xref: /linux/drivers/gpu/drm/msm/disp/dpu1/dpu_encoder.c (revision 4ac6d90867a4de2e12117e755dbd76e08d88697f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2014-2018, 2020-2021 The Linux Foundation. All rights reserved.
4  * Copyright (C) 2013 Red Hat
5  * Author: Rob Clark <robdclark@gmail.com>
6  */
7 
8 #define pr_fmt(fmt)	"[drm:%s:%d] " fmt, __func__, __LINE__
9 #include <linux/debugfs.h>
10 #include <linux/kthread.h>
11 #include <linux/seq_file.h>
12 
13 #include <drm/drm_crtc.h>
14 #include <drm/drm_file.h>
15 #include <drm/drm_probe_helper.h>
16 
17 #include "msm_drv.h"
18 #include "dpu_kms.h"
19 #include "dpu_hwio.h"
20 #include "dpu_hw_catalog.h"
21 #include "dpu_hw_intf.h"
22 #include "dpu_hw_ctl.h"
23 #include "dpu_hw_dspp.h"
24 #include "dpu_formats.h"
25 #include "dpu_encoder_phys.h"
26 #include "dpu_crtc.h"
27 #include "dpu_trace.h"
28 #include "dpu_core_irq.h"
29 #include "disp/msm_disp_snapshot.h"
30 
31 #define DPU_DEBUG_ENC(e, fmt, ...) DRM_DEBUG_ATOMIC("enc%d " fmt,\
32 		(e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
33 
34 #define DPU_ERROR_ENC(e, fmt, ...) DPU_ERROR("enc%d " fmt,\
35 		(e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
36 
37 #define DPU_DEBUG_PHYS(p, fmt, ...) DRM_DEBUG_ATOMIC("enc%d intf%d pp%d " fmt,\
38 		(p) ? (p)->parent->base.id : -1, \
39 		(p) ? (p)->intf_idx - INTF_0 : -1, \
40 		(p) ? ((p)->hw_pp ? (p)->hw_pp->idx - PINGPONG_0 : -1) : -1, \
41 		##__VA_ARGS__)
42 
43 #define DPU_ERROR_PHYS(p, fmt, ...) DPU_ERROR("enc%d intf%d pp%d " fmt,\
44 		(p) ? (p)->parent->base.id : -1, \
45 		(p) ? (p)->intf_idx - INTF_0 : -1, \
46 		(p) ? ((p)->hw_pp ? (p)->hw_pp->idx - PINGPONG_0 : -1) : -1, \
47 		##__VA_ARGS__)
48 
49 /*
50  * Two to anticipate panels that can do cmd/vid dynamic switching
51  * plan is to create all possible physical encoder types, and switch between
52  * them at runtime
53  */
54 #define NUM_PHYS_ENCODER_TYPES 2
55 
56 #define MAX_PHYS_ENCODERS_PER_VIRTUAL \
57 	(MAX_H_TILES_PER_DISPLAY * NUM_PHYS_ENCODER_TYPES)
58 
59 #define MAX_CHANNELS_PER_ENC 2
60 
61 #define IDLE_SHORT_TIMEOUT	1
62 
63 #define MAX_HDISPLAY_SPLIT 1080
64 
65 /* timeout in frames waiting for frame done */
66 #define DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES 5
67 
68 /**
69  * enum dpu_enc_rc_events - events for resource control state machine
70  * @DPU_ENC_RC_EVENT_KICKOFF:
71  *	This event happens at NORMAL priority.
72  *	Event that signals the start of the transfer. When this event is
73  *	received, enable MDP/DSI core clocks. Regardless of the previous
74  *	state, the resource should be in ON state at the end of this event.
75  * @DPU_ENC_RC_EVENT_FRAME_DONE:
76  *	This event happens at INTERRUPT level.
77  *	Event signals the end of the data transfer after the PP FRAME_DONE
78  *	event. At the end of this event, a delayed work is scheduled to go to
79  *	IDLE_PC state after IDLE_TIMEOUT time.
80  * @DPU_ENC_RC_EVENT_PRE_STOP:
81  *	This event happens at NORMAL priority.
82  *	This event, when received during the ON state, leave the RC STATE
83  *	in the PRE_OFF state. It should be followed by the STOP event as
84  *	part of encoder disable.
85  *	If received during IDLE or OFF states, it will do nothing.
86  * @DPU_ENC_RC_EVENT_STOP:
87  *	This event happens at NORMAL priority.
88  *	When this event is received, disable all the MDP/DSI core clocks, and
89  *	disable IRQs. It should be called from the PRE_OFF or IDLE states.
90  *	IDLE is expected when IDLE_PC has run, and PRE_OFF did nothing.
91  *	PRE_OFF is expected when PRE_STOP was executed during the ON state.
92  *	Resource state should be in OFF at the end of the event.
93  * @DPU_ENC_RC_EVENT_ENTER_IDLE:
94  *	This event happens at NORMAL priority from a work item.
95  *	Event signals that there were no frame updates for IDLE_TIMEOUT time.
96  *	This would disable MDP/DSI core clocks and change the resource state
97  *	to IDLE.
98  */
99 enum dpu_enc_rc_events {
100 	DPU_ENC_RC_EVENT_KICKOFF = 1,
101 	DPU_ENC_RC_EVENT_FRAME_DONE,
102 	DPU_ENC_RC_EVENT_PRE_STOP,
103 	DPU_ENC_RC_EVENT_STOP,
104 	DPU_ENC_RC_EVENT_ENTER_IDLE
105 };
106 
107 /*
108  * enum dpu_enc_rc_states - states that the resource control maintains
109  * @DPU_ENC_RC_STATE_OFF: Resource is in OFF state
110  * @DPU_ENC_RC_STATE_PRE_OFF: Resource is transitioning to OFF state
111  * @DPU_ENC_RC_STATE_ON: Resource is in ON state
112  * @DPU_ENC_RC_STATE_MODESET: Resource is in modeset state
113  * @DPU_ENC_RC_STATE_IDLE: Resource is in IDLE state
114  */
115 enum dpu_enc_rc_states {
116 	DPU_ENC_RC_STATE_OFF,
117 	DPU_ENC_RC_STATE_PRE_OFF,
118 	DPU_ENC_RC_STATE_ON,
119 	DPU_ENC_RC_STATE_IDLE
120 };
121 
122 /**
123  * struct dpu_encoder_virt - virtual encoder. Container of one or more physical
124  *	encoders. Virtual encoder manages one "logical" display. Physical
125  *	encoders manage one intf block, tied to a specific panel/sub-panel.
126  *	Virtual encoder defers as much as possible to the physical encoders.
127  *	Virtual encoder registers itself with the DRM Framework as the encoder.
128  * @base:		drm_encoder base class for registration with DRM
129  * @enc_spinlock:	Virtual-Encoder-Wide Spin Lock for IRQ purposes
130  * @bus_scaling_client:	Client handle to the bus scaling interface
131  * @enabled:		True if the encoder is active, protected by enc_lock
132  * @num_phys_encs:	Actual number of physical encoders contained.
133  * @phys_encs:		Container of physical encoders managed.
134  * @cur_master:		Pointer to the current master in this mode. Optimization
135  *			Only valid after enable. Cleared as disable.
136  * @cur_slave:		As above but for the slave encoder.
137  * @hw_pp:		Handle to the pingpong blocks used for the display. No.
138  *			pingpong blocks can be different than num_phys_encs.
139  * @intfs_swapped:	Whether or not the phys_enc interfaces have been swapped
140  *			for partial update right-only cases, such as pingpong
141  *			split where virtual pingpong does not generate IRQs
142  * @crtc:		Pointer to the currently assigned crtc. Normally you
143  *			would use crtc->state->encoder_mask to determine the
144  *			link between encoder/crtc. However in this case we need
145  *			to track crtc in the disable() hook which is called
146  *			_after_ encoder_mask is cleared.
147  * @crtc_kickoff_cb:		Callback into CRTC that will flush & start
148  *				all CTL paths
149  * @crtc_kickoff_cb_data:	Opaque user data given to crtc_kickoff_cb
150  * @debugfs_root:		Debug file system root file node
151  * @enc_lock:			Lock around physical encoder
152  *				create/destroy/enable/disable
153  * @frame_busy_mask:		Bitmask tracking which phys_enc we are still
154  *				busy processing current command.
155  *				Bit0 = phys_encs[0] etc.
156  * @crtc_frame_event_cb:	callback handler for frame event
157  * @crtc_frame_event_cb_data:	callback handler private data
158  * @frame_done_timeout_ms:	frame done timeout in ms
159  * @frame_done_timer:		watchdog timer for frame done event
160  * @vsync_event_timer:		vsync timer
161  * @disp_info:			local copy of msm_display_info struct
162  * @idle_pc_supported:		indicate if idle power collaps is supported
163  * @rc_lock:			resource control mutex lock to protect
164  *				virt encoder over various state changes
165  * @rc_state:			resource controller state
166  * @delayed_off_work:		delayed worker to schedule disabling of
167  *				clks and resources after IDLE_TIMEOUT time.
168  * @vsync_event_work:		worker to handle vsync event for autorefresh
169  * @topology:                   topology of the display
170  * @idle_timeout:		idle timeout duration in milliseconds
171  */
172 struct dpu_encoder_virt {
173 	struct drm_encoder base;
174 	spinlock_t enc_spinlock;
175 	uint32_t bus_scaling_client;
176 
177 	bool enabled;
178 
179 	unsigned int num_phys_encs;
180 	struct dpu_encoder_phys *phys_encs[MAX_PHYS_ENCODERS_PER_VIRTUAL];
181 	struct dpu_encoder_phys *cur_master;
182 	struct dpu_encoder_phys *cur_slave;
183 	struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC];
184 
185 	bool intfs_swapped;
186 
187 	struct drm_crtc *crtc;
188 
189 	struct dentry *debugfs_root;
190 	struct mutex enc_lock;
191 	DECLARE_BITMAP(frame_busy_mask, MAX_PHYS_ENCODERS_PER_VIRTUAL);
192 	void (*crtc_frame_event_cb)(void *, u32 event);
193 	void *crtc_frame_event_cb_data;
194 
195 	atomic_t frame_done_timeout_ms;
196 	struct timer_list frame_done_timer;
197 	struct timer_list vsync_event_timer;
198 
199 	struct msm_display_info disp_info;
200 
201 	bool idle_pc_supported;
202 	struct mutex rc_lock;
203 	enum dpu_enc_rc_states rc_state;
204 	struct delayed_work delayed_off_work;
205 	struct kthread_work vsync_event_work;
206 	struct msm_display_topology topology;
207 
208 	u32 idle_timeout;
209 };
210 
211 #define to_dpu_encoder_virt(x) container_of(x, struct dpu_encoder_virt, base)
212 
213 static u32 dither_matrix[DITHER_MATRIX_SZ] = {
214 	15, 7, 13, 5, 3, 11, 1, 9, 12, 4, 14, 6, 0, 8, 2, 10
215 };
216 
217 static void _dpu_encoder_setup_dither(struct dpu_hw_pingpong *hw_pp, unsigned bpc)
218 {
219 	struct dpu_hw_dither_cfg dither_cfg = { 0 };
220 
221 	if (!hw_pp->ops.setup_dither)
222 		return;
223 
224 	switch (bpc) {
225 	case 6:
226 		dither_cfg.c0_bitdepth = 6;
227 		dither_cfg.c1_bitdepth = 6;
228 		dither_cfg.c2_bitdepth = 6;
229 		dither_cfg.c3_bitdepth = 6;
230 		dither_cfg.temporal_en = 0;
231 		break;
232 	default:
233 		hw_pp->ops.setup_dither(hw_pp, NULL);
234 		return;
235 	}
236 
237 	memcpy(&dither_cfg.matrix, dither_matrix,
238 			sizeof(u32) * DITHER_MATRIX_SZ);
239 
240 	hw_pp->ops.setup_dither(hw_pp, &dither_cfg);
241 }
242 
243 void dpu_encoder_helper_report_irq_timeout(struct dpu_encoder_phys *phys_enc,
244 		enum dpu_intr_idx intr_idx)
245 {
246 	DRM_ERROR("irq timeout id=%u, intf=%d, pp=%d, intr=%d\n",
247 		  DRMID(phys_enc->parent), phys_enc->intf_idx - INTF_0,
248 		  phys_enc->hw_pp->idx - PINGPONG_0, intr_idx);
249 
250 	if (phys_enc->parent_ops->handle_frame_done)
251 		phys_enc->parent_ops->handle_frame_done(
252 				phys_enc->parent, phys_enc,
253 				DPU_ENCODER_FRAME_EVENT_ERROR);
254 }
255 
256 static int dpu_encoder_helper_wait_event_timeout(int32_t drm_id,
257 		u32 irq_idx, struct dpu_encoder_wait_info *info);
258 
259 int dpu_encoder_helper_wait_for_irq(struct dpu_encoder_phys *phys_enc,
260 		enum dpu_intr_idx intr_idx,
261 		struct dpu_encoder_wait_info *wait_info)
262 {
263 	struct dpu_encoder_irq *irq;
264 	u32 irq_status;
265 	int ret;
266 
267 	if (!wait_info || intr_idx >= INTR_IDX_MAX) {
268 		DPU_ERROR("invalid params\n");
269 		return -EINVAL;
270 	}
271 	irq = &phys_enc->irq[intr_idx];
272 
273 	/* note: do master / slave checking outside */
274 
275 	/* return EWOULDBLOCK since we know the wait isn't necessary */
276 	if (phys_enc->enable_state == DPU_ENC_DISABLED) {
277 		DRM_ERROR("encoder is disabled id=%u, intr=%d, irq=%d\n",
278 			  DRMID(phys_enc->parent), intr_idx,
279 			  irq->irq_idx);
280 		return -EWOULDBLOCK;
281 	}
282 
283 	if (irq->irq_idx < 0) {
284 		DRM_DEBUG_KMS("skip irq wait id=%u, intr=%d, irq=%s\n",
285 			      DRMID(phys_enc->parent), intr_idx,
286 			      irq->name);
287 		return 0;
288 	}
289 
290 	DRM_DEBUG_KMS("id=%u, intr=%d, irq=%d, pp=%d, pending_cnt=%d\n",
291 		      DRMID(phys_enc->parent), intr_idx,
292 		      irq->irq_idx, phys_enc->hw_pp->idx - PINGPONG_0,
293 		      atomic_read(wait_info->atomic_cnt));
294 
295 	ret = dpu_encoder_helper_wait_event_timeout(
296 			DRMID(phys_enc->parent),
297 			irq->irq_idx,
298 			wait_info);
299 
300 	if (ret <= 0) {
301 		irq_status = dpu_core_irq_read(phys_enc->dpu_kms,
302 				irq->irq_idx, true);
303 		if (irq_status) {
304 			unsigned long flags;
305 
306 			DRM_DEBUG_KMS("irq not triggered id=%u, intr=%d, irq=%d, pp=%d, atomic_cnt=%d\n",
307 				      DRMID(phys_enc->parent), intr_idx,
308 				      irq->irq_idx,
309 				      phys_enc->hw_pp->idx - PINGPONG_0,
310 				      atomic_read(wait_info->atomic_cnt));
311 			local_irq_save(flags);
312 			irq->cb.func(phys_enc, irq->irq_idx);
313 			local_irq_restore(flags);
314 			ret = 0;
315 		} else {
316 			ret = -ETIMEDOUT;
317 			DRM_DEBUG_KMS("irq timeout id=%u, intr=%d, irq=%d, pp=%d, atomic_cnt=%d\n",
318 				      DRMID(phys_enc->parent), intr_idx,
319 				      irq->irq_idx,
320 				      phys_enc->hw_pp->idx - PINGPONG_0,
321 				      atomic_read(wait_info->atomic_cnt));
322 		}
323 	} else {
324 		ret = 0;
325 		trace_dpu_enc_irq_wait_success(DRMID(phys_enc->parent),
326 			intr_idx, irq->irq_idx,
327 			phys_enc->hw_pp->idx - PINGPONG_0,
328 			atomic_read(wait_info->atomic_cnt));
329 	}
330 
331 	return ret;
332 }
333 
334 int dpu_encoder_helper_register_irq(struct dpu_encoder_phys *phys_enc,
335 		enum dpu_intr_idx intr_idx)
336 {
337 	struct dpu_encoder_irq *irq;
338 	int ret = 0;
339 
340 	if (intr_idx >= INTR_IDX_MAX) {
341 		DPU_ERROR("invalid params\n");
342 		return -EINVAL;
343 	}
344 	irq = &phys_enc->irq[intr_idx];
345 
346 	if (irq->irq_idx < 0) {
347 		DPU_ERROR_PHYS(phys_enc,
348 			"invalid IRQ index:%d\n", irq->irq_idx);
349 		return -EINVAL;
350 	}
351 
352 	ret = dpu_core_irq_register_callback(phys_enc->dpu_kms, irq->irq_idx,
353 			&irq->cb);
354 	if (ret) {
355 		DPU_ERROR_PHYS(phys_enc,
356 			"failed to register IRQ callback for %s\n",
357 			irq->name);
358 		irq->irq_idx = -EINVAL;
359 		return ret;
360 	}
361 
362 	trace_dpu_enc_irq_register_success(DRMID(phys_enc->parent), intr_idx,
363 				irq->irq_idx);
364 
365 	return ret;
366 }
367 
368 int dpu_encoder_helper_unregister_irq(struct dpu_encoder_phys *phys_enc,
369 		enum dpu_intr_idx intr_idx)
370 {
371 	struct dpu_encoder_irq *irq;
372 	int ret;
373 
374 	irq = &phys_enc->irq[intr_idx];
375 
376 	/* silently skip irqs that weren't registered */
377 	if (irq->irq_idx < 0) {
378 		DRM_ERROR("duplicate unregister id=%u, intr=%d, irq=%d",
379 			  DRMID(phys_enc->parent), intr_idx,
380 			  irq->irq_idx);
381 		return 0;
382 	}
383 
384 	ret = dpu_core_irq_unregister_callback(phys_enc->dpu_kms, irq->irq_idx,
385 			&irq->cb);
386 	if (ret) {
387 		DRM_ERROR("unreg cb fail id=%u, intr=%d, irq=%d ret=%d",
388 			  DRMID(phys_enc->parent), intr_idx,
389 			  irq->irq_idx, ret);
390 	}
391 
392 	trace_dpu_enc_irq_unregister_success(DRMID(phys_enc->parent), intr_idx,
393 					     irq->irq_idx);
394 
395 	return 0;
396 }
397 
398 int dpu_encoder_get_frame_count(struct drm_encoder *drm_enc)
399 {
400 	struct dpu_encoder_virt *dpu_enc;
401 	struct dpu_encoder_phys *phys;
402 	int framecount = 0;
403 
404 	dpu_enc = to_dpu_encoder_virt(drm_enc);
405 	phys = dpu_enc ? dpu_enc->cur_master : NULL;
406 
407 	if (phys && phys->ops.get_frame_count)
408 		framecount = phys->ops.get_frame_count(phys);
409 
410 	return framecount;
411 }
412 
413 int dpu_encoder_get_linecount(struct drm_encoder *drm_enc)
414 {
415 	struct dpu_encoder_virt *dpu_enc;
416 	struct dpu_encoder_phys *phys;
417 	int linecount = 0;
418 
419 	dpu_enc = to_dpu_encoder_virt(drm_enc);
420 	phys = dpu_enc ? dpu_enc->cur_master : NULL;
421 
422 	if (phys && phys->ops.get_line_count)
423 		linecount = phys->ops.get_line_count(phys);
424 
425 	return linecount;
426 }
427 
428 void dpu_encoder_get_hw_resources(struct drm_encoder *drm_enc,
429 				  struct dpu_encoder_hw_resources *hw_res)
430 {
431 	struct dpu_encoder_virt *dpu_enc = NULL;
432 	int i = 0;
433 
434 	dpu_enc = to_dpu_encoder_virt(drm_enc);
435 	DPU_DEBUG_ENC(dpu_enc, "\n");
436 
437 	/* Query resources used by phys encs, expected to be without overlap */
438 	memset(hw_res, 0, sizeof(*hw_res));
439 
440 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
441 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
442 
443 		if (phys->ops.get_hw_resources)
444 			phys->ops.get_hw_resources(phys, hw_res);
445 	}
446 }
447 
448 static void dpu_encoder_destroy(struct drm_encoder *drm_enc)
449 {
450 	struct dpu_encoder_virt *dpu_enc = NULL;
451 	int i = 0;
452 
453 	if (!drm_enc) {
454 		DPU_ERROR("invalid encoder\n");
455 		return;
456 	}
457 
458 	dpu_enc = to_dpu_encoder_virt(drm_enc);
459 	DPU_DEBUG_ENC(dpu_enc, "\n");
460 
461 	mutex_lock(&dpu_enc->enc_lock);
462 
463 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
464 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
465 
466 		if (phys->ops.destroy) {
467 			phys->ops.destroy(phys);
468 			--dpu_enc->num_phys_encs;
469 			dpu_enc->phys_encs[i] = NULL;
470 		}
471 	}
472 
473 	if (dpu_enc->num_phys_encs)
474 		DPU_ERROR_ENC(dpu_enc, "expected 0 num_phys_encs not %d\n",
475 				dpu_enc->num_phys_encs);
476 	dpu_enc->num_phys_encs = 0;
477 	mutex_unlock(&dpu_enc->enc_lock);
478 
479 	drm_encoder_cleanup(drm_enc);
480 	mutex_destroy(&dpu_enc->enc_lock);
481 }
482 
483 void dpu_encoder_helper_split_config(
484 		struct dpu_encoder_phys *phys_enc,
485 		enum dpu_intf interface)
486 {
487 	struct dpu_encoder_virt *dpu_enc;
488 	struct split_pipe_cfg cfg = { 0 };
489 	struct dpu_hw_mdp *hw_mdptop;
490 	struct msm_display_info *disp_info;
491 
492 	if (!phys_enc->hw_mdptop || !phys_enc->parent) {
493 		DPU_ERROR("invalid arg(s), encoder %d\n", phys_enc != NULL);
494 		return;
495 	}
496 
497 	dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
498 	hw_mdptop = phys_enc->hw_mdptop;
499 	disp_info = &dpu_enc->disp_info;
500 
501 	if (disp_info->intf_type != DRM_MODE_ENCODER_DSI)
502 		return;
503 
504 	/**
505 	 * disable split modes since encoder will be operating in as the only
506 	 * encoder, either for the entire use case in the case of, for example,
507 	 * single DSI, or for this frame in the case of left/right only partial
508 	 * update.
509 	 */
510 	if (phys_enc->split_role == ENC_ROLE_SOLO) {
511 		if (hw_mdptop->ops.setup_split_pipe)
512 			hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg);
513 		return;
514 	}
515 
516 	cfg.en = true;
517 	cfg.mode = phys_enc->intf_mode;
518 	cfg.intf = interface;
519 
520 	if (cfg.en && phys_enc->ops.needs_single_flush &&
521 			phys_enc->ops.needs_single_flush(phys_enc))
522 		cfg.split_flush_en = true;
523 
524 	if (phys_enc->split_role == ENC_ROLE_MASTER) {
525 		DPU_DEBUG_ENC(dpu_enc, "enable %d\n", cfg.en);
526 
527 		if (hw_mdptop->ops.setup_split_pipe)
528 			hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg);
529 	}
530 }
531 
532 static struct msm_display_topology dpu_encoder_get_topology(
533 			struct dpu_encoder_virt *dpu_enc,
534 			struct dpu_kms *dpu_kms,
535 			struct drm_display_mode *mode)
536 {
537 	struct msm_display_topology topology = {0};
538 	int i, intf_count = 0;
539 
540 	for (i = 0; i < MAX_PHYS_ENCODERS_PER_VIRTUAL; i++)
541 		if (dpu_enc->phys_encs[i])
542 			intf_count++;
543 
544 	/* Datapath topology selection
545 	 *
546 	 * Dual display
547 	 * 2 LM, 2 INTF ( Split display using 2 interfaces)
548 	 *
549 	 * Single display
550 	 * 1 LM, 1 INTF
551 	 * 2 LM, 1 INTF (stream merge to support high resolution interfaces)
552 	 *
553 	 * Adding color blocks only to primary interface if available in
554 	 * sufficient number
555 	 */
556 	if (intf_count == 2)
557 		topology.num_lm = 2;
558 	else if (!dpu_kms->catalog->caps->has_3d_merge)
559 		topology.num_lm = 1;
560 	else
561 		topology.num_lm = (mode->hdisplay > MAX_HDISPLAY_SPLIT) ? 2 : 1;
562 
563 	if (dpu_enc->disp_info.intf_type == DRM_MODE_ENCODER_DSI) {
564 		if (dpu_kms->catalog->dspp &&
565 			(dpu_kms->catalog->dspp_count >= topology.num_lm))
566 			topology.num_dspp = topology.num_lm;
567 	}
568 
569 	topology.num_enc = 0;
570 	topology.num_intf = intf_count;
571 
572 	return topology;
573 }
574 static int dpu_encoder_virt_atomic_check(
575 		struct drm_encoder *drm_enc,
576 		struct drm_crtc_state *crtc_state,
577 		struct drm_connector_state *conn_state)
578 {
579 	struct dpu_encoder_virt *dpu_enc;
580 	struct msm_drm_private *priv;
581 	struct dpu_kms *dpu_kms;
582 	const struct drm_display_mode *mode;
583 	struct drm_display_mode *adj_mode;
584 	struct msm_display_topology topology;
585 	struct dpu_global_state *global_state;
586 	int i = 0;
587 	int ret = 0;
588 
589 	if (!drm_enc || !crtc_state || !conn_state) {
590 		DPU_ERROR("invalid arg(s), drm_enc %d, crtc/conn state %d/%d\n",
591 				drm_enc != NULL, crtc_state != NULL, conn_state != NULL);
592 		return -EINVAL;
593 	}
594 
595 	dpu_enc = to_dpu_encoder_virt(drm_enc);
596 	DPU_DEBUG_ENC(dpu_enc, "\n");
597 
598 	priv = drm_enc->dev->dev_private;
599 	dpu_kms = to_dpu_kms(priv->kms);
600 	mode = &crtc_state->mode;
601 	adj_mode = &crtc_state->adjusted_mode;
602 	global_state = dpu_kms_get_global_state(crtc_state->state);
603 	if (IS_ERR(global_state))
604 		return PTR_ERR(global_state);
605 
606 	trace_dpu_enc_atomic_check(DRMID(drm_enc));
607 
608 	/* perform atomic check on the first physical encoder (master) */
609 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
610 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
611 
612 		if (phys->ops.atomic_check)
613 			ret = phys->ops.atomic_check(phys, crtc_state,
614 					conn_state);
615 		else if (phys->ops.mode_fixup)
616 			if (!phys->ops.mode_fixup(phys, mode, adj_mode))
617 				ret = -EINVAL;
618 
619 		if (ret) {
620 			DPU_ERROR_ENC(dpu_enc,
621 					"mode unsupported, phys idx %d\n", i);
622 			break;
623 		}
624 	}
625 
626 	topology = dpu_encoder_get_topology(dpu_enc, dpu_kms, adj_mode);
627 
628 	/* Reserve dynamic resources now. */
629 	if (!ret) {
630 		/*
631 		 * Release and Allocate resources on every modeset
632 		 * Dont allocate when active is false.
633 		 */
634 		if (drm_atomic_crtc_needs_modeset(crtc_state)) {
635 			dpu_rm_release(global_state, drm_enc);
636 
637 			if (!crtc_state->active_changed || crtc_state->active)
638 				ret = dpu_rm_reserve(&dpu_kms->rm, global_state,
639 						drm_enc, crtc_state, topology);
640 		}
641 	}
642 
643 	trace_dpu_enc_atomic_check_flags(DRMID(drm_enc), adj_mode->flags);
644 
645 	return ret;
646 }
647 
648 static void _dpu_encoder_update_vsync_source(struct dpu_encoder_virt *dpu_enc,
649 			struct msm_display_info *disp_info)
650 {
651 	struct dpu_vsync_source_cfg vsync_cfg = { 0 };
652 	struct msm_drm_private *priv;
653 	struct dpu_kms *dpu_kms;
654 	struct dpu_hw_mdp *hw_mdptop;
655 	struct drm_encoder *drm_enc;
656 	int i;
657 
658 	if (!dpu_enc || !disp_info) {
659 		DPU_ERROR("invalid param dpu_enc:%d or disp_info:%d\n",
660 					dpu_enc != NULL, disp_info != NULL);
661 		return;
662 	} else if (dpu_enc->num_phys_encs > ARRAY_SIZE(dpu_enc->hw_pp)) {
663 		DPU_ERROR("invalid num phys enc %d/%d\n",
664 				dpu_enc->num_phys_encs,
665 				(int) ARRAY_SIZE(dpu_enc->hw_pp));
666 		return;
667 	}
668 
669 	drm_enc = &dpu_enc->base;
670 	/* this pointers are checked in virt_enable_helper */
671 	priv = drm_enc->dev->dev_private;
672 
673 	dpu_kms = to_dpu_kms(priv->kms);
674 	hw_mdptop = dpu_kms->hw_mdp;
675 	if (!hw_mdptop) {
676 		DPU_ERROR("invalid mdptop\n");
677 		return;
678 	}
679 
680 	if (hw_mdptop->ops.setup_vsync_source &&
681 			disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE) {
682 		for (i = 0; i < dpu_enc->num_phys_encs; i++)
683 			vsync_cfg.ppnumber[i] = dpu_enc->hw_pp[i]->idx;
684 
685 		vsync_cfg.pp_count = dpu_enc->num_phys_encs;
686 		if (disp_info->is_te_using_watchdog_timer)
687 			vsync_cfg.vsync_source = DPU_VSYNC_SOURCE_WD_TIMER_0;
688 		else
689 			vsync_cfg.vsync_source = DPU_VSYNC0_SOURCE_GPIO;
690 
691 		hw_mdptop->ops.setup_vsync_source(hw_mdptop, &vsync_cfg);
692 	}
693 }
694 
695 static void _dpu_encoder_irq_control(struct drm_encoder *drm_enc, bool enable)
696 {
697 	struct dpu_encoder_virt *dpu_enc;
698 	int i;
699 
700 	if (!drm_enc) {
701 		DPU_ERROR("invalid encoder\n");
702 		return;
703 	}
704 
705 	dpu_enc = to_dpu_encoder_virt(drm_enc);
706 
707 	DPU_DEBUG_ENC(dpu_enc, "enable:%d\n", enable);
708 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
709 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
710 
711 		if (phys->ops.irq_control)
712 			phys->ops.irq_control(phys, enable);
713 	}
714 
715 }
716 
717 static void _dpu_encoder_resource_control_helper(struct drm_encoder *drm_enc,
718 		bool enable)
719 {
720 	struct msm_drm_private *priv;
721 	struct dpu_kms *dpu_kms;
722 	struct dpu_encoder_virt *dpu_enc;
723 
724 	dpu_enc = to_dpu_encoder_virt(drm_enc);
725 	priv = drm_enc->dev->dev_private;
726 	dpu_kms = to_dpu_kms(priv->kms);
727 
728 	trace_dpu_enc_rc_helper(DRMID(drm_enc), enable);
729 
730 	if (!dpu_enc->cur_master) {
731 		DPU_ERROR("encoder master not set\n");
732 		return;
733 	}
734 
735 	if (enable) {
736 		/* enable DPU core clks */
737 		pm_runtime_get_sync(&dpu_kms->pdev->dev);
738 
739 		/* enable all the irq */
740 		_dpu_encoder_irq_control(drm_enc, true);
741 
742 	} else {
743 		/* disable all the irq */
744 		_dpu_encoder_irq_control(drm_enc, false);
745 
746 		/* disable DPU core clks */
747 		pm_runtime_put_sync(&dpu_kms->pdev->dev);
748 	}
749 
750 }
751 
752 static int dpu_encoder_resource_control(struct drm_encoder *drm_enc,
753 		u32 sw_event)
754 {
755 	struct dpu_encoder_virt *dpu_enc;
756 	struct msm_drm_private *priv;
757 	bool is_vid_mode = false;
758 
759 	if (!drm_enc || !drm_enc->dev || !drm_enc->crtc) {
760 		DPU_ERROR("invalid parameters\n");
761 		return -EINVAL;
762 	}
763 	dpu_enc = to_dpu_encoder_virt(drm_enc);
764 	priv = drm_enc->dev->dev_private;
765 	is_vid_mode = dpu_enc->disp_info.capabilities &
766 						MSM_DISPLAY_CAP_VID_MODE;
767 
768 	/*
769 	 * when idle_pc is not supported, process only KICKOFF, STOP and MODESET
770 	 * events and return early for other events (ie wb display).
771 	 */
772 	if (!dpu_enc->idle_pc_supported &&
773 			(sw_event != DPU_ENC_RC_EVENT_KICKOFF &&
774 			sw_event != DPU_ENC_RC_EVENT_STOP &&
775 			sw_event != DPU_ENC_RC_EVENT_PRE_STOP))
776 		return 0;
777 
778 	trace_dpu_enc_rc(DRMID(drm_enc), sw_event, dpu_enc->idle_pc_supported,
779 			 dpu_enc->rc_state, "begin");
780 
781 	switch (sw_event) {
782 	case DPU_ENC_RC_EVENT_KICKOFF:
783 		/* cancel delayed off work, if any */
784 		if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work))
785 			DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n",
786 					sw_event);
787 
788 		mutex_lock(&dpu_enc->rc_lock);
789 
790 		/* return if the resource control is already in ON state */
791 		if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) {
792 			DRM_DEBUG_ATOMIC("id;%u, sw_event:%d, rc in ON state\n",
793 				      DRMID(drm_enc), sw_event);
794 			mutex_unlock(&dpu_enc->rc_lock);
795 			return 0;
796 		} else if (dpu_enc->rc_state != DPU_ENC_RC_STATE_OFF &&
797 				dpu_enc->rc_state != DPU_ENC_RC_STATE_IDLE) {
798 			DRM_DEBUG_ATOMIC("id;%u, sw_event:%d, rc in state %d\n",
799 				      DRMID(drm_enc), sw_event,
800 				      dpu_enc->rc_state);
801 			mutex_unlock(&dpu_enc->rc_lock);
802 			return -EINVAL;
803 		}
804 
805 		if (is_vid_mode && dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE)
806 			_dpu_encoder_irq_control(drm_enc, true);
807 		else
808 			_dpu_encoder_resource_control_helper(drm_enc, true);
809 
810 		dpu_enc->rc_state = DPU_ENC_RC_STATE_ON;
811 
812 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
813 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
814 				 "kickoff");
815 
816 		mutex_unlock(&dpu_enc->rc_lock);
817 		break;
818 
819 	case DPU_ENC_RC_EVENT_FRAME_DONE:
820 		/*
821 		 * mutex lock is not used as this event happens at interrupt
822 		 * context. And locking is not required as, the other events
823 		 * like KICKOFF and STOP does a wait-for-idle before executing
824 		 * the resource_control
825 		 */
826 		if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) {
827 			DRM_DEBUG_KMS("id:%d, sw_event:%d,rc:%d-unexpected\n",
828 				      DRMID(drm_enc), sw_event,
829 				      dpu_enc->rc_state);
830 			return -EINVAL;
831 		}
832 
833 		/*
834 		 * schedule off work item only when there are no
835 		 * frames pending
836 		 */
837 		if (dpu_crtc_frame_pending(drm_enc->crtc) > 1) {
838 			DRM_DEBUG_KMS("id:%d skip schedule work\n",
839 				      DRMID(drm_enc));
840 			return 0;
841 		}
842 
843 		queue_delayed_work(priv->wq, &dpu_enc->delayed_off_work,
844 				   msecs_to_jiffies(dpu_enc->idle_timeout));
845 
846 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
847 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
848 				 "frame done");
849 		break;
850 
851 	case DPU_ENC_RC_EVENT_PRE_STOP:
852 		/* cancel delayed off work, if any */
853 		if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work))
854 			DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n",
855 					sw_event);
856 
857 		mutex_lock(&dpu_enc->rc_lock);
858 
859 		if (is_vid_mode &&
860 			  dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) {
861 			_dpu_encoder_irq_control(drm_enc, true);
862 		}
863 		/* skip if is already OFF or IDLE, resources are off already */
864 		else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF ||
865 				dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) {
866 			DRM_DEBUG_KMS("id:%u, sw_event:%d, rc in %d state\n",
867 				      DRMID(drm_enc), sw_event,
868 				      dpu_enc->rc_state);
869 			mutex_unlock(&dpu_enc->rc_lock);
870 			return 0;
871 		}
872 
873 		dpu_enc->rc_state = DPU_ENC_RC_STATE_PRE_OFF;
874 
875 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
876 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
877 				 "pre stop");
878 
879 		mutex_unlock(&dpu_enc->rc_lock);
880 		break;
881 
882 	case DPU_ENC_RC_EVENT_STOP:
883 		mutex_lock(&dpu_enc->rc_lock);
884 
885 		/* return if the resource control is already in OFF state */
886 		if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF) {
887 			DRM_DEBUG_KMS("id: %u, sw_event:%d, rc in OFF state\n",
888 				      DRMID(drm_enc), sw_event);
889 			mutex_unlock(&dpu_enc->rc_lock);
890 			return 0;
891 		} else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) {
892 			DRM_ERROR("id: %u, sw_event:%d, rc in state %d\n",
893 				  DRMID(drm_enc), sw_event, dpu_enc->rc_state);
894 			mutex_unlock(&dpu_enc->rc_lock);
895 			return -EINVAL;
896 		}
897 
898 		/**
899 		 * expect to arrive here only if in either idle state or pre-off
900 		 * and in IDLE state the resources are already disabled
901 		 */
902 		if (dpu_enc->rc_state == DPU_ENC_RC_STATE_PRE_OFF)
903 			_dpu_encoder_resource_control_helper(drm_enc, false);
904 
905 		dpu_enc->rc_state = DPU_ENC_RC_STATE_OFF;
906 
907 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
908 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
909 				 "stop");
910 
911 		mutex_unlock(&dpu_enc->rc_lock);
912 		break;
913 
914 	case DPU_ENC_RC_EVENT_ENTER_IDLE:
915 		mutex_lock(&dpu_enc->rc_lock);
916 
917 		if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) {
918 			DRM_ERROR("id: %u, sw_event:%d, rc:%d !ON state\n",
919 				  DRMID(drm_enc), sw_event, dpu_enc->rc_state);
920 			mutex_unlock(&dpu_enc->rc_lock);
921 			return 0;
922 		}
923 
924 		/*
925 		 * if we are in ON but a frame was just kicked off,
926 		 * ignore the IDLE event, it's probably a stale timer event
927 		 */
928 		if (dpu_enc->frame_busy_mask[0]) {
929 			DRM_ERROR("id:%u, sw_event:%d, rc:%d frame pending\n",
930 				  DRMID(drm_enc), sw_event, dpu_enc->rc_state);
931 			mutex_unlock(&dpu_enc->rc_lock);
932 			return 0;
933 		}
934 
935 		if (is_vid_mode)
936 			_dpu_encoder_irq_control(drm_enc, false);
937 		else
938 			_dpu_encoder_resource_control_helper(drm_enc, false);
939 
940 		dpu_enc->rc_state = DPU_ENC_RC_STATE_IDLE;
941 
942 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
943 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
944 				 "idle");
945 
946 		mutex_unlock(&dpu_enc->rc_lock);
947 		break;
948 
949 	default:
950 		DRM_ERROR("id:%u, unexpected sw_event: %d\n", DRMID(drm_enc),
951 			  sw_event);
952 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
953 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
954 				 "error");
955 		break;
956 	}
957 
958 	trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
959 			 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
960 			 "end");
961 	return 0;
962 }
963 
964 static void dpu_encoder_virt_mode_set(struct drm_encoder *drm_enc,
965 				      struct drm_display_mode *mode,
966 				      struct drm_display_mode *adj_mode)
967 {
968 	struct dpu_encoder_virt *dpu_enc;
969 	struct msm_drm_private *priv;
970 	struct dpu_kms *dpu_kms;
971 	struct list_head *connector_list;
972 	struct drm_connector *conn = NULL, *conn_iter;
973 	struct drm_crtc *drm_crtc;
974 	struct dpu_crtc_state *cstate;
975 	struct dpu_global_state *global_state;
976 	struct dpu_hw_blk *hw_pp[MAX_CHANNELS_PER_ENC];
977 	struct dpu_hw_blk *hw_ctl[MAX_CHANNELS_PER_ENC];
978 	struct dpu_hw_blk *hw_lm[MAX_CHANNELS_PER_ENC];
979 	struct dpu_hw_blk *hw_dspp[MAX_CHANNELS_PER_ENC] = { NULL };
980 	int num_lm, num_ctl, num_pp;
981 	int i, j;
982 
983 	if (!drm_enc) {
984 		DPU_ERROR("invalid encoder\n");
985 		return;
986 	}
987 
988 	dpu_enc = to_dpu_encoder_virt(drm_enc);
989 	DPU_DEBUG_ENC(dpu_enc, "\n");
990 
991 	priv = drm_enc->dev->dev_private;
992 	dpu_kms = to_dpu_kms(priv->kms);
993 	connector_list = &dpu_kms->dev->mode_config.connector_list;
994 
995 	global_state = dpu_kms_get_existing_global_state(dpu_kms);
996 	if (IS_ERR_OR_NULL(global_state)) {
997 		DPU_ERROR("Failed to get global state");
998 		return;
999 	}
1000 
1001 	trace_dpu_enc_mode_set(DRMID(drm_enc));
1002 
1003 	if (drm_enc->encoder_type == DRM_MODE_ENCODER_TMDS && priv->dp)
1004 		msm_dp_display_mode_set(priv->dp, drm_enc, mode, adj_mode);
1005 
1006 	list_for_each_entry(conn_iter, connector_list, head)
1007 		if (conn_iter->encoder == drm_enc)
1008 			conn = conn_iter;
1009 
1010 	if (!conn) {
1011 		DPU_ERROR_ENC(dpu_enc, "failed to find attached connector\n");
1012 		return;
1013 	} else if (!conn->state) {
1014 		DPU_ERROR_ENC(dpu_enc, "invalid connector state\n");
1015 		return;
1016 	}
1017 
1018 	drm_for_each_crtc(drm_crtc, drm_enc->dev)
1019 		if (drm_crtc->state->encoder_mask & drm_encoder_mask(drm_enc))
1020 			break;
1021 
1022 	/* Query resource that have been reserved in atomic check step. */
1023 	num_pp = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1024 		drm_enc->base.id, DPU_HW_BLK_PINGPONG, hw_pp,
1025 		ARRAY_SIZE(hw_pp));
1026 	num_ctl = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1027 		drm_enc->base.id, DPU_HW_BLK_CTL, hw_ctl, ARRAY_SIZE(hw_ctl));
1028 	num_lm = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1029 		drm_enc->base.id, DPU_HW_BLK_LM, hw_lm, ARRAY_SIZE(hw_lm));
1030 	dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1031 		drm_enc->base.id, DPU_HW_BLK_DSPP, hw_dspp,
1032 		ARRAY_SIZE(hw_dspp));
1033 
1034 	for (i = 0; i < MAX_CHANNELS_PER_ENC; i++)
1035 		dpu_enc->hw_pp[i] = i < num_pp ? to_dpu_hw_pingpong(hw_pp[i])
1036 						: NULL;
1037 
1038 	cstate = to_dpu_crtc_state(drm_crtc->state);
1039 
1040 	for (i = 0; i < num_lm; i++) {
1041 		int ctl_idx = (i < num_ctl) ? i : (num_ctl-1);
1042 
1043 		cstate->mixers[i].hw_lm = to_dpu_hw_mixer(hw_lm[i]);
1044 		cstate->mixers[i].lm_ctl = to_dpu_hw_ctl(hw_ctl[ctl_idx]);
1045 		cstate->mixers[i].hw_dspp = to_dpu_hw_dspp(hw_dspp[i]);
1046 	}
1047 
1048 	cstate->num_mixers = num_lm;
1049 
1050 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1051 		int num_blk;
1052 		struct dpu_hw_blk *hw_blk[MAX_CHANNELS_PER_ENC];
1053 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1054 
1055 		if (!dpu_enc->hw_pp[i]) {
1056 			DPU_ERROR_ENC(dpu_enc,
1057 				"no pp block assigned at idx: %d\n", i);
1058 			return;
1059 		}
1060 
1061 		if (!hw_ctl[i]) {
1062 			DPU_ERROR_ENC(dpu_enc,
1063 				"no ctl block assigned at idx: %d\n", i);
1064 			return;
1065 		}
1066 
1067 		phys->hw_pp = dpu_enc->hw_pp[i];
1068 		phys->hw_ctl = to_dpu_hw_ctl(hw_ctl[i]);
1069 
1070 		num_blk = dpu_rm_get_assigned_resources(&dpu_kms->rm,
1071 			global_state, drm_enc->base.id, DPU_HW_BLK_INTF,
1072 			hw_blk, ARRAY_SIZE(hw_blk));
1073 		for (j = 0; j < num_blk; j++) {
1074 			struct dpu_hw_intf *hw_intf;
1075 
1076 			hw_intf = to_dpu_hw_intf(hw_blk[i]);
1077 			if (hw_intf->idx == phys->intf_idx)
1078 				phys->hw_intf = hw_intf;
1079 		}
1080 
1081 		if (!phys->hw_intf) {
1082 			DPU_ERROR_ENC(dpu_enc,
1083 				      "no intf block assigned at idx: %d\n", i);
1084 			return;
1085 		}
1086 
1087 		phys->connector = conn->state->connector;
1088 		if (phys->ops.mode_set)
1089 			phys->ops.mode_set(phys, mode, adj_mode);
1090 	}
1091 }
1092 
1093 static void _dpu_encoder_virt_enable_helper(struct drm_encoder *drm_enc)
1094 {
1095 	struct dpu_encoder_virt *dpu_enc = NULL;
1096 	int i;
1097 
1098 	if (!drm_enc || !drm_enc->dev) {
1099 		DPU_ERROR("invalid parameters\n");
1100 		return;
1101 	}
1102 
1103 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1104 	if (!dpu_enc || !dpu_enc->cur_master) {
1105 		DPU_ERROR("invalid dpu encoder/master\n");
1106 		return;
1107 	}
1108 
1109 
1110 	if (dpu_enc->disp_info.intf_type == DRM_MODE_CONNECTOR_DisplayPort &&
1111 		dpu_enc->cur_master->hw_mdptop &&
1112 		dpu_enc->cur_master->hw_mdptop->ops.intf_audio_select)
1113 		dpu_enc->cur_master->hw_mdptop->ops.intf_audio_select(
1114 			dpu_enc->cur_master->hw_mdptop);
1115 
1116 	_dpu_encoder_update_vsync_source(dpu_enc, &dpu_enc->disp_info);
1117 
1118 	if (dpu_enc->disp_info.intf_type == DRM_MODE_ENCODER_DSI &&
1119 			!WARN_ON(dpu_enc->num_phys_encs == 0)) {
1120 		unsigned bpc = dpu_enc->phys_encs[0]->connector->display_info.bpc;
1121 		for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
1122 			if (!dpu_enc->hw_pp[i])
1123 				continue;
1124 			_dpu_encoder_setup_dither(dpu_enc->hw_pp[i], bpc);
1125 		}
1126 	}
1127 }
1128 
1129 void dpu_encoder_virt_runtime_resume(struct drm_encoder *drm_enc)
1130 {
1131 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1132 
1133 	mutex_lock(&dpu_enc->enc_lock);
1134 
1135 	if (!dpu_enc->enabled)
1136 		goto out;
1137 
1138 	if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.restore)
1139 		dpu_enc->cur_slave->ops.restore(dpu_enc->cur_slave);
1140 	if (dpu_enc->cur_master && dpu_enc->cur_master->ops.restore)
1141 		dpu_enc->cur_master->ops.restore(dpu_enc->cur_master);
1142 
1143 	_dpu_encoder_virt_enable_helper(drm_enc);
1144 
1145 out:
1146 	mutex_unlock(&dpu_enc->enc_lock);
1147 }
1148 
1149 static void dpu_encoder_virt_enable(struct drm_encoder *drm_enc)
1150 {
1151 	struct dpu_encoder_virt *dpu_enc = NULL;
1152 	int ret = 0;
1153 	struct msm_drm_private *priv;
1154 	struct drm_display_mode *cur_mode = NULL;
1155 
1156 	if (!drm_enc) {
1157 		DPU_ERROR("invalid encoder\n");
1158 		return;
1159 	}
1160 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1161 
1162 	mutex_lock(&dpu_enc->enc_lock);
1163 	cur_mode = &dpu_enc->base.crtc->state->adjusted_mode;
1164 	priv = drm_enc->dev->dev_private;
1165 
1166 	trace_dpu_enc_enable(DRMID(drm_enc), cur_mode->hdisplay,
1167 			     cur_mode->vdisplay);
1168 
1169 	/* always enable slave encoder before master */
1170 	if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.enable)
1171 		dpu_enc->cur_slave->ops.enable(dpu_enc->cur_slave);
1172 
1173 	if (dpu_enc->cur_master && dpu_enc->cur_master->ops.enable)
1174 		dpu_enc->cur_master->ops.enable(dpu_enc->cur_master);
1175 
1176 	ret = dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF);
1177 	if (ret) {
1178 		DPU_ERROR_ENC(dpu_enc, "dpu resource control failed: %d\n",
1179 				ret);
1180 		goto out;
1181 	}
1182 
1183 	_dpu_encoder_virt_enable_helper(drm_enc);
1184 
1185 	if (drm_enc->encoder_type == DRM_MODE_ENCODER_TMDS && priv->dp) {
1186 		ret = msm_dp_display_enable(priv->dp,
1187 						drm_enc);
1188 		if (ret) {
1189 			DPU_ERROR_ENC(dpu_enc, "dp display enable failed: %d\n",
1190 				ret);
1191 			goto out;
1192 		}
1193 	}
1194 	dpu_enc->enabled = true;
1195 
1196 out:
1197 	mutex_unlock(&dpu_enc->enc_lock);
1198 }
1199 
1200 static void dpu_encoder_virt_disable(struct drm_encoder *drm_enc)
1201 {
1202 	struct dpu_encoder_virt *dpu_enc = NULL;
1203 	struct msm_drm_private *priv;
1204 	int i = 0;
1205 
1206 	if (!drm_enc) {
1207 		DPU_ERROR("invalid encoder\n");
1208 		return;
1209 	} else if (!drm_enc->dev) {
1210 		DPU_ERROR("invalid dev\n");
1211 		return;
1212 	}
1213 
1214 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1215 	DPU_DEBUG_ENC(dpu_enc, "\n");
1216 
1217 	mutex_lock(&dpu_enc->enc_lock);
1218 	dpu_enc->enabled = false;
1219 
1220 	priv = drm_enc->dev->dev_private;
1221 
1222 	trace_dpu_enc_disable(DRMID(drm_enc));
1223 
1224 	/* wait for idle */
1225 	dpu_encoder_wait_for_event(drm_enc, MSM_ENC_TX_COMPLETE);
1226 
1227 	if (drm_enc->encoder_type == DRM_MODE_ENCODER_TMDS && priv->dp) {
1228 		if (msm_dp_display_pre_disable(priv->dp, drm_enc))
1229 			DPU_ERROR_ENC(dpu_enc, "dp display push idle failed\n");
1230 	}
1231 
1232 	dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_PRE_STOP);
1233 
1234 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1235 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1236 
1237 		if (phys->ops.disable)
1238 			phys->ops.disable(phys);
1239 	}
1240 
1241 
1242 	/* after phys waits for frame-done, should be no more frames pending */
1243 	if (atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) {
1244 		DPU_ERROR("enc%d timeout pending\n", drm_enc->base.id);
1245 		del_timer_sync(&dpu_enc->frame_done_timer);
1246 	}
1247 
1248 	dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_STOP);
1249 
1250 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1251 		dpu_enc->phys_encs[i]->connector = NULL;
1252 	}
1253 
1254 	DPU_DEBUG_ENC(dpu_enc, "encoder disabled\n");
1255 
1256 	if (drm_enc->encoder_type == DRM_MODE_ENCODER_TMDS && priv->dp) {
1257 		if (msm_dp_display_disable(priv->dp, drm_enc))
1258 			DPU_ERROR_ENC(dpu_enc, "dp display disable failed\n");
1259 	}
1260 
1261 	mutex_unlock(&dpu_enc->enc_lock);
1262 }
1263 
1264 static enum dpu_intf dpu_encoder_get_intf(struct dpu_mdss_cfg *catalog,
1265 		enum dpu_intf_type type, u32 controller_id)
1266 {
1267 	int i = 0;
1268 
1269 	for (i = 0; i < catalog->intf_count; i++) {
1270 		if (catalog->intf[i].type == type
1271 		    && catalog->intf[i].controller_id == controller_id) {
1272 			return catalog->intf[i].id;
1273 		}
1274 	}
1275 
1276 	return INTF_MAX;
1277 }
1278 
1279 static void dpu_encoder_vblank_callback(struct drm_encoder *drm_enc,
1280 		struct dpu_encoder_phys *phy_enc)
1281 {
1282 	struct dpu_encoder_virt *dpu_enc = NULL;
1283 	unsigned long lock_flags;
1284 
1285 	if (!drm_enc || !phy_enc)
1286 		return;
1287 
1288 	DPU_ATRACE_BEGIN("encoder_vblank_callback");
1289 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1290 
1291 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1292 	if (dpu_enc->crtc)
1293 		dpu_crtc_vblank_callback(dpu_enc->crtc);
1294 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1295 
1296 	atomic_inc(&phy_enc->vsync_cnt);
1297 	DPU_ATRACE_END("encoder_vblank_callback");
1298 }
1299 
1300 static void dpu_encoder_underrun_callback(struct drm_encoder *drm_enc,
1301 		struct dpu_encoder_phys *phy_enc)
1302 {
1303 	if (!phy_enc)
1304 		return;
1305 
1306 	DPU_ATRACE_BEGIN("encoder_underrun_callback");
1307 	atomic_inc(&phy_enc->underrun_cnt);
1308 
1309 	/* trigger dump only on the first underrun */
1310 	if (atomic_read(&phy_enc->underrun_cnt) == 1)
1311 		msm_disp_snapshot_state(drm_enc->dev);
1312 
1313 	trace_dpu_enc_underrun_cb(DRMID(drm_enc),
1314 				  atomic_read(&phy_enc->underrun_cnt));
1315 	DPU_ATRACE_END("encoder_underrun_callback");
1316 }
1317 
1318 void dpu_encoder_assign_crtc(struct drm_encoder *drm_enc, struct drm_crtc *crtc)
1319 {
1320 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1321 	unsigned long lock_flags;
1322 
1323 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1324 	/* crtc should always be cleared before re-assigning */
1325 	WARN_ON(crtc && dpu_enc->crtc);
1326 	dpu_enc->crtc = crtc;
1327 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1328 }
1329 
1330 void dpu_encoder_toggle_vblank_for_crtc(struct drm_encoder *drm_enc,
1331 					struct drm_crtc *crtc, bool enable)
1332 {
1333 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1334 	unsigned long lock_flags;
1335 	int i;
1336 
1337 	trace_dpu_enc_vblank_cb(DRMID(drm_enc), enable);
1338 
1339 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1340 	if (dpu_enc->crtc != crtc) {
1341 		spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1342 		return;
1343 	}
1344 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1345 
1346 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1347 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1348 
1349 		if (phys->ops.control_vblank_irq)
1350 			phys->ops.control_vblank_irq(phys, enable);
1351 	}
1352 }
1353 
1354 void dpu_encoder_register_frame_event_callback(struct drm_encoder *drm_enc,
1355 		void (*frame_event_cb)(void *, u32 event),
1356 		void *frame_event_cb_data)
1357 {
1358 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1359 	unsigned long lock_flags;
1360 	bool enable;
1361 
1362 	enable = frame_event_cb ? true : false;
1363 
1364 	if (!drm_enc) {
1365 		DPU_ERROR("invalid encoder\n");
1366 		return;
1367 	}
1368 	trace_dpu_enc_frame_event_cb(DRMID(drm_enc), enable);
1369 
1370 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1371 	dpu_enc->crtc_frame_event_cb = frame_event_cb;
1372 	dpu_enc->crtc_frame_event_cb_data = frame_event_cb_data;
1373 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1374 }
1375 
1376 static void dpu_encoder_frame_done_callback(
1377 		struct drm_encoder *drm_enc,
1378 		struct dpu_encoder_phys *ready_phys, u32 event)
1379 {
1380 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1381 	unsigned int i;
1382 
1383 	if (event & (DPU_ENCODER_FRAME_EVENT_DONE
1384 			| DPU_ENCODER_FRAME_EVENT_ERROR
1385 			| DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)) {
1386 
1387 		if (!dpu_enc->frame_busy_mask[0]) {
1388 			/**
1389 			 * suppress frame_done without waiter,
1390 			 * likely autorefresh
1391 			 */
1392 			trace_dpu_enc_frame_done_cb_not_busy(DRMID(drm_enc),
1393 					event, ready_phys->intf_idx);
1394 			return;
1395 		}
1396 
1397 		/* One of the physical encoders has become idle */
1398 		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1399 			if (dpu_enc->phys_encs[i] == ready_phys) {
1400 				trace_dpu_enc_frame_done_cb(DRMID(drm_enc), i,
1401 						dpu_enc->frame_busy_mask[0]);
1402 				clear_bit(i, dpu_enc->frame_busy_mask);
1403 			}
1404 		}
1405 
1406 		if (!dpu_enc->frame_busy_mask[0]) {
1407 			atomic_set(&dpu_enc->frame_done_timeout_ms, 0);
1408 			del_timer(&dpu_enc->frame_done_timer);
1409 
1410 			dpu_encoder_resource_control(drm_enc,
1411 					DPU_ENC_RC_EVENT_FRAME_DONE);
1412 
1413 			if (dpu_enc->crtc_frame_event_cb)
1414 				dpu_enc->crtc_frame_event_cb(
1415 					dpu_enc->crtc_frame_event_cb_data,
1416 					event);
1417 		}
1418 	} else {
1419 		if (dpu_enc->crtc_frame_event_cb)
1420 			dpu_enc->crtc_frame_event_cb(
1421 				dpu_enc->crtc_frame_event_cb_data, event);
1422 	}
1423 }
1424 
1425 static void dpu_encoder_off_work(struct work_struct *work)
1426 {
1427 	struct dpu_encoder_virt *dpu_enc = container_of(work,
1428 			struct dpu_encoder_virt, delayed_off_work.work);
1429 
1430 	dpu_encoder_resource_control(&dpu_enc->base,
1431 						DPU_ENC_RC_EVENT_ENTER_IDLE);
1432 
1433 	dpu_encoder_frame_done_callback(&dpu_enc->base, NULL,
1434 				DPU_ENCODER_FRAME_EVENT_IDLE);
1435 }
1436 
1437 /**
1438  * _dpu_encoder_trigger_flush - trigger flush for a physical encoder
1439  * @drm_enc: Pointer to drm encoder structure
1440  * @phys: Pointer to physical encoder structure
1441  * @extra_flush_bits: Additional bit mask to include in flush trigger
1442  */
1443 static void _dpu_encoder_trigger_flush(struct drm_encoder *drm_enc,
1444 		struct dpu_encoder_phys *phys, uint32_t extra_flush_bits)
1445 {
1446 	struct dpu_hw_ctl *ctl;
1447 	int pending_kickoff_cnt;
1448 	u32 ret = UINT_MAX;
1449 
1450 	if (!phys->hw_pp) {
1451 		DPU_ERROR("invalid pingpong hw\n");
1452 		return;
1453 	}
1454 
1455 	ctl = phys->hw_ctl;
1456 	if (!ctl->ops.trigger_flush) {
1457 		DPU_ERROR("missing trigger cb\n");
1458 		return;
1459 	}
1460 
1461 	pending_kickoff_cnt = dpu_encoder_phys_inc_pending(phys);
1462 
1463 	if (extra_flush_bits && ctl->ops.update_pending_flush)
1464 		ctl->ops.update_pending_flush(ctl, extra_flush_bits);
1465 
1466 	ctl->ops.trigger_flush(ctl);
1467 
1468 	if (ctl->ops.get_pending_flush)
1469 		ret = ctl->ops.get_pending_flush(ctl);
1470 
1471 	trace_dpu_enc_trigger_flush(DRMID(drm_enc), phys->intf_idx,
1472 				    pending_kickoff_cnt, ctl->idx,
1473 				    extra_flush_bits, ret);
1474 }
1475 
1476 /**
1477  * _dpu_encoder_trigger_start - trigger start for a physical encoder
1478  * @phys: Pointer to physical encoder structure
1479  */
1480 static void _dpu_encoder_trigger_start(struct dpu_encoder_phys *phys)
1481 {
1482 	if (!phys) {
1483 		DPU_ERROR("invalid argument(s)\n");
1484 		return;
1485 	}
1486 
1487 	if (!phys->hw_pp) {
1488 		DPU_ERROR("invalid pingpong hw\n");
1489 		return;
1490 	}
1491 
1492 	if (phys->ops.trigger_start && phys->enable_state != DPU_ENC_DISABLED)
1493 		phys->ops.trigger_start(phys);
1494 }
1495 
1496 void dpu_encoder_helper_trigger_start(struct dpu_encoder_phys *phys_enc)
1497 {
1498 	struct dpu_hw_ctl *ctl;
1499 
1500 	ctl = phys_enc->hw_ctl;
1501 	if (ctl->ops.trigger_start) {
1502 		ctl->ops.trigger_start(ctl);
1503 		trace_dpu_enc_trigger_start(DRMID(phys_enc->parent), ctl->idx);
1504 	}
1505 }
1506 
1507 static int dpu_encoder_helper_wait_event_timeout(
1508 		int32_t drm_id,
1509 		u32 irq_idx,
1510 		struct dpu_encoder_wait_info *info)
1511 {
1512 	int rc = 0;
1513 	s64 expected_time = ktime_to_ms(ktime_get()) + info->timeout_ms;
1514 	s64 jiffies = msecs_to_jiffies(info->timeout_ms);
1515 	s64 time;
1516 
1517 	do {
1518 		rc = wait_event_timeout(*(info->wq),
1519 				atomic_read(info->atomic_cnt) == 0, jiffies);
1520 		time = ktime_to_ms(ktime_get());
1521 
1522 		trace_dpu_enc_wait_event_timeout(drm_id, irq_idx, rc, time,
1523 						 expected_time,
1524 						 atomic_read(info->atomic_cnt));
1525 	/* If we timed out, counter is valid and time is less, wait again */
1526 	} while (atomic_read(info->atomic_cnt) && (rc == 0) &&
1527 			(time < expected_time));
1528 
1529 	return rc;
1530 }
1531 
1532 static void dpu_encoder_helper_hw_reset(struct dpu_encoder_phys *phys_enc)
1533 {
1534 	struct dpu_encoder_virt *dpu_enc;
1535 	struct dpu_hw_ctl *ctl;
1536 	int rc;
1537 	struct drm_encoder *drm_enc;
1538 
1539 	dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
1540 	ctl = phys_enc->hw_ctl;
1541 	drm_enc = phys_enc->parent;
1542 
1543 	if (!ctl->ops.reset)
1544 		return;
1545 
1546 	DRM_DEBUG_KMS("id:%u ctl %d reset\n", DRMID(drm_enc),
1547 		      ctl->idx);
1548 
1549 	rc = ctl->ops.reset(ctl);
1550 	if (rc) {
1551 		DPU_ERROR_ENC(dpu_enc, "ctl %d reset failure\n",  ctl->idx);
1552 		msm_disp_snapshot_state(drm_enc->dev);
1553 	}
1554 
1555 	phys_enc->enable_state = DPU_ENC_ENABLED;
1556 }
1557 
1558 /**
1559  * _dpu_encoder_kickoff_phys - handle physical encoder kickoff
1560  *	Iterate through the physical encoders and perform consolidated flush
1561  *	and/or control start triggering as needed. This is done in the virtual
1562  *	encoder rather than the individual physical ones in order to handle
1563  *	use cases that require visibility into multiple physical encoders at
1564  *	a time.
1565  * @dpu_enc: Pointer to virtual encoder structure
1566  */
1567 static void _dpu_encoder_kickoff_phys(struct dpu_encoder_virt *dpu_enc)
1568 {
1569 	struct dpu_hw_ctl *ctl;
1570 	uint32_t i, pending_flush;
1571 	unsigned long lock_flags;
1572 
1573 	pending_flush = 0x0;
1574 
1575 	/* update pending counts and trigger kickoff ctl flush atomically */
1576 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1577 
1578 	/* don't perform flush/start operations for slave encoders */
1579 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1580 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1581 
1582 		if (phys->enable_state == DPU_ENC_DISABLED)
1583 			continue;
1584 
1585 		ctl = phys->hw_ctl;
1586 
1587 		/*
1588 		 * This is cleared in frame_done worker, which isn't invoked
1589 		 * for async commits. So don't set this for async, since it'll
1590 		 * roll over to the next commit.
1591 		 */
1592 		if (phys->split_role != ENC_ROLE_SLAVE)
1593 			set_bit(i, dpu_enc->frame_busy_mask);
1594 
1595 		if (!phys->ops.needs_single_flush ||
1596 				!phys->ops.needs_single_flush(phys))
1597 			_dpu_encoder_trigger_flush(&dpu_enc->base, phys, 0x0);
1598 		else if (ctl->ops.get_pending_flush)
1599 			pending_flush |= ctl->ops.get_pending_flush(ctl);
1600 	}
1601 
1602 	/* for split flush, combine pending flush masks and send to master */
1603 	if (pending_flush && dpu_enc->cur_master) {
1604 		_dpu_encoder_trigger_flush(
1605 				&dpu_enc->base,
1606 				dpu_enc->cur_master,
1607 				pending_flush);
1608 	}
1609 
1610 	_dpu_encoder_trigger_start(dpu_enc->cur_master);
1611 
1612 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1613 }
1614 
1615 void dpu_encoder_trigger_kickoff_pending(struct drm_encoder *drm_enc)
1616 {
1617 	struct dpu_encoder_virt *dpu_enc;
1618 	struct dpu_encoder_phys *phys;
1619 	unsigned int i;
1620 	struct dpu_hw_ctl *ctl;
1621 	struct msm_display_info *disp_info;
1622 
1623 	if (!drm_enc) {
1624 		DPU_ERROR("invalid encoder\n");
1625 		return;
1626 	}
1627 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1628 	disp_info = &dpu_enc->disp_info;
1629 
1630 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1631 		phys = dpu_enc->phys_encs[i];
1632 
1633 		ctl = phys->hw_ctl;
1634 		if (ctl->ops.clear_pending_flush)
1635 			ctl->ops.clear_pending_flush(ctl);
1636 
1637 		/* update only for command mode primary ctl */
1638 		if ((phys == dpu_enc->cur_master) &&
1639 		   (disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE)
1640 		    && ctl->ops.trigger_pending)
1641 			ctl->ops.trigger_pending(ctl);
1642 	}
1643 }
1644 
1645 static u32 _dpu_encoder_calculate_linetime(struct dpu_encoder_virt *dpu_enc,
1646 		struct drm_display_mode *mode)
1647 {
1648 	u64 pclk_rate;
1649 	u32 pclk_period;
1650 	u32 line_time;
1651 
1652 	/*
1653 	 * For linetime calculation, only operate on master encoder.
1654 	 */
1655 	if (!dpu_enc->cur_master)
1656 		return 0;
1657 
1658 	if (!dpu_enc->cur_master->ops.get_line_count) {
1659 		DPU_ERROR("get_line_count function not defined\n");
1660 		return 0;
1661 	}
1662 
1663 	pclk_rate = mode->clock; /* pixel clock in kHz */
1664 	if (pclk_rate == 0) {
1665 		DPU_ERROR("pclk is 0, cannot calculate line time\n");
1666 		return 0;
1667 	}
1668 
1669 	pclk_period = DIV_ROUND_UP_ULL(1000000000ull, pclk_rate);
1670 	if (pclk_period == 0) {
1671 		DPU_ERROR("pclk period is 0\n");
1672 		return 0;
1673 	}
1674 
1675 	/*
1676 	 * Line time calculation based on Pixel clock and HTOTAL.
1677 	 * Final unit is in ns.
1678 	 */
1679 	line_time = (pclk_period * mode->htotal) / 1000;
1680 	if (line_time == 0) {
1681 		DPU_ERROR("line time calculation is 0\n");
1682 		return 0;
1683 	}
1684 
1685 	DPU_DEBUG_ENC(dpu_enc,
1686 			"clk_rate=%lldkHz, clk_period=%d, linetime=%dns\n",
1687 			pclk_rate, pclk_period, line_time);
1688 
1689 	return line_time;
1690 }
1691 
1692 int dpu_encoder_vsync_time(struct drm_encoder *drm_enc, ktime_t *wakeup_time)
1693 {
1694 	struct drm_display_mode *mode;
1695 	struct dpu_encoder_virt *dpu_enc;
1696 	u32 cur_line;
1697 	u32 line_time;
1698 	u32 vtotal, time_to_vsync;
1699 	ktime_t cur_time;
1700 
1701 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1702 
1703 	if (!drm_enc->crtc || !drm_enc->crtc->state) {
1704 		DPU_ERROR("crtc/crtc state object is NULL\n");
1705 		return -EINVAL;
1706 	}
1707 	mode = &drm_enc->crtc->state->adjusted_mode;
1708 
1709 	line_time = _dpu_encoder_calculate_linetime(dpu_enc, mode);
1710 	if (!line_time)
1711 		return -EINVAL;
1712 
1713 	cur_line = dpu_enc->cur_master->ops.get_line_count(dpu_enc->cur_master);
1714 
1715 	vtotal = mode->vtotal;
1716 	if (cur_line >= vtotal)
1717 		time_to_vsync = line_time * vtotal;
1718 	else
1719 		time_to_vsync = line_time * (vtotal - cur_line);
1720 
1721 	if (time_to_vsync == 0) {
1722 		DPU_ERROR("time to vsync should not be zero, vtotal=%d\n",
1723 				vtotal);
1724 		return -EINVAL;
1725 	}
1726 
1727 	cur_time = ktime_get();
1728 	*wakeup_time = ktime_add_ns(cur_time, time_to_vsync);
1729 
1730 	DPU_DEBUG_ENC(dpu_enc,
1731 			"cur_line=%u vtotal=%u time_to_vsync=%u, cur_time=%lld, wakeup_time=%lld\n",
1732 			cur_line, vtotal, time_to_vsync,
1733 			ktime_to_ms(cur_time),
1734 			ktime_to_ms(*wakeup_time));
1735 	return 0;
1736 }
1737 
1738 static void dpu_encoder_vsync_event_handler(struct timer_list *t)
1739 {
1740 	struct dpu_encoder_virt *dpu_enc = from_timer(dpu_enc, t,
1741 			vsync_event_timer);
1742 	struct drm_encoder *drm_enc = &dpu_enc->base;
1743 	struct msm_drm_private *priv;
1744 	struct msm_drm_thread *event_thread;
1745 
1746 	if (!drm_enc->dev || !drm_enc->crtc) {
1747 		DPU_ERROR("invalid parameters\n");
1748 		return;
1749 	}
1750 
1751 	priv = drm_enc->dev->dev_private;
1752 
1753 	if (drm_enc->crtc->index >= ARRAY_SIZE(priv->event_thread)) {
1754 		DPU_ERROR("invalid crtc index\n");
1755 		return;
1756 	}
1757 	event_thread = &priv->event_thread[drm_enc->crtc->index];
1758 	if (!event_thread) {
1759 		DPU_ERROR("event_thread not found for crtc:%d\n",
1760 				drm_enc->crtc->index);
1761 		return;
1762 	}
1763 
1764 	del_timer(&dpu_enc->vsync_event_timer);
1765 }
1766 
1767 static void dpu_encoder_vsync_event_work_handler(struct kthread_work *work)
1768 {
1769 	struct dpu_encoder_virt *dpu_enc = container_of(work,
1770 			struct dpu_encoder_virt, vsync_event_work);
1771 	ktime_t wakeup_time;
1772 
1773 	if (dpu_encoder_vsync_time(&dpu_enc->base, &wakeup_time))
1774 		return;
1775 
1776 	trace_dpu_enc_vsync_event_work(DRMID(&dpu_enc->base), wakeup_time);
1777 	mod_timer(&dpu_enc->vsync_event_timer,
1778 			nsecs_to_jiffies(ktime_to_ns(wakeup_time)));
1779 }
1780 
1781 void dpu_encoder_prepare_for_kickoff(struct drm_encoder *drm_enc)
1782 {
1783 	struct dpu_encoder_virt *dpu_enc;
1784 	struct dpu_encoder_phys *phys;
1785 	bool needs_hw_reset = false;
1786 	unsigned int i;
1787 
1788 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1789 
1790 	trace_dpu_enc_prepare_kickoff(DRMID(drm_enc));
1791 
1792 	/* prepare for next kickoff, may include waiting on previous kickoff */
1793 	DPU_ATRACE_BEGIN("enc_prepare_for_kickoff");
1794 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1795 		phys = dpu_enc->phys_encs[i];
1796 		if (phys->ops.prepare_for_kickoff)
1797 			phys->ops.prepare_for_kickoff(phys);
1798 		if (phys->enable_state == DPU_ENC_ERR_NEEDS_HW_RESET)
1799 			needs_hw_reset = true;
1800 	}
1801 	DPU_ATRACE_END("enc_prepare_for_kickoff");
1802 
1803 	dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF);
1804 
1805 	/* if any phys needs reset, reset all phys, in-order */
1806 	if (needs_hw_reset) {
1807 		trace_dpu_enc_prepare_kickoff_reset(DRMID(drm_enc));
1808 		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1809 			dpu_encoder_helper_hw_reset(dpu_enc->phys_encs[i]);
1810 		}
1811 	}
1812 }
1813 
1814 void dpu_encoder_kickoff(struct drm_encoder *drm_enc)
1815 {
1816 	struct dpu_encoder_virt *dpu_enc;
1817 	struct dpu_encoder_phys *phys;
1818 	ktime_t wakeup_time;
1819 	unsigned long timeout_ms;
1820 	unsigned int i;
1821 
1822 	DPU_ATRACE_BEGIN("encoder_kickoff");
1823 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1824 
1825 	trace_dpu_enc_kickoff(DRMID(drm_enc));
1826 
1827 	timeout_ms = DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES * 1000 /
1828 			drm_mode_vrefresh(&drm_enc->crtc->state->adjusted_mode);
1829 
1830 	atomic_set(&dpu_enc->frame_done_timeout_ms, timeout_ms);
1831 	mod_timer(&dpu_enc->frame_done_timer,
1832 			jiffies + msecs_to_jiffies(timeout_ms));
1833 
1834 	/* All phys encs are ready to go, trigger the kickoff */
1835 	_dpu_encoder_kickoff_phys(dpu_enc);
1836 
1837 	/* allow phys encs to handle any post-kickoff business */
1838 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1839 		phys = dpu_enc->phys_encs[i];
1840 		if (phys->ops.handle_post_kickoff)
1841 			phys->ops.handle_post_kickoff(phys);
1842 	}
1843 
1844 	if (dpu_enc->disp_info.intf_type == DRM_MODE_ENCODER_DSI &&
1845 			!dpu_encoder_vsync_time(drm_enc, &wakeup_time)) {
1846 		trace_dpu_enc_early_kickoff(DRMID(drm_enc),
1847 					    ktime_to_ms(wakeup_time));
1848 		mod_timer(&dpu_enc->vsync_event_timer,
1849 				nsecs_to_jiffies(ktime_to_ns(wakeup_time)));
1850 	}
1851 
1852 	DPU_ATRACE_END("encoder_kickoff");
1853 }
1854 
1855 void dpu_encoder_prepare_commit(struct drm_encoder *drm_enc)
1856 {
1857 	struct dpu_encoder_virt *dpu_enc;
1858 	struct dpu_encoder_phys *phys;
1859 	int i;
1860 
1861 	if (!drm_enc) {
1862 		DPU_ERROR("invalid encoder\n");
1863 		return;
1864 	}
1865 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1866 
1867 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1868 		phys = dpu_enc->phys_encs[i];
1869 		if (phys->ops.prepare_commit)
1870 			phys->ops.prepare_commit(phys);
1871 	}
1872 }
1873 
1874 #ifdef CONFIG_DEBUG_FS
1875 static int _dpu_encoder_status_show(struct seq_file *s, void *data)
1876 {
1877 	struct dpu_encoder_virt *dpu_enc = s->private;
1878 	int i;
1879 
1880 	mutex_lock(&dpu_enc->enc_lock);
1881 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1882 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1883 
1884 		seq_printf(s, "intf:%d    vsync:%8d     underrun:%8d    ",
1885 				phys->intf_idx - INTF_0,
1886 				atomic_read(&phys->vsync_cnt),
1887 				atomic_read(&phys->underrun_cnt));
1888 
1889 		switch (phys->intf_mode) {
1890 		case INTF_MODE_VIDEO:
1891 			seq_puts(s, "mode: video\n");
1892 			break;
1893 		case INTF_MODE_CMD:
1894 			seq_puts(s, "mode: command\n");
1895 			break;
1896 		default:
1897 			seq_puts(s, "mode: ???\n");
1898 			break;
1899 		}
1900 	}
1901 	mutex_unlock(&dpu_enc->enc_lock);
1902 
1903 	return 0;
1904 }
1905 
1906 DEFINE_SHOW_ATTRIBUTE(_dpu_encoder_status);
1907 
1908 static int _dpu_encoder_init_debugfs(struct drm_encoder *drm_enc)
1909 {
1910 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1911 	int i;
1912 
1913 	char name[DPU_NAME_SIZE];
1914 
1915 	if (!drm_enc->dev) {
1916 		DPU_ERROR("invalid encoder or kms\n");
1917 		return -EINVAL;
1918 	}
1919 
1920 	snprintf(name, DPU_NAME_SIZE, "encoder%u", drm_enc->base.id);
1921 
1922 	/* create overall sub-directory for the encoder */
1923 	dpu_enc->debugfs_root = debugfs_create_dir(name,
1924 			drm_enc->dev->primary->debugfs_root);
1925 
1926 	/* don't error check these */
1927 	debugfs_create_file("status", 0600,
1928 		dpu_enc->debugfs_root, dpu_enc, &_dpu_encoder_status_fops);
1929 
1930 	for (i = 0; i < dpu_enc->num_phys_encs; i++)
1931 		if (dpu_enc->phys_encs[i]->ops.late_register)
1932 			dpu_enc->phys_encs[i]->ops.late_register(
1933 					dpu_enc->phys_encs[i],
1934 					dpu_enc->debugfs_root);
1935 
1936 	return 0;
1937 }
1938 #else
1939 static int _dpu_encoder_init_debugfs(struct drm_encoder *drm_enc)
1940 {
1941 	return 0;
1942 }
1943 #endif
1944 
1945 static int dpu_encoder_late_register(struct drm_encoder *encoder)
1946 {
1947 	return _dpu_encoder_init_debugfs(encoder);
1948 }
1949 
1950 static void dpu_encoder_early_unregister(struct drm_encoder *encoder)
1951 {
1952 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(encoder);
1953 
1954 	debugfs_remove_recursive(dpu_enc->debugfs_root);
1955 }
1956 
1957 static int dpu_encoder_virt_add_phys_encs(
1958 		u32 display_caps,
1959 		struct dpu_encoder_virt *dpu_enc,
1960 		struct dpu_enc_phys_init_params *params)
1961 {
1962 	struct dpu_encoder_phys *enc = NULL;
1963 
1964 	DPU_DEBUG_ENC(dpu_enc, "\n");
1965 
1966 	/*
1967 	 * We may create up to NUM_PHYS_ENCODER_TYPES physical encoder types
1968 	 * in this function, check up-front.
1969 	 */
1970 	if (dpu_enc->num_phys_encs + NUM_PHYS_ENCODER_TYPES >=
1971 			ARRAY_SIZE(dpu_enc->phys_encs)) {
1972 		DPU_ERROR_ENC(dpu_enc, "too many physical encoders %d\n",
1973 			  dpu_enc->num_phys_encs);
1974 		return -EINVAL;
1975 	}
1976 
1977 	if (display_caps & MSM_DISPLAY_CAP_VID_MODE) {
1978 		enc = dpu_encoder_phys_vid_init(params);
1979 
1980 		if (IS_ERR_OR_NULL(enc)) {
1981 			DPU_ERROR_ENC(dpu_enc, "failed to init vid enc: %ld\n",
1982 				PTR_ERR(enc));
1983 			return enc == NULL ? -EINVAL : PTR_ERR(enc);
1984 		}
1985 
1986 		dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
1987 		++dpu_enc->num_phys_encs;
1988 	}
1989 
1990 	if (display_caps & MSM_DISPLAY_CAP_CMD_MODE) {
1991 		enc = dpu_encoder_phys_cmd_init(params);
1992 
1993 		if (IS_ERR_OR_NULL(enc)) {
1994 			DPU_ERROR_ENC(dpu_enc, "failed to init cmd enc: %ld\n",
1995 				PTR_ERR(enc));
1996 			return enc == NULL ? -EINVAL : PTR_ERR(enc);
1997 		}
1998 
1999 		dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
2000 		++dpu_enc->num_phys_encs;
2001 	}
2002 
2003 	if (params->split_role == ENC_ROLE_SLAVE)
2004 		dpu_enc->cur_slave = enc;
2005 	else
2006 		dpu_enc->cur_master = enc;
2007 
2008 	return 0;
2009 }
2010 
2011 static const struct dpu_encoder_virt_ops dpu_encoder_parent_ops = {
2012 	.handle_vblank_virt = dpu_encoder_vblank_callback,
2013 	.handle_underrun_virt = dpu_encoder_underrun_callback,
2014 	.handle_frame_done = dpu_encoder_frame_done_callback,
2015 };
2016 
2017 static int dpu_encoder_setup_display(struct dpu_encoder_virt *dpu_enc,
2018 				 struct dpu_kms *dpu_kms,
2019 				 struct msm_display_info *disp_info)
2020 {
2021 	int ret = 0;
2022 	int i = 0;
2023 	enum dpu_intf_type intf_type = INTF_NONE;
2024 	struct dpu_enc_phys_init_params phys_params;
2025 
2026 	if (!dpu_enc) {
2027 		DPU_ERROR("invalid arg(s), enc %d\n", dpu_enc != NULL);
2028 		return -EINVAL;
2029 	}
2030 
2031 	dpu_enc->cur_master = NULL;
2032 
2033 	memset(&phys_params, 0, sizeof(phys_params));
2034 	phys_params.dpu_kms = dpu_kms;
2035 	phys_params.parent = &dpu_enc->base;
2036 	phys_params.parent_ops = &dpu_encoder_parent_ops;
2037 	phys_params.enc_spinlock = &dpu_enc->enc_spinlock;
2038 
2039 	switch (disp_info->intf_type) {
2040 	case DRM_MODE_ENCODER_DSI:
2041 		intf_type = INTF_DSI;
2042 		break;
2043 	case DRM_MODE_ENCODER_TMDS:
2044 		intf_type = INTF_DP;
2045 		break;
2046 	}
2047 
2048 	WARN_ON(disp_info->num_of_h_tiles < 1);
2049 
2050 	DPU_DEBUG("dsi_info->num_of_h_tiles %d\n", disp_info->num_of_h_tiles);
2051 
2052 	if ((disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE) ||
2053 	    (disp_info->capabilities & MSM_DISPLAY_CAP_VID_MODE))
2054 		dpu_enc->idle_pc_supported =
2055 				dpu_kms->catalog->caps->has_idle_pc;
2056 
2057 	mutex_lock(&dpu_enc->enc_lock);
2058 	for (i = 0; i < disp_info->num_of_h_tiles && !ret; i++) {
2059 		/*
2060 		 * Left-most tile is at index 0, content is controller id
2061 		 * h_tile_instance_ids[2] = {0, 1}; DSI0 = left, DSI1 = right
2062 		 * h_tile_instance_ids[2] = {1, 0}; DSI1 = left, DSI0 = right
2063 		 */
2064 		u32 controller_id = disp_info->h_tile_instance[i];
2065 
2066 		if (disp_info->num_of_h_tiles > 1) {
2067 			if (i == 0)
2068 				phys_params.split_role = ENC_ROLE_MASTER;
2069 			else
2070 				phys_params.split_role = ENC_ROLE_SLAVE;
2071 		} else {
2072 			phys_params.split_role = ENC_ROLE_SOLO;
2073 		}
2074 
2075 		DPU_DEBUG("h_tile_instance %d = %d, split_role %d\n",
2076 				i, controller_id, phys_params.split_role);
2077 
2078 		phys_params.intf_idx = dpu_encoder_get_intf(dpu_kms->catalog,
2079 													intf_type,
2080 													controller_id);
2081 		if (phys_params.intf_idx == INTF_MAX) {
2082 			DPU_ERROR_ENC(dpu_enc, "could not get intf: type %d, id %d\n",
2083 						  intf_type, controller_id);
2084 			ret = -EINVAL;
2085 		}
2086 
2087 		if (!ret) {
2088 			ret = dpu_encoder_virt_add_phys_encs(disp_info->capabilities,
2089 												 dpu_enc,
2090 												 &phys_params);
2091 			if (ret)
2092 				DPU_ERROR_ENC(dpu_enc, "failed to add phys encs\n");
2093 		}
2094 	}
2095 
2096 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2097 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2098 		atomic_set(&phys->vsync_cnt, 0);
2099 		atomic_set(&phys->underrun_cnt, 0);
2100 	}
2101 	mutex_unlock(&dpu_enc->enc_lock);
2102 
2103 	return ret;
2104 }
2105 
2106 static void dpu_encoder_frame_done_timeout(struct timer_list *t)
2107 {
2108 	struct dpu_encoder_virt *dpu_enc = from_timer(dpu_enc, t,
2109 			frame_done_timer);
2110 	struct drm_encoder *drm_enc = &dpu_enc->base;
2111 	u32 event;
2112 
2113 	if (!drm_enc->dev) {
2114 		DPU_ERROR("invalid parameters\n");
2115 		return;
2116 	}
2117 
2118 	if (!dpu_enc->frame_busy_mask[0] || !dpu_enc->crtc_frame_event_cb) {
2119 		DRM_DEBUG_KMS("id:%u invalid timeout frame_busy_mask=%lu\n",
2120 			      DRMID(drm_enc), dpu_enc->frame_busy_mask[0]);
2121 		return;
2122 	} else if (!atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) {
2123 		DRM_DEBUG_KMS("id:%u invalid timeout\n", DRMID(drm_enc));
2124 		return;
2125 	}
2126 
2127 	DPU_ERROR_ENC(dpu_enc, "frame done timeout\n");
2128 
2129 	event = DPU_ENCODER_FRAME_EVENT_ERROR;
2130 	trace_dpu_enc_frame_done_timeout(DRMID(drm_enc), event);
2131 	dpu_enc->crtc_frame_event_cb(dpu_enc->crtc_frame_event_cb_data, event);
2132 }
2133 
2134 static const struct drm_encoder_helper_funcs dpu_encoder_helper_funcs = {
2135 	.mode_set = dpu_encoder_virt_mode_set,
2136 	.disable = dpu_encoder_virt_disable,
2137 	.enable = dpu_kms_encoder_enable,
2138 	.atomic_check = dpu_encoder_virt_atomic_check,
2139 
2140 	/* This is called by dpu_kms_encoder_enable */
2141 	.commit = dpu_encoder_virt_enable,
2142 };
2143 
2144 static const struct drm_encoder_funcs dpu_encoder_funcs = {
2145 		.destroy = dpu_encoder_destroy,
2146 		.late_register = dpu_encoder_late_register,
2147 		.early_unregister = dpu_encoder_early_unregister,
2148 };
2149 
2150 int dpu_encoder_setup(struct drm_device *dev, struct drm_encoder *enc,
2151 		struct msm_display_info *disp_info)
2152 {
2153 	struct msm_drm_private *priv = dev->dev_private;
2154 	struct dpu_kms *dpu_kms = to_dpu_kms(priv->kms);
2155 	struct drm_encoder *drm_enc = NULL;
2156 	struct dpu_encoder_virt *dpu_enc = NULL;
2157 	int ret = 0;
2158 
2159 	dpu_enc = to_dpu_encoder_virt(enc);
2160 
2161 	ret = dpu_encoder_setup_display(dpu_enc, dpu_kms, disp_info);
2162 	if (ret)
2163 		goto fail;
2164 
2165 	atomic_set(&dpu_enc->frame_done_timeout_ms, 0);
2166 	timer_setup(&dpu_enc->frame_done_timer,
2167 			dpu_encoder_frame_done_timeout, 0);
2168 
2169 	if (disp_info->intf_type == DRM_MODE_ENCODER_DSI)
2170 		timer_setup(&dpu_enc->vsync_event_timer,
2171 				dpu_encoder_vsync_event_handler,
2172 				0);
2173 
2174 
2175 	INIT_DELAYED_WORK(&dpu_enc->delayed_off_work,
2176 			dpu_encoder_off_work);
2177 	dpu_enc->idle_timeout = IDLE_TIMEOUT;
2178 
2179 	kthread_init_work(&dpu_enc->vsync_event_work,
2180 			dpu_encoder_vsync_event_work_handler);
2181 
2182 	memcpy(&dpu_enc->disp_info, disp_info, sizeof(*disp_info));
2183 
2184 	DPU_DEBUG_ENC(dpu_enc, "created\n");
2185 
2186 	return ret;
2187 
2188 fail:
2189 	DPU_ERROR("failed to create encoder\n");
2190 	if (drm_enc)
2191 		dpu_encoder_destroy(drm_enc);
2192 
2193 	return ret;
2194 
2195 
2196 }
2197 
2198 struct drm_encoder *dpu_encoder_init(struct drm_device *dev,
2199 		int drm_enc_mode)
2200 {
2201 	struct dpu_encoder_virt *dpu_enc = NULL;
2202 	int rc = 0;
2203 
2204 	dpu_enc = devm_kzalloc(dev->dev, sizeof(*dpu_enc), GFP_KERNEL);
2205 	if (!dpu_enc)
2206 		return ERR_PTR(-ENOMEM);
2207 
2208 	rc = drm_encoder_init(dev, &dpu_enc->base, &dpu_encoder_funcs,
2209 			drm_enc_mode, NULL);
2210 	if (rc) {
2211 		devm_kfree(dev->dev, dpu_enc);
2212 		return ERR_PTR(rc);
2213 	}
2214 
2215 	drm_encoder_helper_add(&dpu_enc->base, &dpu_encoder_helper_funcs);
2216 
2217 	spin_lock_init(&dpu_enc->enc_spinlock);
2218 	dpu_enc->enabled = false;
2219 	mutex_init(&dpu_enc->enc_lock);
2220 	mutex_init(&dpu_enc->rc_lock);
2221 
2222 	return &dpu_enc->base;
2223 }
2224 
2225 int dpu_encoder_wait_for_event(struct drm_encoder *drm_enc,
2226 	enum msm_event_wait event)
2227 {
2228 	int (*fn_wait)(struct dpu_encoder_phys *phys_enc) = NULL;
2229 	struct dpu_encoder_virt *dpu_enc = NULL;
2230 	int i, ret = 0;
2231 
2232 	if (!drm_enc) {
2233 		DPU_ERROR("invalid encoder\n");
2234 		return -EINVAL;
2235 	}
2236 	dpu_enc = to_dpu_encoder_virt(drm_enc);
2237 	DPU_DEBUG_ENC(dpu_enc, "\n");
2238 
2239 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2240 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2241 
2242 		switch (event) {
2243 		case MSM_ENC_COMMIT_DONE:
2244 			fn_wait = phys->ops.wait_for_commit_done;
2245 			break;
2246 		case MSM_ENC_TX_COMPLETE:
2247 			fn_wait = phys->ops.wait_for_tx_complete;
2248 			break;
2249 		case MSM_ENC_VBLANK:
2250 			fn_wait = phys->ops.wait_for_vblank;
2251 			break;
2252 		default:
2253 			DPU_ERROR_ENC(dpu_enc, "unknown wait event %d\n",
2254 					event);
2255 			return -EINVAL;
2256 		}
2257 
2258 		if (fn_wait) {
2259 			DPU_ATRACE_BEGIN("wait_for_completion_event");
2260 			ret = fn_wait(phys);
2261 			DPU_ATRACE_END("wait_for_completion_event");
2262 			if (ret)
2263 				return ret;
2264 		}
2265 	}
2266 
2267 	return ret;
2268 }
2269 
2270 enum dpu_intf_mode dpu_encoder_get_intf_mode(struct drm_encoder *encoder)
2271 {
2272 	struct dpu_encoder_virt *dpu_enc = NULL;
2273 
2274 	if (!encoder) {
2275 		DPU_ERROR("invalid encoder\n");
2276 		return INTF_MODE_NONE;
2277 	}
2278 	dpu_enc = to_dpu_encoder_virt(encoder);
2279 
2280 	if (dpu_enc->cur_master)
2281 		return dpu_enc->cur_master->intf_mode;
2282 
2283 	if (dpu_enc->num_phys_encs)
2284 		return dpu_enc->phys_encs[0]->intf_mode;
2285 
2286 	return INTF_MODE_NONE;
2287 }
2288