xref: /linux/drivers/gpu/drm/msm/disp/dpu1/dpu_encoder.c (revision 0ff9848067b7b950a4ed70de7f5028600a2157e3)
1 /*
2  * Copyright (c) 2014-2018, The Linux Foundation. All rights reserved.
3  * Copyright (C) 2013 Red Hat
4  * Author: Rob Clark <robdclark@gmail.com>
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program.  If not, see <http://www.gnu.org/licenses/>.
17  */
18 
19 #define pr_fmt(fmt)	"[drm:%s:%d] " fmt, __func__, __LINE__
20 #include <linux/kthread.h>
21 #include <linux/debugfs.h>
22 #include <linux/seq_file.h>
23 
24 #include "msm_drv.h"
25 #include "dpu_kms.h"
26 #include <drm/drm_crtc.h>
27 #include <drm/drm_probe_helper.h>
28 #include "dpu_hwio.h"
29 #include "dpu_hw_catalog.h"
30 #include "dpu_hw_intf.h"
31 #include "dpu_hw_ctl.h"
32 #include "dpu_formats.h"
33 #include "dpu_encoder_phys.h"
34 #include "dpu_crtc.h"
35 #include "dpu_trace.h"
36 #include "dpu_core_irq.h"
37 
38 #define DPU_DEBUG_ENC(e, fmt, ...) DPU_DEBUG("enc%d " fmt,\
39 		(e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
40 
41 #define DPU_ERROR_ENC(e, fmt, ...) DPU_ERROR("enc%d " fmt,\
42 		(e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
43 
44 #define DPU_DEBUG_PHYS(p, fmt, ...) DPU_DEBUG("enc%d intf%d pp%d " fmt,\
45 		(p) ? (p)->parent->base.id : -1, \
46 		(p) ? (p)->intf_idx - INTF_0 : -1, \
47 		(p) ? ((p)->hw_pp ? (p)->hw_pp->idx - PINGPONG_0 : -1) : -1, \
48 		##__VA_ARGS__)
49 
50 #define DPU_ERROR_PHYS(p, fmt, ...) DPU_ERROR("enc%d intf%d pp%d " fmt,\
51 		(p) ? (p)->parent->base.id : -1, \
52 		(p) ? (p)->intf_idx - INTF_0 : -1, \
53 		(p) ? ((p)->hw_pp ? (p)->hw_pp->idx - PINGPONG_0 : -1) : -1, \
54 		##__VA_ARGS__)
55 
56 /*
57  * Two to anticipate panels that can do cmd/vid dynamic switching
58  * plan is to create all possible physical encoder types, and switch between
59  * them at runtime
60  */
61 #define NUM_PHYS_ENCODER_TYPES 2
62 
63 #define MAX_PHYS_ENCODERS_PER_VIRTUAL \
64 	(MAX_H_TILES_PER_DISPLAY * NUM_PHYS_ENCODER_TYPES)
65 
66 #define MAX_CHANNELS_PER_ENC 2
67 
68 #define IDLE_SHORT_TIMEOUT	1
69 
70 #define MAX_VDISPLAY_SPLIT 1080
71 
72 /* timeout in frames waiting for frame done */
73 #define DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES 5
74 
75 /**
76  * enum dpu_enc_rc_events - events for resource control state machine
77  * @DPU_ENC_RC_EVENT_KICKOFF:
78  *	This event happens at NORMAL priority.
79  *	Event that signals the start of the transfer. When this event is
80  *	received, enable MDP/DSI core clocks. Regardless of the previous
81  *	state, the resource should be in ON state at the end of this event.
82  * @DPU_ENC_RC_EVENT_FRAME_DONE:
83  *	This event happens at INTERRUPT level.
84  *	Event signals the end of the data transfer after the PP FRAME_DONE
85  *	event. At the end of this event, a delayed work is scheduled to go to
86  *	IDLE_PC state after IDLE_TIMEOUT time.
87  * @DPU_ENC_RC_EVENT_PRE_STOP:
88  *	This event happens at NORMAL priority.
89  *	This event, when received during the ON state, leave the RC STATE
90  *	in the PRE_OFF state. It should be followed by the STOP event as
91  *	part of encoder disable.
92  *	If received during IDLE or OFF states, it will do nothing.
93  * @DPU_ENC_RC_EVENT_STOP:
94  *	This event happens at NORMAL priority.
95  *	When this event is received, disable all the MDP/DSI core clocks, and
96  *	disable IRQs. It should be called from the PRE_OFF or IDLE states.
97  *	IDLE is expected when IDLE_PC has run, and PRE_OFF did nothing.
98  *	PRE_OFF is expected when PRE_STOP was executed during the ON state.
99  *	Resource state should be in OFF at the end of the event.
100  * @DPU_ENC_RC_EVENT_ENTER_IDLE:
101  *	This event happens at NORMAL priority from a work item.
102  *	Event signals that there were no frame updates for IDLE_TIMEOUT time.
103  *	This would disable MDP/DSI core clocks and change the resource state
104  *	to IDLE.
105  */
106 enum dpu_enc_rc_events {
107 	DPU_ENC_RC_EVENT_KICKOFF = 1,
108 	DPU_ENC_RC_EVENT_FRAME_DONE,
109 	DPU_ENC_RC_EVENT_PRE_STOP,
110 	DPU_ENC_RC_EVENT_STOP,
111 	DPU_ENC_RC_EVENT_ENTER_IDLE
112 };
113 
114 /*
115  * enum dpu_enc_rc_states - states that the resource control maintains
116  * @DPU_ENC_RC_STATE_OFF: Resource is in OFF state
117  * @DPU_ENC_RC_STATE_PRE_OFF: Resource is transitioning to OFF state
118  * @DPU_ENC_RC_STATE_ON: Resource is in ON state
119  * @DPU_ENC_RC_STATE_MODESET: Resource is in modeset state
120  * @DPU_ENC_RC_STATE_IDLE: Resource is in IDLE state
121  */
122 enum dpu_enc_rc_states {
123 	DPU_ENC_RC_STATE_OFF,
124 	DPU_ENC_RC_STATE_PRE_OFF,
125 	DPU_ENC_RC_STATE_ON,
126 	DPU_ENC_RC_STATE_IDLE
127 };
128 
129 /**
130  * struct dpu_encoder_virt - virtual encoder. Container of one or more physical
131  *	encoders. Virtual encoder manages one "logical" display. Physical
132  *	encoders manage one intf block, tied to a specific panel/sub-panel.
133  *	Virtual encoder defers as much as possible to the physical encoders.
134  *	Virtual encoder registers itself with the DRM Framework as the encoder.
135  * @base:		drm_encoder base class for registration with DRM
136  * @enc_spinlock:	Virtual-Encoder-Wide Spin Lock for IRQ purposes
137  * @bus_scaling_client:	Client handle to the bus scaling interface
138  * @enabled:		True if the encoder is active, protected by enc_lock
139  * @num_phys_encs:	Actual number of physical encoders contained.
140  * @phys_encs:		Container of physical encoders managed.
141  * @cur_master:		Pointer to the current master in this mode. Optimization
142  *			Only valid after enable. Cleared as disable.
143  * @hw_pp		Handle to the pingpong blocks used for the display. No.
144  *			pingpong blocks can be different than num_phys_encs.
145  * @intfs_swapped	Whether or not the phys_enc interfaces have been swapped
146  *			for partial update right-only cases, such as pingpong
147  *			split where virtual pingpong does not generate IRQs
148  * @crtc:		Pointer to the currently assigned crtc. Normally you
149  *			would use crtc->state->encoder_mask to determine the
150  *			link between encoder/crtc. However in this case we need
151  *			to track crtc in the disable() hook which is called
152  *			_after_ encoder_mask is cleared.
153  * @crtc_kickoff_cb:		Callback into CRTC that will flush & start
154  *				all CTL paths
155  * @crtc_kickoff_cb_data:	Opaque user data given to crtc_kickoff_cb
156  * @debugfs_root:		Debug file system root file node
157  * @enc_lock:			Lock around physical encoder
158  *				create/destroy/enable/disable
159  * @frame_busy_mask:		Bitmask tracking which phys_enc we are still
160  *				busy processing current command.
161  *				Bit0 = phys_encs[0] etc.
162  * @crtc_frame_event_cb:	callback handler for frame event
163  * @crtc_frame_event_cb_data:	callback handler private data
164  * @frame_done_timeout_ms:	frame done timeout in ms
165  * @frame_done_timer:		watchdog timer for frame done event
166  * @vsync_event_timer:		vsync timer
167  * @disp_info:			local copy of msm_display_info struct
168  * @idle_pc_supported:		indicate if idle power collaps is supported
169  * @rc_lock:			resource control mutex lock to protect
170  *				virt encoder over various state changes
171  * @rc_state:			resource controller state
172  * @delayed_off_work:		delayed worker to schedule disabling of
173  *				clks and resources after IDLE_TIMEOUT time.
174  * @vsync_event_work:		worker to handle vsync event for autorefresh
175  * @topology:                   topology of the display
176  * @mode_set_complete:          flag to indicate modeset completion
177  * @idle_timeout:		idle timeout duration in milliseconds
178  */
179 struct dpu_encoder_virt {
180 	struct drm_encoder base;
181 	spinlock_t enc_spinlock;
182 	uint32_t bus_scaling_client;
183 
184 	bool enabled;
185 
186 	unsigned int num_phys_encs;
187 	struct dpu_encoder_phys *phys_encs[MAX_PHYS_ENCODERS_PER_VIRTUAL];
188 	struct dpu_encoder_phys *cur_master;
189 	struct dpu_encoder_phys *cur_slave;
190 	struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC];
191 
192 	bool intfs_swapped;
193 
194 	struct drm_crtc *crtc;
195 
196 	struct dentry *debugfs_root;
197 	struct mutex enc_lock;
198 	DECLARE_BITMAP(frame_busy_mask, MAX_PHYS_ENCODERS_PER_VIRTUAL);
199 	void (*crtc_frame_event_cb)(void *, u32 event);
200 	void *crtc_frame_event_cb_data;
201 
202 	atomic_t frame_done_timeout_ms;
203 	struct timer_list frame_done_timer;
204 	struct timer_list vsync_event_timer;
205 
206 	struct msm_display_info disp_info;
207 
208 	bool idle_pc_supported;
209 	struct mutex rc_lock;
210 	enum dpu_enc_rc_states rc_state;
211 	struct delayed_work delayed_off_work;
212 	struct kthread_work vsync_event_work;
213 	struct msm_display_topology topology;
214 	bool mode_set_complete;
215 
216 	u32 idle_timeout;
217 };
218 
219 #define to_dpu_encoder_virt(x) container_of(x, struct dpu_encoder_virt, base)
220 
221 void dpu_encoder_helper_report_irq_timeout(struct dpu_encoder_phys *phys_enc,
222 		enum dpu_intr_idx intr_idx)
223 {
224 	DRM_ERROR("irq timeout id=%u, intf=%d, pp=%d, intr=%d\n",
225 		  DRMID(phys_enc->parent), phys_enc->intf_idx - INTF_0,
226 		  phys_enc->hw_pp->idx - PINGPONG_0, intr_idx);
227 
228 	if (phys_enc->parent_ops->handle_frame_done)
229 		phys_enc->parent_ops->handle_frame_done(
230 				phys_enc->parent, phys_enc,
231 				DPU_ENCODER_FRAME_EVENT_ERROR);
232 }
233 
234 static int dpu_encoder_helper_wait_event_timeout(int32_t drm_id,
235 		int32_t hw_id, struct dpu_encoder_wait_info *info);
236 
237 int dpu_encoder_helper_wait_for_irq(struct dpu_encoder_phys *phys_enc,
238 		enum dpu_intr_idx intr_idx,
239 		struct dpu_encoder_wait_info *wait_info)
240 {
241 	struct dpu_encoder_irq *irq;
242 	u32 irq_status;
243 	int ret;
244 
245 	if (!phys_enc || !wait_info || intr_idx >= INTR_IDX_MAX) {
246 		DPU_ERROR("invalid params\n");
247 		return -EINVAL;
248 	}
249 	irq = &phys_enc->irq[intr_idx];
250 
251 	/* note: do master / slave checking outside */
252 
253 	/* return EWOULDBLOCK since we know the wait isn't necessary */
254 	if (phys_enc->enable_state == DPU_ENC_DISABLED) {
255 		DRM_ERROR("encoder is disabled id=%u, intr=%d, hw=%d, irq=%d",
256 			  DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
257 			  irq->irq_idx);
258 		return -EWOULDBLOCK;
259 	}
260 
261 	if (irq->irq_idx < 0) {
262 		DRM_DEBUG_KMS("skip irq wait id=%u, intr=%d, hw=%d, irq=%s",
263 			      DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
264 			      irq->name);
265 		return 0;
266 	}
267 
268 	DRM_DEBUG_KMS("id=%u, intr=%d, hw=%d, irq=%d, pp=%d, pending_cnt=%d",
269 		      DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
270 		      irq->irq_idx, phys_enc->hw_pp->idx - PINGPONG_0,
271 		      atomic_read(wait_info->atomic_cnt));
272 
273 	ret = dpu_encoder_helper_wait_event_timeout(
274 			DRMID(phys_enc->parent),
275 			irq->hw_idx,
276 			wait_info);
277 
278 	if (ret <= 0) {
279 		irq_status = dpu_core_irq_read(phys_enc->dpu_kms,
280 				irq->irq_idx, true);
281 		if (irq_status) {
282 			unsigned long flags;
283 
284 			DRM_DEBUG_KMS("irq not triggered id=%u, intr=%d, "
285 				      "hw=%d, irq=%d, pp=%d, atomic_cnt=%d",
286 				      DRMID(phys_enc->parent), intr_idx,
287 				      irq->hw_idx, irq->irq_idx,
288 				      phys_enc->hw_pp->idx - PINGPONG_0,
289 				      atomic_read(wait_info->atomic_cnt));
290 			local_irq_save(flags);
291 			irq->cb.func(phys_enc, irq->irq_idx);
292 			local_irq_restore(flags);
293 			ret = 0;
294 		} else {
295 			ret = -ETIMEDOUT;
296 			DRM_DEBUG_KMS("irq timeout id=%u, intr=%d, "
297 				      "hw=%d, irq=%d, pp=%d, atomic_cnt=%d",
298 				      DRMID(phys_enc->parent), intr_idx,
299 				      irq->hw_idx, irq->irq_idx,
300 				      phys_enc->hw_pp->idx - PINGPONG_0,
301 				      atomic_read(wait_info->atomic_cnt));
302 		}
303 	} else {
304 		ret = 0;
305 		trace_dpu_enc_irq_wait_success(DRMID(phys_enc->parent),
306 			intr_idx, irq->hw_idx, irq->irq_idx,
307 			phys_enc->hw_pp->idx - PINGPONG_0,
308 			atomic_read(wait_info->atomic_cnt));
309 	}
310 
311 	return ret;
312 }
313 
314 int dpu_encoder_helper_register_irq(struct dpu_encoder_phys *phys_enc,
315 		enum dpu_intr_idx intr_idx)
316 {
317 	struct dpu_encoder_irq *irq;
318 	int ret = 0;
319 
320 	if (!phys_enc || intr_idx >= INTR_IDX_MAX) {
321 		DPU_ERROR("invalid params\n");
322 		return -EINVAL;
323 	}
324 	irq = &phys_enc->irq[intr_idx];
325 
326 	if (irq->irq_idx >= 0) {
327 		DPU_DEBUG_PHYS(phys_enc,
328 				"skipping already registered irq %s type %d\n",
329 				irq->name, irq->intr_type);
330 		return 0;
331 	}
332 
333 	irq->irq_idx = dpu_core_irq_idx_lookup(phys_enc->dpu_kms,
334 			irq->intr_type, irq->hw_idx);
335 	if (irq->irq_idx < 0) {
336 		DPU_ERROR_PHYS(phys_enc,
337 			"failed to lookup IRQ index for %s type:%d\n",
338 			irq->name, irq->intr_type);
339 		return -EINVAL;
340 	}
341 
342 	ret = dpu_core_irq_register_callback(phys_enc->dpu_kms, irq->irq_idx,
343 			&irq->cb);
344 	if (ret) {
345 		DPU_ERROR_PHYS(phys_enc,
346 			"failed to register IRQ callback for %s\n",
347 			irq->name);
348 		irq->irq_idx = -EINVAL;
349 		return ret;
350 	}
351 
352 	ret = dpu_core_irq_enable(phys_enc->dpu_kms, &irq->irq_idx, 1);
353 	if (ret) {
354 		DRM_ERROR("enable failed id=%u, intr=%d, hw=%d, irq=%d",
355 			  DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
356 			  irq->irq_idx);
357 		dpu_core_irq_unregister_callback(phys_enc->dpu_kms,
358 				irq->irq_idx, &irq->cb);
359 		irq->irq_idx = -EINVAL;
360 		return ret;
361 	}
362 
363 	trace_dpu_enc_irq_register_success(DRMID(phys_enc->parent), intr_idx,
364 				irq->hw_idx, irq->irq_idx);
365 
366 	return ret;
367 }
368 
369 int dpu_encoder_helper_unregister_irq(struct dpu_encoder_phys *phys_enc,
370 		enum dpu_intr_idx intr_idx)
371 {
372 	struct dpu_encoder_irq *irq;
373 	int ret;
374 
375 	if (!phys_enc) {
376 		DPU_ERROR("invalid encoder\n");
377 		return -EINVAL;
378 	}
379 	irq = &phys_enc->irq[intr_idx];
380 
381 	/* silently skip irqs that weren't registered */
382 	if (irq->irq_idx < 0) {
383 		DRM_ERROR("duplicate unregister id=%u, intr=%d, hw=%d, irq=%d",
384 			  DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
385 			  irq->irq_idx);
386 		return 0;
387 	}
388 
389 	ret = dpu_core_irq_disable(phys_enc->dpu_kms, &irq->irq_idx, 1);
390 	if (ret) {
391 		DRM_ERROR("disable failed id=%u, intr=%d, hw=%d, irq=%d ret=%d",
392 			  DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
393 			  irq->irq_idx, ret);
394 	}
395 
396 	ret = dpu_core_irq_unregister_callback(phys_enc->dpu_kms, irq->irq_idx,
397 			&irq->cb);
398 	if (ret) {
399 		DRM_ERROR("unreg cb fail id=%u, intr=%d, hw=%d, irq=%d ret=%d",
400 			  DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
401 			  irq->irq_idx, ret);
402 	}
403 
404 	trace_dpu_enc_irq_unregister_success(DRMID(phys_enc->parent), intr_idx,
405 					     irq->hw_idx, irq->irq_idx);
406 
407 	irq->irq_idx = -EINVAL;
408 
409 	return 0;
410 }
411 
412 void dpu_encoder_get_hw_resources(struct drm_encoder *drm_enc,
413 				  struct dpu_encoder_hw_resources *hw_res)
414 {
415 	struct dpu_encoder_virt *dpu_enc = NULL;
416 	int i = 0;
417 
418 	dpu_enc = to_dpu_encoder_virt(drm_enc);
419 	DPU_DEBUG_ENC(dpu_enc, "\n");
420 
421 	/* Query resources used by phys encs, expected to be without overlap */
422 	memset(hw_res, 0, sizeof(*hw_res));
423 
424 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
425 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
426 
427 		if (phys && phys->ops.get_hw_resources)
428 			phys->ops.get_hw_resources(phys, hw_res);
429 	}
430 }
431 
432 static void dpu_encoder_destroy(struct drm_encoder *drm_enc)
433 {
434 	struct dpu_encoder_virt *dpu_enc = NULL;
435 	int i = 0;
436 
437 	if (!drm_enc) {
438 		DPU_ERROR("invalid encoder\n");
439 		return;
440 	}
441 
442 	dpu_enc = to_dpu_encoder_virt(drm_enc);
443 	DPU_DEBUG_ENC(dpu_enc, "\n");
444 
445 	mutex_lock(&dpu_enc->enc_lock);
446 
447 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
448 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
449 
450 		if (phys && phys->ops.destroy) {
451 			phys->ops.destroy(phys);
452 			--dpu_enc->num_phys_encs;
453 			dpu_enc->phys_encs[i] = NULL;
454 		}
455 	}
456 
457 	if (dpu_enc->num_phys_encs)
458 		DPU_ERROR_ENC(dpu_enc, "expected 0 num_phys_encs not %d\n",
459 				dpu_enc->num_phys_encs);
460 	dpu_enc->num_phys_encs = 0;
461 	mutex_unlock(&dpu_enc->enc_lock);
462 
463 	drm_encoder_cleanup(drm_enc);
464 	mutex_destroy(&dpu_enc->enc_lock);
465 }
466 
467 void dpu_encoder_helper_split_config(
468 		struct dpu_encoder_phys *phys_enc,
469 		enum dpu_intf interface)
470 {
471 	struct dpu_encoder_virt *dpu_enc;
472 	struct split_pipe_cfg cfg = { 0 };
473 	struct dpu_hw_mdp *hw_mdptop;
474 	struct msm_display_info *disp_info;
475 
476 	if (!phys_enc || !phys_enc->hw_mdptop || !phys_enc->parent) {
477 		DPU_ERROR("invalid arg(s), encoder %d\n", phys_enc != 0);
478 		return;
479 	}
480 
481 	dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
482 	hw_mdptop = phys_enc->hw_mdptop;
483 	disp_info = &dpu_enc->disp_info;
484 
485 	if (disp_info->intf_type != DRM_MODE_ENCODER_DSI)
486 		return;
487 
488 	/**
489 	 * disable split modes since encoder will be operating in as the only
490 	 * encoder, either for the entire use case in the case of, for example,
491 	 * single DSI, or for this frame in the case of left/right only partial
492 	 * update.
493 	 */
494 	if (phys_enc->split_role == ENC_ROLE_SOLO) {
495 		if (hw_mdptop->ops.setup_split_pipe)
496 			hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg);
497 		return;
498 	}
499 
500 	cfg.en = true;
501 	cfg.mode = phys_enc->intf_mode;
502 	cfg.intf = interface;
503 
504 	if (cfg.en && phys_enc->ops.needs_single_flush &&
505 			phys_enc->ops.needs_single_flush(phys_enc))
506 		cfg.split_flush_en = true;
507 
508 	if (phys_enc->split_role == ENC_ROLE_MASTER) {
509 		DPU_DEBUG_ENC(dpu_enc, "enable %d\n", cfg.en);
510 
511 		if (hw_mdptop->ops.setup_split_pipe)
512 			hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg);
513 	}
514 }
515 
516 static void _dpu_encoder_adjust_mode(struct drm_connector *connector,
517 		struct drm_display_mode *adj_mode)
518 {
519 	struct drm_display_mode *cur_mode;
520 
521 	if (!connector || !adj_mode)
522 		return;
523 
524 	list_for_each_entry(cur_mode, &connector->modes, head) {
525 		if (cur_mode->vdisplay == adj_mode->vdisplay &&
526 		    cur_mode->hdisplay == adj_mode->hdisplay &&
527 		    drm_mode_vrefresh(cur_mode) == drm_mode_vrefresh(adj_mode)) {
528 			adj_mode->private = cur_mode->private;
529 			adj_mode->private_flags |= cur_mode->private_flags;
530 		}
531 	}
532 }
533 
534 static struct msm_display_topology dpu_encoder_get_topology(
535 			struct dpu_encoder_virt *dpu_enc,
536 			struct dpu_kms *dpu_kms,
537 			struct drm_display_mode *mode)
538 {
539 	struct msm_display_topology topology;
540 	int i, intf_count = 0;
541 
542 	for (i = 0; i < MAX_PHYS_ENCODERS_PER_VIRTUAL; i++)
543 		if (dpu_enc->phys_encs[i])
544 			intf_count++;
545 
546 	/* User split topology for width > 1080 */
547 	topology.num_lm = (mode->vdisplay > MAX_VDISPLAY_SPLIT) ? 2 : 1;
548 	topology.num_enc = 0;
549 	topology.num_intf = intf_count;
550 
551 	return topology;
552 }
553 static int dpu_encoder_virt_atomic_check(
554 		struct drm_encoder *drm_enc,
555 		struct drm_crtc_state *crtc_state,
556 		struct drm_connector_state *conn_state)
557 {
558 	struct dpu_encoder_virt *dpu_enc;
559 	struct msm_drm_private *priv;
560 	struct dpu_kms *dpu_kms;
561 	const struct drm_display_mode *mode;
562 	struct drm_display_mode *adj_mode;
563 	struct msm_display_topology topology;
564 	int i = 0;
565 	int ret = 0;
566 
567 	if (!drm_enc || !crtc_state || !conn_state) {
568 		DPU_ERROR("invalid arg(s), drm_enc %d, crtc/conn state %d/%d\n",
569 				drm_enc != 0, crtc_state != 0, conn_state != 0);
570 		return -EINVAL;
571 	}
572 
573 	dpu_enc = to_dpu_encoder_virt(drm_enc);
574 	DPU_DEBUG_ENC(dpu_enc, "\n");
575 
576 	priv = drm_enc->dev->dev_private;
577 	dpu_kms = to_dpu_kms(priv->kms);
578 	mode = &crtc_state->mode;
579 	adj_mode = &crtc_state->adjusted_mode;
580 	trace_dpu_enc_atomic_check(DRMID(drm_enc));
581 
582 	/*
583 	 * display drivers may populate private fields of the drm display mode
584 	 * structure while registering possible modes of a connector with DRM.
585 	 * These private fields are not populated back while DRM invokes
586 	 * the mode_set callbacks. This module retrieves and populates the
587 	 * private fields of the given mode.
588 	 */
589 	_dpu_encoder_adjust_mode(conn_state->connector, adj_mode);
590 
591 	/* perform atomic check on the first physical encoder (master) */
592 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
593 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
594 
595 		if (phys && phys->ops.atomic_check)
596 			ret = phys->ops.atomic_check(phys, crtc_state,
597 					conn_state);
598 		else if (phys && phys->ops.mode_fixup)
599 			if (!phys->ops.mode_fixup(phys, mode, adj_mode))
600 				ret = -EINVAL;
601 
602 		if (ret) {
603 			DPU_ERROR_ENC(dpu_enc,
604 					"mode unsupported, phys idx %d\n", i);
605 			break;
606 		}
607 	}
608 
609 	topology = dpu_encoder_get_topology(dpu_enc, dpu_kms, adj_mode);
610 
611 	/* Reserve dynamic resources now. Indicating AtomicTest phase */
612 	if (!ret) {
613 		/*
614 		 * Avoid reserving resources when mode set is pending. Topology
615 		 * info may not be available to complete reservation.
616 		 */
617 		if (drm_atomic_crtc_needs_modeset(crtc_state)
618 				&& dpu_enc->mode_set_complete) {
619 			ret = dpu_rm_reserve(&dpu_kms->rm, drm_enc, crtc_state,
620 					     topology, true);
621 			dpu_enc->mode_set_complete = false;
622 		}
623 	}
624 
625 	if (!ret)
626 		drm_mode_set_crtcinfo(adj_mode, 0);
627 
628 	trace_dpu_enc_atomic_check_flags(DRMID(drm_enc), adj_mode->flags,
629 			adj_mode->private_flags);
630 
631 	return ret;
632 }
633 
634 static void _dpu_encoder_update_vsync_source(struct dpu_encoder_virt *dpu_enc,
635 			struct msm_display_info *disp_info)
636 {
637 	struct dpu_vsync_source_cfg vsync_cfg = { 0 };
638 	struct msm_drm_private *priv;
639 	struct dpu_kms *dpu_kms;
640 	struct dpu_hw_mdp *hw_mdptop;
641 	struct drm_encoder *drm_enc;
642 	int i;
643 
644 	if (!dpu_enc || !disp_info) {
645 		DPU_ERROR("invalid param dpu_enc:%d or disp_info:%d\n",
646 					dpu_enc != NULL, disp_info != NULL);
647 		return;
648 	} else if (dpu_enc->num_phys_encs > ARRAY_SIZE(dpu_enc->hw_pp)) {
649 		DPU_ERROR("invalid num phys enc %d/%d\n",
650 				dpu_enc->num_phys_encs,
651 				(int) ARRAY_SIZE(dpu_enc->hw_pp));
652 		return;
653 	}
654 
655 	drm_enc = &dpu_enc->base;
656 	/* this pointers are checked in virt_enable_helper */
657 	priv = drm_enc->dev->dev_private;
658 
659 	dpu_kms = to_dpu_kms(priv->kms);
660 	if (!dpu_kms) {
661 		DPU_ERROR("invalid dpu_kms\n");
662 		return;
663 	}
664 
665 	hw_mdptop = dpu_kms->hw_mdp;
666 	if (!hw_mdptop) {
667 		DPU_ERROR("invalid mdptop\n");
668 		return;
669 	}
670 
671 	if (hw_mdptop->ops.setup_vsync_source &&
672 			disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE) {
673 		for (i = 0; i < dpu_enc->num_phys_encs; i++)
674 			vsync_cfg.ppnumber[i] = dpu_enc->hw_pp[i]->idx;
675 
676 		vsync_cfg.pp_count = dpu_enc->num_phys_encs;
677 		if (disp_info->is_te_using_watchdog_timer)
678 			vsync_cfg.vsync_source = DPU_VSYNC_SOURCE_WD_TIMER_0;
679 		else
680 			vsync_cfg.vsync_source = DPU_VSYNC0_SOURCE_GPIO;
681 
682 		hw_mdptop->ops.setup_vsync_source(hw_mdptop, &vsync_cfg);
683 	}
684 }
685 
686 static void _dpu_encoder_irq_control(struct drm_encoder *drm_enc, bool enable)
687 {
688 	struct dpu_encoder_virt *dpu_enc;
689 	int i;
690 
691 	if (!drm_enc) {
692 		DPU_ERROR("invalid encoder\n");
693 		return;
694 	}
695 
696 	dpu_enc = to_dpu_encoder_virt(drm_enc);
697 
698 	DPU_DEBUG_ENC(dpu_enc, "enable:%d\n", enable);
699 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
700 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
701 
702 		if (phys && phys->ops.irq_control)
703 			phys->ops.irq_control(phys, enable);
704 	}
705 
706 }
707 
708 static void _dpu_encoder_resource_control_helper(struct drm_encoder *drm_enc,
709 		bool enable)
710 {
711 	struct msm_drm_private *priv;
712 	struct dpu_kms *dpu_kms;
713 	struct dpu_encoder_virt *dpu_enc;
714 
715 	dpu_enc = to_dpu_encoder_virt(drm_enc);
716 	priv = drm_enc->dev->dev_private;
717 	dpu_kms = to_dpu_kms(priv->kms);
718 
719 	trace_dpu_enc_rc_helper(DRMID(drm_enc), enable);
720 
721 	if (!dpu_enc->cur_master) {
722 		DPU_ERROR("encoder master not set\n");
723 		return;
724 	}
725 
726 	if (enable) {
727 		/* enable DPU core clks */
728 		pm_runtime_get_sync(&dpu_kms->pdev->dev);
729 
730 		/* enable all the irq */
731 		_dpu_encoder_irq_control(drm_enc, true);
732 
733 	} else {
734 		/* disable all the irq */
735 		_dpu_encoder_irq_control(drm_enc, false);
736 
737 		/* disable DPU core clks */
738 		pm_runtime_put_sync(&dpu_kms->pdev->dev);
739 	}
740 
741 }
742 
743 static int dpu_encoder_resource_control(struct drm_encoder *drm_enc,
744 		u32 sw_event)
745 {
746 	struct dpu_encoder_virt *dpu_enc;
747 	struct msm_drm_private *priv;
748 	bool is_vid_mode = false;
749 
750 	if (!drm_enc || !drm_enc->dev || !drm_enc->dev->dev_private ||
751 			!drm_enc->crtc) {
752 		DPU_ERROR("invalid parameters\n");
753 		return -EINVAL;
754 	}
755 	dpu_enc = to_dpu_encoder_virt(drm_enc);
756 	priv = drm_enc->dev->dev_private;
757 	is_vid_mode = dpu_enc->disp_info.capabilities &
758 						MSM_DISPLAY_CAP_VID_MODE;
759 
760 	/*
761 	 * when idle_pc is not supported, process only KICKOFF, STOP and MODESET
762 	 * events and return early for other events (ie wb display).
763 	 */
764 	if (!dpu_enc->idle_pc_supported &&
765 			(sw_event != DPU_ENC_RC_EVENT_KICKOFF &&
766 			sw_event != DPU_ENC_RC_EVENT_STOP &&
767 			sw_event != DPU_ENC_RC_EVENT_PRE_STOP))
768 		return 0;
769 
770 	trace_dpu_enc_rc(DRMID(drm_enc), sw_event, dpu_enc->idle_pc_supported,
771 			 dpu_enc->rc_state, "begin");
772 
773 	switch (sw_event) {
774 	case DPU_ENC_RC_EVENT_KICKOFF:
775 		/* cancel delayed off work, if any */
776 		if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work))
777 			DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n",
778 					sw_event);
779 
780 		mutex_lock(&dpu_enc->rc_lock);
781 
782 		/* return if the resource control is already in ON state */
783 		if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) {
784 			DRM_DEBUG_KMS("id;%u, sw_event:%d, rc in ON state\n",
785 				      DRMID(drm_enc), sw_event);
786 			mutex_unlock(&dpu_enc->rc_lock);
787 			return 0;
788 		} else if (dpu_enc->rc_state != DPU_ENC_RC_STATE_OFF &&
789 				dpu_enc->rc_state != DPU_ENC_RC_STATE_IDLE) {
790 			DRM_DEBUG_KMS("id;%u, sw_event:%d, rc in state %d\n",
791 				      DRMID(drm_enc), sw_event,
792 				      dpu_enc->rc_state);
793 			mutex_unlock(&dpu_enc->rc_lock);
794 			return -EINVAL;
795 		}
796 
797 		if (is_vid_mode && dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE)
798 			_dpu_encoder_irq_control(drm_enc, true);
799 		else
800 			_dpu_encoder_resource_control_helper(drm_enc, true);
801 
802 		dpu_enc->rc_state = DPU_ENC_RC_STATE_ON;
803 
804 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
805 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
806 				 "kickoff");
807 
808 		mutex_unlock(&dpu_enc->rc_lock);
809 		break;
810 
811 	case DPU_ENC_RC_EVENT_FRAME_DONE:
812 		/*
813 		 * mutex lock is not used as this event happens at interrupt
814 		 * context. And locking is not required as, the other events
815 		 * like KICKOFF and STOP does a wait-for-idle before executing
816 		 * the resource_control
817 		 */
818 		if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) {
819 			DRM_DEBUG_KMS("id:%d, sw_event:%d,rc:%d-unexpected\n",
820 				      DRMID(drm_enc), sw_event,
821 				      dpu_enc->rc_state);
822 			return -EINVAL;
823 		}
824 
825 		/*
826 		 * schedule off work item only when there are no
827 		 * frames pending
828 		 */
829 		if (dpu_crtc_frame_pending(drm_enc->crtc) > 1) {
830 			DRM_DEBUG_KMS("id:%d skip schedule work\n",
831 				      DRMID(drm_enc));
832 			return 0;
833 		}
834 
835 		queue_delayed_work(priv->wq, &dpu_enc->delayed_off_work,
836 				   msecs_to_jiffies(dpu_enc->idle_timeout));
837 
838 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
839 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
840 				 "frame done");
841 		break;
842 
843 	case DPU_ENC_RC_EVENT_PRE_STOP:
844 		/* cancel delayed off work, if any */
845 		if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work))
846 			DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n",
847 					sw_event);
848 
849 		mutex_lock(&dpu_enc->rc_lock);
850 
851 		if (is_vid_mode &&
852 			  dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) {
853 			_dpu_encoder_irq_control(drm_enc, true);
854 		}
855 		/* skip if is already OFF or IDLE, resources are off already */
856 		else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF ||
857 				dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) {
858 			DRM_DEBUG_KMS("id:%u, sw_event:%d, rc in %d state\n",
859 				      DRMID(drm_enc), sw_event,
860 				      dpu_enc->rc_state);
861 			mutex_unlock(&dpu_enc->rc_lock);
862 			return 0;
863 		}
864 
865 		dpu_enc->rc_state = DPU_ENC_RC_STATE_PRE_OFF;
866 
867 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
868 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
869 				 "pre stop");
870 
871 		mutex_unlock(&dpu_enc->rc_lock);
872 		break;
873 
874 	case DPU_ENC_RC_EVENT_STOP:
875 		mutex_lock(&dpu_enc->rc_lock);
876 
877 		/* return if the resource control is already in OFF state */
878 		if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF) {
879 			DRM_DEBUG_KMS("id: %u, sw_event:%d, rc in OFF state\n",
880 				      DRMID(drm_enc), sw_event);
881 			mutex_unlock(&dpu_enc->rc_lock);
882 			return 0;
883 		} else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) {
884 			DRM_ERROR("id: %u, sw_event:%d, rc in state %d\n",
885 				  DRMID(drm_enc), sw_event, dpu_enc->rc_state);
886 			mutex_unlock(&dpu_enc->rc_lock);
887 			return -EINVAL;
888 		}
889 
890 		/**
891 		 * expect to arrive here only if in either idle state or pre-off
892 		 * and in IDLE state the resources are already disabled
893 		 */
894 		if (dpu_enc->rc_state == DPU_ENC_RC_STATE_PRE_OFF)
895 			_dpu_encoder_resource_control_helper(drm_enc, false);
896 
897 		dpu_enc->rc_state = DPU_ENC_RC_STATE_OFF;
898 
899 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
900 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
901 				 "stop");
902 
903 		mutex_unlock(&dpu_enc->rc_lock);
904 		break;
905 
906 	case DPU_ENC_RC_EVENT_ENTER_IDLE:
907 		mutex_lock(&dpu_enc->rc_lock);
908 
909 		if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) {
910 			DRM_ERROR("id: %u, sw_event:%d, rc:%d !ON state\n",
911 				  DRMID(drm_enc), sw_event, dpu_enc->rc_state);
912 			mutex_unlock(&dpu_enc->rc_lock);
913 			return 0;
914 		}
915 
916 		/*
917 		 * if we are in ON but a frame was just kicked off,
918 		 * ignore the IDLE event, it's probably a stale timer event
919 		 */
920 		if (dpu_enc->frame_busy_mask[0]) {
921 			DRM_ERROR("id:%u, sw_event:%d, rc:%d frame pending\n",
922 				  DRMID(drm_enc), sw_event, dpu_enc->rc_state);
923 			mutex_unlock(&dpu_enc->rc_lock);
924 			return 0;
925 		}
926 
927 		if (is_vid_mode)
928 			_dpu_encoder_irq_control(drm_enc, false);
929 		else
930 			_dpu_encoder_resource_control_helper(drm_enc, false);
931 
932 		dpu_enc->rc_state = DPU_ENC_RC_STATE_IDLE;
933 
934 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
935 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
936 				 "idle");
937 
938 		mutex_unlock(&dpu_enc->rc_lock);
939 		break;
940 
941 	default:
942 		DRM_ERROR("id:%u, unexpected sw_event: %d\n", DRMID(drm_enc),
943 			  sw_event);
944 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
945 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
946 				 "error");
947 		break;
948 	}
949 
950 	trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
951 			 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
952 			 "end");
953 	return 0;
954 }
955 
956 static void dpu_encoder_virt_mode_set(struct drm_encoder *drm_enc,
957 				      struct drm_display_mode *mode,
958 				      struct drm_display_mode *adj_mode)
959 {
960 	struct dpu_encoder_virt *dpu_enc;
961 	struct msm_drm_private *priv;
962 	struct dpu_kms *dpu_kms;
963 	struct list_head *connector_list;
964 	struct drm_connector *conn = NULL, *conn_iter;
965 	struct drm_crtc *drm_crtc;
966 	struct dpu_crtc_state *cstate;
967 	struct dpu_rm_hw_iter hw_iter;
968 	struct msm_display_topology topology;
969 	struct dpu_hw_ctl *hw_ctl[MAX_CHANNELS_PER_ENC] = { NULL };
970 	struct dpu_hw_mixer *hw_lm[MAX_CHANNELS_PER_ENC] = { NULL };
971 	int num_lm = 0, num_ctl = 0;
972 	int i, j, ret;
973 
974 	if (!drm_enc) {
975 		DPU_ERROR("invalid encoder\n");
976 		return;
977 	}
978 
979 	dpu_enc = to_dpu_encoder_virt(drm_enc);
980 	DPU_DEBUG_ENC(dpu_enc, "\n");
981 
982 	priv = drm_enc->dev->dev_private;
983 	dpu_kms = to_dpu_kms(priv->kms);
984 	connector_list = &dpu_kms->dev->mode_config.connector_list;
985 
986 	trace_dpu_enc_mode_set(DRMID(drm_enc));
987 
988 	list_for_each_entry(conn_iter, connector_list, head)
989 		if (conn_iter->encoder == drm_enc)
990 			conn = conn_iter;
991 
992 	if (!conn) {
993 		DPU_ERROR_ENC(dpu_enc, "failed to find attached connector\n");
994 		return;
995 	} else if (!conn->state) {
996 		DPU_ERROR_ENC(dpu_enc, "invalid connector state\n");
997 		return;
998 	}
999 
1000 	drm_for_each_crtc(drm_crtc, drm_enc->dev)
1001 		if (drm_crtc->state->encoder_mask & drm_encoder_mask(drm_enc))
1002 			break;
1003 
1004 	topology = dpu_encoder_get_topology(dpu_enc, dpu_kms, adj_mode);
1005 
1006 	/* Reserve dynamic resources now. Indicating non-AtomicTest phase */
1007 	ret = dpu_rm_reserve(&dpu_kms->rm, drm_enc, drm_crtc->state,
1008 			     topology, false);
1009 	if (ret) {
1010 		DPU_ERROR_ENC(dpu_enc,
1011 				"failed to reserve hw resources, %d\n", ret);
1012 		return;
1013 	}
1014 
1015 	dpu_rm_init_hw_iter(&hw_iter, drm_enc->base.id, DPU_HW_BLK_PINGPONG);
1016 	for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
1017 		dpu_enc->hw_pp[i] = NULL;
1018 		if (!dpu_rm_get_hw(&dpu_kms->rm, &hw_iter))
1019 			break;
1020 		dpu_enc->hw_pp[i] = (struct dpu_hw_pingpong *) hw_iter.hw;
1021 	}
1022 
1023 	dpu_rm_init_hw_iter(&hw_iter, drm_enc->base.id, DPU_HW_BLK_CTL);
1024 	for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
1025 		if (!dpu_rm_get_hw(&dpu_kms->rm, &hw_iter))
1026 			break;
1027 		hw_ctl[i] = (struct dpu_hw_ctl *)hw_iter.hw;
1028 		num_ctl++;
1029 	}
1030 
1031 	dpu_rm_init_hw_iter(&hw_iter, drm_enc->base.id, DPU_HW_BLK_LM);
1032 	for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
1033 		if (!dpu_rm_get_hw(&dpu_kms->rm, &hw_iter))
1034 			break;
1035 		hw_lm[i] = (struct dpu_hw_mixer *)hw_iter.hw;
1036 		num_lm++;
1037 	}
1038 
1039 	cstate = to_dpu_crtc_state(drm_crtc->state);
1040 
1041 	for (i = 0; i < num_lm; i++) {
1042 		int ctl_idx = (i < num_ctl) ? i : (num_ctl-1);
1043 
1044 		cstate->mixers[i].hw_lm = hw_lm[i];
1045 		cstate->mixers[i].lm_ctl = hw_ctl[ctl_idx];
1046 	}
1047 
1048 	cstate->num_mixers = num_lm;
1049 
1050 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1051 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1052 
1053 		if (phys) {
1054 			if (!dpu_enc->hw_pp[i]) {
1055 				DPU_ERROR_ENC(dpu_enc, "no pp block assigned"
1056 					     "at idx: %d\n", i);
1057 				goto error;
1058 			}
1059 
1060 			if (!hw_ctl[i]) {
1061 				DPU_ERROR_ENC(dpu_enc, "no ctl block assigned"
1062 					     "at idx: %d\n", i);
1063 				goto error;
1064 			}
1065 
1066 			phys->hw_pp = dpu_enc->hw_pp[i];
1067 			phys->hw_ctl = hw_ctl[i];
1068 
1069 			dpu_rm_init_hw_iter(&hw_iter, drm_enc->base.id,
1070 					    DPU_HW_BLK_INTF);
1071 			for (j = 0; j < MAX_CHANNELS_PER_ENC; j++) {
1072 				struct dpu_hw_intf *hw_intf;
1073 
1074 				if (!dpu_rm_get_hw(&dpu_kms->rm, &hw_iter))
1075 					break;
1076 
1077 				hw_intf = (struct dpu_hw_intf *)hw_iter.hw;
1078 				if (hw_intf->idx == phys->intf_idx)
1079 					phys->hw_intf = hw_intf;
1080 			}
1081 
1082 			if (!phys->hw_intf) {
1083 				DPU_ERROR_ENC(dpu_enc,
1084 					      "no intf block assigned at idx: %d\n",
1085 					      i);
1086 				goto error;
1087 			}
1088 
1089 			phys->connector = conn->state->connector;
1090 			if (phys->ops.mode_set)
1091 				phys->ops.mode_set(phys, mode, adj_mode);
1092 		}
1093 	}
1094 
1095 	dpu_enc->mode_set_complete = true;
1096 
1097 error:
1098 	dpu_rm_release(&dpu_kms->rm, drm_enc);
1099 }
1100 
1101 static void _dpu_encoder_virt_enable_helper(struct drm_encoder *drm_enc)
1102 {
1103 	struct dpu_encoder_virt *dpu_enc = NULL;
1104 	struct msm_drm_private *priv;
1105 	struct dpu_kms *dpu_kms;
1106 
1107 	if (!drm_enc || !drm_enc->dev || !drm_enc->dev->dev_private) {
1108 		DPU_ERROR("invalid parameters\n");
1109 		return;
1110 	}
1111 
1112 	priv = drm_enc->dev->dev_private;
1113 	dpu_kms = to_dpu_kms(priv->kms);
1114 	if (!dpu_kms) {
1115 		DPU_ERROR("invalid dpu_kms\n");
1116 		return;
1117 	}
1118 
1119 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1120 	if (!dpu_enc || !dpu_enc->cur_master) {
1121 		DPU_ERROR("invalid dpu encoder/master\n");
1122 		return;
1123 	}
1124 
1125 	if (dpu_enc->cur_master->hw_mdptop &&
1126 			dpu_enc->cur_master->hw_mdptop->ops.reset_ubwc)
1127 		dpu_enc->cur_master->hw_mdptop->ops.reset_ubwc(
1128 				dpu_enc->cur_master->hw_mdptop,
1129 				dpu_kms->catalog);
1130 
1131 	_dpu_encoder_update_vsync_source(dpu_enc, &dpu_enc->disp_info);
1132 }
1133 
1134 void dpu_encoder_virt_runtime_resume(struct drm_encoder *drm_enc)
1135 {
1136 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1137 
1138 	mutex_lock(&dpu_enc->enc_lock);
1139 
1140 	if (!dpu_enc->enabled)
1141 		goto out;
1142 
1143 	if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.restore)
1144 		dpu_enc->cur_slave->ops.restore(dpu_enc->cur_slave);
1145 	if (dpu_enc->cur_master && dpu_enc->cur_master->ops.restore)
1146 		dpu_enc->cur_master->ops.restore(dpu_enc->cur_master);
1147 
1148 	_dpu_encoder_virt_enable_helper(drm_enc);
1149 
1150 out:
1151 	mutex_unlock(&dpu_enc->enc_lock);
1152 }
1153 
1154 static void dpu_encoder_virt_enable(struct drm_encoder *drm_enc)
1155 {
1156 	struct dpu_encoder_virt *dpu_enc = NULL;
1157 	int ret = 0;
1158 	struct drm_display_mode *cur_mode = NULL;
1159 
1160 	if (!drm_enc) {
1161 		DPU_ERROR("invalid encoder\n");
1162 		return;
1163 	}
1164 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1165 
1166 	mutex_lock(&dpu_enc->enc_lock);
1167 	cur_mode = &dpu_enc->base.crtc->state->adjusted_mode;
1168 
1169 	trace_dpu_enc_enable(DRMID(drm_enc), cur_mode->hdisplay,
1170 			     cur_mode->vdisplay);
1171 
1172 	/* always enable slave encoder before master */
1173 	if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.enable)
1174 		dpu_enc->cur_slave->ops.enable(dpu_enc->cur_slave);
1175 
1176 	if (dpu_enc->cur_master && dpu_enc->cur_master->ops.enable)
1177 		dpu_enc->cur_master->ops.enable(dpu_enc->cur_master);
1178 
1179 	ret = dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF);
1180 	if (ret) {
1181 		DPU_ERROR_ENC(dpu_enc, "dpu resource control failed: %d\n",
1182 				ret);
1183 		goto out;
1184 	}
1185 
1186 	_dpu_encoder_virt_enable_helper(drm_enc);
1187 
1188 	dpu_enc->enabled = true;
1189 
1190 out:
1191 	mutex_unlock(&dpu_enc->enc_lock);
1192 }
1193 
1194 static void dpu_encoder_virt_disable(struct drm_encoder *drm_enc)
1195 {
1196 	struct dpu_encoder_virt *dpu_enc = NULL;
1197 	struct msm_drm_private *priv;
1198 	struct dpu_kms *dpu_kms;
1199 	struct drm_display_mode *mode;
1200 	int i = 0;
1201 
1202 	if (!drm_enc) {
1203 		DPU_ERROR("invalid encoder\n");
1204 		return;
1205 	} else if (!drm_enc->dev) {
1206 		DPU_ERROR("invalid dev\n");
1207 		return;
1208 	} else if (!drm_enc->dev->dev_private) {
1209 		DPU_ERROR("invalid dev_private\n");
1210 		return;
1211 	}
1212 
1213 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1214 	DPU_DEBUG_ENC(dpu_enc, "\n");
1215 
1216 	mutex_lock(&dpu_enc->enc_lock);
1217 	dpu_enc->enabled = false;
1218 
1219 	mode = &drm_enc->crtc->state->adjusted_mode;
1220 
1221 	priv = drm_enc->dev->dev_private;
1222 	dpu_kms = to_dpu_kms(priv->kms);
1223 
1224 	trace_dpu_enc_disable(DRMID(drm_enc));
1225 
1226 	/* wait for idle */
1227 	dpu_encoder_wait_for_event(drm_enc, MSM_ENC_TX_COMPLETE);
1228 
1229 	dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_PRE_STOP);
1230 
1231 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1232 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1233 
1234 		if (phys && phys->ops.disable)
1235 			phys->ops.disable(phys);
1236 	}
1237 
1238 	/* after phys waits for frame-done, should be no more frames pending */
1239 	if (atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) {
1240 		DPU_ERROR("enc%d timeout pending\n", drm_enc->base.id);
1241 		del_timer_sync(&dpu_enc->frame_done_timer);
1242 	}
1243 
1244 	dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_STOP);
1245 
1246 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1247 		if (dpu_enc->phys_encs[i])
1248 			dpu_enc->phys_encs[i]->connector = NULL;
1249 	}
1250 
1251 	DPU_DEBUG_ENC(dpu_enc, "encoder disabled\n");
1252 
1253 	dpu_rm_release(&dpu_kms->rm, drm_enc);
1254 
1255 	mutex_unlock(&dpu_enc->enc_lock);
1256 }
1257 
1258 static enum dpu_intf dpu_encoder_get_intf(struct dpu_mdss_cfg *catalog,
1259 		enum dpu_intf_type type, u32 controller_id)
1260 {
1261 	int i = 0;
1262 
1263 	for (i = 0; i < catalog->intf_count; i++) {
1264 		if (catalog->intf[i].type == type
1265 		    && catalog->intf[i].controller_id == controller_id) {
1266 			return catalog->intf[i].id;
1267 		}
1268 	}
1269 
1270 	return INTF_MAX;
1271 }
1272 
1273 static void dpu_encoder_vblank_callback(struct drm_encoder *drm_enc,
1274 		struct dpu_encoder_phys *phy_enc)
1275 {
1276 	struct dpu_encoder_virt *dpu_enc = NULL;
1277 	unsigned long lock_flags;
1278 
1279 	if (!drm_enc || !phy_enc)
1280 		return;
1281 
1282 	DPU_ATRACE_BEGIN("encoder_vblank_callback");
1283 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1284 
1285 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1286 	if (dpu_enc->crtc)
1287 		dpu_crtc_vblank_callback(dpu_enc->crtc);
1288 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1289 
1290 	atomic_inc(&phy_enc->vsync_cnt);
1291 	DPU_ATRACE_END("encoder_vblank_callback");
1292 }
1293 
1294 static void dpu_encoder_underrun_callback(struct drm_encoder *drm_enc,
1295 		struct dpu_encoder_phys *phy_enc)
1296 {
1297 	if (!phy_enc)
1298 		return;
1299 
1300 	DPU_ATRACE_BEGIN("encoder_underrun_callback");
1301 	atomic_inc(&phy_enc->underrun_cnt);
1302 	trace_dpu_enc_underrun_cb(DRMID(drm_enc),
1303 				  atomic_read(&phy_enc->underrun_cnt));
1304 	DPU_ATRACE_END("encoder_underrun_callback");
1305 }
1306 
1307 void dpu_encoder_assign_crtc(struct drm_encoder *drm_enc, struct drm_crtc *crtc)
1308 {
1309 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1310 	unsigned long lock_flags;
1311 
1312 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1313 	/* crtc should always be cleared before re-assigning */
1314 	WARN_ON(crtc && dpu_enc->crtc);
1315 	dpu_enc->crtc = crtc;
1316 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1317 }
1318 
1319 void dpu_encoder_toggle_vblank_for_crtc(struct drm_encoder *drm_enc,
1320 					struct drm_crtc *crtc, bool enable)
1321 {
1322 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1323 	unsigned long lock_flags;
1324 	int i;
1325 
1326 	trace_dpu_enc_vblank_cb(DRMID(drm_enc), enable);
1327 
1328 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1329 	if (dpu_enc->crtc != crtc) {
1330 		spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1331 		return;
1332 	}
1333 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1334 
1335 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1336 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1337 
1338 		if (phys && phys->ops.control_vblank_irq)
1339 			phys->ops.control_vblank_irq(phys, enable);
1340 	}
1341 }
1342 
1343 void dpu_encoder_register_frame_event_callback(struct drm_encoder *drm_enc,
1344 		void (*frame_event_cb)(void *, u32 event),
1345 		void *frame_event_cb_data)
1346 {
1347 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1348 	unsigned long lock_flags;
1349 	bool enable;
1350 
1351 	enable = frame_event_cb ? true : false;
1352 
1353 	if (!drm_enc) {
1354 		DPU_ERROR("invalid encoder\n");
1355 		return;
1356 	}
1357 	trace_dpu_enc_frame_event_cb(DRMID(drm_enc), enable);
1358 
1359 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1360 	dpu_enc->crtc_frame_event_cb = frame_event_cb;
1361 	dpu_enc->crtc_frame_event_cb_data = frame_event_cb_data;
1362 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1363 }
1364 
1365 static void dpu_encoder_frame_done_callback(
1366 		struct drm_encoder *drm_enc,
1367 		struct dpu_encoder_phys *ready_phys, u32 event)
1368 {
1369 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1370 	unsigned int i;
1371 
1372 	if (event & (DPU_ENCODER_FRAME_EVENT_DONE
1373 			| DPU_ENCODER_FRAME_EVENT_ERROR
1374 			| DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)) {
1375 
1376 		if (!dpu_enc->frame_busy_mask[0]) {
1377 			/**
1378 			 * suppress frame_done without waiter,
1379 			 * likely autorefresh
1380 			 */
1381 			trace_dpu_enc_frame_done_cb_not_busy(DRMID(drm_enc),
1382 					event, ready_phys->intf_idx);
1383 			return;
1384 		}
1385 
1386 		/* One of the physical encoders has become idle */
1387 		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1388 			if (dpu_enc->phys_encs[i] == ready_phys) {
1389 				trace_dpu_enc_frame_done_cb(DRMID(drm_enc), i,
1390 						dpu_enc->frame_busy_mask[0]);
1391 				clear_bit(i, dpu_enc->frame_busy_mask);
1392 			}
1393 		}
1394 
1395 		if (!dpu_enc->frame_busy_mask[0]) {
1396 			atomic_set(&dpu_enc->frame_done_timeout_ms, 0);
1397 			del_timer(&dpu_enc->frame_done_timer);
1398 
1399 			dpu_encoder_resource_control(drm_enc,
1400 					DPU_ENC_RC_EVENT_FRAME_DONE);
1401 
1402 			if (dpu_enc->crtc_frame_event_cb)
1403 				dpu_enc->crtc_frame_event_cb(
1404 					dpu_enc->crtc_frame_event_cb_data,
1405 					event);
1406 		}
1407 	} else {
1408 		if (dpu_enc->crtc_frame_event_cb)
1409 			dpu_enc->crtc_frame_event_cb(
1410 				dpu_enc->crtc_frame_event_cb_data, event);
1411 	}
1412 }
1413 
1414 static void dpu_encoder_off_work(struct work_struct *work)
1415 {
1416 	struct dpu_encoder_virt *dpu_enc = container_of(work,
1417 			struct dpu_encoder_virt, delayed_off_work.work);
1418 
1419 	if (!dpu_enc) {
1420 		DPU_ERROR("invalid dpu encoder\n");
1421 		return;
1422 	}
1423 
1424 	dpu_encoder_resource_control(&dpu_enc->base,
1425 						DPU_ENC_RC_EVENT_ENTER_IDLE);
1426 
1427 	dpu_encoder_frame_done_callback(&dpu_enc->base, NULL,
1428 				DPU_ENCODER_FRAME_EVENT_IDLE);
1429 }
1430 
1431 /**
1432  * _dpu_encoder_trigger_flush - trigger flush for a physical encoder
1433  * drm_enc: Pointer to drm encoder structure
1434  * phys: Pointer to physical encoder structure
1435  * extra_flush_bits: Additional bit mask to include in flush trigger
1436  */
1437 static void _dpu_encoder_trigger_flush(struct drm_encoder *drm_enc,
1438 		struct dpu_encoder_phys *phys, uint32_t extra_flush_bits,
1439 		bool async)
1440 {
1441 	struct dpu_hw_ctl *ctl;
1442 	int pending_kickoff_cnt;
1443 	u32 ret = UINT_MAX;
1444 
1445 	if (!drm_enc || !phys) {
1446 		DPU_ERROR("invalid argument(s), drm_enc %d, phys_enc %d\n",
1447 				drm_enc != 0, phys != 0);
1448 		return;
1449 	}
1450 
1451 	if (!phys->hw_pp) {
1452 		DPU_ERROR("invalid pingpong hw\n");
1453 		return;
1454 	}
1455 
1456 	ctl = phys->hw_ctl;
1457 	if (!ctl || !ctl->ops.trigger_flush) {
1458 		DPU_ERROR("missing trigger cb\n");
1459 		return;
1460 	}
1461 
1462 	if (!async)
1463 		pending_kickoff_cnt = dpu_encoder_phys_inc_pending(phys);
1464 	else
1465 		pending_kickoff_cnt = atomic_read(&phys->pending_kickoff_cnt);
1466 
1467 	if (extra_flush_bits && ctl->ops.update_pending_flush)
1468 		ctl->ops.update_pending_flush(ctl, extra_flush_bits);
1469 
1470 	ctl->ops.trigger_flush(ctl);
1471 
1472 	if (ctl->ops.get_pending_flush)
1473 		ret = ctl->ops.get_pending_flush(ctl);
1474 
1475 	trace_dpu_enc_trigger_flush(DRMID(drm_enc), phys->intf_idx,
1476 				    pending_kickoff_cnt, ctl->idx,
1477 				    extra_flush_bits, ret);
1478 }
1479 
1480 /**
1481  * _dpu_encoder_trigger_start - trigger start for a physical encoder
1482  * phys: Pointer to physical encoder structure
1483  */
1484 static void _dpu_encoder_trigger_start(struct dpu_encoder_phys *phys)
1485 {
1486 	if (!phys) {
1487 		DPU_ERROR("invalid argument(s)\n");
1488 		return;
1489 	}
1490 
1491 	if (!phys->hw_pp) {
1492 		DPU_ERROR("invalid pingpong hw\n");
1493 		return;
1494 	}
1495 
1496 	if (phys->ops.trigger_start && phys->enable_state != DPU_ENC_DISABLED)
1497 		phys->ops.trigger_start(phys);
1498 }
1499 
1500 void dpu_encoder_helper_trigger_start(struct dpu_encoder_phys *phys_enc)
1501 {
1502 	struct dpu_hw_ctl *ctl;
1503 
1504 	if (!phys_enc) {
1505 		DPU_ERROR("invalid encoder\n");
1506 		return;
1507 	}
1508 
1509 	ctl = phys_enc->hw_ctl;
1510 	if (ctl && ctl->ops.trigger_start) {
1511 		ctl->ops.trigger_start(ctl);
1512 		trace_dpu_enc_trigger_start(DRMID(phys_enc->parent), ctl->idx);
1513 	}
1514 }
1515 
1516 static int dpu_encoder_helper_wait_event_timeout(
1517 		int32_t drm_id,
1518 		int32_t hw_id,
1519 		struct dpu_encoder_wait_info *info)
1520 {
1521 	int rc = 0;
1522 	s64 expected_time = ktime_to_ms(ktime_get()) + info->timeout_ms;
1523 	s64 jiffies = msecs_to_jiffies(info->timeout_ms);
1524 	s64 time;
1525 
1526 	do {
1527 		rc = wait_event_timeout(*(info->wq),
1528 				atomic_read(info->atomic_cnt) == 0, jiffies);
1529 		time = ktime_to_ms(ktime_get());
1530 
1531 		trace_dpu_enc_wait_event_timeout(drm_id, hw_id, rc, time,
1532 						 expected_time,
1533 						 atomic_read(info->atomic_cnt));
1534 	/* If we timed out, counter is valid and time is less, wait again */
1535 	} while (atomic_read(info->atomic_cnt) && (rc == 0) &&
1536 			(time < expected_time));
1537 
1538 	return rc;
1539 }
1540 
1541 static void dpu_encoder_helper_hw_reset(struct dpu_encoder_phys *phys_enc)
1542 {
1543 	struct dpu_encoder_virt *dpu_enc;
1544 	struct dpu_hw_ctl *ctl;
1545 	int rc;
1546 
1547 	if (!phys_enc) {
1548 		DPU_ERROR("invalid encoder\n");
1549 		return;
1550 	}
1551 	dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
1552 	ctl = phys_enc->hw_ctl;
1553 
1554 	if (!ctl || !ctl->ops.reset)
1555 		return;
1556 
1557 	DRM_DEBUG_KMS("id:%u ctl %d reset\n", DRMID(phys_enc->parent),
1558 		      ctl->idx);
1559 
1560 	rc = ctl->ops.reset(ctl);
1561 	if (rc)
1562 		DPU_ERROR_ENC(dpu_enc, "ctl %d reset failure\n",  ctl->idx);
1563 
1564 	phys_enc->enable_state = DPU_ENC_ENABLED;
1565 }
1566 
1567 /**
1568  * _dpu_encoder_kickoff_phys - handle physical encoder kickoff
1569  *	Iterate through the physical encoders and perform consolidated flush
1570  *	and/or control start triggering as needed. This is done in the virtual
1571  *	encoder rather than the individual physical ones in order to handle
1572  *	use cases that require visibility into multiple physical encoders at
1573  *	a time.
1574  * dpu_enc: Pointer to virtual encoder structure
1575  */
1576 static void _dpu_encoder_kickoff_phys(struct dpu_encoder_virt *dpu_enc,
1577 				      bool async)
1578 {
1579 	struct dpu_hw_ctl *ctl;
1580 	uint32_t i, pending_flush;
1581 	unsigned long lock_flags;
1582 
1583 	if (!dpu_enc) {
1584 		DPU_ERROR("invalid encoder\n");
1585 		return;
1586 	}
1587 
1588 	pending_flush = 0x0;
1589 
1590 	/* update pending counts and trigger kickoff ctl flush atomically */
1591 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1592 
1593 	/* don't perform flush/start operations for slave encoders */
1594 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1595 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1596 
1597 		if (!phys || phys->enable_state == DPU_ENC_DISABLED)
1598 			continue;
1599 
1600 		ctl = phys->hw_ctl;
1601 		if (!ctl)
1602 			continue;
1603 
1604 		/*
1605 		 * This is cleared in frame_done worker, which isn't invoked
1606 		 * for async commits. So don't set this for async, since it'll
1607 		 * roll over to the next commit.
1608 		 */
1609 		if (!async && phys->split_role != ENC_ROLE_SLAVE)
1610 			set_bit(i, dpu_enc->frame_busy_mask);
1611 
1612 		if (!phys->ops.needs_single_flush ||
1613 				!phys->ops.needs_single_flush(phys))
1614 			_dpu_encoder_trigger_flush(&dpu_enc->base, phys, 0x0,
1615 						   async);
1616 		else if (ctl->ops.get_pending_flush)
1617 			pending_flush |= ctl->ops.get_pending_flush(ctl);
1618 	}
1619 
1620 	/* for split flush, combine pending flush masks and send to master */
1621 	if (pending_flush && dpu_enc->cur_master) {
1622 		_dpu_encoder_trigger_flush(
1623 				&dpu_enc->base,
1624 				dpu_enc->cur_master,
1625 				pending_flush, async);
1626 	}
1627 
1628 	_dpu_encoder_trigger_start(dpu_enc->cur_master);
1629 
1630 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1631 }
1632 
1633 void dpu_encoder_trigger_kickoff_pending(struct drm_encoder *drm_enc)
1634 {
1635 	struct dpu_encoder_virt *dpu_enc;
1636 	struct dpu_encoder_phys *phys;
1637 	unsigned int i;
1638 	struct dpu_hw_ctl *ctl;
1639 	struct msm_display_info *disp_info;
1640 
1641 	if (!drm_enc) {
1642 		DPU_ERROR("invalid encoder\n");
1643 		return;
1644 	}
1645 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1646 	disp_info = &dpu_enc->disp_info;
1647 
1648 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1649 		phys = dpu_enc->phys_encs[i];
1650 
1651 		if (phys && phys->hw_ctl) {
1652 			ctl = phys->hw_ctl;
1653 			if (ctl->ops.clear_pending_flush)
1654 				ctl->ops.clear_pending_flush(ctl);
1655 
1656 			/* update only for command mode primary ctl */
1657 			if ((phys == dpu_enc->cur_master) &&
1658 			   (disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE)
1659 			    && ctl->ops.trigger_pending)
1660 				ctl->ops.trigger_pending(ctl);
1661 		}
1662 	}
1663 }
1664 
1665 static u32 _dpu_encoder_calculate_linetime(struct dpu_encoder_virt *dpu_enc,
1666 		struct drm_display_mode *mode)
1667 {
1668 	u64 pclk_rate;
1669 	u32 pclk_period;
1670 	u32 line_time;
1671 
1672 	/*
1673 	 * For linetime calculation, only operate on master encoder.
1674 	 */
1675 	if (!dpu_enc->cur_master)
1676 		return 0;
1677 
1678 	if (!dpu_enc->cur_master->ops.get_line_count) {
1679 		DPU_ERROR("get_line_count function not defined\n");
1680 		return 0;
1681 	}
1682 
1683 	pclk_rate = mode->clock; /* pixel clock in kHz */
1684 	if (pclk_rate == 0) {
1685 		DPU_ERROR("pclk is 0, cannot calculate line time\n");
1686 		return 0;
1687 	}
1688 
1689 	pclk_period = DIV_ROUND_UP_ULL(1000000000ull, pclk_rate);
1690 	if (pclk_period == 0) {
1691 		DPU_ERROR("pclk period is 0\n");
1692 		return 0;
1693 	}
1694 
1695 	/*
1696 	 * Line time calculation based on Pixel clock and HTOTAL.
1697 	 * Final unit is in ns.
1698 	 */
1699 	line_time = (pclk_period * mode->htotal) / 1000;
1700 	if (line_time == 0) {
1701 		DPU_ERROR("line time calculation is 0\n");
1702 		return 0;
1703 	}
1704 
1705 	DPU_DEBUG_ENC(dpu_enc,
1706 			"clk_rate=%lldkHz, clk_period=%d, linetime=%dns\n",
1707 			pclk_rate, pclk_period, line_time);
1708 
1709 	return line_time;
1710 }
1711 
1712 static int _dpu_encoder_wakeup_time(struct drm_encoder *drm_enc,
1713 		ktime_t *wakeup_time)
1714 {
1715 	struct drm_display_mode *mode;
1716 	struct dpu_encoder_virt *dpu_enc;
1717 	u32 cur_line;
1718 	u32 line_time;
1719 	u32 vtotal, time_to_vsync;
1720 	ktime_t cur_time;
1721 
1722 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1723 
1724 	if (!drm_enc->crtc || !drm_enc->crtc->state) {
1725 		DPU_ERROR("crtc/crtc state object is NULL\n");
1726 		return -EINVAL;
1727 	}
1728 	mode = &drm_enc->crtc->state->adjusted_mode;
1729 
1730 	line_time = _dpu_encoder_calculate_linetime(dpu_enc, mode);
1731 	if (!line_time)
1732 		return -EINVAL;
1733 
1734 	cur_line = dpu_enc->cur_master->ops.get_line_count(dpu_enc->cur_master);
1735 
1736 	vtotal = mode->vtotal;
1737 	if (cur_line >= vtotal)
1738 		time_to_vsync = line_time * vtotal;
1739 	else
1740 		time_to_vsync = line_time * (vtotal - cur_line);
1741 
1742 	if (time_to_vsync == 0) {
1743 		DPU_ERROR("time to vsync should not be zero, vtotal=%d\n",
1744 				vtotal);
1745 		return -EINVAL;
1746 	}
1747 
1748 	cur_time = ktime_get();
1749 	*wakeup_time = ktime_add_ns(cur_time, time_to_vsync);
1750 
1751 	DPU_DEBUG_ENC(dpu_enc,
1752 			"cur_line=%u vtotal=%u time_to_vsync=%u, cur_time=%lld, wakeup_time=%lld\n",
1753 			cur_line, vtotal, time_to_vsync,
1754 			ktime_to_ms(cur_time),
1755 			ktime_to_ms(*wakeup_time));
1756 	return 0;
1757 }
1758 
1759 static void dpu_encoder_vsync_event_handler(struct timer_list *t)
1760 {
1761 	struct dpu_encoder_virt *dpu_enc = from_timer(dpu_enc, t,
1762 			vsync_event_timer);
1763 	struct drm_encoder *drm_enc = &dpu_enc->base;
1764 	struct msm_drm_private *priv;
1765 	struct msm_drm_thread *event_thread;
1766 
1767 	if (!drm_enc->dev || !drm_enc->dev->dev_private ||
1768 			!drm_enc->crtc) {
1769 		DPU_ERROR("invalid parameters\n");
1770 		return;
1771 	}
1772 
1773 	priv = drm_enc->dev->dev_private;
1774 
1775 	if (drm_enc->crtc->index >= ARRAY_SIZE(priv->event_thread)) {
1776 		DPU_ERROR("invalid crtc index\n");
1777 		return;
1778 	}
1779 	event_thread = &priv->event_thread[drm_enc->crtc->index];
1780 	if (!event_thread) {
1781 		DPU_ERROR("event_thread not found for crtc:%d\n",
1782 				drm_enc->crtc->index);
1783 		return;
1784 	}
1785 
1786 	del_timer(&dpu_enc->vsync_event_timer);
1787 }
1788 
1789 static void dpu_encoder_vsync_event_work_handler(struct kthread_work *work)
1790 {
1791 	struct dpu_encoder_virt *dpu_enc = container_of(work,
1792 			struct dpu_encoder_virt, vsync_event_work);
1793 	ktime_t wakeup_time;
1794 
1795 	if (!dpu_enc) {
1796 		DPU_ERROR("invalid dpu encoder\n");
1797 		return;
1798 	}
1799 
1800 	if (_dpu_encoder_wakeup_time(&dpu_enc->base, &wakeup_time))
1801 		return;
1802 
1803 	trace_dpu_enc_vsync_event_work(DRMID(&dpu_enc->base), wakeup_time);
1804 	mod_timer(&dpu_enc->vsync_event_timer,
1805 			nsecs_to_jiffies(ktime_to_ns(wakeup_time)));
1806 }
1807 
1808 void dpu_encoder_prepare_for_kickoff(struct drm_encoder *drm_enc, bool async)
1809 {
1810 	struct dpu_encoder_virt *dpu_enc;
1811 	struct dpu_encoder_phys *phys;
1812 	bool needs_hw_reset = false;
1813 	unsigned int i;
1814 
1815 	if (!drm_enc) {
1816 		DPU_ERROR("invalid args\n");
1817 		return;
1818 	}
1819 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1820 
1821 	trace_dpu_enc_prepare_kickoff(DRMID(drm_enc));
1822 
1823 	/* prepare for next kickoff, may include waiting on previous kickoff */
1824 	DPU_ATRACE_BEGIN("enc_prepare_for_kickoff");
1825 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1826 		phys = dpu_enc->phys_encs[i];
1827 		if (phys) {
1828 			if (phys->ops.prepare_for_kickoff)
1829 				phys->ops.prepare_for_kickoff(phys);
1830 			if (phys->enable_state == DPU_ENC_ERR_NEEDS_HW_RESET)
1831 				needs_hw_reset = true;
1832 		}
1833 	}
1834 	DPU_ATRACE_END("enc_prepare_for_kickoff");
1835 
1836 	dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF);
1837 
1838 	/* if any phys needs reset, reset all phys, in-order */
1839 	if (needs_hw_reset) {
1840 		trace_dpu_enc_prepare_kickoff_reset(DRMID(drm_enc));
1841 		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1842 			dpu_encoder_helper_hw_reset(dpu_enc->phys_encs[i]);
1843 		}
1844 	}
1845 }
1846 
1847 void dpu_encoder_kickoff(struct drm_encoder *drm_enc, bool async)
1848 {
1849 	struct dpu_encoder_virt *dpu_enc;
1850 	struct dpu_encoder_phys *phys;
1851 	ktime_t wakeup_time;
1852 	unsigned int i;
1853 
1854 	if (!drm_enc) {
1855 		DPU_ERROR("invalid encoder\n");
1856 		return;
1857 	}
1858 	DPU_ATRACE_BEGIN("encoder_kickoff");
1859 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1860 
1861 	trace_dpu_enc_kickoff(DRMID(drm_enc));
1862 
1863 	/*
1864 	 * Asynchronous frames don't handle FRAME_DONE events. As such, they
1865 	 * shouldn't enable the frame_done watchdog since it will always time
1866 	 * out.
1867 	 */
1868 	if (!async) {
1869 		unsigned long timeout_ms;
1870 		timeout_ms = DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES * 1000 /
1871 			drm_mode_vrefresh(&drm_enc->crtc->state->adjusted_mode);
1872 
1873 		atomic_set(&dpu_enc->frame_done_timeout_ms, timeout_ms);
1874 		mod_timer(&dpu_enc->frame_done_timer,
1875 			  jiffies + msecs_to_jiffies(timeout_ms));
1876 	}
1877 
1878 	/* All phys encs are ready to go, trigger the kickoff */
1879 	_dpu_encoder_kickoff_phys(dpu_enc, async);
1880 
1881 	/* allow phys encs to handle any post-kickoff business */
1882 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1883 		phys = dpu_enc->phys_encs[i];
1884 		if (phys && phys->ops.handle_post_kickoff)
1885 			phys->ops.handle_post_kickoff(phys);
1886 	}
1887 
1888 	if (dpu_enc->disp_info.intf_type == DRM_MODE_ENCODER_DSI &&
1889 			!_dpu_encoder_wakeup_time(drm_enc, &wakeup_time)) {
1890 		trace_dpu_enc_early_kickoff(DRMID(drm_enc),
1891 					    ktime_to_ms(wakeup_time));
1892 		mod_timer(&dpu_enc->vsync_event_timer,
1893 				nsecs_to_jiffies(ktime_to_ns(wakeup_time)));
1894 	}
1895 
1896 	DPU_ATRACE_END("encoder_kickoff");
1897 }
1898 
1899 void dpu_encoder_prepare_commit(struct drm_encoder *drm_enc)
1900 {
1901 	struct dpu_encoder_virt *dpu_enc;
1902 	struct dpu_encoder_phys *phys;
1903 	int i;
1904 
1905 	if (!drm_enc) {
1906 		DPU_ERROR("invalid encoder\n");
1907 		return;
1908 	}
1909 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1910 
1911 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1912 		phys = dpu_enc->phys_encs[i];
1913 		if (phys && phys->ops.prepare_commit)
1914 			phys->ops.prepare_commit(phys);
1915 	}
1916 }
1917 
1918 #ifdef CONFIG_DEBUG_FS
1919 static int _dpu_encoder_status_show(struct seq_file *s, void *data)
1920 {
1921 	struct dpu_encoder_virt *dpu_enc = s->private;
1922 	int i;
1923 
1924 	mutex_lock(&dpu_enc->enc_lock);
1925 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1926 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1927 
1928 		if (!phys)
1929 			continue;
1930 
1931 		seq_printf(s, "intf:%d    vsync:%8d     underrun:%8d    ",
1932 				phys->intf_idx - INTF_0,
1933 				atomic_read(&phys->vsync_cnt),
1934 				atomic_read(&phys->underrun_cnt));
1935 
1936 		switch (phys->intf_mode) {
1937 		case INTF_MODE_VIDEO:
1938 			seq_puts(s, "mode: video\n");
1939 			break;
1940 		case INTF_MODE_CMD:
1941 			seq_puts(s, "mode: command\n");
1942 			break;
1943 		default:
1944 			seq_puts(s, "mode: ???\n");
1945 			break;
1946 		}
1947 	}
1948 	mutex_unlock(&dpu_enc->enc_lock);
1949 
1950 	return 0;
1951 }
1952 
1953 static int _dpu_encoder_debugfs_status_open(struct inode *inode,
1954 		struct file *file)
1955 {
1956 	return single_open(file, _dpu_encoder_status_show, inode->i_private);
1957 }
1958 
1959 static int _dpu_encoder_init_debugfs(struct drm_encoder *drm_enc)
1960 {
1961 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1962 	struct msm_drm_private *priv;
1963 	struct dpu_kms *dpu_kms;
1964 	int i;
1965 
1966 	static const struct file_operations debugfs_status_fops = {
1967 		.open =		_dpu_encoder_debugfs_status_open,
1968 		.read =		seq_read,
1969 		.llseek =	seq_lseek,
1970 		.release =	single_release,
1971 	};
1972 
1973 	char name[DPU_NAME_SIZE];
1974 
1975 	if (!drm_enc->dev || !drm_enc->dev->dev_private) {
1976 		DPU_ERROR("invalid encoder or kms\n");
1977 		return -EINVAL;
1978 	}
1979 
1980 	priv = drm_enc->dev->dev_private;
1981 	dpu_kms = to_dpu_kms(priv->kms);
1982 
1983 	snprintf(name, DPU_NAME_SIZE, "encoder%u", drm_enc->base.id);
1984 
1985 	/* create overall sub-directory for the encoder */
1986 	dpu_enc->debugfs_root = debugfs_create_dir(name,
1987 			drm_enc->dev->primary->debugfs_root);
1988 	if (!dpu_enc->debugfs_root)
1989 		return -ENOMEM;
1990 
1991 	/* don't error check these */
1992 	debugfs_create_file("status", 0600,
1993 		dpu_enc->debugfs_root, dpu_enc, &debugfs_status_fops);
1994 
1995 	for (i = 0; i < dpu_enc->num_phys_encs; i++)
1996 		if (dpu_enc->phys_encs[i] &&
1997 				dpu_enc->phys_encs[i]->ops.late_register)
1998 			dpu_enc->phys_encs[i]->ops.late_register(
1999 					dpu_enc->phys_encs[i],
2000 					dpu_enc->debugfs_root);
2001 
2002 	return 0;
2003 }
2004 #else
2005 static int _dpu_encoder_init_debugfs(struct drm_encoder *drm_enc)
2006 {
2007 	return 0;
2008 }
2009 #endif
2010 
2011 static int dpu_encoder_late_register(struct drm_encoder *encoder)
2012 {
2013 	return _dpu_encoder_init_debugfs(encoder);
2014 }
2015 
2016 static void dpu_encoder_early_unregister(struct drm_encoder *encoder)
2017 {
2018 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(encoder);
2019 
2020 	debugfs_remove_recursive(dpu_enc->debugfs_root);
2021 }
2022 
2023 static int dpu_encoder_virt_add_phys_encs(
2024 		u32 display_caps,
2025 		struct dpu_encoder_virt *dpu_enc,
2026 		struct dpu_enc_phys_init_params *params)
2027 {
2028 	struct dpu_encoder_phys *enc = NULL;
2029 
2030 	DPU_DEBUG_ENC(dpu_enc, "\n");
2031 
2032 	/*
2033 	 * We may create up to NUM_PHYS_ENCODER_TYPES physical encoder types
2034 	 * in this function, check up-front.
2035 	 */
2036 	if (dpu_enc->num_phys_encs + NUM_PHYS_ENCODER_TYPES >=
2037 			ARRAY_SIZE(dpu_enc->phys_encs)) {
2038 		DPU_ERROR_ENC(dpu_enc, "too many physical encoders %d\n",
2039 			  dpu_enc->num_phys_encs);
2040 		return -EINVAL;
2041 	}
2042 
2043 	if (display_caps & MSM_DISPLAY_CAP_VID_MODE) {
2044 		enc = dpu_encoder_phys_vid_init(params);
2045 
2046 		if (IS_ERR_OR_NULL(enc)) {
2047 			DPU_ERROR_ENC(dpu_enc, "failed to init vid enc: %ld\n",
2048 				PTR_ERR(enc));
2049 			return enc == 0 ? -EINVAL : PTR_ERR(enc);
2050 		}
2051 
2052 		dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
2053 		++dpu_enc->num_phys_encs;
2054 	}
2055 
2056 	if (display_caps & MSM_DISPLAY_CAP_CMD_MODE) {
2057 		enc = dpu_encoder_phys_cmd_init(params);
2058 
2059 		if (IS_ERR_OR_NULL(enc)) {
2060 			DPU_ERROR_ENC(dpu_enc, "failed to init cmd enc: %ld\n",
2061 				PTR_ERR(enc));
2062 			return enc == 0 ? -EINVAL : PTR_ERR(enc);
2063 		}
2064 
2065 		dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
2066 		++dpu_enc->num_phys_encs;
2067 	}
2068 
2069 	if (params->split_role == ENC_ROLE_SLAVE)
2070 		dpu_enc->cur_slave = enc;
2071 	else
2072 		dpu_enc->cur_master = enc;
2073 
2074 	return 0;
2075 }
2076 
2077 static const struct dpu_encoder_virt_ops dpu_encoder_parent_ops = {
2078 	.handle_vblank_virt = dpu_encoder_vblank_callback,
2079 	.handle_underrun_virt = dpu_encoder_underrun_callback,
2080 	.handle_frame_done = dpu_encoder_frame_done_callback,
2081 };
2082 
2083 static int dpu_encoder_setup_display(struct dpu_encoder_virt *dpu_enc,
2084 				 struct dpu_kms *dpu_kms,
2085 				 struct msm_display_info *disp_info)
2086 {
2087 	int ret = 0;
2088 	int i = 0;
2089 	enum dpu_intf_type intf_type;
2090 	struct dpu_enc_phys_init_params phys_params;
2091 
2092 	if (!dpu_enc || !dpu_kms) {
2093 		DPU_ERROR("invalid arg(s), enc %d kms %d\n",
2094 				dpu_enc != 0, dpu_kms != 0);
2095 		return -EINVAL;
2096 	}
2097 
2098 	dpu_enc->cur_master = NULL;
2099 
2100 	memset(&phys_params, 0, sizeof(phys_params));
2101 	phys_params.dpu_kms = dpu_kms;
2102 	phys_params.parent = &dpu_enc->base;
2103 	phys_params.parent_ops = &dpu_encoder_parent_ops;
2104 	phys_params.enc_spinlock = &dpu_enc->enc_spinlock;
2105 
2106 	DPU_DEBUG("\n");
2107 
2108 	switch (disp_info->intf_type) {
2109 	case DRM_MODE_ENCODER_DSI:
2110 		intf_type = INTF_DSI;
2111 		break;
2112 	default:
2113 		DPU_ERROR_ENC(dpu_enc, "unsupported display interface type\n");
2114 		return -EINVAL;
2115 	}
2116 
2117 	WARN_ON(disp_info->num_of_h_tiles < 1);
2118 
2119 	DPU_DEBUG("dsi_info->num_of_h_tiles %d\n", disp_info->num_of_h_tiles);
2120 
2121 	if ((disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE) ||
2122 	    (disp_info->capabilities & MSM_DISPLAY_CAP_VID_MODE))
2123 		dpu_enc->idle_pc_supported =
2124 				dpu_kms->catalog->caps->has_idle_pc;
2125 
2126 	mutex_lock(&dpu_enc->enc_lock);
2127 	for (i = 0; i < disp_info->num_of_h_tiles && !ret; i++) {
2128 		/*
2129 		 * Left-most tile is at index 0, content is controller id
2130 		 * h_tile_instance_ids[2] = {0, 1}; DSI0 = left, DSI1 = right
2131 		 * h_tile_instance_ids[2] = {1, 0}; DSI1 = left, DSI0 = right
2132 		 */
2133 		u32 controller_id = disp_info->h_tile_instance[i];
2134 
2135 		if (disp_info->num_of_h_tiles > 1) {
2136 			if (i == 0)
2137 				phys_params.split_role = ENC_ROLE_MASTER;
2138 			else
2139 				phys_params.split_role = ENC_ROLE_SLAVE;
2140 		} else {
2141 			phys_params.split_role = ENC_ROLE_SOLO;
2142 		}
2143 
2144 		DPU_DEBUG("h_tile_instance %d = %d, split_role %d\n",
2145 				i, controller_id, phys_params.split_role);
2146 
2147 		phys_params.intf_idx = dpu_encoder_get_intf(dpu_kms->catalog,
2148 													intf_type,
2149 													controller_id);
2150 		if (phys_params.intf_idx == INTF_MAX) {
2151 			DPU_ERROR_ENC(dpu_enc, "could not get intf: type %d, id %d\n",
2152 						  intf_type, controller_id);
2153 			ret = -EINVAL;
2154 		}
2155 
2156 		if (!ret) {
2157 			ret = dpu_encoder_virt_add_phys_encs(disp_info->capabilities,
2158 												 dpu_enc,
2159 												 &phys_params);
2160 			if (ret)
2161 				DPU_ERROR_ENC(dpu_enc, "failed to add phys encs\n");
2162 		}
2163 	}
2164 
2165 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2166 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2167 
2168 		if (phys) {
2169 			atomic_set(&phys->vsync_cnt, 0);
2170 			atomic_set(&phys->underrun_cnt, 0);
2171 		}
2172 	}
2173 	mutex_unlock(&dpu_enc->enc_lock);
2174 
2175 	return ret;
2176 }
2177 
2178 static void dpu_encoder_frame_done_timeout(struct timer_list *t)
2179 {
2180 	struct dpu_encoder_virt *dpu_enc = from_timer(dpu_enc, t,
2181 			frame_done_timer);
2182 	struct drm_encoder *drm_enc = &dpu_enc->base;
2183 	struct msm_drm_private *priv;
2184 	u32 event;
2185 
2186 	if (!drm_enc->dev || !drm_enc->dev->dev_private) {
2187 		DPU_ERROR("invalid parameters\n");
2188 		return;
2189 	}
2190 	priv = drm_enc->dev->dev_private;
2191 
2192 	if (!dpu_enc->frame_busy_mask[0] || !dpu_enc->crtc_frame_event_cb) {
2193 		DRM_DEBUG_KMS("id:%u invalid timeout frame_busy_mask=%lu\n",
2194 			      DRMID(drm_enc), dpu_enc->frame_busy_mask[0]);
2195 		return;
2196 	} else if (!atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) {
2197 		DRM_DEBUG_KMS("id:%u invalid timeout\n", DRMID(drm_enc));
2198 		return;
2199 	}
2200 
2201 	DPU_ERROR_ENC(dpu_enc, "frame done timeout\n");
2202 
2203 	event = DPU_ENCODER_FRAME_EVENT_ERROR;
2204 	trace_dpu_enc_frame_done_timeout(DRMID(drm_enc), event);
2205 	dpu_enc->crtc_frame_event_cb(dpu_enc->crtc_frame_event_cb_data, event);
2206 }
2207 
2208 static const struct drm_encoder_helper_funcs dpu_encoder_helper_funcs = {
2209 	.mode_set = dpu_encoder_virt_mode_set,
2210 	.disable = dpu_encoder_virt_disable,
2211 	.enable = dpu_kms_encoder_enable,
2212 	.atomic_check = dpu_encoder_virt_atomic_check,
2213 
2214 	/* This is called by dpu_kms_encoder_enable */
2215 	.commit = dpu_encoder_virt_enable,
2216 };
2217 
2218 static const struct drm_encoder_funcs dpu_encoder_funcs = {
2219 		.destroy = dpu_encoder_destroy,
2220 		.late_register = dpu_encoder_late_register,
2221 		.early_unregister = dpu_encoder_early_unregister,
2222 };
2223 
2224 int dpu_encoder_setup(struct drm_device *dev, struct drm_encoder *enc,
2225 		struct msm_display_info *disp_info)
2226 {
2227 	struct msm_drm_private *priv = dev->dev_private;
2228 	struct dpu_kms *dpu_kms = to_dpu_kms(priv->kms);
2229 	struct drm_encoder *drm_enc = NULL;
2230 	struct dpu_encoder_virt *dpu_enc = NULL;
2231 	int ret = 0;
2232 
2233 	dpu_enc = to_dpu_encoder_virt(enc);
2234 
2235 	mutex_init(&dpu_enc->enc_lock);
2236 	ret = dpu_encoder_setup_display(dpu_enc, dpu_kms, disp_info);
2237 	if (ret)
2238 		goto fail;
2239 
2240 	spin_lock_init(&dpu_enc->enc_spinlock);
2241 
2242 	atomic_set(&dpu_enc->frame_done_timeout_ms, 0);
2243 	timer_setup(&dpu_enc->frame_done_timer,
2244 			dpu_encoder_frame_done_timeout, 0);
2245 
2246 	if (disp_info->intf_type == DRM_MODE_ENCODER_DSI)
2247 		timer_setup(&dpu_enc->vsync_event_timer,
2248 				dpu_encoder_vsync_event_handler,
2249 				0);
2250 
2251 
2252 	mutex_init(&dpu_enc->rc_lock);
2253 	INIT_DELAYED_WORK(&dpu_enc->delayed_off_work,
2254 			dpu_encoder_off_work);
2255 	dpu_enc->idle_timeout = IDLE_TIMEOUT;
2256 
2257 	kthread_init_work(&dpu_enc->vsync_event_work,
2258 			dpu_encoder_vsync_event_work_handler);
2259 
2260 	memcpy(&dpu_enc->disp_info, disp_info, sizeof(*disp_info));
2261 
2262 	DPU_DEBUG_ENC(dpu_enc, "created\n");
2263 
2264 	return ret;
2265 
2266 fail:
2267 	DPU_ERROR("failed to create encoder\n");
2268 	if (drm_enc)
2269 		dpu_encoder_destroy(drm_enc);
2270 
2271 	return ret;
2272 
2273 
2274 }
2275 
2276 struct drm_encoder *dpu_encoder_init(struct drm_device *dev,
2277 		int drm_enc_mode)
2278 {
2279 	struct dpu_encoder_virt *dpu_enc = NULL;
2280 	int rc = 0;
2281 
2282 	dpu_enc = devm_kzalloc(dev->dev, sizeof(*dpu_enc), GFP_KERNEL);
2283 	if (!dpu_enc)
2284 		return ERR_PTR(ENOMEM);
2285 
2286 	rc = drm_encoder_init(dev, &dpu_enc->base, &dpu_encoder_funcs,
2287 			drm_enc_mode, NULL);
2288 	if (rc) {
2289 		devm_kfree(dev->dev, dpu_enc);
2290 		return ERR_PTR(rc);
2291 	}
2292 
2293 	drm_encoder_helper_add(&dpu_enc->base, &dpu_encoder_helper_funcs);
2294 
2295 	dpu_enc->enabled = false;
2296 
2297 	return &dpu_enc->base;
2298 }
2299 
2300 int dpu_encoder_wait_for_event(struct drm_encoder *drm_enc,
2301 	enum msm_event_wait event)
2302 {
2303 	int (*fn_wait)(struct dpu_encoder_phys *phys_enc) = NULL;
2304 	struct dpu_encoder_virt *dpu_enc = NULL;
2305 	int i, ret = 0;
2306 
2307 	if (!drm_enc) {
2308 		DPU_ERROR("invalid encoder\n");
2309 		return -EINVAL;
2310 	}
2311 	dpu_enc = to_dpu_encoder_virt(drm_enc);
2312 	DPU_DEBUG_ENC(dpu_enc, "\n");
2313 
2314 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2315 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2316 		if (!phys)
2317 			continue;
2318 
2319 		switch (event) {
2320 		case MSM_ENC_COMMIT_DONE:
2321 			fn_wait = phys->ops.wait_for_commit_done;
2322 			break;
2323 		case MSM_ENC_TX_COMPLETE:
2324 			fn_wait = phys->ops.wait_for_tx_complete;
2325 			break;
2326 		case MSM_ENC_VBLANK:
2327 			fn_wait = phys->ops.wait_for_vblank;
2328 			break;
2329 		default:
2330 			DPU_ERROR_ENC(dpu_enc, "unknown wait event %d\n",
2331 					event);
2332 			return -EINVAL;
2333 		};
2334 
2335 		if (fn_wait) {
2336 			DPU_ATRACE_BEGIN("wait_for_completion_event");
2337 			ret = fn_wait(phys);
2338 			DPU_ATRACE_END("wait_for_completion_event");
2339 			if (ret)
2340 				return ret;
2341 		}
2342 	}
2343 
2344 	return ret;
2345 }
2346 
2347 enum dpu_intf_mode dpu_encoder_get_intf_mode(struct drm_encoder *encoder)
2348 {
2349 	struct dpu_encoder_virt *dpu_enc = NULL;
2350 	int i;
2351 
2352 	if (!encoder) {
2353 		DPU_ERROR("invalid encoder\n");
2354 		return INTF_MODE_NONE;
2355 	}
2356 	dpu_enc = to_dpu_encoder_virt(encoder);
2357 
2358 	if (dpu_enc->cur_master)
2359 		return dpu_enc->cur_master->intf_mode;
2360 
2361 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2362 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2363 
2364 		if (phys)
2365 			return phys->intf_mode;
2366 	}
2367 
2368 	return INTF_MODE_NONE;
2369 }
2370