregister_irq(struct dpu_encoder_phys *phys_enc,
361 		enum dpu_intr_idx intr_idx)
362 {
363 	struct dpu_encoder_irq *irq;
364 	int ret;
365 
366 	if (!phys_enc) {
367 		DPU_ERROR("invalid encoder\n");
368 		return -EINVAL;
369 	}
370 	irq = &phys_enc->irq[intr_idx];
371 
372 	/* silently skip irqs that weren't registered */
373 	if (irq->irq_idx < 0) {
374 		DRM_ERROR("duplicate unregister id=%u, intr=%d, hw=%d, irq=%d",
375 			  DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
376 			  irq->irq_idx);
377 		return 0;
378 	}
379 
380 	ret = dpu_core_irq_disable(phys_enc->dpu_kms, &irq->irq_idx, 1);
381 	if (ret) {
382 		DRM_ERROR("disable failed id=%u, intr=%d, hw=%d, irq=%d ret=%d",
383 			  DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
384 			  irq->irq_idx, ret);
385 	}
386 
387 	ret = dpu_core_irq_unregister_callback(phys_enc->dpu_kms, irq->irq_idx,
388 			&irq->cb);
389 	if (ret) {
390 		DRM_ERROR("unreg cb fail id=%u, intr=%d, hw=%d, irq=%d ret=%d",
391 			  DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
392 			  irq->irq_idx, ret);
393 	}
394 
395 	trace_dpu_enc_irq_unregister_success(DRMID(phys_enc->parent), intr_idx,
396 					     irq->hw_idx, irq->irq_idx);
397 
398 	irq->irq_idx = -EINVAL;
399 
400 	return 0;
401 }
402 
403 void dpu_encoder_get_hw_resources(struct drm_encoder *drm_enc,
404 				  struct dpu_encoder_hw_resources *hw_res)
405 {
406 	struct dpu_encoder_virt *dpu_enc = NULL;
407 	int i = 0;
408 
409 	dpu_enc = to_dpu_encoder_virt(drm_enc);
410 	DPU_DEBUG_ENC(dpu_enc, "\n");
411 
412 	/* Query resources used by phys encs, expected to be without overlap */
413 	memset(hw_res, 0, sizeof(*hw_res));
414 
415 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
416 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
417 
418 		if (phys && phys->ops.get_hw_resources)
419 			phys->ops.get_hw_resources(phys, hw_res);
420 	}
421 }
422 
423 static void dpu_encoder_destroy(struct drm_encoder *drm_enc)
424 {
425 	struct dpu_encoder_virt *dpu_enc = NULL;
426 	int i = 0;
427 
428 	if (!drm_enc) {
429 		DPU_ERROR("invalid encoder\n");
430 		return;
431 	}
432 
433 	dpu_enc = to_dpu_encoder_virt(drm_enc);
434 	DPU_DEBUG_ENC(dpu_enc, "\n");
435 
436 	mutex_lock(&dpu_enc->enc_lock);
437 
438 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
439 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
440 
441 		if (phys && phys->ops.destroy) {
442 			phys->ops.destroy(phys);
443 			--dpu_enc->num_phys_encs;
444 			dpu_enc->phys_encs[i] = NULL;
445 		}
446 	}
447 
448 	if (dpu_enc->num_phys_encs)
449 		DPU_ERROR_ENC(dpu_enc, "expected 0 num_phys_encs not %d\n",
450 				dpu_enc->num_phys_encs);
451 	dpu_enc->num_phys_encs = 0;
452 	mutex_unlock(&dpu_enc->enc_lock);
453 
454 	drm_encoder_cleanup(drm_enc);
455 	mutex_destroy(&dpu_enc->enc_lock);
456 }
457 
458 void dpu_encoder_helper_split_config(
459 		struct dpu_encoder_phys *phys_enc,
460 		enum dpu_intf interface)
461 {
462 	struct dpu_encoder_virt *dpu_enc;
463 	struct split_pipe_cfg cfg = { 0 };
464 	struct dpu_hw_mdp *hw_mdptop;
465 	struct msm_display_info *disp_info;
466 
467 	if (!phys_enc || !phys_enc->hw_mdptop || !phys_enc->parent) {
468 		DPU_ERROR("invalid arg(s), encoder %d\n", phys_enc != 0);
469 		return;
470 	}
471 
472 	dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
473 	hw_mdptop = phys_enc->hw_mdptop;
474 	disp_info = &dpu_enc->disp_info;
475 
476 	if (disp_info->intf_type != DRM_MODE_ENCODER_DSI)
477 		return;
478 
479 	/**
480 	 * disable split modes since encoder will be operating in as the only
481 	 * encoder, either for the entire use case in the case of, for example,
482 	 * single DSI, or for this frame in the case of left/right only partial
483 	 * update.
484 	 */
485 	if (phys_enc->split_role == ENC_ROLE_SOLO) {
486 		if (hw_mdptop->ops.setup_split_pipe)
487 			hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg);
488 		return;
489 	}
490 
491 	cfg.en = true;
492 	cfg.mode = phys_enc->intf_mode;
493 	cfg.intf = interface;
494 
495 	if (cfg.en && phys_enc->ops.needs_single_flush &&
496 			phys_enc->ops.needs_single_flush(phys_enc))
497 		cfg.split_flush_en = true;
498 
499 	if (phys_enc->split_role == ENC_ROLE_MASTER) {
500 		DPU_DEBUG_ENC(dpu_enc, "enable %d\n", cfg.en);
501 
502 		if (hw_mdptop->ops.setup_split_pipe)
503 			hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg);
504 	}
505 }
506 
507 static void _dpu_encoder_adjust_mode(struct drm_connector *connector,
508 		struct drm_display_mode *adj_mode)
509 {
510 	struct drm_display_mode *cur_mode;
511 
512 	if (!connector || !adj_mode)
513 		return;
514 
515 	list_for_each_entry(cur_mode, &connector->modes, head) {
516 		if (cur_mode->vdisplay == adj_mode->vdisplay &&
517 		    cur_mode->hdisplay == adj_mode->hdisplay &&
518 		    drm_mode_vrefresh(cur_mode) == drm_mode_vrefresh(adj_mode)) {
519 			adj_mode->private = cur_mode->private;
520 			adj_mode->private_flags |= cur_mode->private_flags;
521 		}
522 	}
523 }
524 
525 static struct msm_display_topology dpu_encoder_get_topology(
526 			struct dpu_encoder_virt *dpu_enc,
527 			struct dpu_kms *dpu_kms,
528 			struct drm_display_mode *mode)
529 {
530 	struct msm_display_topology topology;
531 	int i, intf_count = 0;
532 
533 	for (i = 0; i < MAX_PHYS_ENCODERS_PER_VIRTUAL; i++)
534 		if (dpu_enc->phys_encs[i])
535 			intf_count++;
536 
537 	/* User split topology for width > 1080 */
538 	topology.num_lm = (mode->vdisplay > MAX_VDISPLAY_SPLIT) ? 2 : 1;
539 	topology.num_enc = 0;
540 	topology.num_intf = intf_count;
541 
542 	return topology;
543 }
544 static int dpu_encoder_virt_atomic_check(
545 		struct drm_encoder *drm_enc,
546 		struct drm_crtc_state *crtc_state,
547 		struct drm_connector_state *conn_state)
548 {
549 	struct dpu_encoder_virt *dpu_enc;
550 	struct msm_drm_private *priv;
551 	struct dpu_kms *dpu_kms;
552 	const struct drm_display_mode *mode;
553 	struct drm_display_mode *adj_mode;
554 	struct msm_display_topology topology;
555 	int i = 0;
556 	int ret = 0;
557 
558 	if (!drm_enc || !crtc_state || !conn_state) {
559 		DPU_ERROR("invalid arg(s), drm_enc %d, crtc/conn state %d/%d\n",
560 				drm_enc != 0, crtc_state != 0, conn_state != 0);
561 		return -EINVAL;
562 	}
563 
564 	dpu_enc = to_dpu_encoder_virt(drm_enc);
565 	DPU_DEBUG_ENC(dpu_enc, "\n");
566 
567 	priv = drm_enc->dev->dev_private;
568 	dpu_kms = to_dpu_kms(priv->kms);
569 	mode = &crtc_state->mode;
570 	adj_mode = &crtc_state->adjusted_mode;
571 	trace_dpu_enc_atomic_check(DRMID(drm_enc));
572 
573 	/*
574 	 * display drivers may populate private fields of the drm display mode
575 	 * structure while registering possible modes of a connector with DRM.
576 	 * These private fields are not populated back while DRM invokes
577 	 * the mode_set callbacks. This module retrieves and populates the
578 	 * private fields of the given mode.
579 	 */
580 	_dpu_encoder_adjust_mode(conn_state->connector, adj_mode);
581 
582 	/* perform atomic check on the first physical encoder (master) */
583 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
584 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
585 
586 		if (phys && phys->ops.atomic_check)
587 			ret = phys->ops.atomic_check(phys, crtc_state,
588 					conn_state);
589 		else if (phys && phys->ops.mode_fixup)
590 			if (!phys->ops.mode_fixup(phys, mode, adj_mode))
591 				ret = -EINVAL;
592 
593 		if (ret) {
594 			DPU_ERROR_ENC(dpu_enc,
595 					"mode unsupported, phys idx %d\n", i);
596 			break;
597 		}
598 	}
599 
600 	topology = dpu_encoder_get_topology(dpu_enc, dpu_kms, adj_mode);
601 
602 	/* Reserve dynamic resources now. Indicating AtomicTest phase */
603 	if (!ret) {
604 		/*
605 		 * Avoid reserving resources when mode set is pending. Topology
606 		 * info may not be available to complete reservation.
607 		 */
608 		if (drm_atomic_crtc_needs_modeset(crtc_state)
609 				&& dpu_enc->mode_set_complete) {
610 			ret = dpu_rm_reserve(&dpu_kms->rm, drm_enc, crtc_state,
611 					     topology, true);
612 			dpu_enc->mode_set_complete = false;
613 		}
614 	}
615 
616 	trace_dpu_enc_atomic_check_flags(DRMID(drm_enc), adj_mode->flags,
617 			adj_mode->private_flags);
618 
619 	return ret;
620 }
621 
622 static void _dpu_encoder_update_vsync_source(struct dpu_encoder_virt *dpu_enc,
623 			struct msm_display_info *disp_info)
624 {
625 	struct dpu_vsync_source_cfg vsync_cfg = { 0 };
626 	struct msm_drm_private *priv;
627 	struct dpu_kms *dpu_kms;
628 	struct dpu_hw_mdp *hw_mdptop;
629 	struct drm_encoder *drm_enc;
630 	int i;
631 
632 	if (!dpu_enc || !disp_info) {
633 		DPU_ERROR("invalid param dpu_enc:%d or disp_info:%d\n",
634 					dpu_enc != NULL, disp_info != NULL);
635 		return;
636 	} else if (dpu_enc->num_phys_encs > ARRAY_SIZE(dpu_enc->hw_pp)) {
637 		DPU_ERROR("invalid num phys enc %d/%d\n",
638 				dpu_enc->num_phys_encs,
639 				(int) ARRAY_SIZE(dpu_enc->hw_pp));
640 		return;
641 	}
642 
643 	drm_enc = &dpu_enc->base;
644 	/* this pointers are checked in virt_enable_helper */
645 	priv = drm_enc->dev->dev_private;
646 
647 	dpu_kms = to_dpu_kms(priv->kms);
648 	hw_mdptop = dpu_kms->hw_mdp;
649 	if (!hw_mdptop) {
650 		DPU_ERROR("invalid mdptop\n");
651 		return;
652 	}
653 
654 	if (hw_mdptop->ops.setup_vsync_source &&
655 			disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE) {
656 		for (i = 0; i < dpu_enc->num_phys_encs; i++)
657 			vsync_cfg.ppnumber[i] = dpu_enc->hw_pp[i]->idx;
658 
659 		vsync_cfg.pp_count = dpu_enc->num_phys_encs;
660 		if (disp_info->is_te_using_watchdog_timer)
661 			vsync_cfg.vsync_source = DPU_VSYNC_SOURCE_WD_TIMER_0;
662 		else
663 			vsync_cfg.vsync_source = DPU_VSYNC0_SOURCE_GPIO;
664 
665 		hw_mdptop->ops.setup_vsync_source(hw_mdptop, &vsync_cfg);
666 	}
667 }
668 
669 static void _dpu_encoder_irq_control(struct drm_encoder *drm_enc, bool enable)
670 {
671 	struct dpu_encoder_virt *dpu_enc;
672 	int i;
673 
674 	if (!drm_enc) {
675 		DPU_ERROR("invalid encoder\n");
676 		return;
677 	}
678 
679 	dpu_enc = to_dpu_encoder_virt(drm_enc);
680 
681 	DPU_DEBUG_ENC(dpu_enc, "enable:%d\n", enable);
682 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
683 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
684 
685 		if (phys && phys->ops.irq_control)
686 			phys->ops.irq_control(phys, enable);
687 	}
688 
689 }
690 
691 static void _dpu_encoder_resource_control_helper(struct drm_encoder *drm_enc,
692 		bool enable)
693 {
694 	struct msm_drm_private *priv;
695 	struct dpu_kms *dpu_kms;
696 	struct dpu_encoder_virt *dpu_enc;
697 
698 	dpu_enc = to_dpu_encoder_virt(drm_enc);
699 	priv = drm_enc->dev->dev_private;
700 	dpu_kms = to_dpu_kms(priv->kms);
701 
702 	trace_dpu_enc_rc_helper(DRMID(drm_enc), enable);
703 
704 	if (!dpu_enc->cur_master) {
705 		DPU_ERROR("encoder master not set\n");
706 		return;
707 	}
708 
709 	if (enable) {
710 		/* enable DPU core clks */
711 		pm_runtime_get_sync(&dpu_kms->pdev->dev);
712 
713 		/* enable all the irq */
714 		_dpu_encoder_irq_control(drm_enc, true);
715 
716 	} else {
717 		/* disable all the irq */
718 		_dpu_encoder_irq_control(drm_enc, false);
719 
720 		/* disable DPU core clks */
721 		pm_runtime_put_sync(&dpu_kms->pdev->dev);
722 	}
723 
724 }
725 
726 static int dpu_encoder_resource_control(struct drm_encoder *drm_enc,
727 		u32 sw_event)
728 {
729 	struct dpu_encoder_virt *dpu_enc;
730 	struct msm_drm_private *priv;
731 	bool is_vid_mode = false;
732 
733 	if (!drm_enc || !drm_enc->dev || !drm_enc->crtc) {
734 		DPU_ERROR("invalid parameters\n");
735 		return -EINVAL;
736 	}
737 	dpu_enc = to_dpu_encoder_virt(drm_enc);
738 	priv = drm_enc->dev->dev_private;
739 	is_vid_mode = dpu_enc->disp_info.capabilities &
740 						MSM_DISPLAY_CAP_VID_MODE;
741 
742 	/*
743 	 * when idle_pc is not supported, process only KICKOFF, STOP and MODESET
744 	 * events and return early for other events (ie wb display).
745 	 */
746 	if (!dpu_enc->idle_pc_supported &&
747 			(sw_event != DPU_ENC_RC_EVENT_KICKOFF &&
748 			sw_event != DPU_ENC_RC_EVENT_STOP &&
749 			sw_event != DPU_ENC_RC_EVENT_PRE_STOP))
750 		return 0;
751 
752 	trace_dpu_enc_rc(DRMID(drm_enc), sw_event, dpu_enc->idle_pc_supported,
753 			 dpu_enc->rc_state, "begin");
754 
755 	switch (sw_event) {
756 	case DPU_ENC_RC_EVENT_KICKOFF:
757 		/* cancel delayed off work, if any */
758 		if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work))
759 			DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n",
760 					sw_event);
761 
762 		mutex_lock(&dpu_enc->rc_lock);
763 
764 		/* return if the resource control is already in ON state */
765 		if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) {
766 			DRM_DEBUG_KMS("id;%u, sw_event:%d, rc in ON state\n",
767 				      DRMID(drm_enc), sw_event);
768 			mutex_unlock(&dpu_enc->rc_lock);
769 			return 0;
770 		} else if (dpu_enc->rc_state != DPU_ENC_RC_STATE_OFF &&
771 				dpu_enc->rc_state != DPU_ENC_RC_STATE_IDLE) {
772 			DRM_DEBUG_KMS("id;%u, sw_event:%d, rc in state %d\n",
773 				      DRMID(drm_enc), sw_event,
774 				      dpu_enc->rc_state);
775 			mutex_unlock(&dpu_enc->rc_lock);
776 			return -EINVAL;
777 		}
778 
779 		if (is_vid_mode && dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE)
780 			_dpu_encoder_irq_control(drm_enc, true);
781 		else
782 			_dpu_encoder_resource_control_helper(drm_enc, true);
783 
784 		dpu_enc->rc_state = DPU_ENC_RC_STATE_ON;
785 
786 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
787 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
788 				 "kickoff");
789 
790 		mutex_unlock(&dpu_enc->rc_lock);
791 		break;
792 
793 	case DPU_ENC_RC_EVENT_FRAME_DONE:
794 		/*
795 		 * mutex lock is not used as this event happens at interrupt
796 		 * context. And locking is not required as, the other events
797 		 * like KICKOFF and STOP does a wait-for-idle before executing
798 		 * the resource_control
799 		 */
800 		if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) {
801 			DRM_DEBUG_KMS("id:%d, sw_event:%d,rc:%d-unexpected\n",
802 				      DRMID(drm_enc), sw_event,
803 				      dpu_enc->rc_state);
804 			return -EINVAL;
805 		}
806 
807 		/*
808 		 * schedule off work item only when there are no
809 		 * frames pending
810 		 */
811 		if (dpu_crtc_frame_pending(drm_enc->crtc) > 1) {
812 			DRM_DEBUG_KMS("id:%d skip schedule work\n",
813 				      DRMID(drm_enc));
814 			return 0;
815 		}
816 
817 		queue_delayed_work(priv->wq, &dpu_enc->delayed_off_work,
818 				   msecs_to_jiffies(dpu_enc->idle_timeout));
819 
820 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
821 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
822 				 "frame done");
823 		break;
824 
825 	case DPU_ENC_RC_EVENT_PRE_STOP:
826 		/* cancel delayed off work, if any */
827 		if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work))
828 			DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n",
829 					sw_event);
830 
831 		mutex_lock(&dpu_enc->rc_lock);
832 
833 		if (is_vid_mode &&
834 			  dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) {
835 			_dpu_encoder_irq_control(drm_enc, true);
836 		}
837 		/* skip if is already OFF or IDLE, resources are off already */
838 		else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF ||
839 				dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) {
840 			DRM_DEBUG_KMS("id:%u, sw_event:%d, rc in %d state\n",
841 				      DRMID(drm_enc), sw_event,
842 				      dpu_enc->rc_state);
843 			mutex_unlock(&dpu_enc->rc_lock);
844 			return 0;
845 		}
846 
847 		dpu_enc->rc_state = DPU_ENC_RC_STATE_PRE_OFF;
848 
849 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
850 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
851 				 "pre stop");
852 
853 		mutex_unlock(&dpu_enc->rc_lock);
854 		break;
855 
856 	case DPU_ENC_RC_EVENT_STOP:
857 		mutex_lock(&dpu_enc->rc_lock);
858 
859 		/* return if the resource control is already in OFF state */
860 		if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF) {
861 			DRM_DEBUG_KMS("id: %u, sw_event:%d, rc in OFF state\n",
862 				      DRMID(drm_enc), sw_event);
863 			mutex_unlock(&dpu_enc->rc_lock);
864 			return 0;
865 		} else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) {
866 			DRM_ERROR("id: %u, sw_event:%d, rc in state %d\n",
867 				  DRMID(drm_enc), sw_event, dpu_enc->rc_state);
868 			mutex_unlock(&dpu_enc->rc_lock);
869 			return -EINVAL;
870 		}
871 
872 		/**
873 		 * expect to arrive here only if in either idle state or pre-off
874 		 * and in IDLE state the resources are already disabled
875 		 */
876 		if (dpu_enc->rc_state == DPU_ENC_RC_STATE_PRE_OFF)
877 			_dpu_encoder_resource_control_helper(drm_enc, false);
878 
879 		dpu_enc->rc_state = DPU_ENC_RC_STATE_OFF;
880 
881 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
882 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
883 				 "stop");
884 
885 		mutex_unlock(&dpu_enc->rc_lock);
886 		break;
887 
888 	case DPU_ENC_RC_EVENT_ENTER_IDLE:
889 		mutex_lock(&dpu_enc->rc_lock);
890 
891 		if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) {
892 			DRM_ERROR("id: %u, sw_event:%d, rc:%d !ON state\n",
893 				  DRMID(drm_enc), sw_event, dpu_enc->rc_state);
894 			mutex_unlock(&dpu_enc->rc_lock);
895 			return 0;
896 		}
897 
898 		/*
899 		 * if we are in ON but a frame was just kicked off,
900 		 * ignore the IDLE event, it's probably a stale timer event
901 		 */
902 		if (dpu_enc->frame_busy_mask[0]) {
903 			DRM_ERROR("id:%u, sw_event:%d, rc:%d frame pending\n",
904 				  DRMID(drm_enc), sw_event, dpu_enc->rc_state);
905 			mutex_unlock(&dpu_enc->rc_lock);
906 			return 0;
907 		}
908 
909 		if (is_vid_mode)
910 			_dpu_encoder_irq_control(drm_enc, false);
911 		else
912 			_dpu_encoder_resource_control_helper(drm_enc, false);
913 
914 		dpu_enc->rc_state = DPU_ENC_RC_STATE_IDLE;
915 
916 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
917 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
918 				 "idle");
919 
920 		mutex_unlock(&dpu_enc->rc_lock);
921 		break;
922 
923 	default:
924 		DRM_ERROR("id:%u, unexpected sw_event: %d\n", DRMID(drm_enc),
925 			  sw_event);
926 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
927 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
928 				 "error");
929 		break;
930 	}
931 
932 	trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
933 			 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
934 			 "end");
935 	return 0;
936 }
937 
938 static void dpu_encoder_virt_mode_set(struct drm_encoder *drm_enc,
939 				      struct drm_display_mode *mode,
940 				      struct drm_display_mode *adj_mode)
941 {
942 	struct dpu_encoder_virt *dpu_enc;
943 	struct msm_drm_private *priv;
944 	struct dpu_kms *dpu_kms;
945 	struct list_head *connector_list;
946 	struct drm_connector *conn = NULL, *conn_iter;
947 	struct drm_crtc *drm_crtc;
948 	struct dpu_crtc_state *cstate;
949 	struct dpu_rm_hw_iter hw_iter;
950 	struct msm_display_topology topology;
951 	struct dpu_hw_ctl *hw_ctl[MAX_CHANNELS_PER_ENC] = { NULL };
952 	struct dpu_hw_mixer *hw_lm[MAX_CHANNELS_PER_ENC] = { NULL };
953 	int num_lm = 0, num_ctl = 0;
954 	int i, j, ret;
955 
956 	if (!drm_enc) {
957 		DPU_ERROR("invalid encoder\n");
958 		return;
959 	}
960 
961 	dpu_enc = to_dpu_encoder_virt(drm_enc);
962 	DPU_DEBUG_ENC(dpu_enc, "\n");
963 
964 	priv = drm_enc->dev->dev_private;
965 	dpu_kms = to_dpu_kms(priv->kms);
966 	connector_list = &dpu_kms->dev->mode_config.connector_list;
967 
968 	trace_dpu_enc_mode_set(DRMID(drm_enc));
969 
970 	list_for_each_entry(conn_iter, connector_list, head)
971 		if (conn_iter->encoder == drm_enc)
972 			conn = conn_iter;
973 
974 	if (!conn) {
975 		DPU_ERROR_ENC(dpu_enc, "failed to find attached connector\n");
976 		return;
977 	} else if (!conn->state) {
978 		DPU_ERROR_ENC(dpu_enc, "invalid connector state\n");
979 		return;
980 	}
981 
982 	drm_for_each_crtc(drm_crtc, drm_enc->dev)
983 		if (drm_crtc->state->encoder_mask & drm_encoder_mask(drm_enc))
984 			break;
985 
986 	topology = dpu_encoder_get_topology(dpu_enc, dpu_kms, adj_mode);
987 
988 	/* Reserve dynamic resources now. Indicating non-AtomicTest phase */
989 	ret = dpu_rm_reserve(&dpu_kms->rm, drm_enc, drm_crtc->state,
990 			     topology, false);
991 	if (ret) {
992 		DPU_ERROR_ENC(dpu_enc,
993 				"failed to reserve hw resources, %d\n", ret);
994 		return;
995 	}
996 
997 	dpu_rm_init_hw_iter(&hw_iter, drm_enc->base.id, DPU_HW_BLK_PINGPONG);
998 	for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
999 		dpu_enc->hw_pp[i] = NULL;
1000 		if (!dpu_rm_get_hw(&dpu_kms->rm, &hw_iter))
1001 			break;
1002 		dpu_enc->hw_pp[i] = (struct dpu_hw_pingpong *) hw_iter.hw;
1003 	}
1004 
1005 	dpu_rm_init_hw_iter(&hw_iter, drm_enc->base.id, DPU_HW_BLK_CTL);
1006 	for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
1007 		if (!dpu_rm_get_hw(&dpu_kms->rm, &hw_iter))
1008 			break;
1009 		hw_ctl[i] = (struct dpu_hw_ctl *)hw_iter.hw;
1010 		num_ctl++;
1011 	}
1012 
1013 	dpu_rm_init_hw_iter(&hw_iter, drm_enc->base.id, DPU_HW_BLK_LM);
1014 	for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
1015 		if (!dpu_rm_get_hw(&dpu_kms->rm, &hw_iter))
1016 			break;
1017 		hw_lm[i] = (struct dpu_hw_mixer *)hw_iter.hw;
1018 		num_lm++;
1019 	}
1020 
1021 	cstate = to_dpu_crtc_state(drm_crtc->state);
1022 
1023 	for (i = 0; i < num_lm; i++) {
1024 		int ctl_idx = (i < num_ctl) ? i : (num_ctl-1);
1025 
1026 		cstate->mixers[i].hw_lm = hw_lm[i];
1027 		cstate->mixers[i].lm_ctl = hw_ctl[ctl_idx];
1028 	}
1029 
1030 	cstate->num_mixers = num_lm;
1031 
1032 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1033 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1034 
1035 		if (phys) {
1036 			if (!dpu_enc->hw_pp[i]) {
1037 				DPU_ERROR_ENC(dpu_enc, "no pp block assigned"
1038 					     "at idx: %d\n", i);
1039 				goto error;
1040 			}
1041 
1042 			if (!hw_ctl[i]) {
1043 				DPU_ERROR_ENC(dpu_enc, "no ctl block assigned"
1044 					     "at idx: %d\n", i);
1045 				goto error;
1046 			}
1047 
1048 			phys->hw_pp = dpu_enc->hw_pp[i];
1049 			phys->hw_ctl = hw_ctl[i];
1050 
1051 			dpu_rm_init_hw_iter(&hw_iter, drm_enc->base.id,
1052 					    DPU_HW_BLK_INTF);
1053 			for (j = 0; j < MAX_CHANNELS_PER_ENC; j++) {
1054 				struct dpu_hw_intf *hw_intf;
1055 
1056 				if (!dpu_rm_get_hw(&dpu_kms->rm, &hw_iter))
1057 					break;
1058 
1059 				hw_intf = (struct dpu_hw_intf *)hw_iter.hw;
1060 				if (hw_intf->idx == phys->intf_idx)
1061 					phys->hw_intf = hw_intf;
1062 			}
1063 
1064 			if (!phys->hw_intf) {
1065 				DPU_ERROR_ENC(dpu_enc,
1066 					      "no intf block assigned at idx: %d\n",
1067 					      i);
1068 				goto error;
1069 			}
1070 
1071 			phys->connector = conn->state->connector;
1072 			if (phys->ops.mode_set)
1073 				phys->ops.mode_set(phys, mode, adj_mode);
1074 		}
1075 	}
1076 
1077 	dpu_enc->mode_set_complete = true;
1078 
1079 error:
1080 	dpu_rm_release(&dpu_kms->rm, drm_enc);
1081 }
1082 
1083 static void _dpu_encoder_virt_enable_helper(struct drm_encoder *drm_enc)
1084 {
1085 	struct dpu_encoder_virt *dpu_enc = NULL;
1086 	struct msm_drm_private *priv;
1087 	struct dpu_kms *dpu_kms;
1088 
1089 	if (!drm_enc || !drm_enc->dev) {
1090 		DPU_ERROR("invalid parameters\n");
1091 		return;
1092 	}
1093 
1094 	priv = drm_enc->dev->dev_private;
1095 	dpu_kms = to_dpu_kms(priv->kms);
1096 
1097 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1098 	if (!dpu_enc || !dpu_enc->cur_master) {
1099 		DPU_ERROR("invalid dpu encoder/master\n");
1100 		return;
1101 	}
1102 
1103 	if (dpu_enc->cur_master->hw_mdptop &&
1104 			dpu_enc->cur_master->hw_mdptop->ops.reset_ubwc)
1105 		dpu_enc->cur_master->hw_mdptop->ops.reset_ubwc(
1106 				dpu_enc->cur_master->hw_mdptop,
1107 				dpu_kms->catalog);
1108 
1109 	_dpu_encoder_update_vsync_source(dpu_enc, &dpu_enc->disp_info);
1110 }
1111 
1112 void dpu_encoder_virt_runtime_resume(struct drm_encoder *drm_enc)
1113 {
1114 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1115 
1116 	mutex_lock(&dpu_enc->enc_lock);
1117 
1118 	if (!dpu_enc->enabled)
1119 		goto out;
1120 
1121 	if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.restore)
1122 		dpu_enc->cur_slave->ops.restore(dpu_enc->cur_slave);
1123 	if (dpu_enc->cur_master && dpu_enc->cur_master->ops.restore)
1124 		dpu_enc->cur_master->ops.restore(dpu_enc->cur_master);
1125 
1126 	_dpu_encoder_virt_enable_helper(drm_enc);
1127 
1128 out:
1129 	mutex_unlock(&dpu_enc->enc_lock);
1130 }
1131 
1132 static void dpu_encoder_virt_enable(struct drm_encoder *drm_enc)
1133 {
1134 	struct dpu_encoder_virt *dpu_enc = NULL;
1135 	int ret = 0;
1136 	struct drm_display_mode *cur_mode = NULL;
1137 
1138 	if (!drm_enc) {
1139 		DPU_ERROR("invalid encoder\n");
1140 		return;
1141 	}
1142 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1143 
1144 	mutex_lock(&dpu_enc->enc_lock);
1145 	cur_mode = &dpu_enc->base.crtc->state->adjusted_mode;
1146 
1147 	trace_dpu_enc_enable(DRMID(drm_enc), cur_mode->hdisplay,
1148 			     cur_mode->vdisplay);
1149 
1150 	/* always enable slave encoder before master */
1151 	if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.enable)
1152 		dpu_enc->cur_slave->ops.enable(dpu_enc->cur_slave);
1153 
1154 	if (dpu_enc->cur_master && dpu_enc->cur_master->ops.enable)
1155 		dpu_enc->cur_master->ops.enable(dpu_enc->cur_master);
1156 
1157 	ret = dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF);
1158 	if (ret) {
1159 		DPU_ERROR_ENC(dpu_enc, "dpu resource control failed: %d\n",
1160 				ret);
1161 		goto out;
1162 	}
1163 
1164 	_dpu_encoder_virt_enable_helper(drm_enc);
1165 
1166 	dpu_enc->enabled = true;
1167 
1168 out:
1169 	mutex_unlock(&dpu_enc->enc_lock);
1170 }
1171 
1172 static void dpu_encoder_virt_disable(struct drm_encoder *drm_enc)
1173 {
1174 	struct dpu_encoder_virt *dpu_enc = NULL;
1175 	struct msm_drm_private *priv;
1176 	struct dpu_kms *dpu_kms;
1177 	int i = 0;
1178 
1179 	if (!drm_enc) {
1180 		DPU_ERROR("invalid encoder\n");
1181 		return;
1182 	} else if (!drm_enc->dev) {
1183 		DPU_ERROR("invalid dev\n");
1184 		return;
1185 	}
1186 
1187 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1188 	DPU_DEBUG_ENC(dpu_enc, "\n");
1189 
1190 	mutex_lock(&dpu_enc->enc_lock);
1191 	dpu_enc->enabled = false;
1192 
1193 	priv = drm_enc->dev->dev_private;
1194 	dpu_kms = to_dpu_kms(priv->kms);
1195 
1196 	trace_dpu_enc_disable(DRMID(drm_enc));
1197 
1198 	/* wait for idle */
1199 	dpu_encoder_wait_for_event(drm_enc, MSM_ENC_TX_COMPLETE);
1200 
1201 	dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_PRE_STOP);
1202 
1203 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1204 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1205 
1206 		if (phys && phys->ops.disable)
1207 			phys->ops.disable(phys);
1208 	}
1209 
1210 	/* after phys waits for frame-done, should be no more frames pending */
1211 	if (atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) {
1212 		DPU_ERROR("enc%d timeout pending\n", drm_enc->base.id);
1213 		del_timer_sync(&dpu_enc->frame_done_timer);
1214 	}
1215 
1216 	dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_STOP);
1217 
1218 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1219 		if (dpu_enc->phys_encs[i])
1220 			dpu_enc->phys_encs[i]->connector = NULL;
1221 	}
1222 
1223 	DPU_DEBUG_ENC(dpu_enc, "encoder disabled\n");
1224 
1225 	dpu_rm_release(&dpu_kms->rm, drm_enc);
1226 
1227 	mutex_unlock(&dpu_enc->enc_lock);
1228 }
1229 
1230 static enum dpu_intf dpu_encoder_get_intf(struct dpu_mdss_cfg *catalog,
1231 		enum dpu_intf_type type, u32 controller_id)
1232 {
1233 	int i = 0;
1234 
1235 	for (i = 0; i < catalog->intf_count; i++) {
1236 		if (catalog->intf[i].type == type
1237 		    && catalog->intf[i].controller_id == controller_id) {
1238 			return catalog->intf[i].id;
1239 		}
1240 	}
1241 
1242 	return INTF_MAX;
1243 }
1244 
1245 static void dpu_encoder_vblank_callback(struct drm_encoder *drm_enc,
1246 		struct dpu_encoder_phys *phy_enc)
1247 {
1248 	struct dpu_encoder_virt *dpu_enc = NULL;
1249 	unsigned long lock_flags;
1250 
1251 	if (!drm_enc || !phy_enc)
1252 		return;
1253 
1254 	DPU_ATRACE_BEGIN("encoder_vblank_callback");
1255 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1256 
1257 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1258 	if (dpu_enc->crtc)
1259 		dpu_crtc_vblank_callback(dpu_enc->crtc);
1260 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1261 
1262 	atomic_inc(&phy_enc->vsync_cnt);
1263 	DPU_ATRACE_END("encoder_vblank_callback");
1264 }
1265 
1266 static void dpu_encoder_underrun_callback(struct drm_encoder *drm_enc,
1267 		struct dpu_encoder_phys *phy_enc)
1268 {
1269 	if (!phy_enc)
1270 		return;
1271 
1272 	DPU_ATRACE_BEGIN("encoder_underrun_callback");
1273 	atomic_inc(&phy_enc->underrun_cnt);
1274 	trace_dpu_enc_underrun_cb(DRMID(drm_enc),
1275 				  atomic_read(&phy_enc->underrun_cnt));
1276 	DPU_ATRACE_END("encoder_underrun_callback");
1277 }
1278 
1279 void dpu_encoder_assign_crtc(struct drm_encoder *drm_enc, struct drm_crtc *crtc)
1280 {
1281 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1282 	unsigned long lock_flags;
1283 
1284 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1285 	/* crtc should always be cleared before re-assigning */
1286 	WARN_ON(crtc && dpu_enc->crtc);
1287 	dpu_enc->crtc = crtc;
1288 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1289 }
1290 
1291 void dpu_encoder_toggle_vblank_for_crtc(struct drm_encoder *drm_enc,
1292 					struct drm_crtc *crtc, bool enable)
1293 {
1294 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1295 	unsigned long lock_flags;
1296 	int i;
1297 
1298 	trace_dpu_enc_vblank_cb(DRMID(drm_enc), enable);
1299 
1300 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1301 	if (dpu_enc->crtc != crtc) {
1302 		spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1303 		return;
1304 	}
1305 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1306 
1307 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1308 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1309 
1310 		if (phys && phys->ops.control_vblank_irq)
1311 			phys->ops.control_vblank_irq(phys, enable);
1312 	}
1313 }
1314 
1315 void dpu_encoder_register_frame_event_callback(struct drm_encoder *drm_enc,
1316 		void (*frame_event_cb)(void *, u32 event),
1317 		void *frame_event_cb_data)
1318 {
1319 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1320 	unsigned long lock_flags;
1321 	bool enable;
1322 
1323 	enable = frame_event_cb ? true : false;
1324 
1325 	if (!drm_enc) {
1326 		DPU_ERROR("invalid encoder\n");
1327 		return;
1328 	}
1329 	trace_dpu_enc_frame_event_cb(DRMID(drm_enc), enable);
1330 
1331 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1332 	dpu_enc->crtc_frame_event_cb = frame_event_cb;
1333 	dpu_enc->crtc_frame_event_cb_data = frame_event_cb_data;
1334 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1335 }
1336 
1337 static void dpu_encoder_frame_done_callback(
1338 		struct drm_encoder *drm_enc,
1339 		struct dpu_encoder_phys *ready_phys, u32 event)
1340 {
1341 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1342 	unsigned int i;
1343 
1344 	if (event & (DPU_ENCODER_FRAME_EVENT_DONE
1345 			| DPU_ENCODER_FRAME_EVENT_ERROR
1346 			| DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)) {
1347 
1348 		if (!dpu_enc->frame_busy_mask[0]) {
1349 			/**
1350 			 * suppress frame_done without waiter,
1351 			 * likely autorefresh
1352 			 */
1353 			trace_dpu_enc_frame_done_cb_not_busy(DRMID(drm_enc),
1354 					event, ready_phys->intf_idx);
1355 			return;
1356 		}
1357 
1358 		/* One of the physical encoders has become idle */
1359 		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1360 			if (dpu_enc->phys_encs[i] == ready_phys) {
1361 				trace_dpu_enc_frame_done_cb(DRMID(drm_enc), i,
1362 						dpu_enc->frame_busy_mask[0]);
1363 				clear_bit(i, dpu_enc->frame_busy_mask);
1364 			}
1365 		}
1366 
1367 		if (!dpu_enc->frame_busy_mask[0]) {
1368 			atomic_set(&dpu_enc->frame_done_timeout_ms, 0);
1369 			del_timer(&dpu_enc->frame_done_timer);
1370 
1371 			dpu_encoder_resource_control(drm_enc,
1372 					DPU_ENC_RC_EVENT_FRAME_DONE);
1373 
1374 			if (dpu_enc->crtc_frame_event_cb)
1375 				dpu_enc->crtc_frame_event_cb(
1376 					dpu_enc->crtc_frame_event_cb_data,
1377 					event);
1378 		}
1379 	} else {
1380 		if (dpu_enc->crtc_frame_event_cb)
1381 			dpu_enc->crtc_frame_event_cb(
1382 				dpu_enc->crtc_frame_event_cb_data, event);
1383 	}
1384 }
1385 
1386 static void dpu_encoder_off_work(struct work_struct *work)
1387 {
1388 	struct dpu_encoder_virt *dpu_enc = container_of(work,
1389 			struct dpu_encoder_virt, delayed_off_work.work);
1390 
1391 	if (!dpu_enc) {
1392 		DPU_ERROR("invalid dpu encoder\n");
1393 		return;
1394 	}
1395 
1396 	dpu_encoder_resource_control(&dpu_enc->base,
1397 						DPU_ENC_RC_EVENT_ENTER_IDLE);
1398 
1399 	dpu_encoder_frame_done_callback(&dpu_enc->base, NULL,
1400 				DPU_ENCODER_FRAME_EVENT_IDLE);
1401 }
1402 
1403 /**
1404  * _dpu_encoder_trigger_flush - trigger flush for a physical encoder
1405  * drm_enc: Pointer to drm encoder structure
1406  * phys: Pointer to physical encoder structure
1407  * extra_flush_bits: Additional bit mask to include in flush trigger
1408  */
1409 static void _dpu_encoder_trigger_flush(struct drm_encoder *drm_enc,
1410 		struct dpu_encoder_phys *phys, uint32_t extra_flush_bits)
1411 {
1412 	struct dpu_hw_ctl *ctl;
1413 	int pending_kickoff_cnt;
1414 	u32 ret = UINT_MAX;
1415 
1416 	if (!phys->hw_pp) {
1417 		DPU_ERROR("invalid pingpong hw\n");
1418 		return;
1419 	}
1420 
1421 	ctl = phys->hw_ctl;
1422 	if (!ctl || !ctl->ops.trigger_flush) {
1423 		DPU_ERROR("missing trigger cb\n");
1424 		return;
1425 	}
1426 
1427 	pending_kickoff_cnt = dpu_encoder_phys_inc_pending(phys);
1428 
1429 	if (extra_flush_bits && ctl->ops.update_pending_flush)
1430 		ctl->ops.update_pending_flush(ctl, extra_flush_bits);
1431 
1432 	ctl->ops.trigger_flush(ctl);
1433 
1434 	if (ctl->ops.get_pending_flush)
1435 		ret = ctl->ops.get_pending_flush(ctl);
1436 
1437 	trace_dpu_enc_trigger_flush(DRMID(drm_enc), phys->intf_idx,
1438 				    pending_kickoff_cnt, ctl->idx,
1439 				    extra_flush_bits, ret);
1440 }
1441 
1442 /**
1443  * _dpu_encoder_trigger_start - trigger start for a physical encoder
1444  * phys: Pointer to physical encoder structure
1445  */
1446 static void _dpu_encoder_trigger_start(struct dpu_encoder_phys *phys)
1447 {
1448 	if (!phys) {
1449 		DPU_ERROR("invalid argument(s)\n");
1450 		return;
1451 	}
1452 
1453 	if (!phys->hw_pp) {
1454 		DPU_ERROR("invalid pingpong hw\n");
1455 		return;
1456 	}
1457 
1458 	if (phys->ops.trigger_start && phys->enable_state != DPU_ENC_DISABLED)
1459 		phys->ops.trigger_start(phys);
1460 }
1461 
1462 void dpu_encoder_helper_trigger_start(struct dpu_encoder_phys *phys_enc)
1463 {
1464 	struct dpu_hw_ctl *ctl;
1465 
1466 	if (!phys_enc) {
1467 		DPU_ERROR("invalid encoder\n");
1468 		return;
1469 	}
1470 
1471 	ctl = phys_enc->hw_ctl;
1472 	if (ctl && ctl->ops.trigger_start) {
1473 		ctl->ops.trigger_start(ctl);
1474 		trace_dpu_enc_trigger_start(DRMID(phys_enc->parent), ctl->idx);
1475 	}
1476 }
1477 
1478 static int dpu_encoder_helper_wait_event_timeout(
1479 		int32_t drm_id,
1480 		int32_t hw_id,
1481 		struct dpu_encoder_wait_info *info)
1482 {
1483 	int rc = 0;
1484 	s64 expected_time = ktime_to_ms(ktime_get()) + info->timeout_ms;
1485 	s64 jiffies = msecs_to_jiffies(info->timeout_ms);
1486 	s64 time;
1487 
1488 	do {
1489 		rc = wait_event_timeout(*(info->wq),
1490 				atomic_read(info->atomic_cnt) == 0, jiffies);
1491 		time = ktime_to_ms(ktime_get());
1492 
1493 		trace_dpu_enc_wait_event_timeout(drm_id, hw_id, rc, time,
1494 						 expected_time,
1495 						 atomic_read(info->atomic_cnt));
1496 	/* If we timed out, counter is valid and time is less, wait again */
1497 	} while (atomic_read(info->atomic_cnt) && (rc == 0) &&
1498 			(time < expected_time));
1499 
1500 	return rc;
1501 }
1502 
1503 static void dpu_encoder_helper_hw_reset(struct dpu_encoder_phys *phys_enc)
1504 {
1505 	struct dpu_encoder_virt *dpu_enc;
1506 	struct dpu_hw_ctl *ctl;
1507 	int rc;
1508 
1509 	if (!phys_enc) {
1510 		DPU_ERROR("invalid encoder\n");
1511 		return;
1512 	}
1513 	dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
1514 	ctl = phys_enc->hw_ctl;
1515 
1516 	if (!ctl || !ctl->ops.reset)
1517 		return;
1518 
1519 	DRM_DEBUG_KMS("id:%u ctl %d reset\n", DRMID(phys_enc->parent),
1520 		      ctl->idx);
1521 
1522 	rc = ctl->ops.reset(ctl);
1523 	if (rc)
1524 		DPU_ERROR_ENC(dpu_enc, "ctl %d reset failure\n",  ctl->idx);
1525 
1526 	phys_enc->enable_state = DPU_ENC_ENABLED;
1527 }
1528 
1529 /**
1530  * _dpu_encoder_kickoff_phys - handle physical encoder kickoff
1531  *	Iterate through the physical encoders and perform consolidated flush
1532  *	and/or control start triggering as needed. This is done in the virtual
1533  *	encoder rather than the individual physical ones in order to handle
1534  *	use cases that require visibility into multiple physical encoders at
1535  *	a time.
1536  * dpu_enc: Pointer to virtual encoder structure
1537  */
1538 static void _dpu_encoder_kickoff_phys(struct dpu_encoder_virt *dpu_enc)
1539 {
1540 	struct dpu_hw_ctl *ctl;
1541 	uint32_t i, pending_flush;
1542 	unsigned long lock_flags;
1543 
1544 	pending_flush = 0x0;
1545 
1546 	/* update pending counts and trigger kickoff ctl flush atomically */
1547 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1548 
1549 	/* don't perform flush/start operations for slave encoders */
1550 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1551 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1552 
1553 		if (!phys || phys->enable_state == DPU_ENC_DISABLED)
1554 			continue;
1555 
1556 		ctl = phys->hw_ctl;
1557 		if (!ctl)
1558 			continue;
1559 
1560 		/*
1561 		 * This is cleared in frame_done worker, which isn't invoked
1562 		 * for async commits. So don't set this for async, since it'll
1563 		 * roll over to the next commit.
1564 		 */
1565 		if (phys->split_role != ENC_ROLE_SLAVE)
1566 			set_bit(i, dpu_enc->frame_busy_mask);
1567 
1568 		if (!phys->ops.needs_single_flush ||
1569 				!phys->ops.needs_single_flush(phys))
1570 			_dpu_encoder_trigger_flush(&dpu_enc->base, phys, 0x0);
1571 		else if (ctl->ops.get_pending_flush)
1572 			pending_flush |= ctl->ops.get_pending_flush(ctl);
1573 	}
1574 
1575 	/* for split flush, combine pending flush masks and send to master */
1576 	if (pending_flush && dpu_enc->cur_master) {
1577 		_dpu_encoder_trigger_flush(
1578 				&dpu_enc->base,
1579 				dpu_enc->cur_master,
1580 				pending_flush);
1581 	}
1582 
1583 	_dpu_encoder_trigger_start(dpu_enc->cur_master);
1584 
1585 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1586 }
1587 
1588 void dpu_encoder_trigger_kickoff_pending(struct drm_encoder *drm_enc)
1589 {
1590 	struct dpu_encoder_virt *dpu_enc;
1591 	struct dpu_encoder_phys *phys;
1592 	unsigned int i;
1593 	struct dpu_hw_ctl *ctl;
1594 	struct msm_display_info *disp_info;
1595 
1596 	if (!drm_enc) {
1597 		DPU_ERROR("invalid encoder\n");
1598 		return;
1599 	}
1600 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1601 	disp_info = &dpu_enc->disp_info;
1602 
1603 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1604 		phys = dpu_enc->phys_encs[i];
1605 
1606 		if (phys && phys->hw_ctl) {
1607 			ctl = phys->hw_ctl;
1608 			if (ctl->ops.clear_pending_flush)
1609 				ctl->ops.clear_pending_flush(ctl);
1610 
1611 			/* update only for command mode primary ctl */
1612 			if ((phys == dpu_enc->cur_master) &&
1613 			   (disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE)
1614 			    && ctl->ops.trigger_pending)
1615 				ctl->ops.trigger_pending(ctl);
1616 		}
1617 	}
1618 }
1619 
1620 static u32 _dpu_encoder_calculate_linetime(struct dpu_encoder_virt *dpu_enc,
1621 		struct drm_display_mode *mode)
1622 {
1623 	u64 pclk_rate;
1624 	u32 pclk_period;
1625 	u32 line_time;
1626 
1627 	/*
1628 	 * For linetime calculation, only operate on master encoder.
1629 	 */
1630 	if (!dpu_enc->cur_master)
1631 		return 0;
1632 
1633 	if (!dpu_enc->cur_master->ops.get_line_count) {
1634 		DPU_ERROR("get_line_count function not defined\n");
1635 		return 0;
1636 	}
1637 
1638 	pclk_rate = mode->clock; /* pixel clock in kHz */
1639 	if (pclk_rate == 0) {
1640 		DPU_ERROR("pclk is 0, cannot calculate line time\n");
1641 		return 0;
1642 	}
1643 
1644 	pclk_period = DIV_ROUND_UP_ULL(1000000000ull, pclk_rate);
1645 	if (pclk_period == 0) {
1646 		DPU_ERROR("pclk period is 0\n");
1647 		return 0;
1648 	}
1649 
1650 	/*
1651 	 * Line time calculation based on Pixel clock and HTOTAL.
1652 	 * Final unit is in ns.
1653 	 */
1654 	line_time = (pclk_period * mode->htotal) / 1000;
1655 	if (line_time == 0) {
1656 		DPU_ERROR("line time calculation is 0\n");
1657 		return 0;
1658 	}
1659 
1660 	DPU_DEBUG_ENC(dpu_enc,
1661 			"clk_rate=%lldkHz, clk_period=%d, linetime=%dns\n",
1662 			pclk_rate, pclk_period, line_time);
1663 
1664 	return line_time;
1665 }
1666 
1667 int dpu_encoder_vsync_time(struct drm_encoder *drm_enc, ktime_t *wakeup_time)
1668 {
1669 	struct drm_display_mode *mode;
1670 	struct dpu_encoder_virt *dpu_enc;
1671 	u32 cur_line;
1672 	u32 line_time;
1673 	u32 vtotal, time_to_vsync;
1674 	ktime_t cur_time;
1675 
1676 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1677 
1678 	if (!drm_enc->crtc || !drm_enc->crtc->state) {
1679 		DPU_ERROR("crtc/crtc state object is NULL\n");
1680 		return -EINVAL;
1681 	}
1682 	mode = &drm_enc->crtc->state->adjusted_mode;
1683 
1684 	line_time = _dpu_encoder_calculate_linetime(dpu_enc, mode);
1685 	if (!line_time)
1686 		return -EINVAL;
1687 
1688 	cur_line = dpu_enc->cur_master->ops.get_line_count(dpu_enc->cur_master);
1689 
1690 	vtotal = mode->vtotal;
1691 	if (cur_line >= vtotal)
1692 		time_to_vsync = line_time * vtotal;
1693 	else
1694 		time_to_vsync = line_time * (vtotal - cur_line);
1695 
1696 	if (time_to_vsync == 0) {
1697 		DPU_ERROR("time to vsync should not be zero, vtotal=%d\n",
1698 				vtotal);
1699 		return -EINVAL;
1700 	}
1701 
1702 	cur_time = ktime_get();
1703 	*wakeup_time = ktime_add_ns(cur_time, time_to_vsync);
1704 
1705 	DPU_DEBUG_ENC(dpu_enc,
1706 			"cur_line=%u vtotal=%u time_to_vsync=%u, cur_time=%lld, wakeup_time=%lld\n",
1707 			cur_line, vtotal, time_to_vsync,
1708 			ktime_to_ms(cur_time),
1709 			ktime_to_ms(*wakeup_time));
1710 	return 0;
1711 }
1712 
1713 static void dpu_encoder_vsync_event_handler(struct timer_list *t)
1714 {
1715 	struct dpu_encoder_virt *dpu_enc = from_timer(dpu_enc, t,
1716 			vsync_event_timer);
1717 	struct drm_encoder *drm_enc = &dpu_enc->base;
1718 	struct msm_drm_private *priv;
1719 	struct msm_drm_thread *event_thread;
1720 
1721 	if (!drm_enc->dev || !drm_enc->crtc) {
1722 		DPU_ERROR("invalid parameters\n");
1723 		return;
1724 	}
1725 
1726 	priv = drm_enc->dev->dev_private;
1727 
1728 	if (drm_enc->crtc->index >= ARRAY_SIZE(priv->event_thread)) {
1729 		DPU_ERROR("invalid crtc index\n");
1730 		return;
1731 	}
1732 	event_thread = &priv->event_thread[drm_enc->crtc->index];
1733 	if (!event_thread) {
1734 		DPU_ERROR("event_thread not found for crtc:%d\n",
1735 				drm_enc->crtc->index);
1736 		return;
1737 	}
1738 
1739 	del_timer(&dpu_enc->vsync_event_timer);
1740 }
1741 
1742 static void dpu_encoder_vsync_event_work_handler(struct kthread_work *work)
1743 {
1744 	struct dpu_encoder_virt *dpu_enc = container_of(work,
1745 			struct dpu_encoder_virt, vsync_event_work);
1746 	ktime_t wakeup_time;
1747 
1748 	if (!dpu_enc) {
1749 		DPU_ERROR("invalid dpu encoder\n");
1750 		return;
1751 	}
1752 
1753 	if (dpu_encoder_vsync_time(&dpu_enc->base, &wakeup_time))
1754 		return;
1755 
1756 	trace_dpu_enc_vsync_event_work(DRMID(&dpu_enc->base), wakeup_time);
1757 	mod_timer(&dpu_enc->vsync_event_timer,
1758 			nsecs_to_jiffies(ktime_to_ns(wakeup_time)));
1759 }
1760 
1761 void dpu_encoder_prepare_for_kickoff(struct drm_encoder *drm_enc)
1762 {
1763 	struct dpu_encoder_virt *dpu_enc;
1764 	struct dpu_encoder_phys *phys;
1765 	bool needs_hw_reset = false;
1766 	unsigned int i;
1767 
1768 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1769 
1770 	trace_dpu_enc_prepare_kickoff(DRMID(drm_enc));
1771 
1772 	/* prepare for next kickoff, may include waiting on previous kickoff */
1773 	DPU_ATRACE_BEGIN("enc_prepare_for_kickoff");
1774 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1775 		phys = dpu_enc->phys_encs[i];
1776 		if (phys) {
1777 			if (phys->ops.prepare_for_kickoff)
1778 				phys->ops.prepare_for_kickoff(phys);
1779 			if (phys->enable_state == DPU_ENC_ERR_NEEDS_HW_RESET)
1780 				needs_hw_reset = true;
1781 		}
1782 	}
1783 	DPU_ATRACE_END("enc_prepare_for_kickoff");
1784 
1785 	dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF);
1786 
1787 	/* if any phys needs reset, reset all phys, in-order */
1788 	if (needs_hw_reset) {
1789 		trace_dpu_enc_prepare_kickoff_reset(DRMID(drm_enc));
1790 		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1791 			dpu_encoder_helper_hw_reset(dpu_enc->phys_encs[i]);
1792 		}
1793 	}
1794 }
1795 
1796 void dpu_encoder_kickoff(struct drm_encoder *drm_enc)
1797 {
1798 	struct dpu_encoder_virt *dpu_enc;
1799 	struct dpu_encoder_phys *phys;
1800 	ktime_t wakeup_time;
1801 	unsigned long timeout_ms;
1802 	unsigned int i;
1803 
1804 	DPU_ATRACE_BEGIN("encoder_kickoff");
1805 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1806 
1807 	trace_dpu_enc_kickoff(DRMID(drm_enc));
1808 
1809 	timeout_ms = DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES * 1000 /
1810 			drm_mode_vrefresh(&drm_enc->crtc->state->adjusted_mode);
1811 
1812 	atomic_set(&dpu_enc->frame_done_timeout_ms, timeout_ms);
1813 	mod_timer(&dpu_enc->frame_done_timer,
1814 			jiffies + msecs_to_jiffies(timeout_ms));
1815 
1816 	/* All phys encs are ready to go, trigger the kickoff */
1817 	_dpu_encoder_kickoff_phys(dpu_enc);
1818 
1819 	/* allow phys encs to handle any post-kickoff business */
1820 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1821 		phys = dpu_enc->phys_encs[i];
1822 		if (phys && phys->ops.handle_post_kickoff)
1823 			phys->ops.handle_post_kickoff(phys);
1824 	}
1825 
1826 	if (dpu_enc->disp_info.intf_type == DRM_MODE_ENCODER_DSI &&
1827 			!dpu_encoder_vsync_time(drm_enc, &wakeup_time)) {
1828 		trace_dpu_enc_early_kickoff(DRMID(drm_enc),
1829 					    ktime_to_ms(wakeup_time));
1830 		mod_timer(&dpu_enc->vsync_event_timer,
1831 				nsecs_to_jiffies(ktime_to_ns(wakeup_time)));
1832 	}
1833 
1834 	DPU_ATRACE_END("encoder_kickoff");
1835 }
1836 
1837 void dpu_encoder_prepare_commit(struct drm_encoder *drm_enc)
1838 {
1839 	struct dpu_encoder_virt *dpu_enc;
1840 	struct dpu_encoder_phys *phys;
1841 	int i;
1842 
1843 	if (!drm_enc) {
1844 		DPU_ERROR("invalid encoder\n");
1845 		return;
1846 	}
1847 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1848 
1849 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1850 		phys = dpu_enc->phys_encs[i];
1851 		if (phys && phys->ops.prepare_commit)
1852 			phys->ops.prepare_commit(phys);
1853 	}
1854 }
1855 
1856 #ifdef CONFIG_DEBUG_FS
1857 static int _dpu_encoder_status_show(struct seq_file *s, void *data)
1858 {
1859 	struct dpu_encoder_virt *dpu_enc = s->private;
1860 	int i;
1861 
1862 	mutex_lock(&dpu_enc->enc_lock);
1863 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1864 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1865 
1866 		if (!phys)
1867 			continue;
1868 
1869 		seq_printf(s, "intf:%d    vsync:%8d     underrun:%8d    ",
1870 				phys->intf_idx - INTF_0,
1871 				atomic_read(&phys->vsync_cnt),
1872 				atomic_read(&phys->underrun_cnt));
1873 
1874 		switch (phys->intf_mode) {
1875 		case INTF_MODE_VIDEO:
1876 			seq_puts(s, "mode: video\n");
1877 			break;
1878 		case INTF_MODE_CMD:
1879 			seq_puts(s, "mode: command\n");
1880 			break;
1881 		default:
1882 			seq_puts(s, "mode: ???\n");
1883 			break;
1884 		}
1885 	}
1886 	mutex_unlock(&dpu_enc->enc_lock);
1887 
1888 	return 0;
1889 }
1890 
1891 static int _dpu_encoder_debugfs_status_open(struct inode *inode,
1892 		struct file *file)
1893 {
1894 	return single_open(file, _dpu_encoder_status_show, inode->i_private);
1895 }
1896 
1897 static int _dpu_encoder_init_debugfs(struct drm_encoder *drm_enc)
1898 {
1899 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1900 	int i;
1901 
1902 	static const struct file_operations debugfs_status_fops = {
1903 		.open =		_dpu_encoder_debugfs_status_open,
1904 		.read =		seq_read,
1905 		.llseek =	seq_lseek,
1906 		.release =	single_release,
1907 	};
1908 
1909 	char name[DPU_NAME_SIZE];
1910 
1911 	if (!drm_enc->dev) {
1912 		DPU_ERROR("invalid encoder or kms\n");
1913 		return -EINVAL;
1914 	}
1915 
1916 	snprintf(name, DPU_NAME_SIZE, "encoder%u", drm_enc->base.id);
1917 
1918 	/* create overall sub-directory for the encoder */
1919 	dpu_enc->debugfs_root = debugfs_create_dir(name,
1920 			drm_enc->dev->primary->debugfs_root);
1921 
1922 	/* don't error check these */
1923 	debugfs_create_file("status", 0600,
1924 		dpu_enc->debugfs_root, dpu_enc, &debugfs_status_fops);
1925 
1926 	for (i = 0; i < dpu_enc->num_phys_encs; i++)
1927 		if (dpu_enc->phys_encs[i] &&
1928 				dpu_enc->phys_encs[i]->ops.late_register)
1929 			dpu_enc->phys_encs[i]->ops.late_register(
1930 					dpu_enc->phys_encs[i],
1931 					dpu_enc->debugfs_root);
1932 
1933 	return 0;
1934 }
1935 #else
1936 static int _dpu_encoder_init_debugfs(struct drm_encoder *drm_enc)
1937 {
1938 	return 0;
1939 }
1940 #endif
1941 
1942 static int dpu_encoder_late_register(struct drm_encoder *encoder)
1943 {
1944 	return _dpu_encoder_init_debugfs(encoder);
1945 }
1946 
1947 static void dpu_encoder_early_unregister(struct drm_encoder *encoder)
1948 {
1949 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(encoder);
1950 
1951 	debugfs_remove_recursive(dpu_enc->debugfs_root);
1952 }
1953 
1954 static int dpu_encoder_virt_add_phys_encs(
1955 		u32 display_caps,
1956 		struct dpu_encoder_virt *dpu_enc,
1957 		struct dpu_enc_phys_init_params *params)
1958 {
1959 	struct dpu_encoder_phys *enc = NULL;
1960 
1961 	DPU_DEBUG_ENC(dpu_enc, "\n");
1962 
1963 	/*
1964 	 * We may create up to NUM_PHYS_ENCODER_TYPES physical encoder types
1965 	 * in this function, check up-front.
1966 	 */
1967 	if (dpu_enc->num_phys_encs + NUM_PHYS_ENCODER_TYPES >=
1968 			ARRAY_SIZE(dpu_enc->phys_encs)) {
1969 		DPU_ERROR_ENC(dpu_enc, "too many physical encoders %d\n",
1970 			  dpu_enc->num_phys_encs);
1971 		return -EINVAL;
1972 	}
1973 
1974 	if (display_caps & MSM_DISPLAY_CAP_VID_MODE) {
1975 		enc = dpu_encoder_phys_vid_init(params);
1976 
1977 		if (IS_ERR_OR_NULL(enc)) {
1978 			DPU_ERROR_ENC(dpu_enc, "failed to init vid enc: %ld\n",
1979 				PTR_ERR(enc));
1980 			return enc == 0 ? -EINVAL : PTR_ERR(enc);
1981 		}
1982 
1983 		dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
1984 		++dpu_enc->num_phys_encs;
1985 	}
1986 
1987 	if (display_caps & MSM_DISPLAY_CAP_CMD_MODE) {
1988 		enc = dpu_encoder_phys_cmd_init(params);
1989 
1990 		if (IS_ERR_OR_NULL(enc)) {
1991 			DPU_ERROR_ENC(dpu_enc, "failed to init cmd enc: %ld\n",
1992 				PTR_ERR(enc));
1993 			return enc == 0 ? -EINVAL : PTR_ERR(enc);
1994 		}
1995 
1996 		dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
1997 		++dpu_enc->num_phys_encs;
1998 	}
1999 
2000 	if (params->split_role == ENC_ROLE_SLAVE)
2001 		dpu_enc->cur_slave = enc;
2002 	else
2003 		dpu_enc->cur_master = enc;
2004 
2005 	return 0;
2006 }
2007 
2008 static const struct dpu_encoder_virt_ops dpu_encoder_parent_ops = {
2009 	.handle_vblank_virt = dpu_encoder_vblank_callback,
2010 	.handle_underrun_virt = dpu_encoder_underrun_callback,
2011 	.handle_frame_done = dpu_encoder_frame_done_callback,
2012 };
2013 
2014 static int dpu_encoder_setup_display(struct dpu_encoder_virt *dpu_enc,
2015 				 struct dpu_kms *dpu_kms,
2016 				 struct msm_display_info *disp_info)
2017 {
2018 	int ret = 0;
2019 	int i = 0;
2020 	enum dpu_intf_type intf_type;
2021 	struct dpu_enc_phys_init_params phys_params;
2022 
2023 	if (!dpu_enc) {
2024 		DPU_ERROR("invalid arg(s), enc %d\n", dpu_enc != 0);
2025 		return -EINVAL;
2026 	}
2027 
2028 	dpu_enc->cur_master = NULL;
2029 
2030 	memset(&phys_params, 0, sizeof(phys_params));
2031 	phys_params.dpu_kms = dpu_kms;
2032 	phys_params.parent = &dpu_enc->base;
2033 	phys_params.parent_ops = &dpu_encoder_parent_ops;
2034 	phys_params.enc_spinlock = &dpu_enc->enc_spinlock;
2035 
2036 	DPU_DEBUG("\n");
2037 
2038 	switch (disp_info->intf_type) {
2039 	case DRM_MODE_ENCODER_DSI:
2040 		intf_type = INTF_DSI;
2041 		break;
2042 	default:
2043 		DPU_ERROR_ENC(dpu_enc, "unsupported display interface type\n");
2044 		return -EINVAL;
2045 	}
2046 
2047 	WARN_ON(disp_info->num_of_h_tiles < 1);
2048 
2049 	DPU_DEBUG("dsi_info->num_of_h_tiles %d\n", disp_info->num_of_h_tiles);
2050 
2051 	if ((disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE) ||
2052 	    (disp_info->capabilities & MSM_DISPLAY_CAP_VID_MODE))
2053 		dpu_enc->idle_pc_supported =
2054 				dpu_kms->catalog->caps->has_idle_pc;
2055 
2056 	mutex_lock(&dpu_enc->enc_lock);
2057 	for (i = 0; i < disp_info->num_of_h_tiles && !ret; i++) {
2058 		/*
2059 		 * Left-most tile is at index 0, content is controller id
2060 		 * h_tile_instance_ids[2] = {0, 1}; DSI0 = left, DSI1 = right
2061 		 * h_tile_instance_ids[2] = {1, 0}; DSI1 = left, DSI0 = right
2062 		 */
2063 		u32 controller_id = disp_info->h_tile_instance[i];
2064 
2065 		if (disp_info->num_of_h_tiles > 1) {
2066 			if (i == 0)
2067 				phys_params.split_role = ENC_ROLE_MASTER;
2068 			else
2069 				phys_params.split_role = ENC_ROLE_SLAVE;
2070 		} else {
2071 			phys_params.split_role = ENC_ROLE_SOLO;
2072 		}
2073 
2074 		DPU_DEBUG("h_tile_instance %d = %d, split_role %d\n",
2075 				i, controller_id, phys_params.split_role);
2076 
2077 		phys_params.intf_idx = dpu_encoder_get_intf(dpu_kms->catalog,
2078 													intf_type,
2079 													controller_id);
2080 		if (phys_params.intf_idx == INTF_MAX) {
2081 			DPU_ERROR_ENC(dpu_enc, "could not get intf: type %d, id %d\n",
2082 						  intf_type, controller_id);
2083 			ret = -EINVAL;
2084 		}
2085 
2086 		if (!ret) {
2087 			ret = dpu_encoder_virt_add_phys_encs(disp_info->capabilities,
2088 												 dpu_enc,
2089 												 &phys_params);
2090 			if (ret)
2091 				DPU_ERROR_ENC(dpu_enc, "failed to add phys encs\n");
2092 		}
2093 	}
2094 
2095 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2096 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2097 
2098 		if (phys) {
2099 			atomic_set(&phys->vsync_cnt, 0);
2100 			atomic_set(&phys->underrun_cnt, 0);
2101 		}
2102 	}
2103 	mutex_unlock(&dpu_enc->enc_lock);
2104 
2105 	return ret;
2106 }
2107 
2108 static void dpu_encoder_frame_done_timeout(struct timer_list *t)
2109 {
2110 	struct dpu_encoder_virt *dpu_enc = from_timer(dpu_enc, t,
2111 			frame_done_timer);
2112 	struct drm_encoder *drm_enc = &dpu_enc->base;
2113 	u32 event;
2114 
2115 	if (!drm_enc->dev) {
2116 		DPU_ERROR("invalid parameters\n");
2117 		return;
2118 	}
2119 
2120 	if (!dpu_enc->frame_busy_mask[0] || !dpu_enc->crtc_frame_event_cb) {
2121 		DRM_DEBUG_KMS("id:%u invalid timeout frame_busy_mask=%lu\n",
2122 			      DRMID(drm_enc), dpu_enc->frame_busy_mask[0]);
2123 		return;
2124 	} else if (!atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) {
2125 		DRM_DEBUG_KMS("id:%u invalid timeout\n", DRMID(drm_enc));
2126 		return;
2127 	}
2128 
2129 	DPU_ERROR_ENC(dpu_enc, "frame done timeout\n");
2130 
2131 	event = DPU_ENCODER_FRAME_EVENT_ERROR;
2132 	trace_dpu_enc_frame_done_timeout(DRMID(drm_enc), event);
2133 	dpu_enc->crtc_frame_event_cb(dpu_enc->crtc_frame_event_cb_data, event);
2134 }
2135 
2136 static const struct drm_encoder_helper_funcs dpu_encoder_helper_funcs = {
2137 	.mode_set = dpu_encoder_virt_mode_set,
2138 	.disable = dpu_encoder_virt_disable,
2139 	.enable = dpu_kms_encoder_enable,
2140 	.atomic_check = dpu_encoder_virt_atomic_check,
2141 
2142 	/* This is called by dpu_kms_encoder_enable */
2143 	.commit = dpu_encoder_virt_enable,
2144 };
2145 
2146 static const struct drm_encoder_funcs dpu_encoder_funcs = {
2147 		.destroy = dpu_encoder_destroy,
2148 		.late_register = dpu_encoder_late_register,
2149 		.early_unregister = dpu_encoder_early_unregister,
2150 };
2151 
2152 int dpu_encoder_setup(struct drm_device *dev, struct drm_encoder *enc,
2153 		struct msm_display_info *disp_info)
2154 {
2155 	struct msm_drm_private *priv = dev->dev_private;
2156 	struct dpu_kms *dpu_kms = to_dpu_kms(priv->kms);
2157 	struct drm_encoder *drm_enc = NULL;
2158 	struct dpu_encoder_virt *dpu_enc = NULL;
2159 	int ret = 0;
2160 
2161 	dpu_enc = to_dpu_encoder_virt(enc);
2162 
2163 	mutex_init(&dpu_enc->enc_lock);
2164 	ret = dpu_encoder_setup_display(dpu_enc, dpu_kms, disp_info);
2165 	if (ret)
2166 		goto fail;
2167 
2168 	atomic_set(&dpu_enc->frame_done_timeout_ms, 0);
2169 	timer_setup(&dpu_enc->frame_done_timer,
2170 			dpu_encoder_frame_done_timeout, 0);
2171 
2172 	if (disp_info->intf_type == DRM_MODE_ENCODER_DSI)
2173 		timer_setup(&dpu_enc->vsync_event_timer,
2174 				dpu_encoder_vsync_event_handler,
2175 				0);
2176 
2177 
2178 	mutex_init(&dpu_enc->rc_lock);
2179 	INIT_DELAYED_WORK(&dpu_enc->delayed_off_work,
2180 			dpu_encoder_off_work);
2181 	dpu_enc->idle_timeout = IDLE_TIMEOUT;
2182 
2183 	kthread_init_work(&dpu_enc->vsync_event_work,
2184 			dpu_encoder_vsync_event_work_handler);
2185 
2186 	memcpy(&dpu_enc->disp_info, disp_info, sizeof(*disp_info));
2187 
2188 	DPU_DEBUG_ENC(dpu_enc, "created\n");
2189 
2190 	return ret;
2191 
2192 fail:
2193 	DPU_ERROR("failed to create encoder\n");
2194 	if (drm_enc)
2195 		dpu_encoder_destroy(drm_enc);
2196 
2197 	return ret;
2198 
2199 
2200 }
2201 
2202 struct drm_encoder *dpu_encoder_init(struct drm_device *dev,
2203 		int drm_enc_mode)
2204 {
2205 	struct dpu_encoder_virt *dpu_enc = NULL;
2206 	int rc = 0;
2207 
2208 	dpu_enc = devm_kzalloc(dev->dev, sizeof(*dpu_enc), GFP_KERNEL);
2209 	if (!dpu_enc)
2210 		return ERR_PTR(ENOMEM);
2211 
2212 	rc = drm_encoder_init(dev, &dpu_enc->base, &dpu_encoder_funcs,
2213 			drm_enc_mode, NULL);
2214 	if (rc) {
2215 		devm_kfree(dev->dev, dpu_enc);
2216 		return ERR_PTR(rc);
2217 	}
2218 
2219 	drm_encoder_helper_add(&dpu_enc->base, &dpu_encoder_helper_funcs);
2220 
2221 	spin_lock_init(&dpu_enc->enc_spinlock);
2222 	dpu_enc->enabled = false;
2223 
2224 	return &dpu_enc->base;
2225 }
2226 
2227 int dpu_encoder_wait_for_event(struct drm_encoder *drm_enc,
2228 	enum msm_event_wait event)
2229 {
2230 	int (*fn_wait)(struct dpu_encoder_phys *phys_enc) = NULL;
2231 	struct dpu_encoder_virt *dpu_enc = NULL;
2232 	int i, ret = 0;
2233 
2234 	if (!drm_enc) {
2235 		DPU_ERROR("invalid encoder\n");
2236 		return -EINVAL;
2237 	}
2238 	dpu_enc = to_dpu_encoder_virt(drm_enc);
2239 	DPU_DEBUG_ENC(dpu_enc, "\n");
2240 
2241 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2242 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2243 		if (!phys)
2244 			continue;
2245 
2246 		switch (event) {
2247 		case MSM_ENC_COMMIT_DONE:
2248 			fn_wait = phys->ops.wait_for_commit_done;
2249 			break;
2250 		case MSM_ENC_TX_COMPLETE:
2251 			fn_wait = phys->ops.wait_for_tx_complete;
2252 			break;
2253 		case MSM_ENC_VBLANK:
2254 			fn_wait = phys->ops.wait_for_vblank;
2255 			break;
2256 		default:
2257 			DPU_ERROR_ENC(dpu_enc, "unknown wait event %d\n",
2258 					event);
2259 			return -EINVAL;
2260 		};
2261 
2262 		if (fn_wait) {
2263 			DPU_ATRACE_BEGIN("wait_for_completion_event");
2264 			ret = fn_wait(phys);
2265 			DPU_ATRACE_END("wait_for_completion_event");
2266 			if (ret)
2267 				return ret;
2268 		}
2269 	}
2270 
2271 	return ret;
2272 }
2273 
2274 enum dpu_intf_mode dpu_encoder_get_intf_mode(struct drm_encoder *encoder)
2275 {
2276 	struct dpu_encoder_virt *dpu_enc = NULL;
2277 	int i;
2278 
2279 	if (!encoder) {
2280 		DPU_ERROR("invalid encoder\n");
2281 		return INTF_MODE_NONE;
2282 	}
2283 	dpu_enc = to_dpu_encoder_virt(encoder);
2284 
2285 	if (dpu_enc->cur_master)
2286 		return dpu_enc->cur_master->intf_mode;
2287 
2288 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2289 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2290 
2291 		if (phys)
2292 			return phys->intf_mode;
2293 	}
2294 
2295 	return INTF_MODE_NONE;
2296 }
2297