1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2013 Red Hat 4 * Copyright (c) 2014-2018, 2020-2021 The Linux Foundation. All rights reserved. 5 * Copyright (c) 2022-2024 Qualcomm Innovation Center, Inc. All rights reserved. 6 * 7 * Author: Rob Clark <robdclark@gmail.com> 8 */ 9 10 #define pr_fmt(fmt) "[drm:%s:%d] " fmt, __func__, __LINE__ 11 #include <linux/debugfs.h> 12 #include <linux/kthread.h> 13 #include <linux/seq_file.h> 14 15 #include <drm/drm_atomic.h> 16 #include <drm/drm_crtc.h> 17 #include <drm/drm_file.h> 18 #include <drm/drm_probe_helper.h> 19 #include <drm/drm_framebuffer.h> 20 21 #include "msm_drv.h" 22 #include "dpu_kms.h" 23 #include "dpu_hwio.h" 24 #include "dpu_hw_catalog.h" 25 #include "dpu_hw_intf.h" 26 #include "dpu_hw_ctl.h" 27 #include "dpu_hw_cwb.h" 28 #include "dpu_hw_dspp.h" 29 #include "dpu_hw_dsc.h" 30 #include "dpu_hw_merge3d.h" 31 #include "dpu_hw_cdm.h" 32 #include "dpu_formats.h" 33 #include "dpu_encoder_phys.h" 34 #include "dpu_crtc.h" 35 #include "dpu_trace.h" 36 #include "dpu_core_irq.h" 37 #include "disp/msm_disp_snapshot.h" 38 39 #define DPU_DEBUG_ENC(e, fmt, ...) DRM_DEBUG_ATOMIC("enc%d " fmt,\ 40 (e) ? (e)->base.base.id : -1, ##__VA_ARGS__) 41 42 #define DPU_ERROR_ENC(e, fmt, ...) DPU_ERROR("enc%d " fmt,\ 43 (e) ? (e)->base.base.id : -1, ##__VA_ARGS__) 44 45 #define DPU_ERROR_ENC_RATELIMITED(e, fmt, ...) DPU_ERROR_RATELIMITED("enc%d " fmt,\ 46 (e) ? (e)->base.base.id : -1, ##__VA_ARGS__) 47 48 /* 49 * Two to anticipate panels that can do cmd/vid dynamic switching 50 * plan is to create all possible physical encoder types, and switch between 51 * them at runtime 52 */ 53 #define NUM_PHYS_ENCODER_TYPES 2 54 55 #define MAX_PHYS_ENCODERS_PER_VIRTUAL \ 56 (MAX_H_TILES_PER_DISPLAY * NUM_PHYS_ENCODER_TYPES) 57 58 #define MAX_CHANNELS_PER_ENC 2 59 60 #define IDLE_SHORT_TIMEOUT 1 61 62 /* timeout in frames waiting for frame done */ 63 #define DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES 5 64 65 /** 66 * enum dpu_enc_rc_events - events for resource control state machine 67 * @DPU_ENC_RC_EVENT_KICKOFF: 68 * This event happens at NORMAL priority. 69 * Event that signals the start of the transfer. When this event is 70 * received, enable MDP/DSI core clocks. Regardless of the previous 71 * state, the resource should be in ON state at the end of this event. 72 * @DPU_ENC_RC_EVENT_FRAME_DONE: 73 * This event happens at INTERRUPT level. 74 * Event signals the end of the data transfer after the PP FRAME_DONE 75 * event. At the end of this event, a delayed work is scheduled to go to 76 * IDLE_PC state after IDLE_TIMEOUT time. 77 * @DPU_ENC_RC_EVENT_PRE_STOP: 78 * This event happens at NORMAL priority. 79 * This event, when received during the ON state, leave the RC STATE 80 * in the PRE_OFF state. It should be followed by the STOP event as 81 * part of encoder disable. 82 * If received during IDLE or OFF states, it will do nothing. 83 * @DPU_ENC_RC_EVENT_STOP: 84 * This event happens at NORMAL priority. 85 * When this event is received, disable all the MDP/DSI core clocks, and 86 * disable IRQs. It should be called from the PRE_OFF or IDLE states. 87 * IDLE is expected when IDLE_PC has run, and PRE_OFF did nothing. 88 * PRE_OFF is expected when PRE_STOP was executed during the ON state. 89 * Resource state should be in OFF at the end of the event. 90 * @DPU_ENC_RC_EVENT_ENTER_IDLE: 91 * This event happens at NORMAL priority from a work item. 92 * Event signals that there were no frame updates for IDLE_TIMEOUT time. 93 * This would disable MDP/DSI core clocks and change the resource state 94 * to IDLE. 95 */ 96 enum dpu_enc_rc_events { 97 DPU_ENC_RC_EVENT_KICKOFF = 1, 98 DPU_ENC_RC_EVENT_FRAME_DONE, 99 DPU_ENC_RC_EVENT_PRE_STOP, 100 DPU_ENC_RC_EVENT_STOP, 101 DPU_ENC_RC_EVENT_ENTER_IDLE 102 }; 103 104 /* 105 * enum dpu_enc_rc_states - states that the resource control maintains 106 * @DPU_ENC_RC_STATE_OFF: Resource is in OFF state 107 * @DPU_ENC_RC_STATE_PRE_OFF: Resource is transitioning to OFF state 108 * @DPU_ENC_RC_STATE_ON: Resource is in ON state 109 * @DPU_ENC_RC_STATE_MODESET: Resource is in modeset state 110 * @DPU_ENC_RC_STATE_IDLE: Resource is in IDLE state 111 */ 112 enum dpu_enc_rc_states { 113 DPU_ENC_RC_STATE_OFF, 114 DPU_ENC_RC_STATE_PRE_OFF, 115 DPU_ENC_RC_STATE_ON, 116 DPU_ENC_RC_STATE_IDLE 117 }; 118 119 /** 120 * struct dpu_encoder_virt - virtual encoder. Container of one or more physical 121 * encoders. Virtual encoder manages one "logical" display. Physical 122 * encoders manage one intf block, tied to a specific panel/sub-panel. 123 * Virtual encoder defers as much as possible to the physical encoders. 124 * Virtual encoder registers itself with the DRM Framework as the encoder. 125 * @base: drm_encoder base class for registration with DRM 126 * @enc_spinlock: Virtual-Encoder-Wide Spin Lock for IRQ purposes 127 * @enabled: True if the encoder is active, protected by enc_lock 128 * @commit_done_timedout: True if there has been a timeout on commit after 129 * enabling the encoder. 130 * @num_phys_encs: Actual number of physical encoders contained. 131 * @phys_encs: Container of physical encoders managed. 132 * @cur_master: Pointer to the current master in this mode. Optimization 133 * Only valid after enable. Cleared as disable. 134 * @cur_slave: As above but for the slave encoder. 135 * @hw_pp: Handle to the pingpong blocks used for the display. No. 136 * pingpong blocks can be different than num_phys_encs. 137 * @hw_cwb: Handle to the CWB muxes used for concurrent writeback 138 * display. Number of CWB muxes can be different than 139 * num_phys_encs. 140 * @hw_dsc: Handle to the DSC blocks used for the display. 141 * @dsc_mask: Bitmask of used DSC blocks. 142 * @cwb_mask: Bitmask of used CWB muxes 143 * @intfs_swapped: Whether or not the phys_enc interfaces have been swapped 144 * for partial update right-only cases, such as pingpong 145 * split where virtual pingpong does not generate IRQs 146 * @crtc: Pointer to the currently assigned crtc. Normally you 147 * would use crtc->state->encoder_mask to determine the 148 * link between encoder/crtc. However in this case we need 149 * to track crtc in the disable() hook which is called 150 * _after_ encoder_mask is cleared. 151 * @connector: If a mode is set, cached pointer to the active connector 152 * @enc_lock: Lock around physical encoder 153 * create/destroy/enable/disable 154 * @frame_busy_mask: Bitmask tracking which phys_enc we are still 155 * busy processing current command. 156 * Bit0 = phys_encs[0] etc. 157 * @frame_done_timeout_ms: frame done timeout in ms 158 * @frame_done_timeout_cnt: atomic counter tracking the number of frame 159 * done timeouts 160 * @frame_done_timer: watchdog timer for frame done event 161 * @disp_info: local copy of msm_display_info struct 162 * @idle_pc_supported: indicate if idle power collaps is supported 163 * @rc_lock: resource control mutex lock to protect 164 * virt encoder over various state changes 165 * @rc_state: resource controller state 166 * @delayed_off_work: delayed worker to schedule disabling of 167 * clks and resources after IDLE_TIMEOUT time. 168 * @topology: topology of the display 169 * @idle_timeout: idle timeout duration in milliseconds 170 * @wide_bus_en: wide bus is enabled on this interface 171 * @dsc: drm_dsc_config pointer, for DSC-enabled encoders 172 */ 173 struct dpu_encoder_virt { 174 struct drm_encoder base; 175 spinlock_t enc_spinlock; 176 177 bool enabled; 178 bool commit_done_timedout; 179 180 unsigned int num_phys_encs; 181 struct dpu_encoder_phys *phys_encs[MAX_PHYS_ENCODERS_PER_VIRTUAL]; 182 struct dpu_encoder_phys *cur_master; 183 struct dpu_encoder_phys *cur_slave; 184 struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC]; 185 struct dpu_hw_cwb *hw_cwb[MAX_CHANNELS_PER_ENC]; 186 struct dpu_hw_dsc *hw_dsc[MAX_CHANNELS_PER_ENC]; 187 188 unsigned int dsc_mask; 189 unsigned int cwb_mask; 190 191 bool intfs_swapped; 192 193 struct drm_crtc *crtc; 194 struct drm_connector *connector; 195 196 struct mutex enc_lock; 197 DECLARE_BITMAP(frame_busy_mask, MAX_PHYS_ENCODERS_PER_VIRTUAL); 198 199 atomic_t frame_done_timeout_ms; 200 atomic_t frame_done_timeout_cnt; 201 struct timer_list frame_done_timer; 202 203 struct msm_display_info disp_info; 204 205 bool idle_pc_supported; 206 struct mutex rc_lock; 207 enum dpu_enc_rc_states rc_state; 208 struct delayed_work delayed_off_work; 209 struct msm_display_topology topology; 210 211 u32 idle_timeout; 212 213 bool wide_bus_en; 214 215 /* DSC configuration */ 216 struct drm_dsc_config *dsc; 217 }; 218 219 #define to_dpu_encoder_virt(x) container_of(x, struct dpu_encoder_virt, base) 220 221 static u32 dither_matrix[DITHER_MATRIX_SZ] = { 222 15, 7, 13, 5, 3, 11, 1, 9, 12, 4, 14, 6, 0, 8, 2, 10 223 }; 224 225 /** 226 * dpu_encoder_get_drm_fmt - return DRM fourcc format 227 * @phys_enc: Pointer to physical encoder structure 228 */ 229 u32 dpu_encoder_get_drm_fmt(struct dpu_encoder_phys *phys_enc) 230 { 231 struct drm_encoder *drm_enc; 232 struct dpu_encoder_virt *dpu_enc; 233 struct drm_display_info *info; 234 struct drm_display_mode *mode; 235 236 drm_enc = phys_enc->parent; 237 dpu_enc = to_dpu_encoder_virt(drm_enc); 238 info = &dpu_enc->connector->display_info; 239 mode = &phys_enc->cached_mode; 240 241 if (drm_mode_is_420_only(info, mode)) 242 return DRM_FORMAT_YUV420; 243 244 return DRM_FORMAT_RGB888; 245 } 246 247 /** 248 * dpu_encoder_needs_periph_flush - return true if physical encoder requires 249 * peripheral flush 250 * @phys_enc: Pointer to physical encoder structure 251 */ 252 bool dpu_encoder_needs_periph_flush(struct dpu_encoder_phys *phys_enc) 253 { 254 struct drm_encoder *drm_enc; 255 struct dpu_encoder_virt *dpu_enc; 256 struct msm_display_info *disp_info; 257 struct msm_drm_private *priv; 258 struct drm_display_mode *mode; 259 260 drm_enc = phys_enc->parent; 261 dpu_enc = to_dpu_encoder_virt(drm_enc); 262 disp_info = &dpu_enc->disp_info; 263 priv = drm_enc->dev->dev_private; 264 mode = &phys_enc->cached_mode; 265 266 return phys_enc->hw_intf->cap->type == INTF_DP && 267 msm_dp_needs_periph_flush(priv->kms->dp[disp_info->h_tile_instance[0]], mode); 268 } 269 270 /** 271 * dpu_encoder_is_widebus_enabled - return bool value if widebus is enabled 272 * @drm_enc: Pointer to previously created drm encoder structure 273 */ 274 bool dpu_encoder_is_widebus_enabled(const struct drm_encoder *drm_enc) 275 { 276 const struct dpu_encoder_virt *dpu_enc; 277 struct msm_drm_private *priv = drm_enc->dev->dev_private; 278 const struct msm_display_info *disp_info; 279 int index; 280 281 dpu_enc = to_dpu_encoder_virt(drm_enc); 282 disp_info = &dpu_enc->disp_info; 283 index = disp_info->h_tile_instance[0]; 284 285 if (disp_info->intf_type == INTF_DP) 286 return msm_dp_wide_bus_available(priv->kms->dp[index]); 287 else if (disp_info->intf_type == INTF_DSI) 288 return msm_dsi_wide_bus_enabled(priv->kms->dsi[index]); 289 290 return false; 291 } 292 293 /** 294 * dpu_encoder_is_dsc_enabled - indicate whether dsc is enabled 295 * for the encoder. 296 * @drm_enc: Pointer to previously created drm encoder structure 297 */ 298 bool dpu_encoder_is_dsc_enabled(const struct drm_encoder *drm_enc) 299 { 300 const struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); 301 302 return dpu_enc->dsc ? true : false; 303 } 304 305 /** 306 * dpu_encoder_get_crc_values_cnt - get number of physical encoders contained 307 * in virtual encoder that can collect CRC values 308 * @drm_enc: Pointer to previously created drm encoder structure 309 * Returns: Number of physical encoders for given drm encoder 310 */ 311 int dpu_encoder_get_crc_values_cnt(const struct drm_encoder *drm_enc) 312 { 313 struct dpu_encoder_virt *dpu_enc; 314 int i, num_intf = 0; 315 316 dpu_enc = to_dpu_encoder_virt(drm_enc); 317 318 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 319 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 320 321 if (phys->hw_intf && phys->hw_intf->ops.setup_misr 322 && phys->hw_intf->ops.collect_misr) 323 num_intf++; 324 } 325 326 return num_intf; 327 } 328 329 /** 330 * dpu_encoder_setup_misr - enable misr calculations 331 * @drm_enc: Pointer to previously created drm encoder structure 332 */ 333 void dpu_encoder_setup_misr(const struct drm_encoder *drm_enc) 334 { 335 struct dpu_encoder_virt *dpu_enc; 336 337 int i; 338 339 dpu_enc = to_dpu_encoder_virt(drm_enc); 340 341 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 342 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 343 344 if (!phys->hw_intf || !phys->hw_intf->ops.setup_misr) 345 continue; 346 347 phys->hw_intf->ops.setup_misr(phys->hw_intf); 348 } 349 } 350 351 /** 352 * dpu_encoder_get_crc - get the crc value from interface blocks 353 * @drm_enc: Pointer to previously created drm encoder structure 354 * @crcs: array to fill with CRC data 355 * @pos: offset into the @crcs array 356 * Returns: 0 on success, error otherwise 357 */ 358 int dpu_encoder_get_crc(const struct drm_encoder *drm_enc, u32 *crcs, int pos) 359 { 360 struct dpu_encoder_virt *dpu_enc; 361 362 int i, rc = 0, entries_added = 0; 363 364 if (!drm_enc->crtc) { 365 DRM_ERROR("no crtc found for encoder %d\n", drm_enc->index); 366 return -EINVAL; 367 } 368 369 dpu_enc = to_dpu_encoder_virt(drm_enc); 370 371 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 372 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 373 374 if (!phys->hw_intf || !phys->hw_intf->ops.collect_misr) 375 continue; 376 377 rc = phys->hw_intf->ops.collect_misr(phys->hw_intf, &crcs[pos + entries_added]); 378 if (rc) 379 return rc; 380 entries_added++; 381 } 382 383 return entries_added; 384 } 385 386 static void _dpu_encoder_setup_dither(struct dpu_hw_pingpong *hw_pp, unsigned bpc) 387 { 388 struct dpu_hw_dither_cfg dither_cfg = { 0 }; 389 390 if (!hw_pp->ops.setup_dither) 391 return; 392 393 switch (bpc) { 394 case 6: 395 dither_cfg.c0_bitdepth = 6; 396 dither_cfg.c1_bitdepth = 6; 397 dither_cfg.c2_bitdepth = 6; 398 dither_cfg.c3_bitdepth = 6; 399 dither_cfg.temporal_en = 0; 400 break; 401 default: 402 hw_pp->ops.setup_dither(hw_pp, NULL); 403 return; 404 } 405 406 memcpy(&dither_cfg.matrix, dither_matrix, 407 sizeof(u32) * DITHER_MATRIX_SZ); 408 409 hw_pp->ops.setup_dither(hw_pp, &dither_cfg); 410 } 411 412 static char *dpu_encoder_helper_get_intf_type(enum dpu_intf_mode intf_mode) 413 { 414 switch (intf_mode) { 415 case INTF_MODE_VIDEO: 416 return "INTF_MODE_VIDEO"; 417 case INTF_MODE_CMD: 418 return "INTF_MODE_CMD"; 419 case INTF_MODE_WB_BLOCK: 420 return "INTF_MODE_WB_BLOCK"; 421 case INTF_MODE_WB_LINE: 422 return "INTF_MODE_WB_LINE"; 423 default: 424 return "INTF_MODE_UNKNOWN"; 425 } 426 } 427 428 /** 429 * dpu_encoder_helper_report_irq_timeout - utility to report error that irq has 430 * timed out, including reporting frame error event to crtc and debug dump 431 * @phys_enc: Pointer to physical encoder structure 432 * @intr_idx: Failing interrupt index 433 */ 434 void dpu_encoder_helper_report_irq_timeout(struct dpu_encoder_phys *phys_enc, 435 enum dpu_intr_idx intr_idx) 436 { 437 DRM_ERROR("irq timeout id=%u, intf_mode=%s intf=%d wb=%d, pp=%d, intr=%d\n", 438 DRMID(phys_enc->parent), 439 dpu_encoder_helper_get_intf_type(phys_enc->intf_mode), 440 phys_enc->hw_intf ? phys_enc->hw_intf->idx - INTF_0 : -1, 441 phys_enc->hw_wb ? phys_enc->hw_wb->idx - WB_0 : -1, 442 phys_enc->hw_pp->idx - PINGPONG_0, intr_idx); 443 444 dpu_encoder_frame_done_callback(phys_enc->parent, phys_enc, 445 DPU_ENCODER_FRAME_EVENT_ERROR); 446 } 447 448 static int dpu_encoder_helper_wait_event_timeout(int32_t drm_id, 449 u32 irq_idx, struct dpu_encoder_wait_info *info); 450 451 /** 452 * dpu_encoder_helper_wait_for_irq - utility to wait on an irq. 453 * note: will call dpu_encoder_helper_wait_for_irq on timeout 454 * @phys_enc: Pointer to physical encoder structure 455 * @irq_idx: IRQ index 456 * @func: IRQ callback to be called in case of timeout 457 * @wait_info: wait info struct 458 * @return: 0 or -ERROR 459 */ 460 int dpu_encoder_helper_wait_for_irq(struct dpu_encoder_phys *phys_enc, 461 unsigned int irq_idx, 462 void (*func)(void *arg), 463 struct dpu_encoder_wait_info *wait_info) 464 { 465 u32 irq_status; 466 int ret; 467 468 if (!wait_info) { 469 DPU_ERROR("invalid params\n"); 470 return -EINVAL; 471 } 472 /* note: do master / slave checking outside */ 473 474 /* return EWOULDBLOCK since we know the wait isn't necessary */ 475 if (phys_enc->enable_state == DPU_ENC_DISABLED) { 476 DRM_ERROR("encoder is disabled id=%u, callback=%ps, IRQ=[%d, %d]\n", 477 DRMID(phys_enc->parent), func, 478 DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx)); 479 return -EWOULDBLOCK; 480 } 481 482 if (irq_idx == 0) { 483 DRM_DEBUG_KMS("skip irq wait id=%u, callback=%ps\n", 484 DRMID(phys_enc->parent), func); 485 return 0; 486 } 487 488 DRM_DEBUG_KMS("id=%u, callback=%ps, IRQ=[%d, %d], pp=%d, pending_cnt=%d\n", 489 DRMID(phys_enc->parent), func, 490 DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx), phys_enc->hw_pp->idx - PINGPONG_0, 491 atomic_read(wait_info->atomic_cnt)); 492 493 ret = dpu_encoder_helper_wait_event_timeout( 494 DRMID(phys_enc->parent), 495 irq_idx, 496 wait_info); 497 498 if (ret <= 0) { 499 irq_status = dpu_core_irq_read(phys_enc->dpu_kms, irq_idx); 500 if (irq_status) { 501 unsigned long flags; 502 503 DRM_DEBUG_KMS("IRQ=[%d, %d] not triggered id=%u, callback=%ps, pp=%d, atomic_cnt=%d\n", 504 DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx), 505 DRMID(phys_enc->parent), func, 506 phys_enc->hw_pp->idx - PINGPONG_0, 507 atomic_read(wait_info->atomic_cnt)); 508 local_irq_save(flags); 509 func(phys_enc); 510 local_irq_restore(flags); 511 ret = 0; 512 } else { 513 ret = -ETIMEDOUT; 514 DRM_DEBUG_KMS("IRQ=[%d, %d] timeout id=%u, callback=%ps, pp=%d, atomic_cnt=%d\n", 515 DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx), 516 DRMID(phys_enc->parent), func, 517 phys_enc->hw_pp->idx - PINGPONG_0, 518 atomic_read(wait_info->atomic_cnt)); 519 } 520 } else { 521 ret = 0; 522 trace_dpu_enc_irq_wait_success(DRMID(phys_enc->parent), 523 func, DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx), 524 phys_enc->hw_pp->idx - PINGPONG_0, 525 atomic_read(wait_info->atomic_cnt)); 526 } 527 528 return ret; 529 } 530 531 /** 532 * dpu_encoder_get_vsync_count - get vsync count for the encoder. 533 * @drm_enc: Pointer to previously created drm encoder structure 534 */ 535 int dpu_encoder_get_vsync_count(struct drm_encoder *drm_enc) 536 { 537 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); 538 struct dpu_encoder_phys *phys = dpu_enc ? dpu_enc->cur_master : NULL; 539 return phys ? atomic_read(&phys->vsync_cnt) : 0; 540 } 541 542 /** 543 * dpu_encoder_get_linecount - get interface line count for the encoder. 544 * @drm_enc: Pointer to previously created drm encoder structure 545 */ 546 int dpu_encoder_get_linecount(struct drm_encoder *drm_enc) 547 { 548 struct dpu_encoder_virt *dpu_enc; 549 struct dpu_encoder_phys *phys; 550 int linecount = 0; 551 552 dpu_enc = to_dpu_encoder_virt(drm_enc); 553 phys = dpu_enc ? dpu_enc->cur_master : NULL; 554 555 if (phys && phys->ops.get_line_count) 556 linecount = phys->ops.get_line_count(phys); 557 558 return linecount; 559 } 560 561 /** 562 * dpu_encoder_helper_split_config - split display configuration helper function 563 * This helper function may be used by physical encoders to configure 564 * the split display related registers. 565 * @phys_enc: Pointer to physical encoder structure 566 * @interface: enum dpu_intf setting 567 */ 568 void dpu_encoder_helper_split_config( 569 struct dpu_encoder_phys *phys_enc, 570 enum dpu_intf interface) 571 { 572 struct dpu_encoder_virt *dpu_enc; 573 struct split_pipe_cfg cfg = { 0 }; 574 struct dpu_hw_mdp *hw_mdptop; 575 struct msm_display_info *disp_info; 576 577 if (!phys_enc->hw_mdptop || !phys_enc->parent) { 578 DPU_ERROR("invalid arg(s), encoder %d\n", phys_enc != NULL); 579 return; 580 } 581 582 dpu_enc = to_dpu_encoder_virt(phys_enc->parent); 583 hw_mdptop = phys_enc->hw_mdptop; 584 disp_info = &dpu_enc->disp_info; 585 586 if (disp_info->intf_type != INTF_DSI) 587 return; 588 589 /** 590 * disable split modes since encoder will be operating in as the only 591 * encoder, either for the entire use case in the case of, for example, 592 * single DSI, or for this frame in the case of left/right only partial 593 * update. 594 */ 595 if (phys_enc->split_role == ENC_ROLE_SOLO) { 596 if (hw_mdptop->ops.setup_split_pipe) 597 hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg); 598 return; 599 } 600 601 cfg.en = true; 602 cfg.mode = phys_enc->intf_mode; 603 cfg.intf = interface; 604 605 if (cfg.en && phys_enc->ops.needs_single_flush && 606 phys_enc->ops.needs_single_flush(phys_enc)) 607 cfg.split_flush_en = true; 608 609 if (phys_enc->split_role == ENC_ROLE_MASTER) { 610 DPU_DEBUG_ENC(dpu_enc, "enable %d\n", cfg.en); 611 612 if (hw_mdptop->ops.setup_split_pipe) 613 hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg); 614 } 615 } 616 617 /** 618 * dpu_encoder_use_dsc_merge - returns true if the encoder uses DSC merge topology. 619 * @drm_enc: Pointer to previously created drm encoder structure 620 */ 621 bool dpu_encoder_use_dsc_merge(struct drm_encoder *drm_enc) 622 { 623 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); 624 int i, intf_count = 0, num_dsc = 0; 625 626 for (i = 0; i < MAX_PHYS_ENCODERS_PER_VIRTUAL; i++) 627 if (dpu_enc->phys_encs[i]) 628 intf_count++; 629 630 for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) 631 if (dpu_enc->hw_dsc[i]) 632 num_dsc++; 633 634 return (num_dsc > 0) && (num_dsc > intf_count); 635 } 636 637 /** 638 * dpu_encoder_get_dsc_config - get DSC config for the DPU encoder 639 * This helper function is used by physical encoder to get DSC config 640 * used for this encoder. 641 * @drm_enc: Pointer to encoder structure 642 */ 643 struct drm_dsc_config *dpu_encoder_get_dsc_config(struct drm_encoder *drm_enc) 644 { 645 struct msm_drm_private *priv = drm_enc->dev->dev_private; 646 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); 647 int index = dpu_enc->disp_info.h_tile_instance[0]; 648 649 if (dpu_enc->disp_info.intf_type == INTF_DSI) 650 return msm_dsi_get_dsc_config(priv->kms->dsi[index]); 651 652 return NULL; 653 } 654 655 void dpu_encoder_update_topology(struct drm_encoder *drm_enc, 656 struct msm_display_topology *topology, 657 struct drm_atomic_state *state, 658 const struct drm_display_mode *adj_mode) 659 { 660 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); 661 struct msm_drm_private *priv = dpu_enc->base.dev->dev_private; 662 struct msm_display_info *disp_info = &dpu_enc->disp_info; 663 struct dpu_kms *dpu_kms = to_dpu_kms(priv->kms); 664 struct drm_connector *connector; 665 struct drm_connector_state *conn_state; 666 struct drm_framebuffer *fb; 667 struct drm_dsc_config *dsc; 668 669 int i; 670 671 for (i = 0; i < MAX_PHYS_ENCODERS_PER_VIRTUAL; i++) 672 if (dpu_enc->phys_encs[i]) 673 topology->num_intf++; 674 675 dsc = dpu_encoder_get_dsc_config(drm_enc); 676 677 /* We only support 2 DSC mode (with 2 LM and 1 INTF) */ 678 if (dsc) { 679 /* 680 * Use 2 DSC encoders, 2 layer mixers and 1 or 2 interfaces 681 * when Display Stream Compression (DSC) is enabled, 682 * and when enough DSC blocks are available. 683 * This is power-optimal and can drive up to (including) 4k 684 * screens. 685 */ 686 WARN(topology->num_intf > 2, 687 "DSC topology cannot support more than 2 interfaces\n"); 688 if (topology->num_intf >= 2 || dpu_kms->catalog->dsc_count >= 2) 689 topology->num_dsc = 2; 690 else 691 topology->num_dsc = 1; 692 } 693 694 connector = drm_atomic_get_new_connector_for_encoder(state, drm_enc); 695 if (!connector) 696 return; 697 conn_state = drm_atomic_get_new_connector_state(state, connector); 698 if (!conn_state) 699 return; 700 701 /* 702 * Use CDM only for writeback or DP at the moment as other interfaces cannot handle it. 703 * If writeback itself cannot handle cdm for some reason it will fail in its atomic_check() 704 * earlier. 705 */ 706 if (disp_info->intf_type == INTF_WB && conn_state->writeback_job) { 707 fb = conn_state->writeback_job->fb; 708 709 if (fb && MSM_FORMAT_IS_YUV(msm_framebuffer_format(fb))) 710 topology->num_cdm++; 711 } else if (disp_info->intf_type == INTF_DP) { 712 if (msm_dp_is_yuv_420_enabled(priv->kms->dp[disp_info->h_tile_instance[0]], 713 adj_mode)) 714 topology->num_cdm++; 715 } 716 } 717 718 bool dpu_encoder_needs_modeset(struct drm_encoder *drm_enc, struct drm_atomic_state *state) 719 { 720 struct drm_connector *connector; 721 struct drm_connector_state *conn_state; 722 struct drm_framebuffer *fb; 723 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); 724 725 if (!drm_enc || !state) 726 return false; 727 728 connector = drm_atomic_get_new_connector_for_encoder(state, drm_enc); 729 if (!connector) 730 return false; 731 732 conn_state = drm_atomic_get_new_connector_state(state, connector); 733 if (!conn_state) 734 return false; 735 736 /** 737 * These checks are duplicated from dpu_encoder_update_topology() since 738 * CRTC and encoder don't hold topology information 739 */ 740 if (dpu_enc->disp_info.intf_type == INTF_WB && conn_state->writeback_job) { 741 fb = conn_state->writeback_job->fb; 742 if (fb && MSM_FORMAT_IS_YUV(msm_framebuffer_format(fb))) { 743 if (!dpu_enc->cur_master->hw_cdm) 744 return true; 745 } else { 746 if (dpu_enc->cur_master->hw_cdm) 747 return true; 748 } 749 } 750 751 return false; 752 } 753 754 static void _dpu_encoder_update_vsync_source(struct dpu_encoder_virt *dpu_enc, 755 struct msm_display_info *disp_info) 756 { 757 struct dpu_vsync_source_cfg vsync_cfg = { 0 }; 758 struct msm_drm_private *priv; 759 struct dpu_kms *dpu_kms; 760 struct dpu_hw_mdp *hw_mdptop; 761 struct drm_encoder *drm_enc; 762 struct dpu_encoder_phys *phys_enc; 763 int i; 764 765 if (!dpu_enc || !disp_info) { 766 DPU_ERROR("invalid param dpu_enc:%d or disp_info:%d\n", 767 dpu_enc != NULL, disp_info != NULL); 768 return; 769 } else if (dpu_enc->num_phys_encs > ARRAY_SIZE(dpu_enc->hw_pp)) { 770 DPU_ERROR("invalid num phys enc %d/%d\n", 771 dpu_enc->num_phys_encs, 772 (int) ARRAY_SIZE(dpu_enc->hw_pp)); 773 return; 774 } 775 776 drm_enc = &dpu_enc->base; 777 /* this pointers are checked in virt_enable_helper */ 778 priv = drm_enc->dev->dev_private; 779 780 dpu_kms = to_dpu_kms(priv->kms); 781 hw_mdptop = dpu_kms->hw_mdp; 782 if (!hw_mdptop) { 783 DPU_ERROR("invalid mdptop\n"); 784 return; 785 } 786 787 if (hw_mdptop->ops.setup_vsync_source) { 788 for (i = 0; i < dpu_enc->num_phys_encs; i++) 789 vsync_cfg.ppnumber[i] = dpu_enc->hw_pp[i]->idx; 790 791 vsync_cfg.pp_count = dpu_enc->num_phys_encs; 792 vsync_cfg.frame_rate = drm_mode_vrefresh(&dpu_enc->base.crtc->state->adjusted_mode); 793 794 vsync_cfg.vsync_source = disp_info->vsync_source; 795 796 hw_mdptop->ops.setup_vsync_source(hw_mdptop, &vsync_cfg); 797 798 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 799 phys_enc = dpu_enc->phys_encs[i]; 800 801 if (phys_enc->has_intf_te && phys_enc->hw_intf->ops.vsync_sel) 802 phys_enc->hw_intf->ops.vsync_sel(phys_enc->hw_intf, 803 vsync_cfg.vsync_source); 804 } 805 } 806 } 807 808 static void _dpu_encoder_irq_enable(struct drm_encoder *drm_enc) 809 { 810 struct dpu_encoder_virt *dpu_enc; 811 int i; 812 813 if (!drm_enc) { 814 DPU_ERROR("invalid encoder\n"); 815 return; 816 } 817 818 dpu_enc = to_dpu_encoder_virt(drm_enc); 819 820 DPU_DEBUG_ENC(dpu_enc, "\n"); 821 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 822 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 823 824 phys->ops.irq_enable(phys); 825 } 826 } 827 828 static void _dpu_encoder_irq_disable(struct drm_encoder *drm_enc) 829 { 830 struct dpu_encoder_virt *dpu_enc; 831 int i; 832 833 if (!drm_enc) { 834 DPU_ERROR("invalid encoder\n"); 835 return; 836 } 837 838 dpu_enc = to_dpu_encoder_virt(drm_enc); 839 840 DPU_DEBUG_ENC(dpu_enc, "\n"); 841 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 842 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 843 844 phys->ops.irq_disable(phys); 845 } 846 } 847 848 static void _dpu_encoder_resource_enable(struct drm_encoder *drm_enc) 849 { 850 struct msm_drm_private *priv; 851 struct dpu_kms *dpu_kms; 852 struct dpu_encoder_virt *dpu_enc; 853 854 dpu_enc = to_dpu_encoder_virt(drm_enc); 855 priv = drm_enc->dev->dev_private; 856 dpu_kms = to_dpu_kms(priv->kms); 857 858 trace_dpu_enc_rc_enable(DRMID(drm_enc)); 859 860 if (!dpu_enc->cur_master) { 861 DPU_ERROR("encoder master not set\n"); 862 return; 863 } 864 865 /* enable DPU core clks */ 866 pm_runtime_get_sync(&dpu_kms->pdev->dev); 867 868 /* enable all the irq */ 869 _dpu_encoder_irq_enable(drm_enc); 870 } 871 872 static void _dpu_encoder_resource_disable(struct drm_encoder *drm_enc) 873 { 874 struct msm_drm_private *priv; 875 struct dpu_kms *dpu_kms; 876 struct dpu_encoder_virt *dpu_enc; 877 878 dpu_enc = to_dpu_encoder_virt(drm_enc); 879 priv = drm_enc->dev->dev_private; 880 dpu_kms = to_dpu_kms(priv->kms); 881 882 trace_dpu_enc_rc_disable(DRMID(drm_enc)); 883 884 if (!dpu_enc->cur_master) { 885 DPU_ERROR("encoder master not set\n"); 886 return; 887 } 888 889 /* disable all the irq */ 890 _dpu_encoder_irq_disable(drm_enc); 891 892 /* disable DPU core clks */ 893 pm_runtime_put_sync(&dpu_kms->pdev->dev); 894 } 895 896 static int dpu_encoder_resource_control(struct drm_encoder *drm_enc, 897 u32 sw_event) 898 { 899 struct dpu_encoder_virt *dpu_enc; 900 struct msm_drm_private *priv; 901 bool is_vid_mode = false; 902 903 if (!drm_enc || !drm_enc->dev || !drm_enc->crtc) { 904 DPU_ERROR("invalid parameters\n"); 905 return -EINVAL; 906 } 907 dpu_enc = to_dpu_encoder_virt(drm_enc); 908 priv = drm_enc->dev->dev_private; 909 is_vid_mode = !dpu_enc->disp_info.is_cmd_mode; 910 911 /* 912 * when idle_pc is not supported, process only KICKOFF, STOP and MODESET 913 * events and return early for other events (ie wb display). 914 */ 915 if (!dpu_enc->idle_pc_supported && 916 (sw_event != DPU_ENC_RC_EVENT_KICKOFF && 917 sw_event != DPU_ENC_RC_EVENT_STOP && 918 sw_event != DPU_ENC_RC_EVENT_PRE_STOP)) 919 return 0; 920 921 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, dpu_enc->idle_pc_supported, 922 dpu_enc->rc_state, "begin"); 923 924 switch (sw_event) { 925 case DPU_ENC_RC_EVENT_KICKOFF: 926 /* cancel delayed off work, if any */ 927 if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work)) 928 DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n", 929 sw_event); 930 931 mutex_lock(&dpu_enc->rc_lock); 932 933 /* return if the resource control is already in ON state */ 934 if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) { 935 DRM_DEBUG_ATOMIC("id;%u, sw_event:%d, rc in ON state\n", 936 DRMID(drm_enc), sw_event); 937 mutex_unlock(&dpu_enc->rc_lock); 938 return 0; 939 } else if (dpu_enc->rc_state != DPU_ENC_RC_STATE_OFF && 940 dpu_enc->rc_state != DPU_ENC_RC_STATE_IDLE) { 941 DRM_DEBUG_ATOMIC("id;%u, sw_event:%d, rc in state %d\n", 942 DRMID(drm_enc), sw_event, 943 dpu_enc->rc_state); 944 mutex_unlock(&dpu_enc->rc_lock); 945 return -EINVAL; 946 } 947 948 if (is_vid_mode && dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) 949 _dpu_encoder_irq_enable(drm_enc); 950 else 951 _dpu_encoder_resource_enable(drm_enc); 952 953 dpu_enc->rc_state = DPU_ENC_RC_STATE_ON; 954 955 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, 956 dpu_enc->idle_pc_supported, dpu_enc->rc_state, 957 "kickoff"); 958 959 mutex_unlock(&dpu_enc->rc_lock); 960 break; 961 962 case DPU_ENC_RC_EVENT_FRAME_DONE: 963 /* 964 * mutex lock is not used as this event happens at interrupt 965 * context. And locking is not required as, the other events 966 * like KICKOFF and STOP does a wait-for-idle before executing 967 * the resource_control 968 */ 969 if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) { 970 DRM_DEBUG_KMS("id:%d, sw_event:%d,rc:%d-unexpected\n", 971 DRMID(drm_enc), sw_event, 972 dpu_enc->rc_state); 973 return -EINVAL; 974 } 975 976 /* 977 * schedule off work item only when there are no 978 * frames pending 979 */ 980 if (dpu_crtc_frame_pending(drm_enc->crtc) > 1) { 981 DRM_DEBUG_KMS("id:%d skip schedule work\n", 982 DRMID(drm_enc)); 983 return 0; 984 } 985 986 queue_delayed_work(priv->kms->wq, &dpu_enc->delayed_off_work, 987 msecs_to_jiffies(dpu_enc->idle_timeout)); 988 989 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, 990 dpu_enc->idle_pc_supported, dpu_enc->rc_state, 991 "frame done"); 992 break; 993 994 case DPU_ENC_RC_EVENT_PRE_STOP: 995 /* cancel delayed off work, if any */ 996 if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work)) 997 DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n", 998 sw_event); 999 1000 mutex_lock(&dpu_enc->rc_lock); 1001 1002 if (is_vid_mode && 1003 dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) { 1004 _dpu_encoder_irq_enable(drm_enc); 1005 } 1006 /* skip if is already OFF or IDLE, resources are off already */ 1007 else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF || 1008 dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) { 1009 DRM_DEBUG_KMS("id:%u, sw_event:%d, rc in %d state\n", 1010 DRMID(drm_enc), sw_event, 1011 dpu_enc->rc_state); 1012 mutex_unlock(&dpu_enc->rc_lock); 1013 return 0; 1014 } 1015 1016 dpu_enc->rc_state = DPU_ENC_RC_STATE_PRE_OFF; 1017 1018 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, 1019 dpu_enc->idle_pc_supported, dpu_enc->rc_state, 1020 "pre stop"); 1021 1022 mutex_unlock(&dpu_enc->rc_lock); 1023 break; 1024 1025 case DPU_ENC_RC_EVENT_STOP: 1026 mutex_lock(&dpu_enc->rc_lock); 1027 1028 /* return if the resource control is already in OFF state */ 1029 if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF) { 1030 DRM_DEBUG_KMS("id: %u, sw_event:%d, rc in OFF state\n", 1031 DRMID(drm_enc), sw_event); 1032 mutex_unlock(&dpu_enc->rc_lock); 1033 return 0; 1034 } else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) { 1035 DRM_ERROR("id: %u, sw_event:%d, rc in state %d\n", 1036 DRMID(drm_enc), sw_event, dpu_enc->rc_state); 1037 mutex_unlock(&dpu_enc->rc_lock); 1038 return -EINVAL; 1039 } 1040 1041 /** 1042 * expect to arrive here only if in either idle state or pre-off 1043 * and in IDLE state the resources are already disabled 1044 */ 1045 if (dpu_enc->rc_state == DPU_ENC_RC_STATE_PRE_OFF) 1046 _dpu_encoder_resource_disable(drm_enc); 1047 1048 dpu_enc->rc_state = DPU_ENC_RC_STATE_OFF; 1049 1050 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, 1051 dpu_enc->idle_pc_supported, dpu_enc->rc_state, 1052 "stop"); 1053 1054 mutex_unlock(&dpu_enc->rc_lock); 1055 break; 1056 1057 case DPU_ENC_RC_EVENT_ENTER_IDLE: 1058 mutex_lock(&dpu_enc->rc_lock); 1059 1060 if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) { 1061 DRM_ERROR("id: %u, sw_event:%d, rc:%d !ON state\n", 1062 DRMID(drm_enc), sw_event, dpu_enc->rc_state); 1063 mutex_unlock(&dpu_enc->rc_lock); 1064 return 0; 1065 } 1066 1067 /* 1068 * if we are in ON but a frame was just kicked off, 1069 * ignore the IDLE event, it's probably a stale timer event 1070 */ 1071 if (dpu_enc->frame_busy_mask[0]) { 1072 DRM_ERROR("id:%u, sw_event:%d, rc:%d frame pending\n", 1073 DRMID(drm_enc), sw_event, dpu_enc->rc_state); 1074 mutex_unlock(&dpu_enc->rc_lock); 1075 return 0; 1076 } 1077 1078 if (is_vid_mode) 1079 _dpu_encoder_irq_disable(drm_enc); 1080 else 1081 _dpu_encoder_resource_disable(drm_enc); 1082 1083 dpu_enc->rc_state = DPU_ENC_RC_STATE_IDLE; 1084 1085 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, 1086 dpu_enc->idle_pc_supported, dpu_enc->rc_state, 1087 "idle"); 1088 1089 mutex_unlock(&dpu_enc->rc_lock); 1090 break; 1091 1092 default: 1093 DRM_ERROR("id:%u, unexpected sw_event: %d\n", DRMID(drm_enc), 1094 sw_event); 1095 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, 1096 dpu_enc->idle_pc_supported, dpu_enc->rc_state, 1097 "error"); 1098 break; 1099 } 1100 1101 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, 1102 dpu_enc->idle_pc_supported, dpu_enc->rc_state, 1103 "end"); 1104 return 0; 1105 } 1106 1107 /** 1108 * dpu_encoder_prepare_wb_job - prepare writeback job for the encoder. 1109 * @drm_enc: Pointer to previously created drm encoder structure 1110 * @job: Pointer to the current drm writeback job 1111 */ 1112 void dpu_encoder_prepare_wb_job(struct drm_encoder *drm_enc, 1113 struct drm_writeback_job *job) 1114 { 1115 struct dpu_encoder_virt *dpu_enc; 1116 int i; 1117 1118 dpu_enc = to_dpu_encoder_virt(drm_enc); 1119 1120 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1121 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 1122 1123 if (phys->ops.prepare_wb_job) 1124 phys->ops.prepare_wb_job(phys, job); 1125 1126 } 1127 } 1128 1129 /** 1130 * dpu_encoder_cleanup_wb_job - cleanup writeback job for the encoder. 1131 * @drm_enc: Pointer to previously created drm encoder structure 1132 * @job: Pointer to the current drm writeback job 1133 */ 1134 void dpu_encoder_cleanup_wb_job(struct drm_encoder *drm_enc, 1135 struct drm_writeback_job *job) 1136 { 1137 struct dpu_encoder_virt *dpu_enc; 1138 int i; 1139 1140 dpu_enc = to_dpu_encoder_virt(drm_enc); 1141 1142 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1143 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 1144 1145 if (phys->ops.cleanup_wb_job) 1146 phys->ops.cleanup_wb_job(phys, job); 1147 1148 } 1149 } 1150 1151 static void dpu_encoder_virt_atomic_mode_set(struct drm_encoder *drm_enc, 1152 struct drm_crtc_state *crtc_state, 1153 struct drm_connector_state *conn_state) 1154 { 1155 struct dpu_encoder_virt *dpu_enc; 1156 struct msm_drm_private *priv; 1157 struct dpu_kms *dpu_kms; 1158 struct dpu_global_state *global_state; 1159 struct dpu_hw_blk *hw_pp[MAX_CHANNELS_PER_ENC]; 1160 struct dpu_hw_blk *hw_ctl[MAX_CHANNELS_PER_ENC]; 1161 struct dpu_hw_blk *hw_dsc[MAX_CHANNELS_PER_ENC]; 1162 struct dpu_hw_blk *hw_cwb[MAX_CHANNELS_PER_ENC]; 1163 int num_ctl, num_pp, num_dsc; 1164 int num_cwb = 0; 1165 bool is_cwb_encoder; 1166 unsigned int dsc_mask = 0; 1167 unsigned int cwb_mask = 0; 1168 int i; 1169 1170 if (!drm_enc) { 1171 DPU_ERROR("invalid encoder\n"); 1172 return; 1173 } 1174 1175 dpu_enc = to_dpu_encoder_virt(drm_enc); 1176 DPU_DEBUG_ENC(dpu_enc, "\n"); 1177 1178 priv = drm_enc->dev->dev_private; 1179 dpu_kms = to_dpu_kms(priv->kms); 1180 is_cwb_encoder = drm_crtc_in_clone_mode(crtc_state) && 1181 dpu_enc->disp_info.intf_type == INTF_WB; 1182 1183 global_state = dpu_kms_get_existing_global_state(dpu_kms); 1184 if (IS_ERR_OR_NULL(global_state)) { 1185 DPU_ERROR("Failed to get global state"); 1186 return; 1187 } 1188 1189 trace_dpu_enc_mode_set(DRMID(drm_enc)); 1190 1191 /* Query resource that have been reserved in atomic check step. */ 1192 if (is_cwb_encoder) { 1193 num_pp = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state, 1194 drm_enc->crtc, 1195 DPU_HW_BLK_DCWB_PINGPONG, 1196 hw_pp, ARRAY_SIZE(hw_pp)); 1197 num_cwb = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state, 1198 drm_enc->crtc, 1199 DPU_HW_BLK_CWB, 1200 hw_cwb, ARRAY_SIZE(hw_cwb)); 1201 } else { 1202 num_pp = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state, 1203 drm_enc->crtc, 1204 DPU_HW_BLK_PINGPONG, hw_pp, 1205 ARRAY_SIZE(hw_pp)); 1206 } 1207 1208 for (i = 0; i < num_cwb; i++) { 1209 dpu_enc->hw_cwb[i] = to_dpu_hw_cwb(hw_cwb[i]); 1210 cwb_mask |= BIT(dpu_enc->hw_cwb[i]->idx - CWB_0); 1211 } 1212 1213 dpu_enc->cwb_mask = cwb_mask; 1214 1215 num_ctl = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state, 1216 drm_enc->crtc, DPU_HW_BLK_CTL, hw_ctl, ARRAY_SIZE(hw_ctl)); 1217 1218 for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) 1219 dpu_enc->hw_pp[i] = i < num_pp ? to_dpu_hw_pingpong(hw_pp[i]) 1220 : NULL; 1221 1222 num_dsc = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state, 1223 drm_enc->crtc, DPU_HW_BLK_DSC, 1224 hw_dsc, ARRAY_SIZE(hw_dsc)); 1225 for (i = 0; i < num_dsc; i++) { 1226 dpu_enc->hw_dsc[i] = to_dpu_hw_dsc(hw_dsc[i]); 1227 dsc_mask |= BIT(dpu_enc->hw_dsc[i]->idx - DSC_0); 1228 } 1229 1230 dpu_enc->dsc_mask = dsc_mask; 1231 1232 if ((dpu_enc->disp_info.intf_type == INTF_WB && conn_state->writeback_job) || 1233 dpu_enc->disp_info.intf_type == INTF_DP) { 1234 struct dpu_hw_blk *hw_cdm = NULL; 1235 1236 dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state, 1237 drm_enc->crtc, DPU_HW_BLK_CDM, 1238 &hw_cdm, 1); 1239 dpu_enc->cur_master->hw_cdm = hw_cdm ? to_dpu_hw_cdm(hw_cdm) : NULL; 1240 } 1241 1242 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1243 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 1244 1245 phys->hw_pp = dpu_enc->hw_pp[i]; 1246 if (!phys->hw_pp) { 1247 DPU_ERROR_ENC(dpu_enc, 1248 "no pp block assigned at idx: %d\n", i); 1249 return; 1250 } 1251 1252 /* Use first (and only) CTL if active CTLs are supported */ 1253 if (num_ctl == 1) 1254 phys->hw_ctl = to_dpu_hw_ctl(hw_ctl[0]); 1255 else 1256 phys->hw_ctl = i < num_ctl ? to_dpu_hw_ctl(hw_ctl[i]) : NULL; 1257 if (!phys->hw_ctl) { 1258 DPU_ERROR_ENC(dpu_enc, 1259 "no ctl block assigned at idx: %d\n", i); 1260 return; 1261 } 1262 1263 phys->cached_mode = crtc_state->adjusted_mode; 1264 if (phys->ops.atomic_mode_set) 1265 phys->ops.atomic_mode_set(phys, crtc_state, conn_state); 1266 } 1267 } 1268 1269 static void _dpu_encoder_virt_enable_helper(struct drm_encoder *drm_enc) 1270 { 1271 struct dpu_encoder_virt *dpu_enc = NULL; 1272 int i; 1273 1274 if (!drm_enc || !drm_enc->dev) { 1275 DPU_ERROR("invalid parameters\n"); 1276 return; 1277 } 1278 1279 dpu_enc = to_dpu_encoder_virt(drm_enc); 1280 if (!dpu_enc || !dpu_enc->cur_master) { 1281 DPU_ERROR("invalid dpu encoder/master\n"); 1282 return; 1283 } 1284 1285 1286 if (dpu_enc->disp_info.intf_type == INTF_DP && 1287 dpu_enc->cur_master->hw_mdptop && 1288 dpu_enc->cur_master->hw_mdptop->ops.intf_audio_select) 1289 dpu_enc->cur_master->hw_mdptop->ops.intf_audio_select( 1290 dpu_enc->cur_master->hw_mdptop); 1291 1292 if (dpu_enc->disp_info.is_cmd_mode) 1293 _dpu_encoder_update_vsync_source(dpu_enc, &dpu_enc->disp_info); 1294 1295 if (dpu_enc->disp_info.intf_type == INTF_DSI && 1296 !WARN_ON(dpu_enc->num_phys_encs == 0)) { 1297 unsigned bpc = dpu_enc->connector->display_info.bpc; 1298 for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) { 1299 if (!dpu_enc->hw_pp[i]) 1300 continue; 1301 _dpu_encoder_setup_dither(dpu_enc->hw_pp[i], bpc); 1302 } 1303 } 1304 } 1305 1306 /** 1307 * dpu_encoder_virt_runtime_resume - pm runtime resume the encoder configs 1308 * @drm_enc: encoder pointer 1309 */ 1310 void dpu_encoder_virt_runtime_resume(struct drm_encoder *drm_enc) 1311 { 1312 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); 1313 1314 mutex_lock(&dpu_enc->enc_lock); 1315 1316 if (!dpu_enc->enabled) 1317 goto out; 1318 1319 if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.restore) 1320 dpu_enc->cur_slave->ops.restore(dpu_enc->cur_slave); 1321 if (dpu_enc->cur_master && dpu_enc->cur_master->ops.restore) 1322 dpu_enc->cur_master->ops.restore(dpu_enc->cur_master); 1323 1324 _dpu_encoder_virt_enable_helper(drm_enc); 1325 1326 out: 1327 mutex_unlock(&dpu_enc->enc_lock); 1328 } 1329 1330 static void dpu_encoder_virt_atomic_enable(struct drm_encoder *drm_enc, 1331 struct drm_atomic_state *state) 1332 { 1333 struct dpu_encoder_virt *dpu_enc = NULL; 1334 int ret = 0; 1335 struct drm_display_mode *cur_mode = NULL; 1336 1337 dpu_enc = to_dpu_encoder_virt(drm_enc); 1338 dpu_enc->dsc = dpu_encoder_get_dsc_config(drm_enc); 1339 1340 atomic_set(&dpu_enc->frame_done_timeout_cnt, 0); 1341 1342 mutex_lock(&dpu_enc->enc_lock); 1343 1344 dpu_enc->commit_done_timedout = false; 1345 1346 dpu_enc->connector = drm_atomic_get_new_connector_for_encoder(state, drm_enc); 1347 1348 cur_mode = &dpu_enc->base.crtc->state->adjusted_mode; 1349 1350 dpu_enc->wide_bus_en = dpu_encoder_is_widebus_enabled(drm_enc); 1351 1352 trace_dpu_enc_enable(DRMID(drm_enc), cur_mode->hdisplay, 1353 cur_mode->vdisplay); 1354 1355 /* always enable slave encoder before master */ 1356 if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.enable) 1357 dpu_enc->cur_slave->ops.enable(dpu_enc->cur_slave); 1358 1359 if (dpu_enc->cur_master && dpu_enc->cur_master->ops.enable) 1360 dpu_enc->cur_master->ops.enable(dpu_enc->cur_master); 1361 1362 ret = dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF); 1363 if (ret) { 1364 DPU_ERROR_ENC(dpu_enc, "dpu resource control failed: %d\n", 1365 ret); 1366 goto out; 1367 } 1368 1369 _dpu_encoder_virt_enable_helper(drm_enc); 1370 1371 dpu_enc->enabled = true; 1372 1373 out: 1374 mutex_unlock(&dpu_enc->enc_lock); 1375 } 1376 1377 static void dpu_encoder_virt_atomic_disable(struct drm_encoder *drm_enc, 1378 struct drm_atomic_state *state) 1379 { 1380 struct dpu_encoder_virt *dpu_enc = NULL; 1381 struct drm_crtc *crtc; 1382 struct drm_crtc_state *old_state = NULL; 1383 int i = 0; 1384 1385 dpu_enc = to_dpu_encoder_virt(drm_enc); 1386 DPU_DEBUG_ENC(dpu_enc, "\n"); 1387 1388 crtc = drm_atomic_get_old_crtc_for_encoder(state, drm_enc); 1389 if (crtc) 1390 old_state = drm_atomic_get_old_crtc_state(state, crtc); 1391 1392 /* 1393 * The encoder is already disabled if self refresh mode was set earlier, 1394 * in the old_state for the corresponding crtc. 1395 */ 1396 if (old_state && old_state->self_refresh_active) 1397 return; 1398 1399 mutex_lock(&dpu_enc->enc_lock); 1400 dpu_enc->enabled = false; 1401 1402 trace_dpu_enc_disable(DRMID(drm_enc)); 1403 1404 /* wait for idle */ 1405 dpu_encoder_wait_for_tx_complete(drm_enc); 1406 1407 dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_PRE_STOP); 1408 1409 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1410 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 1411 1412 if (phys->ops.disable) 1413 phys->ops.disable(phys); 1414 } 1415 1416 1417 /* after phys waits for frame-done, should be no more frames pending */ 1418 if (atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) { 1419 DPU_ERROR("enc%d timeout pending\n", drm_enc->base.id); 1420 timer_delete_sync(&dpu_enc->frame_done_timer); 1421 } 1422 1423 dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_STOP); 1424 1425 dpu_enc->connector = NULL; 1426 1427 DPU_DEBUG_ENC(dpu_enc, "encoder disabled\n"); 1428 1429 mutex_unlock(&dpu_enc->enc_lock); 1430 } 1431 1432 static struct dpu_hw_intf *dpu_encoder_get_intf(const struct dpu_mdss_cfg *catalog, 1433 struct dpu_rm *dpu_rm, 1434 enum dpu_intf_type type, u32 controller_id) 1435 { 1436 int i = 0; 1437 1438 if (type == INTF_WB) 1439 return NULL; 1440 1441 for (i = 0; i < catalog->intf_count; i++) { 1442 if (catalog->intf[i].type == type 1443 && catalog->intf[i].controller_id == controller_id) { 1444 return dpu_rm_get_intf(dpu_rm, catalog->intf[i].id); 1445 } 1446 } 1447 1448 return NULL; 1449 } 1450 1451 /** 1452 * dpu_encoder_vblank_callback - Notify virtual encoder of vblank IRQ reception 1453 * @drm_enc: Pointer to drm encoder structure 1454 * @phy_enc: Pointer to physical encoder 1455 * Note: This is called from IRQ handler context. 1456 */ 1457 void dpu_encoder_vblank_callback(struct drm_encoder *drm_enc, 1458 struct dpu_encoder_phys *phy_enc) 1459 { 1460 struct dpu_encoder_virt *dpu_enc = NULL; 1461 unsigned long lock_flags; 1462 1463 if (!drm_enc || !phy_enc) 1464 return; 1465 1466 DPU_ATRACE_BEGIN("encoder_vblank_callback"); 1467 dpu_enc = to_dpu_encoder_virt(drm_enc); 1468 1469 atomic_inc(&phy_enc->vsync_cnt); 1470 1471 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags); 1472 if (dpu_enc->crtc) 1473 dpu_crtc_vblank_callback(dpu_enc->crtc); 1474 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags); 1475 1476 DPU_ATRACE_END("encoder_vblank_callback"); 1477 } 1478 1479 /** 1480 * dpu_encoder_underrun_callback - Notify virtual encoder of underrun IRQ reception 1481 * @drm_enc: Pointer to drm encoder structure 1482 * @phy_enc: Pointer to physical encoder 1483 * Note: This is called from IRQ handler context. 1484 */ 1485 void dpu_encoder_underrun_callback(struct drm_encoder *drm_enc, 1486 struct dpu_encoder_phys *phy_enc) 1487 { 1488 if (!phy_enc) 1489 return; 1490 1491 DPU_ATRACE_BEGIN("encoder_underrun_callback"); 1492 atomic_inc(&phy_enc->underrun_cnt); 1493 1494 /* trigger dump only on the first underrun */ 1495 if (atomic_read(&phy_enc->underrun_cnt) == 1) 1496 msm_disp_snapshot_state(drm_enc->dev); 1497 1498 trace_dpu_enc_underrun_cb(DRMID(drm_enc), 1499 atomic_read(&phy_enc->underrun_cnt)); 1500 DPU_ATRACE_END("encoder_underrun_callback"); 1501 } 1502 1503 /** 1504 * dpu_encoder_assign_crtc - Link the encoder to the crtc it's assigned to 1505 * @drm_enc: encoder pointer 1506 * @crtc: crtc pointer 1507 */ 1508 void dpu_encoder_assign_crtc(struct drm_encoder *drm_enc, struct drm_crtc *crtc) 1509 { 1510 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); 1511 unsigned long lock_flags; 1512 1513 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags); 1514 /* crtc should always be cleared before re-assigning */ 1515 WARN_ON(crtc && dpu_enc->crtc); 1516 dpu_enc->crtc = crtc; 1517 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags); 1518 } 1519 1520 /** 1521 * dpu_encoder_toggle_vblank_for_crtc - Toggles vblank interrupts on or off if 1522 * the encoder is assigned to the given crtc 1523 * @drm_enc: encoder pointer 1524 * @crtc: crtc pointer 1525 * @enable: true if vblank should be enabled 1526 */ 1527 void dpu_encoder_toggle_vblank_for_crtc(struct drm_encoder *drm_enc, 1528 struct drm_crtc *crtc, bool enable) 1529 { 1530 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); 1531 unsigned long lock_flags; 1532 int i; 1533 1534 trace_dpu_enc_vblank_cb(DRMID(drm_enc), enable); 1535 1536 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags); 1537 if (dpu_enc->crtc != crtc) { 1538 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags); 1539 return; 1540 } 1541 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags); 1542 1543 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1544 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 1545 1546 if (phys->ops.control_vblank_irq) 1547 phys->ops.control_vblank_irq(phys, enable); 1548 } 1549 } 1550 1551 /** 1552 * dpu_encoder_frame_done_callback - Notify virtual encoder that this phys 1553 * encoder completes last request frame 1554 * @drm_enc: Pointer to drm encoder structure 1555 * @ready_phys: Pointer to physical encoder 1556 * @event: Event to process 1557 */ 1558 void dpu_encoder_frame_done_callback( 1559 struct drm_encoder *drm_enc, 1560 struct dpu_encoder_phys *ready_phys, u32 event) 1561 { 1562 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); 1563 unsigned int i; 1564 1565 if (event & (DPU_ENCODER_FRAME_EVENT_DONE 1566 | DPU_ENCODER_FRAME_EVENT_ERROR 1567 | DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)) { 1568 1569 if (!dpu_enc->frame_busy_mask[0]) { 1570 /** 1571 * suppress frame_done without waiter, 1572 * likely autorefresh 1573 */ 1574 trace_dpu_enc_frame_done_cb_not_busy(DRMID(drm_enc), event, 1575 dpu_encoder_helper_get_intf_type(ready_phys->intf_mode), 1576 ready_phys->hw_intf ? ready_phys->hw_intf->idx : -1, 1577 ready_phys->hw_wb ? ready_phys->hw_wb->idx : -1); 1578 return; 1579 } 1580 1581 /* One of the physical encoders has become idle */ 1582 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1583 if (dpu_enc->phys_encs[i] == ready_phys) { 1584 trace_dpu_enc_frame_done_cb(DRMID(drm_enc), i, 1585 dpu_enc->frame_busy_mask[0]); 1586 clear_bit(i, dpu_enc->frame_busy_mask); 1587 } 1588 } 1589 1590 if (!dpu_enc->frame_busy_mask[0]) { 1591 atomic_set(&dpu_enc->frame_done_timeout_ms, 0); 1592 timer_delete(&dpu_enc->frame_done_timer); 1593 1594 dpu_encoder_resource_control(drm_enc, 1595 DPU_ENC_RC_EVENT_FRAME_DONE); 1596 1597 if (dpu_enc->crtc) 1598 dpu_crtc_frame_event_cb(dpu_enc->crtc, event); 1599 } 1600 } else { 1601 if (dpu_enc->crtc) 1602 dpu_crtc_frame_event_cb(dpu_enc->crtc, event); 1603 } 1604 } 1605 1606 static void dpu_encoder_off_work(struct work_struct *work) 1607 { 1608 struct dpu_encoder_virt *dpu_enc = container_of(work, 1609 struct dpu_encoder_virt, delayed_off_work.work); 1610 1611 dpu_encoder_resource_control(&dpu_enc->base, 1612 DPU_ENC_RC_EVENT_ENTER_IDLE); 1613 1614 dpu_encoder_frame_done_callback(&dpu_enc->base, NULL, 1615 DPU_ENCODER_FRAME_EVENT_IDLE); 1616 } 1617 1618 /** 1619 * _dpu_encoder_trigger_flush - trigger flush for a physical encoder 1620 * @drm_enc: Pointer to drm encoder structure 1621 * @phys: Pointer to physical encoder structure 1622 * @extra_flush_bits: Additional bit mask to include in flush trigger 1623 */ 1624 static void _dpu_encoder_trigger_flush(struct drm_encoder *drm_enc, 1625 struct dpu_encoder_phys *phys, uint32_t extra_flush_bits) 1626 { 1627 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); 1628 struct dpu_hw_ctl *ctl; 1629 int pending_kickoff_cnt; 1630 u32 ret = UINT_MAX; 1631 1632 if (!phys->hw_pp) { 1633 DPU_ERROR("invalid pingpong hw\n"); 1634 return; 1635 } 1636 1637 ctl = phys->hw_ctl; 1638 if (!ctl->ops.trigger_flush) { 1639 DPU_ERROR("missing trigger cb\n"); 1640 return; 1641 } 1642 1643 pending_kickoff_cnt = dpu_encoder_phys_inc_pending(phys); 1644 1645 /* Return early if encoder is writeback and in clone mode */ 1646 if (drm_enc->encoder_type == DRM_MODE_ENCODER_VIRTUAL && 1647 dpu_enc->cwb_mask) { 1648 DPU_DEBUG("encoder %d skip flush for concurrent writeback encoder\n", 1649 DRMID(drm_enc)); 1650 return; 1651 } 1652 1653 1654 if (extra_flush_bits && ctl->ops.update_pending_flush) 1655 ctl->ops.update_pending_flush(ctl, extra_flush_bits); 1656 1657 ctl->ops.trigger_flush(ctl); 1658 1659 if (ctl->ops.get_pending_flush) 1660 ret = ctl->ops.get_pending_flush(ctl); 1661 1662 trace_dpu_enc_trigger_flush(DRMID(drm_enc), 1663 dpu_encoder_helper_get_intf_type(phys->intf_mode), 1664 phys->hw_intf ? phys->hw_intf->idx : -1, 1665 phys->hw_wb ? phys->hw_wb->idx : -1, 1666 pending_kickoff_cnt, ctl->idx, 1667 extra_flush_bits, ret); 1668 } 1669 1670 /** 1671 * _dpu_encoder_trigger_start - trigger start for a physical encoder 1672 * @phys: Pointer to physical encoder structure 1673 */ 1674 static void _dpu_encoder_trigger_start(struct dpu_encoder_phys *phys) 1675 { 1676 struct dpu_encoder_virt *dpu_enc; 1677 1678 if (!phys) { 1679 DPU_ERROR("invalid argument(s)\n"); 1680 return; 1681 } 1682 1683 if (!phys->hw_pp) { 1684 DPU_ERROR("invalid pingpong hw\n"); 1685 return; 1686 } 1687 1688 dpu_enc = to_dpu_encoder_virt(phys->parent); 1689 1690 if (phys->parent->encoder_type == DRM_MODE_ENCODER_VIRTUAL && 1691 dpu_enc->cwb_mask) { 1692 DPU_DEBUG("encoder %d CWB enabled, skipping\n", DRMID(phys->parent)); 1693 return; 1694 } 1695 1696 if (phys->ops.trigger_start && phys->enable_state != DPU_ENC_DISABLED) 1697 phys->ops.trigger_start(phys); 1698 } 1699 1700 /** 1701 * dpu_encoder_helper_trigger_start - control start helper function 1702 * This helper function may be optionally specified by physical 1703 * encoders if they require ctl_start triggering. 1704 * @phys_enc: Pointer to physical encoder structure 1705 */ 1706 void dpu_encoder_helper_trigger_start(struct dpu_encoder_phys *phys_enc) 1707 { 1708 struct dpu_hw_ctl *ctl; 1709 1710 ctl = phys_enc->hw_ctl; 1711 if (ctl->ops.trigger_start) { 1712 ctl->ops.trigger_start(ctl); 1713 trace_dpu_enc_trigger_start(DRMID(phys_enc->parent), ctl->idx); 1714 } 1715 } 1716 1717 static int dpu_encoder_helper_wait_event_timeout( 1718 int32_t drm_id, 1719 unsigned int irq_idx, 1720 struct dpu_encoder_wait_info *info) 1721 { 1722 int rc = 0; 1723 s64 expected_time = ktime_to_ms(ktime_get()) + info->timeout_ms; 1724 s64 jiffies = msecs_to_jiffies(info->timeout_ms); 1725 s64 time; 1726 1727 do { 1728 rc = wait_event_timeout(*(info->wq), 1729 atomic_read(info->atomic_cnt) == 0, jiffies); 1730 time = ktime_to_ms(ktime_get()); 1731 1732 trace_dpu_enc_wait_event_timeout(drm_id, 1733 DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx), 1734 rc, time, 1735 expected_time, 1736 atomic_read(info->atomic_cnt)); 1737 /* If we timed out, counter is valid and time is less, wait again */ 1738 } while (atomic_read(info->atomic_cnt) && (rc == 0) && 1739 (time < expected_time)); 1740 1741 return rc; 1742 } 1743 1744 static void dpu_encoder_helper_hw_reset(struct dpu_encoder_phys *phys_enc) 1745 { 1746 struct dpu_encoder_virt *dpu_enc; 1747 struct dpu_hw_ctl *ctl; 1748 int rc; 1749 struct drm_encoder *drm_enc; 1750 1751 dpu_enc = to_dpu_encoder_virt(phys_enc->parent); 1752 ctl = phys_enc->hw_ctl; 1753 drm_enc = phys_enc->parent; 1754 1755 if (!ctl->ops.reset) 1756 return; 1757 1758 DRM_DEBUG_KMS("id:%u ctl %d reset\n", DRMID(drm_enc), 1759 ctl->idx); 1760 1761 rc = ctl->ops.reset(ctl); 1762 if (rc) { 1763 DPU_ERROR_ENC(dpu_enc, "ctl %d reset failure\n", ctl->idx); 1764 msm_disp_snapshot_state(drm_enc->dev); 1765 } 1766 1767 phys_enc->enable_state = DPU_ENC_ENABLED; 1768 } 1769 1770 /** 1771 * _dpu_encoder_kickoff_phys - handle physical encoder kickoff 1772 * Iterate through the physical encoders and perform consolidated flush 1773 * and/or control start triggering as needed. This is done in the virtual 1774 * encoder rather than the individual physical ones in order to handle 1775 * use cases that require visibility into multiple physical encoders at 1776 * a time. 1777 * @dpu_enc: Pointer to virtual encoder structure 1778 */ 1779 static void _dpu_encoder_kickoff_phys(struct dpu_encoder_virt *dpu_enc) 1780 { 1781 struct dpu_hw_ctl *ctl; 1782 uint32_t i, pending_flush; 1783 unsigned long lock_flags; 1784 1785 pending_flush = 0x0; 1786 1787 /* update pending counts and trigger kickoff ctl flush atomically */ 1788 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags); 1789 1790 /* don't perform flush/start operations for slave encoders */ 1791 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1792 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 1793 1794 if (phys->enable_state == DPU_ENC_DISABLED) 1795 continue; 1796 1797 ctl = phys->hw_ctl; 1798 1799 /* 1800 * This is cleared in frame_done worker, which isn't invoked 1801 * for async commits. So don't set this for async, since it'll 1802 * roll over to the next commit. 1803 */ 1804 if (phys->split_role != ENC_ROLE_SLAVE) 1805 set_bit(i, dpu_enc->frame_busy_mask); 1806 1807 if (!phys->ops.needs_single_flush || 1808 !phys->ops.needs_single_flush(phys)) 1809 _dpu_encoder_trigger_flush(&dpu_enc->base, phys, 0x0); 1810 else if (ctl->ops.get_pending_flush) 1811 pending_flush |= ctl->ops.get_pending_flush(ctl); 1812 } 1813 1814 /* for split flush, combine pending flush masks and send to master */ 1815 if (pending_flush && dpu_enc->cur_master) { 1816 _dpu_encoder_trigger_flush( 1817 &dpu_enc->base, 1818 dpu_enc->cur_master, 1819 pending_flush); 1820 } 1821 1822 _dpu_encoder_trigger_start(dpu_enc->cur_master); 1823 1824 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags); 1825 } 1826 1827 /** 1828 * dpu_encoder_trigger_kickoff_pending - Clear the flush bits from previous 1829 * kickoff and trigger the ctl prepare progress for command mode display. 1830 * @drm_enc: encoder pointer 1831 */ 1832 void dpu_encoder_trigger_kickoff_pending(struct drm_encoder *drm_enc) 1833 { 1834 struct dpu_encoder_virt *dpu_enc; 1835 struct dpu_encoder_phys *phys; 1836 unsigned int i; 1837 struct dpu_hw_ctl *ctl; 1838 struct msm_display_info *disp_info; 1839 1840 if (!drm_enc) { 1841 DPU_ERROR("invalid encoder\n"); 1842 return; 1843 } 1844 dpu_enc = to_dpu_encoder_virt(drm_enc); 1845 disp_info = &dpu_enc->disp_info; 1846 1847 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1848 phys = dpu_enc->phys_encs[i]; 1849 1850 ctl = phys->hw_ctl; 1851 ctl->ops.clear_pending_flush(ctl); 1852 1853 /* update only for command mode primary ctl */ 1854 if ((phys == dpu_enc->cur_master) && 1855 disp_info->is_cmd_mode 1856 && ctl->ops.trigger_pending) 1857 ctl->ops.trigger_pending(ctl); 1858 } 1859 } 1860 1861 static u32 _dpu_encoder_calculate_linetime(struct dpu_encoder_virt *dpu_enc, 1862 struct drm_display_mode *mode) 1863 { 1864 u64 pclk_rate; 1865 u32 pclk_period; 1866 u32 line_time; 1867 1868 /* 1869 * For linetime calculation, only operate on master encoder. 1870 */ 1871 if (!dpu_enc->cur_master) 1872 return 0; 1873 1874 if (!dpu_enc->cur_master->ops.get_line_count) { 1875 DPU_ERROR("get_line_count function not defined\n"); 1876 return 0; 1877 } 1878 1879 pclk_rate = mode->clock; /* pixel clock in kHz */ 1880 if (pclk_rate == 0) { 1881 DPU_ERROR("pclk is 0, cannot calculate line time\n"); 1882 return 0; 1883 } 1884 1885 pclk_period = DIV_ROUND_UP_ULL(1000000000ull, pclk_rate); 1886 if (pclk_period == 0) { 1887 DPU_ERROR("pclk period is 0\n"); 1888 return 0; 1889 } 1890 1891 /* 1892 * Line time calculation based on Pixel clock and HTOTAL. 1893 * Final unit is in ns. 1894 */ 1895 line_time = (pclk_period * mode->htotal) / 1000; 1896 if (line_time == 0) { 1897 DPU_ERROR("line time calculation is 0\n"); 1898 return 0; 1899 } 1900 1901 DPU_DEBUG_ENC(dpu_enc, 1902 "clk_rate=%lldkHz, clk_period=%d, linetime=%dns\n", 1903 pclk_rate, pclk_period, line_time); 1904 1905 return line_time; 1906 } 1907 1908 /** 1909 * dpu_encoder_vsync_time - get the time of the next vsync 1910 * @drm_enc: encoder pointer 1911 * @wakeup_time: pointer to ktime_t to write the vsync time to 1912 */ 1913 int dpu_encoder_vsync_time(struct drm_encoder *drm_enc, ktime_t *wakeup_time) 1914 { 1915 struct drm_display_mode *mode; 1916 struct dpu_encoder_virt *dpu_enc; 1917 u32 cur_line; 1918 u32 line_time; 1919 u32 vtotal, time_to_vsync; 1920 ktime_t cur_time; 1921 1922 dpu_enc = to_dpu_encoder_virt(drm_enc); 1923 1924 if (!drm_enc->crtc || !drm_enc->crtc->state) { 1925 DPU_ERROR("crtc/crtc state object is NULL\n"); 1926 return -EINVAL; 1927 } 1928 mode = &drm_enc->crtc->state->adjusted_mode; 1929 1930 line_time = _dpu_encoder_calculate_linetime(dpu_enc, mode); 1931 if (!line_time) 1932 return -EINVAL; 1933 1934 cur_line = dpu_enc->cur_master->ops.get_line_count(dpu_enc->cur_master); 1935 1936 vtotal = mode->vtotal; 1937 if (cur_line >= vtotal) 1938 time_to_vsync = line_time * vtotal; 1939 else 1940 time_to_vsync = line_time * (vtotal - cur_line); 1941 1942 if (time_to_vsync == 0) { 1943 DPU_ERROR("time to vsync should not be zero, vtotal=%d\n", 1944 vtotal); 1945 return -EINVAL; 1946 } 1947 1948 cur_time = ktime_get(); 1949 *wakeup_time = ktime_add_ns(cur_time, time_to_vsync); 1950 1951 DPU_DEBUG_ENC(dpu_enc, 1952 "cur_line=%u vtotal=%u time_to_vsync=%u, cur_time=%lld, wakeup_time=%lld\n", 1953 cur_line, vtotal, time_to_vsync, 1954 ktime_to_ms(cur_time), 1955 ktime_to_ms(*wakeup_time)); 1956 return 0; 1957 } 1958 1959 static u32 1960 dpu_encoder_dsc_initial_line_calc(struct drm_dsc_config *dsc, 1961 u32 enc_ip_width) 1962 { 1963 int ssm_delay, total_pixels, soft_slice_per_enc; 1964 1965 soft_slice_per_enc = enc_ip_width / dsc->slice_width; 1966 1967 /* 1968 * minimum number of initial line pixels is a sum of: 1969 * 1. sub-stream multiplexer delay (83 groups for 8bpc, 1970 * 91 for 10 bpc) * 3 1971 * 2. for two soft slice cases, add extra sub-stream multiplexer * 3 1972 * 3. the initial xmit delay 1973 * 4. total pipeline delay through the "lock step" of encoder (47) 1974 * 5. 6 additional pixels as the output of the rate buffer is 1975 * 48 bits wide 1976 */ 1977 ssm_delay = ((dsc->bits_per_component < 10) ? 84 : 92); 1978 total_pixels = ssm_delay * 3 + dsc->initial_xmit_delay + 47; 1979 if (soft_slice_per_enc > 1) 1980 total_pixels += (ssm_delay * 3); 1981 return DIV_ROUND_UP(total_pixels, dsc->slice_width); 1982 } 1983 1984 static void dpu_encoder_dsc_pipe_cfg(struct dpu_hw_ctl *ctl, 1985 struct dpu_hw_dsc *hw_dsc, 1986 struct dpu_hw_pingpong *hw_pp, 1987 struct drm_dsc_config *dsc, 1988 u32 common_mode, 1989 u32 initial_lines) 1990 { 1991 if (hw_dsc->ops.dsc_config) 1992 hw_dsc->ops.dsc_config(hw_dsc, dsc, common_mode, initial_lines); 1993 1994 if (hw_dsc->ops.dsc_config_thresh) 1995 hw_dsc->ops.dsc_config_thresh(hw_dsc, dsc); 1996 1997 if (hw_pp->ops.setup_dsc) 1998 hw_pp->ops.setup_dsc(hw_pp); 1999 2000 if (hw_dsc->ops.dsc_bind_pingpong_blk) 2001 hw_dsc->ops.dsc_bind_pingpong_blk(hw_dsc, hw_pp->idx); 2002 2003 if (hw_pp->ops.enable_dsc) 2004 hw_pp->ops.enable_dsc(hw_pp); 2005 2006 if (ctl->ops.update_pending_flush_dsc) 2007 ctl->ops.update_pending_flush_dsc(ctl, hw_dsc->idx); 2008 } 2009 2010 static void dpu_encoder_prep_dsc(struct dpu_encoder_virt *dpu_enc, 2011 struct drm_dsc_config *dsc) 2012 { 2013 struct dpu_encoder_phys *enc_master = dpu_enc->cur_master; 2014 struct dpu_hw_ctl *ctl = enc_master->hw_ctl; 2015 struct dpu_hw_dsc *hw_dsc[MAX_CHANNELS_PER_ENC]; 2016 struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC]; 2017 int this_frame_slices; 2018 int intf_ip_w, enc_ip_w; 2019 int dsc_common_mode; 2020 int pic_width; 2021 u32 initial_lines; 2022 int num_dsc = 0; 2023 int i; 2024 2025 for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) { 2026 hw_pp[i] = dpu_enc->hw_pp[i]; 2027 hw_dsc[i] = dpu_enc->hw_dsc[i]; 2028 2029 if (!hw_pp[i] || !hw_dsc[i]) 2030 break; 2031 2032 num_dsc++; 2033 } 2034 2035 pic_width = dsc->pic_width; 2036 2037 dsc_common_mode = 0; 2038 if (num_dsc > 1) 2039 dsc_common_mode |= DSC_MODE_SPLIT_PANEL; 2040 if (dpu_encoder_use_dsc_merge(enc_master->parent)) 2041 dsc_common_mode |= DSC_MODE_MULTIPLEX; 2042 if (enc_master->intf_mode == INTF_MODE_VIDEO) 2043 dsc_common_mode |= DSC_MODE_VIDEO; 2044 2045 this_frame_slices = pic_width / dsc->slice_width; 2046 intf_ip_w = this_frame_slices * dsc->slice_width; 2047 2048 enc_ip_w = intf_ip_w / num_dsc; 2049 initial_lines = dpu_encoder_dsc_initial_line_calc(dsc, enc_ip_w); 2050 2051 for (i = 0; i < num_dsc; i++) 2052 dpu_encoder_dsc_pipe_cfg(ctl, hw_dsc[i], hw_pp[i], 2053 dsc, dsc_common_mode, initial_lines); 2054 } 2055 2056 /** 2057 * dpu_encoder_prepare_for_kickoff - schedule double buffer flip of the ctl 2058 * path (i.e. ctl flush and start) at next appropriate time. 2059 * Immediately: if no previous commit is outstanding. 2060 * Delayed: Block until next trigger can be issued. 2061 * @drm_enc: encoder pointer 2062 */ 2063 void dpu_encoder_prepare_for_kickoff(struct drm_encoder *drm_enc) 2064 { 2065 struct dpu_encoder_virt *dpu_enc; 2066 struct dpu_encoder_phys *phys; 2067 bool needs_hw_reset = false; 2068 unsigned int i; 2069 2070 dpu_enc = to_dpu_encoder_virt(drm_enc); 2071 2072 trace_dpu_enc_prepare_kickoff(DRMID(drm_enc)); 2073 2074 /* prepare for next kickoff, may include waiting on previous kickoff */ 2075 DPU_ATRACE_BEGIN("enc_prepare_for_kickoff"); 2076 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 2077 phys = dpu_enc->phys_encs[i]; 2078 if (phys->ops.prepare_for_kickoff) 2079 phys->ops.prepare_for_kickoff(phys); 2080 if (phys->enable_state == DPU_ENC_ERR_NEEDS_HW_RESET) 2081 needs_hw_reset = true; 2082 } 2083 DPU_ATRACE_END("enc_prepare_for_kickoff"); 2084 2085 dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF); 2086 2087 /* if any phys needs reset, reset all phys, in-order */ 2088 if (needs_hw_reset) { 2089 trace_dpu_enc_prepare_kickoff_reset(DRMID(drm_enc)); 2090 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 2091 dpu_encoder_helper_hw_reset(dpu_enc->phys_encs[i]); 2092 } 2093 } 2094 2095 if (dpu_enc->dsc) 2096 dpu_encoder_prep_dsc(dpu_enc, dpu_enc->dsc); 2097 } 2098 2099 /** 2100 * dpu_encoder_is_valid_for_commit - check if encode has valid parameters for commit. 2101 * @drm_enc: Pointer to drm encoder structure 2102 */ 2103 bool dpu_encoder_is_valid_for_commit(struct drm_encoder *drm_enc) 2104 { 2105 struct dpu_encoder_virt *dpu_enc; 2106 unsigned int i; 2107 struct dpu_encoder_phys *phys; 2108 2109 dpu_enc = to_dpu_encoder_virt(drm_enc); 2110 2111 if (drm_enc->encoder_type == DRM_MODE_ENCODER_VIRTUAL) { 2112 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 2113 phys = dpu_enc->phys_encs[i]; 2114 if (phys->ops.is_valid_for_commit && !phys->ops.is_valid_for_commit(phys)) { 2115 DPU_DEBUG("invalid FB not kicking off\n"); 2116 return false; 2117 } 2118 } 2119 } 2120 2121 return true; 2122 } 2123 2124 /** 2125 * dpu_encoder_start_frame_done_timer - Start the encoder frame done timer 2126 * @drm_enc: Pointer to drm encoder structure 2127 */ 2128 void dpu_encoder_start_frame_done_timer(struct drm_encoder *drm_enc) 2129 { 2130 struct dpu_encoder_virt *dpu_enc; 2131 unsigned long timeout_ms; 2132 2133 dpu_enc = to_dpu_encoder_virt(drm_enc); 2134 timeout_ms = DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES * 1000 / 2135 drm_mode_vrefresh(&drm_enc->crtc->state->adjusted_mode); 2136 2137 atomic_set(&dpu_enc->frame_done_timeout_ms, timeout_ms); 2138 mod_timer(&dpu_enc->frame_done_timer, 2139 jiffies + msecs_to_jiffies(timeout_ms)); 2140 2141 } 2142 2143 /** 2144 * dpu_encoder_kickoff - trigger a double buffer flip of the ctl path 2145 * (i.e. ctl flush and start) immediately. 2146 * @drm_enc: encoder pointer 2147 */ 2148 void dpu_encoder_kickoff(struct drm_encoder *drm_enc) 2149 { 2150 struct dpu_encoder_virt *dpu_enc; 2151 struct dpu_encoder_phys *phys; 2152 unsigned int i; 2153 2154 DPU_ATRACE_BEGIN("encoder_kickoff"); 2155 dpu_enc = to_dpu_encoder_virt(drm_enc); 2156 2157 trace_dpu_enc_kickoff(DRMID(drm_enc)); 2158 2159 /* All phys encs are ready to go, trigger the kickoff */ 2160 _dpu_encoder_kickoff_phys(dpu_enc); 2161 2162 /* allow phys encs to handle any post-kickoff business */ 2163 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 2164 phys = dpu_enc->phys_encs[i]; 2165 if (phys->ops.handle_post_kickoff) 2166 phys->ops.handle_post_kickoff(phys); 2167 } 2168 2169 DPU_ATRACE_END("encoder_kickoff"); 2170 } 2171 2172 static void dpu_encoder_helper_reset_mixers(struct dpu_encoder_phys *phys_enc) 2173 { 2174 struct dpu_hw_mixer_cfg mixer; 2175 int i, num_lm; 2176 struct dpu_global_state *global_state; 2177 struct dpu_hw_blk *hw_lm[2]; 2178 struct dpu_hw_mixer *hw_mixer[2]; 2179 struct dpu_hw_ctl *ctl = phys_enc->hw_ctl; 2180 2181 memset(&mixer, 0, sizeof(mixer)); 2182 2183 /* reset all mixers for this encoder */ 2184 if (ctl->ops.clear_all_blendstages) 2185 ctl->ops.clear_all_blendstages(ctl); 2186 2187 global_state = dpu_kms_get_existing_global_state(phys_enc->dpu_kms); 2188 2189 num_lm = dpu_rm_get_assigned_resources(&phys_enc->dpu_kms->rm, global_state, 2190 phys_enc->parent->crtc, DPU_HW_BLK_LM, hw_lm, ARRAY_SIZE(hw_lm)); 2191 2192 for (i = 0; i < num_lm; i++) { 2193 hw_mixer[i] = to_dpu_hw_mixer(hw_lm[i]); 2194 if (ctl->ops.update_pending_flush_mixer) 2195 ctl->ops.update_pending_flush_mixer(ctl, hw_mixer[i]->idx); 2196 2197 /* clear all blendstages */ 2198 if (ctl->ops.setup_blendstage) 2199 ctl->ops.setup_blendstage(ctl, hw_mixer[i]->idx, NULL); 2200 2201 if (hw_mixer[i]->ops.clear_all_blendstages) 2202 hw_mixer[i]->ops.clear_all_blendstages(hw_mixer[i]); 2203 2204 if (ctl->ops.set_active_lms) 2205 ctl->ops.set_active_lms(ctl, NULL); 2206 2207 if (ctl->ops.set_active_fetch_pipes) 2208 ctl->ops.set_active_fetch_pipes(ctl, NULL); 2209 2210 if (ctl->ops.set_active_pipes) 2211 ctl->ops.set_active_pipes(ctl, NULL); 2212 } 2213 } 2214 2215 static void dpu_encoder_dsc_pipe_clr(struct dpu_hw_ctl *ctl, 2216 struct dpu_hw_dsc *hw_dsc, 2217 struct dpu_hw_pingpong *hw_pp) 2218 { 2219 if (hw_dsc->ops.dsc_disable) 2220 hw_dsc->ops.dsc_disable(hw_dsc); 2221 2222 if (hw_pp->ops.disable_dsc) 2223 hw_pp->ops.disable_dsc(hw_pp); 2224 2225 if (hw_dsc->ops.dsc_bind_pingpong_blk) 2226 hw_dsc->ops.dsc_bind_pingpong_blk(hw_dsc, PINGPONG_NONE); 2227 2228 if (ctl->ops.update_pending_flush_dsc) 2229 ctl->ops.update_pending_flush_dsc(ctl, hw_dsc->idx); 2230 } 2231 2232 static void dpu_encoder_unprep_dsc(struct dpu_encoder_virt *dpu_enc) 2233 { 2234 /* coding only for 2LM, 2enc, 1 dsc config */ 2235 struct dpu_encoder_phys *enc_master = dpu_enc->cur_master; 2236 struct dpu_hw_ctl *ctl = enc_master->hw_ctl; 2237 struct dpu_hw_dsc *hw_dsc[MAX_CHANNELS_PER_ENC]; 2238 struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC]; 2239 int i; 2240 2241 for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) { 2242 hw_pp[i] = dpu_enc->hw_pp[i]; 2243 hw_dsc[i] = dpu_enc->hw_dsc[i]; 2244 2245 if (hw_pp[i] && hw_dsc[i]) 2246 dpu_encoder_dsc_pipe_clr(ctl, hw_dsc[i], hw_pp[i]); 2247 } 2248 } 2249 2250 /** 2251 * dpu_encoder_helper_phys_cleanup - helper to cleanup dpu pipeline 2252 * @phys_enc: Pointer to physical encoder structure 2253 */ 2254 void dpu_encoder_helper_phys_cleanup(struct dpu_encoder_phys *phys_enc) 2255 { 2256 struct dpu_hw_ctl *ctl = phys_enc->hw_ctl; 2257 struct dpu_hw_intf_cfg intf_cfg = { 0 }; 2258 int i; 2259 struct dpu_encoder_virt *dpu_enc; 2260 2261 dpu_enc = to_dpu_encoder_virt(phys_enc->parent); 2262 2263 ctl->ops.reset(ctl); 2264 2265 dpu_encoder_helper_reset_mixers(phys_enc); 2266 2267 /* 2268 * TODO: move the once-only operation like CTL flush/trigger 2269 * into dpu_encoder_virt_disable() and all operations which need 2270 * to be done per phys encoder into the phys_disable() op. 2271 */ 2272 if (phys_enc->hw_wb) { 2273 /* disable the PP block */ 2274 if (phys_enc->hw_wb->ops.bind_pingpong_blk) 2275 phys_enc->hw_wb->ops.bind_pingpong_blk(phys_enc->hw_wb, PINGPONG_NONE); 2276 2277 /* mark WB flush as pending */ 2278 if (ctl->ops.update_pending_flush_wb) 2279 ctl->ops.update_pending_flush_wb(ctl, phys_enc->hw_wb->idx); 2280 } else { 2281 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 2282 if (dpu_enc->phys_encs[i] && phys_enc->hw_intf->ops.bind_pingpong_blk) 2283 phys_enc->hw_intf->ops.bind_pingpong_blk( 2284 dpu_enc->phys_encs[i]->hw_intf, 2285 PINGPONG_NONE); 2286 2287 /* mark INTF flush as pending */ 2288 if (ctl->ops.update_pending_flush_intf) 2289 ctl->ops.update_pending_flush_intf(ctl, 2290 dpu_enc->phys_encs[i]->hw_intf->idx); 2291 } 2292 } 2293 2294 if (phys_enc->hw_pp && phys_enc->hw_pp->ops.setup_dither) 2295 phys_enc->hw_pp->ops.setup_dither(phys_enc->hw_pp, NULL); 2296 2297 if (dpu_enc->cwb_mask) 2298 dpu_encoder_helper_phys_setup_cwb(phys_enc, false); 2299 2300 /* reset the merge 3D HW block */ 2301 if (phys_enc->hw_pp && phys_enc->hw_pp->merge_3d) { 2302 phys_enc->hw_pp->merge_3d->ops.setup_3d_mode(phys_enc->hw_pp->merge_3d, 2303 BLEND_3D_NONE); 2304 if (ctl->ops.update_pending_flush_merge_3d) 2305 ctl->ops.update_pending_flush_merge_3d(ctl, 2306 phys_enc->hw_pp->merge_3d->idx); 2307 } 2308 2309 if (phys_enc->hw_cdm) { 2310 if (phys_enc->hw_cdm->ops.bind_pingpong_blk && phys_enc->hw_pp) 2311 phys_enc->hw_cdm->ops.bind_pingpong_blk(phys_enc->hw_cdm, 2312 PINGPONG_NONE); 2313 if (ctl->ops.update_pending_flush_cdm) 2314 ctl->ops.update_pending_flush_cdm(ctl, 2315 phys_enc->hw_cdm->idx); 2316 } 2317 2318 if (dpu_enc->dsc) { 2319 dpu_encoder_unprep_dsc(dpu_enc); 2320 dpu_enc->dsc = NULL; 2321 } 2322 2323 intf_cfg.stream_sel = 0; /* Don't care value for video mode */ 2324 intf_cfg.mode_3d = dpu_encoder_helper_get_3d_blend_mode(phys_enc); 2325 intf_cfg.dsc = dpu_encoder_helper_get_dsc(phys_enc); 2326 intf_cfg.cwb = dpu_enc->cwb_mask; 2327 2328 if (phys_enc->hw_intf) 2329 intf_cfg.intf = phys_enc->hw_intf->idx; 2330 if (phys_enc->hw_wb) 2331 intf_cfg.wb = phys_enc->hw_wb->idx; 2332 2333 if (phys_enc->hw_pp && phys_enc->hw_pp->merge_3d) 2334 intf_cfg.merge_3d = phys_enc->hw_pp->merge_3d->idx; 2335 2336 if (ctl->ops.reset_intf_cfg) 2337 ctl->ops.reset_intf_cfg(ctl, &intf_cfg); 2338 2339 ctl->ops.trigger_flush(ctl); 2340 ctl->ops.trigger_start(ctl); 2341 ctl->ops.clear_pending_flush(ctl); 2342 } 2343 2344 void dpu_encoder_helper_phys_setup_cwb(struct dpu_encoder_phys *phys_enc, 2345 bool enable) 2346 { 2347 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(phys_enc->parent); 2348 struct dpu_hw_cwb *hw_cwb; 2349 struct dpu_hw_ctl *hw_ctl; 2350 struct dpu_hw_cwb_setup_cfg cwb_cfg; 2351 2352 struct dpu_kms *dpu_kms; 2353 struct dpu_global_state *global_state; 2354 struct dpu_hw_blk *rt_pp_list[MAX_CHANNELS_PER_ENC]; 2355 int num_pp; 2356 2357 if (!phys_enc->hw_wb) 2358 return; 2359 2360 hw_ctl = phys_enc->hw_ctl; 2361 2362 if (!phys_enc->hw_ctl) { 2363 DPU_DEBUG("[wb:%d] no ctl assigned\n", 2364 phys_enc->hw_wb->idx - WB_0); 2365 return; 2366 } 2367 2368 dpu_kms = phys_enc->dpu_kms; 2369 global_state = dpu_kms_get_existing_global_state(dpu_kms); 2370 num_pp = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state, 2371 phys_enc->parent->crtc, 2372 DPU_HW_BLK_PINGPONG, rt_pp_list, 2373 ARRAY_SIZE(rt_pp_list)); 2374 2375 if (num_pp == 0 || num_pp > MAX_CHANNELS_PER_ENC) { 2376 DPU_DEBUG_ENC(dpu_enc, "invalid num_pp %d\n", num_pp); 2377 return; 2378 } 2379 2380 /* 2381 * The CWB mux supports using LM or DSPP as tap points. For now, 2382 * always use LM tap point 2383 */ 2384 cwb_cfg.input = INPUT_MODE_LM_OUT; 2385 2386 for (int i = 0; i < MAX_CHANNELS_PER_ENC; i++) { 2387 hw_cwb = dpu_enc->hw_cwb[i]; 2388 if (!hw_cwb) 2389 continue; 2390 2391 if (enable) { 2392 struct dpu_hw_pingpong *hw_pp = 2393 to_dpu_hw_pingpong(rt_pp_list[i]); 2394 cwb_cfg.pp_idx = hw_pp->idx; 2395 } else { 2396 cwb_cfg.pp_idx = PINGPONG_NONE; 2397 } 2398 2399 hw_cwb->ops.config_cwb(hw_cwb, &cwb_cfg); 2400 2401 if (hw_ctl->ops.update_pending_flush_cwb) 2402 hw_ctl->ops.update_pending_flush_cwb(hw_ctl, hw_cwb->idx); 2403 } 2404 } 2405 2406 /** 2407 * dpu_encoder_helper_phys_setup_cdm - setup chroma down sampling block 2408 * @phys_enc: Pointer to physical encoder 2409 * @dpu_fmt: Pinter to the format description 2410 * @output_type: HDMI/WB 2411 */ 2412 void dpu_encoder_helper_phys_setup_cdm(struct dpu_encoder_phys *phys_enc, 2413 const struct msm_format *dpu_fmt, 2414 u32 output_type) 2415 { 2416 struct dpu_hw_cdm *hw_cdm; 2417 struct dpu_hw_cdm_cfg *cdm_cfg; 2418 struct dpu_hw_pingpong *hw_pp; 2419 int ret; 2420 2421 if (!phys_enc) 2422 return; 2423 2424 cdm_cfg = &phys_enc->cdm_cfg; 2425 hw_pp = phys_enc->hw_pp; 2426 hw_cdm = phys_enc->hw_cdm; 2427 2428 if (!hw_cdm) 2429 return; 2430 2431 if (!MSM_FORMAT_IS_YUV(dpu_fmt)) { 2432 DPU_DEBUG("[enc:%d] cdm_disable fmt:%p4cc\n", DRMID(phys_enc->parent), 2433 &dpu_fmt->pixel_format); 2434 if (hw_cdm->ops.bind_pingpong_blk) 2435 hw_cdm->ops.bind_pingpong_blk(hw_cdm, PINGPONG_NONE); 2436 2437 return; 2438 } 2439 2440 memset(cdm_cfg, 0, sizeof(struct dpu_hw_cdm_cfg)); 2441 2442 cdm_cfg->output_width = phys_enc->cached_mode.hdisplay; 2443 cdm_cfg->output_height = phys_enc->cached_mode.vdisplay; 2444 cdm_cfg->output_fmt = dpu_fmt; 2445 cdm_cfg->output_type = output_type; 2446 cdm_cfg->output_bit_depth = MSM_FORMAT_IS_DX(dpu_fmt) ? 2447 CDM_CDWN_OUTPUT_10BIT : CDM_CDWN_OUTPUT_8BIT; 2448 cdm_cfg->csc_cfg = &dpu_csc10_rgb2yuv_601l; 2449 2450 /* enable 10 bit logic */ 2451 switch (cdm_cfg->output_fmt->chroma_sample) { 2452 case CHROMA_FULL: 2453 cdm_cfg->h_cdwn_type = CDM_CDWN_DISABLE; 2454 cdm_cfg->v_cdwn_type = CDM_CDWN_DISABLE; 2455 break; 2456 case CHROMA_H2V1: 2457 cdm_cfg->h_cdwn_type = CDM_CDWN_COSITE; 2458 cdm_cfg->v_cdwn_type = CDM_CDWN_DISABLE; 2459 break; 2460 case CHROMA_420: 2461 cdm_cfg->h_cdwn_type = CDM_CDWN_COSITE; 2462 cdm_cfg->v_cdwn_type = CDM_CDWN_OFFSITE; 2463 break; 2464 case CHROMA_H1V2: 2465 default: 2466 DPU_ERROR("[enc:%d] unsupported chroma sampling type\n", 2467 DRMID(phys_enc->parent)); 2468 cdm_cfg->h_cdwn_type = CDM_CDWN_DISABLE; 2469 cdm_cfg->v_cdwn_type = CDM_CDWN_DISABLE; 2470 break; 2471 } 2472 2473 DPU_DEBUG("[enc:%d] cdm_enable:%d,%d,%p4cc,%d,%d,%d,%d]\n", 2474 DRMID(phys_enc->parent), cdm_cfg->output_width, 2475 cdm_cfg->output_height, &cdm_cfg->output_fmt->pixel_format, 2476 cdm_cfg->output_type, cdm_cfg->output_bit_depth, 2477 cdm_cfg->h_cdwn_type, cdm_cfg->v_cdwn_type); 2478 2479 if (hw_cdm->ops.enable) { 2480 cdm_cfg->pp_id = hw_pp->idx; 2481 ret = hw_cdm->ops.enable(hw_cdm, cdm_cfg); 2482 if (ret < 0) { 2483 DPU_ERROR("[enc:%d] failed to enable CDM; ret:%d\n", 2484 DRMID(phys_enc->parent), ret); 2485 return; 2486 } 2487 } 2488 } 2489 2490 #ifdef CONFIG_DEBUG_FS 2491 static int _dpu_encoder_status_show(struct seq_file *s, void *data) 2492 { 2493 struct drm_encoder *drm_enc = s->private; 2494 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); 2495 int i; 2496 2497 mutex_lock(&dpu_enc->enc_lock); 2498 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 2499 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 2500 2501 seq_printf(s, "intf:%d wb:%d vsync:%8d underrun:%8d frame_done_cnt:%d", 2502 phys->hw_intf ? phys->hw_intf->idx - INTF_0 : -1, 2503 phys->hw_wb ? phys->hw_wb->idx - WB_0 : -1, 2504 atomic_read(&phys->vsync_cnt), 2505 atomic_read(&phys->underrun_cnt), 2506 atomic_read(&dpu_enc->frame_done_timeout_cnt)); 2507 2508 seq_printf(s, "mode: %s\n", dpu_encoder_helper_get_intf_type(phys->intf_mode)); 2509 } 2510 mutex_unlock(&dpu_enc->enc_lock); 2511 2512 return 0; 2513 } 2514 2515 DEFINE_SHOW_ATTRIBUTE(_dpu_encoder_status); 2516 2517 static void dpu_encoder_debugfs_init(struct drm_encoder *drm_enc, struct dentry *root) 2518 { 2519 /* don't error check these */ 2520 debugfs_create_file("status", 0600, 2521 root, drm_enc, &_dpu_encoder_status_fops); 2522 } 2523 #else 2524 #define dpu_encoder_debugfs_init NULL 2525 #endif 2526 2527 static int dpu_encoder_virt_add_phys_encs( 2528 struct drm_device *dev, 2529 struct msm_display_info *disp_info, 2530 struct dpu_encoder_virt *dpu_enc, 2531 struct dpu_enc_phys_init_params *params) 2532 { 2533 struct dpu_encoder_phys *enc = NULL; 2534 2535 DPU_DEBUG_ENC(dpu_enc, "\n"); 2536 2537 /* 2538 * We may create up to NUM_PHYS_ENCODER_TYPES physical encoder types 2539 * in this function, check up-front. 2540 */ 2541 if (dpu_enc->num_phys_encs + NUM_PHYS_ENCODER_TYPES >= 2542 ARRAY_SIZE(dpu_enc->phys_encs)) { 2543 DPU_ERROR_ENC(dpu_enc, "too many physical encoders %d\n", 2544 dpu_enc->num_phys_encs); 2545 return -EINVAL; 2546 } 2547 2548 2549 if (disp_info->intf_type == INTF_WB) { 2550 enc = dpu_encoder_phys_wb_init(dev, params); 2551 2552 if (IS_ERR(enc)) { 2553 DPU_ERROR_ENC(dpu_enc, "failed to init wb enc: %ld\n", 2554 PTR_ERR(enc)); 2555 return PTR_ERR(enc); 2556 } 2557 2558 dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc; 2559 ++dpu_enc->num_phys_encs; 2560 } else if (disp_info->is_cmd_mode) { 2561 enc = dpu_encoder_phys_cmd_init(dev, params); 2562 2563 if (IS_ERR(enc)) { 2564 DPU_ERROR_ENC(dpu_enc, "failed to init cmd enc: %ld\n", 2565 PTR_ERR(enc)); 2566 return PTR_ERR(enc); 2567 } 2568 2569 dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc; 2570 ++dpu_enc->num_phys_encs; 2571 } else { 2572 enc = dpu_encoder_phys_vid_init(dev, params); 2573 2574 if (IS_ERR(enc)) { 2575 DPU_ERROR_ENC(dpu_enc, "failed to init vid enc: %ld\n", 2576 PTR_ERR(enc)); 2577 return PTR_ERR(enc); 2578 } 2579 2580 dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc; 2581 ++dpu_enc->num_phys_encs; 2582 } 2583 2584 if (params->split_role == ENC_ROLE_SLAVE) 2585 dpu_enc->cur_slave = enc; 2586 else 2587 dpu_enc->cur_master = enc; 2588 2589 return 0; 2590 } 2591 2592 /** 2593 * dpu_encoder_get_clones - Calculate the possible_clones for DPU encoder 2594 * @drm_enc: DRM encoder pointer 2595 * Returns: possible_clones mask 2596 */ 2597 uint32_t dpu_encoder_get_clones(struct drm_encoder *drm_enc) 2598 { 2599 struct drm_encoder *curr; 2600 int type = drm_enc->encoder_type; 2601 uint32_t clone_mask = drm_encoder_mask(drm_enc); 2602 2603 /* 2604 * Set writeback as possible clones of real-time DSI encoders and vice 2605 * versa 2606 * 2607 * Writeback encoders can't be clones of each other and DSI 2608 * encoders can't be clones of each other. 2609 * 2610 * TODO: Add DP encoders as valid possible clones for writeback encoders 2611 * (and vice versa) once concurrent writeback has been validated for DP 2612 */ 2613 drm_for_each_encoder(curr, drm_enc->dev) { 2614 if ((type == DRM_MODE_ENCODER_VIRTUAL && 2615 curr->encoder_type == DRM_MODE_ENCODER_DSI) || 2616 (type == DRM_MODE_ENCODER_DSI && 2617 curr->encoder_type == DRM_MODE_ENCODER_VIRTUAL)) 2618 clone_mask |= drm_encoder_mask(curr); 2619 } 2620 2621 return clone_mask; 2622 } 2623 2624 static int dpu_encoder_setup_display(struct dpu_encoder_virt *dpu_enc, 2625 struct dpu_kms *dpu_kms, 2626 struct msm_display_info *disp_info) 2627 { 2628 int ret = 0; 2629 int i = 0; 2630 struct dpu_enc_phys_init_params phys_params; 2631 2632 if (!dpu_enc) { 2633 DPU_ERROR("invalid arg(s), enc %d\n", dpu_enc != NULL); 2634 return -EINVAL; 2635 } 2636 2637 dpu_enc->cur_master = NULL; 2638 2639 memset(&phys_params, 0, sizeof(phys_params)); 2640 phys_params.dpu_kms = dpu_kms; 2641 phys_params.parent = &dpu_enc->base; 2642 phys_params.enc_spinlock = &dpu_enc->enc_spinlock; 2643 2644 WARN_ON(disp_info->num_of_h_tiles < 1); 2645 2646 DPU_DEBUG("dsi_info->num_of_h_tiles %d\n", disp_info->num_of_h_tiles); 2647 2648 if (disp_info->intf_type != INTF_WB) 2649 dpu_enc->idle_pc_supported = 2650 dpu_kms->catalog->caps->has_idle_pc; 2651 2652 mutex_lock(&dpu_enc->enc_lock); 2653 for (i = 0; i < disp_info->num_of_h_tiles && !ret; i++) { 2654 /* 2655 * Left-most tile is at index 0, content is controller id 2656 * h_tile_instance_ids[2] = {0, 1}; DSI0 = left, DSI1 = right 2657 * h_tile_instance_ids[2] = {1, 0}; DSI1 = left, DSI0 = right 2658 */ 2659 u32 controller_id = disp_info->h_tile_instance[i]; 2660 2661 if (disp_info->num_of_h_tiles > 1) { 2662 if (i == 0) 2663 phys_params.split_role = ENC_ROLE_MASTER; 2664 else 2665 phys_params.split_role = ENC_ROLE_SLAVE; 2666 } else { 2667 phys_params.split_role = ENC_ROLE_SOLO; 2668 } 2669 2670 DPU_DEBUG("h_tile_instance %d = %d, split_role %d\n", 2671 i, controller_id, phys_params.split_role); 2672 2673 phys_params.hw_intf = dpu_encoder_get_intf(dpu_kms->catalog, &dpu_kms->rm, 2674 disp_info->intf_type, 2675 controller_id); 2676 2677 if (disp_info->intf_type == INTF_WB && controller_id < WB_MAX) 2678 phys_params.hw_wb = dpu_rm_get_wb(&dpu_kms->rm, controller_id); 2679 2680 if (!phys_params.hw_intf && !phys_params.hw_wb) { 2681 DPU_ERROR_ENC(dpu_enc, "no intf or wb block assigned at idx: %d\n", i); 2682 ret = -EINVAL; 2683 break; 2684 } 2685 2686 if (phys_params.hw_intf && phys_params.hw_wb) { 2687 DPU_ERROR_ENC(dpu_enc, 2688 "invalid phys both intf and wb block at idx: %d\n", i); 2689 ret = -EINVAL; 2690 break; 2691 } 2692 2693 ret = dpu_encoder_virt_add_phys_encs(dpu_kms->dev, disp_info, 2694 dpu_enc, &phys_params); 2695 if (ret) { 2696 DPU_ERROR_ENC(dpu_enc, "failed to add phys encs\n"); 2697 break; 2698 } 2699 } 2700 2701 mutex_unlock(&dpu_enc->enc_lock); 2702 2703 return ret; 2704 } 2705 2706 static void dpu_encoder_frame_done_timeout(struct timer_list *t) 2707 { 2708 struct dpu_encoder_virt *dpu_enc = timer_container_of(dpu_enc, t, 2709 frame_done_timer); 2710 struct drm_encoder *drm_enc = &dpu_enc->base; 2711 u32 event; 2712 2713 if (!drm_enc->dev) { 2714 DPU_ERROR("invalid parameters\n"); 2715 return; 2716 } 2717 2718 if (!dpu_enc->frame_busy_mask[0] || !dpu_enc->crtc) { 2719 DRM_DEBUG_KMS("id:%u invalid timeout frame_busy_mask=%lu\n", 2720 DRMID(drm_enc), dpu_enc->frame_busy_mask[0]); 2721 return; 2722 } else if (!atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) { 2723 DRM_DEBUG_KMS("id:%u invalid timeout\n", DRMID(drm_enc)); 2724 return; 2725 } 2726 2727 DPU_ERROR_ENC_RATELIMITED(dpu_enc, "frame done timeout\n"); 2728 2729 if (atomic_inc_return(&dpu_enc->frame_done_timeout_cnt) == 1) 2730 msm_disp_snapshot_state(drm_enc->dev); 2731 2732 event = DPU_ENCODER_FRAME_EVENT_ERROR; 2733 trace_dpu_enc_frame_done_timeout(DRMID(drm_enc), event); 2734 dpu_crtc_frame_event_cb(dpu_enc->crtc, event); 2735 } 2736 2737 static const struct drm_encoder_helper_funcs dpu_encoder_helper_funcs = { 2738 .atomic_mode_set = dpu_encoder_virt_atomic_mode_set, 2739 .atomic_disable = dpu_encoder_virt_atomic_disable, 2740 .atomic_enable = dpu_encoder_virt_atomic_enable, 2741 }; 2742 2743 static const struct drm_encoder_funcs dpu_encoder_funcs = { 2744 .debugfs_init = dpu_encoder_debugfs_init, 2745 }; 2746 2747 /** 2748 * dpu_encoder_init - initialize virtual encoder object 2749 * @dev: Pointer to drm device structure 2750 * @drm_enc_mode: corresponding DRM_MODE_ENCODER_* constant 2751 * @disp_info: Pointer to display information structure 2752 * Returns: Pointer to newly created drm encoder 2753 */ 2754 struct drm_encoder *dpu_encoder_init(struct drm_device *dev, 2755 int drm_enc_mode, 2756 struct msm_display_info *disp_info) 2757 { 2758 struct msm_drm_private *priv = dev->dev_private; 2759 struct dpu_kms *dpu_kms = to_dpu_kms(priv->kms); 2760 struct dpu_encoder_virt *dpu_enc; 2761 int ret; 2762 2763 dpu_enc = drmm_encoder_alloc(dev, struct dpu_encoder_virt, base, 2764 &dpu_encoder_funcs, drm_enc_mode, NULL); 2765 if (IS_ERR(dpu_enc)) 2766 return ERR_CAST(dpu_enc); 2767 2768 drm_encoder_helper_add(&dpu_enc->base, &dpu_encoder_helper_funcs); 2769 2770 spin_lock_init(&dpu_enc->enc_spinlock); 2771 dpu_enc->enabled = false; 2772 mutex_init(&dpu_enc->enc_lock); 2773 mutex_init(&dpu_enc->rc_lock); 2774 2775 ret = dpu_encoder_setup_display(dpu_enc, dpu_kms, disp_info); 2776 if (ret) { 2777 DPU_ERROR("failed to setup encoder\n"); 2778 return ERR_PTR(-ENOMEM); 2779 } 2780 2781 atomic_set(&dpu_enc->frame_done_timeout_ms, 0); 2782 atomic_set(&dpu_enc->frame_done_timeout_cnt, 0); 2783 timer_setup(&dpu_enc->frame_done_timer, 2784 dpu_encoder_frame_done_timeout, 0); 2785 2786 INIT_DELAYED_WORK(&dpu_enc->delayed_off_work, 2787 dpu_encoder_off_work); 2788 dpu_enc->idle_timeout = IDLE_TIMEOUT; 2789 2790 memcpy(&dpu_enc->disp_info, disp_info, sizeof(*disp_info)); 2791 2792 DPU_DEBUG_ENC(dpu_enc, "created\n"); 2793 2794 return &dpu_enc->base; 2795 } 2796 2797 /** 2798 * dpu_encoder_wait_for_commit_done() - Wait for encoder to flush pending state 2799 * @drm_enc: encoder pointer 2800 * 2801 * Wait for hardware to have flushed the current pending changes to hardware at 2802 * a vblank or CTL_START. Physical encoders will map this differently depending 2803 * on the type: vid mode -> vsync_irq, cmd mode -> CTL_START. 2804 * 2805 * Return: 0 on success, -EWOULDBLOCK if already signaled, error otherwise 2806 */ 2807 int dpu_encoder_wait_for_commit_done(struct drm_encoder *drm_enc) 2808 { 2809 struct dpu_encoder_virt *dpu_enc = NULL; 2810 int i, ret = 0; 2811 2812 if (!drm_enc) { 2813 DPU_ERROR("invalid encoder\n"); 2814 return -EINVAL; 2815 } 2816 dpu_enc = to_dpu_encoder_virt(drm_enc); 2817 DPU_DEBUG_ENC(dpu_enc, "\n"); 2818 2819 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 2820 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 2821 2822 if (phys->ops.wait_for_commit_done) { 2823 DPU_ATRACE_BEGIN("wait_for_commit_done"); 2824 ret = phys->ops.wait_for_commit_done(phys); 2825 DPU_ATRACE_END("wait_for_commit_done"); 2826 if (ret == -ETIMEDOUT && !dpu_enc->commit_done_timedout) { 2827 dpu_enc->commit_done_timedout = true; 2828 msm_disp_snapshot_state(drm_enc->dev); 2829 } 2830 if (ret) 2831 return ret; 2832 } 2833 } 2834 2835 return ret; 2836 } 2837 2838 /** 2839 * dpu_encoder_wait_for_tx_complete() - Wait for encoder to transfer pixels to panel 2840 * @drm_enc: encoder pointer 2841 * 2842 * Wait for the hardware to transfer all the pixels to the panel. Physical 2843 * encoders will map this differently depending on the type: vid mode -> vsync_irq, 2844 * cmd mode -> pp_done. 2845 * 2846 * Return: 0 on success, -EWOULDBLOCK if already signaled, error otherwise 2847 */ 2848 int dpu_encoder_wait_for_tx_complete(struct drm_encoder *drm_enc) 2849 { 2850 struct dpu_encoder_virt *dpu_enc = NULL; 2851 int i, ret = 0; 2852 2853 if (!drm_enc) { 2854 DPU_ERROR("invalid encoder\n"); 2855 return -EINVAL; 2856 } 2857 dpu_enc = to_dpu_encoder_virt(drm_enc); 2858 DPU_DEBUG_ENC(dpu_enc, "\n"); 2859 2860 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 2861 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 2862 2863 if (phys->ops.wait_for_tx_complete) { 2864 DPU_ATRACE_BEGIN("wait_for_tx_complete"); 2865 ret = phys->ops.wait_for_tx_complete(phys); 2866 DPU_ATRACE_END("wait_for_tx_complete"); 2867 if (ret) 2868 return ret; 2869 } 2870 } 2871 2872 return ret; 2873 } 2874 2875 /** 2876 * dpu_encoder_get_intf_mode - get interface mode of the given encoder 2877 * @encoder: Pointer to drm encoder object 2878 */ 2879 enum dpu_intf_mode dpu_encoder_get_intf_mode(struct drm_encoder *encoder) 2880 { 2881 struct dpu_encoder_virt *dpu_enc = NULL; 2882 2883 if (!encoder) { 2884 DPU_ERROR("invalid encoder\n"); 2885 return INTF_MODE_NONE; 2886 } 2887 dpu_enc = to_dpu_encoder_virt(encoder); 2888 2889 if (dpu_enc->cur_master) 2890 return dpu_enc->cur_master->intf_mode; 2891 2892 if (dpu_enc->num_phys_encs) 2893 return dpu_enc->phys_encs[0]->intf_mode; 2894 2895 return INTF_MODE_NONE; 2896 } 2897 2898 /** 2899 * dpu_encoder_helper_get_cwb_mask - get CWB blocks mask for the DPU encoder 2900 * @phys_enc: Pointer to physical encoder structure 2901 */ 2902 unsigned int dpu_encoder_helper_get_cwb_mask(struct dpu_encoder_phys *phys_enc) 2903 { 2904 struct drm_encoder *encoder = phys_enc->parent; 2905 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(encoder); 2906 2907 return dpu_enc->cwb_mask; 2908 } 2909 2910 /** 2911 * dpu_encoder_helper_get_dsc - get DSC blocks mask for the DPU encoder 2912 * This helper function is used by physical encoder to get DSC blocks mask 2913 * used for this encoder. 2914 * @phys_enc: Pointer to physical encoder structure 2915 */ 2916 unsigned int dpu_encoder_helper_get_dsc(struct dpu_encoder_phys *phys_enc) 2917 { 2918 struct drm_encoder *encoder = phys_enc->parent; 2919 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(encoder); 2920 2921 return dpu_enc->dsc_mask; 2922 } 2923 2924 void dpu_encoder_phys_init(struct dpu_encoder_phys *phys_enc, 2925 struct dpu_enc_phys_init_params *p) 2926 { 2927 phys_enc->hw_mdptop = p->dpu_kms->hw_mdp; 2928 phys_enc->hw_intf = p->hw_intf; 2929 phys_enc->hw_wb = p->hw_wb; 2930 phys_enc->parent = p->parent; 2931 phys_enc->dpu_kms = p->dpu_kms; 2932 phys_enc->split_role = p->split_role; 2933 phys_enc->enc_spinlock = p->enc_spinlock; 2934 phys_enc->enable_state = DPU_ENC_DISABLED; 2935 2936 atomic_set(&phys_enc->pending_kickoff_cnt, 0); 2937 atomic_set(&phys_enc->pending_ctlstart_cnt, 0); 2938 2939 atomic_set(&phys_enc->vsync_cnt, 0); 2940 atomic_set(&phys_enc->underrun_cnt, 0); 2941 2942 init_waitqueue_head(&phys_enc->pending_kickoff_wq); 2943 } 2944